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Abstract

The Hagelin M-209 was a mechanical encryption device used by the US Army during World
War 2 and the Korean War, as well as by other armies and in embassy settings. In this paper, we
present a 4-stage hillclimbing algorithm for recovering the full key settings from ciphertext only.
The two first stages are based on a divide-and-conquer approach developed by Geoff Sullivan.
In our performance evaluation, we show that our method is able to recover key settings from
messages as short as 750 letters, compared to 2 000− 2 500 letters with prior methods. With this
method, we solved several M-209 ciphertext-only challenges, including the final exercises in W.
Barker’s 1977 book, Cryptanalysis of the Hagelin Cryptograph.

Keywords: Hagelin, M-209, Hillclimbing, Ciphertext-Only Attack, Cryptanalysis, Crypto-
graphic Challenge, NSA

1 Introduction

The trigger for our research was an intriguing story published by Dennis Ritchie in 2000 [19]. The
story also appeared in Cyberpunk, Outlaws and Hackers on The Computer Frontier by Katie Hafner
and John Markoff in 1991 [9]. Dennis Ritchie (1941-2011) is best known as the inventor of the UNIX
operating system (together with Ken Thomson), and of the C programming language. According to
his account, in the late 1970s, James Reeds, Robert Morris and Dennis Ritchie developed a ciphertext-
only method for recovering keys from Hagelin M-209 messages. Ritchie provides some details about
the method, and why it was not published. Robert Morris (1932-2011) was an early contributor to the
UNIX operating system, with a special interest in cryptography and in the M-209 device in particular.
In 1978, he published a paper describing a manual method for recovering Hagelin M-209 key settings
from known plaintext [14]. James Reeds was at UC Berkeley at the time, and he later joined Bell Labs.
According to Ritchie, their ciphertext-only method was able in most cases to recover key settings from
an encrypted message with 2 500 letters. It could also recover keys from only 2 000 letters in half of
the cases. The first part – the recovery of the pin settings, was statistical in nature and was developed
by Reeds. The second part, the recovery of the lugs setting, was more combinatorial in nature and
was based on Morris’s prior work as well as on Reeds’s ideas. Ritchie wrote the software code to
implement and test the method. The trio also wrote a paper which they submitted to Cryptologia
[17]. According to Ritchie, the manuscript was also sent to the NSA for review. After some time he
and Morris received a visit from a ”retired gentleman from Virginia”. This gentleman suggested that
the publication of the paper may ”cause difficulties” for the US and for other countries, who may
still be using similar equipment. At his request, the publication was indefinitely postponed. Morris
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later joined the NSA and became chief scientist at the National Computer Security Center. Ritchie
was the head of Lucent Technologies System Software Research Department when he retired in 2007.
Reeds went on developing encryption systems, and in 1998, he solved the ciphers in the third book
of Trithemius’s Steganographia [18]. The trio’s paper about M-209 ciphertext-only cryptanalysis has
never been published.

Our initial research goal was to try and reconstruct the Reeds-Ritchie-Morris method. However,
the clues from Ritchie’s account and other sources were not sufficient to achieve this goal. Another
motivation was an attempt to solve M-209 cryptographic challenges. Those include the final exercises
from Barker’s book, Cryptanalysis of the Hagelin Cryptograph, published in 1977 [1]. To our best
knowledge, no solution has been published for those exercises. Another series of challenges with
increasing difficulty was published by Jean-Francois Bouchaudy in his M-209 Challenge website [3].

We eventually came up with two novel cryptanalytic attacks on the Hagelin M-209, both based
on hillclimbing algorithms. The first one is an automated known-plaintext attack, which we already
presented in a separate paper [12]. The second one is a ciphertext-only method, which can recover
key settings from messages as short as 750 characters. With those methods, we solved almost all of
Bouchaudy’s M-209 challenges, including advanced challenges in the bonus section. We also solved
Barker’s book final exercises. In this paper we present our ciphertext-only method.

The rest of this paper is organized as follows: In Section 2 we present the description of the Hagelin
M-209 device and its logical functioning, as well as some background information about the Hagelin C-
Series and various versions of the M-209 operating instructions. Based on this description, we present
in Section 3 an analysis of the keyspace of the M-209 as well as prior ciphertext-only attacks. After
that, a description of our novel 4-stage hillclimbing algorithm for a ciphertext-only attack follows in
Section 4. In Section 5, we present an evaluation of our attack, including performance measurements,
an analysis of the work factor, and how we solved the challenges. Finally, we summarize our findings
in Section 6, including conclusions about the security of the Hagelin M-209 device.

2 The Hagelin M-209 Encryption Device

The Hagelin M-209, also known as CSP-1500, is a portable and compact mechanical encryption device
derived from the earlier C-38 which was developed by Boris Hagelin in 1938. The M-209 is built only
of mechanical components, and does not require any power source. About 140 000 M-209 units were
produced in total. We present here a functional description of the M-209 device, and how it differs
from other Hagelin C-Series encryption devices. We also present the operating instructions which
refer to key selection.

2.1 Functional Description

We reproduce here the functional description of the device, which we presented in our prior article
about a known-plaintext attack [12]. We show the mechanical internals of the M-209 device in
Figure 1, and a functional diagram in Figure 2. The M-209 functions as a stream cipher, with a
pseudo-random displacement sequence generator, and a Beaufort encoder, i.e. a Caesar cipher with
an inverted alphabet, as shown in Figure 1 (C). The pseudo-random displacement generator consists
of two parts: A rotating cage with 27 bars (see Figure 1 (A) and Figure 2), and a set of six wheels
(see Figure 1 (B) and Figure 2). The wheels are non-replaceable, unlike in later Hagelin models.
Wheels #1, #2, #3, #4, #5, and #6 have 26, 25, 23, 21, 19 and 17 letters, respectively. Next to
each letter, there is a pin which can be set to an effective or non-effective state. On each wheel, one
of the pins is in the active position, against the bars of the cage. At each step of the encryption or
decryption process, all the wheels rotate by exactly one step. Each bar in the cage has two movable
lugs. Each lug may be set against any of the six wheels, or set to the neutral position (0), but both
lugs may not be set against the same wheel. According to operating instructions (see Section 2.3),
at least one of the two lugs should be set for each bar. When both lugs on a bar are set (to different
wheels), the bar and the two wheels are involved in lug overlap, a feature which significantly increases
the cryptographic security of the device.

The operator usually changes the settings of the wheel pins and the lugs on a daily basis, according
to key lists distributed periodically. For each message, he selects the initial position of the 6 wheels
(see the device with cover closed on the left side of Figure 2). The operator encrypts the message
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Figure 1: The Hagelin M-209 Machine and its Mechanical Internals 1

letter by letter. He selects a plaintext letter using the disk on the left side of the device, and presses
a power handle. The disk has 27 symbols, A to Z and a space symbol. Space symbols are internally
replaced by the letter Z. When the power handle is pressed, all wheels rotate by one step, thus
replacing the 6 pins in the active position. In addition, the cage performs a full revolution around
its 27 bars. For each bar, if any one of the two lugs was set against a wheel for which the pin in the
active position is in effective state (see Figure 2), the bar is engaged and it moves to the left. The
displacement used for encoding the current letter is equal to the number of bars engaged, and may
have a value from 0 to 27. This displacement is then applied to the current plaintext letter, using a
Beaufort scheme (see Figure 2), to form the ciphertext letter, as follows:

CiphertextLetter[i] = (Z − PlaintextLetter[i] + Displacement[i]) mod 26 (1)

The letter A is represented by the number 0, B by 1, ... Z by 25. The device prints the ciphertext
letters on a paper tape, on the left side of the device. For convenience, the ciphertext is printed in
spaced groups of 5 letters each. To decrypt a message, the operator selects the decryption mode,
using a handle on the left of the device. The decryption process is essentially the same, except that
Z symbols in the decrypted text are replaced by spaces, and the printed plaintext is not divided into
5-letter groups. Because the wheels have different number of pins, and those numbers are co-prime,
the displacement sequence will not repeat itself until 26 ·25 ·23 ·21 ·19 ·17 = 101, 405, 850 ≈ 227 steps.

2.2 The Hagelin C Series

The M-209 was the most successful of the Hagelin C-Series of encryption devices. We present here
a survey of other C-Series devices and how they differ from the M-209. Earlier models, the Hagelin
C-35 and C-36, were developed in 1935 and 1936, respectively. These two devices had only 5 wheels
and 25 bars. Those bars had only one lug each. Furthermore, the position of the lugs was fixed.
To increase cryptographic security, movable lugs were introduced in the C-38 [10], the immediate
predecessor of the M-209. As with the M-209, the C-38 had 27 bars. Furthermore, each bar had two
lugs, allowing for lug overlap. The main difference between the C-38 and the M-209 was the slide
function, available in the C-38 and C-36. At the last stage of the encryption, a user selectable slide
value is added (modulo 26) to the encrypted character. The encryption/decryption formula for the
C-38 and C-36 is therefore:

CiphertextLetter[i] = (Slide − PlaintextLetter[i] + Displacement[i]) mod 26 (2)

1Source: Wikipedia http://commons.wikimedia.org/wiki/File:M209B-IMG_0553-black.jpg and Wikimedia Com-
mons http://en.wikipedia.org/wiki/File:M209B-IMG_0557.JPG. Created on 2/11/2011 by user Rama http://

commons.wikimedia.org/wiki/User:Rama
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Figure 2: Functional Diagram of the Hagelin M-209

The slide feature requires the cryptanalyst to repeat his work for all 26 possible slides values. It
was not considered, however, to significantly add to the security of the device. It was therefore not
included by the US Army in the design of the M-209. With the M-209, the slide value is fixed and
equal to Z (25).

There were several variants of the C-36 and C-38 designs [15]. The Swedish version of the C-38
had 29 bars instead of 27. The C-446 device was equivalent to the C-38, but also included a second
printing apparatus, for the plaintext. The Italian Navy version, with the misleading name of C-38m,
had 6 wheels and 27 bars, each bar with a single movable lug. One or two of the bars could be selected
to implement a simple slide function with only two possible values, 1 or 2 [6]. The Hagelin BC-38
and BC-543 were functionally equivalent to the C-38 but also included a keyboard and an internal
motor.

Post-war C-Series models, such as the C-52/CX-52, had also 6 wheels, selected from a set of 12
wheels. In addition, they had 32 bars, 5 of which could be used to generate an irregular movement
of the wheels. In contrast, in all earlier models, the movement of the wheel was regular, one step for
each plaintext/ciphertext character. Irregular wheel stepping significantly adds to the cryptographic
security of the device. A lower-end device, the CD-57, was the most compact of all the C Series
devices and could easily fit in a pocket. Its 6 wheels were selectable from a set of 12 wheels, but
often the device was supplied with a fixed set of 6 wheels [15]. Instead of bars, it had 6 adjustable
displacement disks, one per each wheel. Those disks were functionally equivalent to a cage of 40 bars,
each bar with a single movable lug (and therefore no lug overlap).

The Hagelin C-Series devices were extensively used by armies and in embassy settings, from the
late 1930s and until the 1950s, and in some countries probably until the 1970s.

2.3 Operating Instructions

Several versions of the US Army operating instructions for the M-209 device were in effect during the
the 1940s and 1950s. Those contain detailed guidelines on how to create new keys. The motivation
for those guidelines was to prevent the operators from selecting degenerate or cryptographically weak
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Year Details
1942 TM 11-380 Technical Manual Converter M-209, 33 pages, April 27, 1942 [26]
1943 TM 11-380B Technical Manual Converter M-209, 42 pages, September 20, 1943 [27]
1944 TM 11-380 Technical Manual Converter M-209, M-209A, M-209B, 78 pages, March 17, 1944 [28]
1947 TM 11-380 Technical Manual Converter M-209, M-209A, M-209B, 170 pages, May 1947 [29][1]
1951 Update dated April 10, 1951. We could not find the document.
1953 Mentioned in correspondence from Crypto-Aids Division to C/SEC, April 8, 1953 [4]

Table 1: Versions of the M-209 Operating Instructions

settings. For example, if there are no bars with a lug in front of wheel #6, this effectively turns
the system into a weaker 5-wheel system. The guidelines were also designed to hide any statistical
characteristics which may be useful for cryptanalysis. On the other hand, those guidelines also
have the effect of restricting the size of the operational keyspace. In our ciphertext-only attack, we
take advantage of those restrictions. We provide here a list of the known versions of the operating
instructions, as well as their guidelines for selecting keys.

Known Versions of the Operating Instructions: There are at least five or six known versions
of the TM 11-380 Technical Manual, produced by the US War Department [16]. The list is presented
in Table 1. We were able to obtain copies of the 1942, 1943 and 1944 manuals, and the correspondence
mentioning the 1953 revision. However, we could not obtain a copy of the 1951 version, but based
on the April 1953 correspondence, the 1951 revision is unlikely to have introduced major chances in
key selection procedures. The May 1947 version is included in its entirety in Barker’s book [1].

Pin Setting Guidelines: All versions specified that at least 40% of the wheel pins should be in
effective state, but no more than 60%. Also, on any wheel there should be no more than 6 consecutive
pins set to the same state (effective or non-effective). This restriction was removed in the 1953 version.

Lug Count Guidelines: Starting with the 1942 version, all versions provided guidelines regarding
the allowed Lug Count Patterns, which we describe below. To do so, we first define the concept
of Lug Count, which we denote by LC. LC[w] is the number of lugs set in front of wheel w, with
1 ≤ w ≤ 6. According to the 1942 version of the technical manual, the requirements for Lug Counts
are as follows:

1. 0 < LC[w] ≤ 13, for each wheel w.

2. 28 ≤ ΣLC[w] ≤ 39. This means that there should be at least one bar with two lugs set (lug
overlap), since the total number of bars is 27, and the number of overlaps is equal to ΣLC[w]−27.

3. There should be an equal mix of even and odd values for LC[w], i.e. three of the wheels should
have even lug counts, and the other three should have odd lug counts. A consequence of this
rule is that ΣLC[w] is always odd, and the number of overlaps, ΣLC[w]−27, is therefore always
even.

4. For each number S from 1 to 27, there should be at least one combination of wheels for which
ΣLC[w] = S. One of the consequences of this rule is that there should always be one wheel,
w1, for which LC[w1] = 1, i.e. there is exactly one lug set in front of w1.

We also introduce the concept of Lug Count Patterns. A Lug Count Pattern is also an array
with 6 elements of lug counts. However, in a Lug Count Pattern, the elements are ordered according
to their lug count values, starting from the lowest count, and not by the wheel number. While a
pattern specifies lug counts for the 6 wheels, a Lug Count Pattern alone does not specify how those
counts are assigned to the specific wheels. By running a simulation on all possible patterns, we found
that there are only 58 such valid Lug Count Patterns which comply with the 1942 version of the
guidelines. Those Lug Count Patterns are listed in Appendix A.1. It can be seen that for all those
1942 version patterns, there is always a wheel with 1 lug associated to it, denoted by w1, and another
wheel w2 with two lugs associated to it. Pattern {1, 2, 4, 5, 6, 11}, which is pattern #11 in the list
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in Appendix A.1, is an example of such a valid pattern. It complies with all the rules set in the
1942 version of the operating manual. According to this pattern, one wheel, w1, will have one lug
associated to it, another wheel (w2) will have two lugs, one wheel (w3) will have four lugs, and so
on. The total lug count for this pattern is 1 + 2 + 4 + 5 + 6 + 11 = 29, which means that there are
29− 27 = 2 overlaps, i.e. two bars with two lugs set, all the remaining 27− 2 = 25 bars having only
one lug set.

There is a one-to-many relationship between Lug Count Patterns and Lug Count arrays. Each
Lug Count array is associated with a Lug Count Pattern which we may obtain simply by sorting
the elements of the Lug Count array. For example, the Lug Count arrays LC1 = {6, 1, 5, 2, 11, 4}
and LC2 = {11, 4, 6, 2, 5, 1} are both associated to the Lug Count Pattern #11 = {1, 2, 4, 5, 6, 11}.
Inversely, if we apply the Lug Count Pattern #11 = {1, 2, 4, 5, 6, 11}, and map wheel w1 (the first
wheel in the pattern) to physical wheel #2, w2 to #4, w3 to #6, w4 to #3, w5 to #1, and w6 to #5,
we obtain the Lug Count array {6, 1, 5, 2, 11, 4}.

In 1943, the restriction that there should be an equal mix of even and odd values for LC[w], both
equal to 3, was relaxed, and patterns with 2, 3 or 4 even values of LC[w] were allowed. According to
our simulations, this increases the number of allowed Lug Count Patterns from 58 in the 1942 version
to 334 in the 1943 version. This also allows for an overlap count of only 1. Also, the wheels with the
lowest lug counts, w1 and w2, may both have a lug count of 1. With the 1943 version, w2, always
had a lug count of 1. An example of such a pattern is {1, 1, 2, 3, 8, 13}. This pattern has an overlap
count of 1, and both w1 and w2 have a lug count of 1.

In the 1944 version, the patterns were divided into two groups, Group A and Group B. The
patterns in Group B were considered to be less secure and could be used for no more that 10% of the
keys. The 1944 manual included a comprehensive list of all 144 Group A and 204 Group B allowed
lug count patterns, 348 in total. In the 1947 version, patterns with a single lug overlap were not
allowed anymore and were removed from the list. The new list contained only 134 Group A and 167
Group B patterns, 301 patterns in total. One of the Group B patterns in the list is in fact erroneous
and cannot be used, leaving only 300 valid patterns. The 1953 version extended the list of patterns by
allowing LC[w] ≤ 14 instead of LC[w] ≤ 13. According to our simulations, we estimate the number
of valid patterns for the 1953 version to be approximately 469.

In addition, all the versions specified that for each one of the 27 bars, at least one of the two lugs
should be set in front of one of the wheels.

Lug Overlap Distribution Guidelines: The 1943 and later versions of the manual also specified
guidelines on how the overlaps should be distributed among the wheels, as follows:

1. Most of the wheels (4 or more) should be involved in lug overlaps.

2. Overlaps should involve wheels which are side-by-side (such as #3 and #4) as well as wheels
which are separated (such as #2 and #5).

3. Many small overlaps, for several pairs of wheels, are preferable to many overlaps for a single pair
of wheels. The 1944 and later versions strengthened this requirement by limiting the number
of overlaps for a single pair of wheels to 4 at most.

The 1947 and 1953 versions specified that at most one wheel may be in a Total Overlap state, i.e.
that all lugs in front of that wheel are on bars with overlaps (with the two lugs set). In addition, the
1953 version added overlap distribution guidelines designed to produce more random displacement
values.

Other Guidelines: The 1947 version included a guideline that messages longer than 100 groups
of 5 letters (500 characters) should be split into separate shorter messages. All the versions specified
that the initial position of the 6 wheels should be different for each message.

In the detailed description of our ciphertext-only attack we show, for simplicity, how it is applied
to the 1942 version, as the method is quite complex. However, our attack is not restricted to the 1942
version, as we show in the performance evaluation in Section 5.
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3 Cryptanalysis

In this chapter we first analyze the keyspace of the Hagelin M-209 machine. We also present an
overview of prior ciphertext-only attacks on the Hagelin M-209. We describe in more detail the
ciphertext-only method developed by Geoff Sullivan [22], as we rely on some of its concepts in the
design of our own method.

3.1 Keyspace

We reproduce here the keyspace analysis of the device, which we presented in our prior publication
about a known-plaintext attack [12]. The settings of the device consists of the Wheel Settings which
include the wheel pins and the initial position of the wheels, and of the Lug Settings - the settings
of the lugs of the 27 bars. The overall keyspace consists of the combination of the keyspaces of the
wheel settings and of the lug settings.

3.1.1 Wheel Settings Keyspace

Wheels #1, #2, #3, #4, #5, and #6 have 26, 25, 23, 21, 19 and 17 pins respectively, with a total of
131 pins. Each one of the pins may be set to either effective or ineffective. Therefore, the size of the
keyspace for the wheel pin settings is 2131.

In addition, the initial position of each one of the 6 wheels may be set by the operator. There are
26·25·23·21·19·17 = 101, 405, 850 ≈ 227 distinct initial wheel position settings. Usually, the operator
modifies the initial wheel positions for each new message, while the pin and lug settings are changed
daily. He also encrypts the 6 letters representing the initial positions of the wheels, and sends them
encrypted, as part of the message preamble. There are various methods to encrypt the initial wheel
positions, such as using the daily pin and lug settings and default ”AAAAAA” initial wheel positions.
In some rare cases, the initial positions of the wheels are sent in clear, or somehow they are known
to the cryptanalyst. In those cases, it is necessary to take into account the initial wheel positions,
as after recovering the pin and lug settings for one message, other messages on the same day and
network may easily be decrypted, by just replacing the initial wheel positions. In our algorithm, we
can either use the initial wheel position settings in the rare cases they are known, or simply assume
default ”AAAAAA” initial wheel positions, if they are not known. This is possible since any set of
pin settings with initial wheel positions other than ”AAAAAA”, is logically equivalent to another set
of pin settings in conjunction with the default ”AAAAAA” initial wheel positions. To illustrate this,
consider the following sample wheel pin settings, given the initial wheel positions ”BBBBBB”:

Wheel 1 : 01101110011000111100001101
Wheel 2 : 001111000111010010100110
Wheel 3 : 00101110111101111011111
Wheel 4 : 010011101111011110111
Wheel 5 : 0101110111110111010
Wheel 6 : 01101110111101111

Listing 1: Example of Pin Settings with Initial wheel positions ”BBBBBB”

In this example, in wheel #1, pins #2,#3,#5,#6,#7,#10,#11,#15,#16,#17,#18,#23,#24 and
#26 are in effective state, and all the other pins are in ineffective state. By rotating those wheel
pin settings (for ”BBBBBB”) by one step to the right, using a cyclic rotation, we can obtain wheel
pin settings for the case of default ”AAAAAA” initial wheel positions, which are cryptographically
equivalent. Those equivalent pin settings are shown below:
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Wheel 1 : 10110111001100011110000110
Wheel 2 : 000111100011101001010011
Wheel 3 : 10010111011110111101111
Wheel 4 : 101001110111101111011
Wheel 5 : 0010111011111011101
Wheel 6 : 10110111011110111

Listing 2: Equivalent Pin Settings with Initial wheel positions ”AAAAAA”

For the attack presented here, as the initial wheel positions are either known, or assumed to be
”AAAAAA”, they do not affect the size of the wheel settings keyspace, which remains 2131.

3.1.2 Lug Settings Keyspace

Each one of the 27 bars in the cage has two movable lugs. Each lug can be set to be in front of
any one of the 6 wheels, but the two lugs of the same bar cannot be set to be in front of the same
wheel. Also, in practical uses of the device, at least one of the lugs of each bar is always set. In the
notation commonly used for lug settings, the lowest wheel number is specified first (e.g. 1-4, rather
than 4-1), and if only one of the lugs is set, the number 0 is used instead of the first wheel (e.g. 0-1).
An example of lug settings is shown in Table 2.

Bar 1 2 3 4 5 6 7 8 9
Lug Settings 1-4 3-4 0-1 0-2 0-2 0-2 0-3 0-3 0-3

Bar 10 11 12 13 14 15 16 17 18
Lug Settings 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-3

Bar 19 20 21 22 23 24 25 26 27
Lug Settings 0-4 0-5 0-6 0-6 0-6 0-6 0-6 0-6 0-6

Table 2: An Example of Lug Settings

There are 21 possible ways of settings the two lugs of a bar, as follows:

1. Only one of the two lugs is set to be against one of the 6 wheels, and the second is set to the
neutral position (0). There are 6 possible such settings: 0-1, 0-2, 0-3, 0-4, 0-5 and 0-6.

2. Both lugs are set. This case is known as lugs overlap. There are (6·5)
2 = 15 possible lug settings

for a bar, with overlap. In the example shown in Table 2, bars #1 and #2 have lug settings
with overlap, 1-4 and 3-4 respectively.

In theory, there should be 2127 possibilities to set up the bars lugs, or approximately 2118. From
the cryptographic perspective, however, many of those settings are equivalent. In the encryption
process, each one of the 27 bars independently contributes to the total displacement value applied by
the Beaufort encoder to the current input letter. In the example shown in Table 2, bar #1 has lugs
set to wheels #1 and #4 (1-4), and bar #3 has only one lug set to wheel #1 (0-1). Those settings
are cryptographically equivalent to the settings shown in Table 3, where bar #1 has only one lug set
to wheel #1 (0-1), and bar #3 has lugs set to wheels #1 and #4 (1-4).

Bar 1 2 3 4 5 6 7 8 9
Lug Settings 0-1 3-4 1-4 0-2 0-2 0-2 0-3 0-3 0-3

Bar 10 11 12 13 14 15 16 17 18
Lug Settings 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-3 0-3

Bar 19 20 21 22 23 24 25 26 27
Lug Settings 0-4 0-5 0-6 0-6 0-6 0-6 0-6 0-6 0-6

Table 3: Lug Settings Equivalent to the Settings in Prior Example
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What actually matters is the number of bars with each one of the 21 distinct types of lug settings.
We can, therefore, represent any lug settings for the device, by keeping a count of the bars with each
one of the 21 possible types of lug settings. This concise form also represents any other equivalent set of
lug settings. This is illustrated in Table 4 which shows this non-redundant alternative representation
of the same lug settings as in Table 2 or Table 3. We shall use this concise and non-redundant
representation throughout this paper, for our analysis and in our algorithms.

Lug Settings Type 0-1 0-2 0-3 0-4 0-5 0-6 1-4 3-4
Number of Bars 1 3 12 1 1 7 1 1

Table 4: Non-redundant Representation of the Lug Settings from the Prior Example

After discarding the redundant settings, the cryptographically relevant size of the keyspace for
the lug settings can now be calculated as follows: We need to distribute k = 27 indistinguishable
elements (the bars) into n = 21 distinguishable buckets (the 21 distinct possible lug settings per each
bar). Hence, according to the ”bars and stars” formula, the number of cryptographically distinct lug
settings is as follows:

C(n + k − 1, k) = C(21 + 27− 1, 27) =
47!

20! · 27!
≈ 243 (3)

3.1.3 Additional Constraints on the Lug Settings Keyspace

The keyspace for the lug settings is further reduced by operating procedure constraints. The effect
of operating procedure constraints on the size of the lug settings keyspace is difficult to accurately
quantify. We still may provide an upper bound, by taking into account some of the constraints.

We compute here an upper-bound for the size of the keyspace of the lug settings, when applying
the constraints derived from the 1942 version of the operating instructions. From Appendix A.1, we
can see that there may be only 2, 4, 6, 8, 10, or 12 overlaps. We compute the upper limit for the
number of possible lug settings with exactly v lugs overlaps, for each possible value of v. Each one
of the v bars (with lugs overlap) may each be set to one of 15 bar lugs setting types (e.g. 1-2, 1-3,
etc...). According to the ”bars and stars” formula, there are C(15 + v− 1, v) possible lug settings for
those v bars. The remaining 27−v bars may each be set to one of the 6 bar lug setting types without
overlap (0-1, 0-2, 0-3, 0-4, 0-5 or 0-6), and therefore there are C(6 + (27− v)− 1, 27− v) possible lug
settings for those 27 − v bars. Hence, the upper limit for the number of possible lug settings for all
bars, with v overlaps, is as follows:

C(15 + v − 1, v) · C(6 + (27− v)− 1, 27− v) (4)

In Table 5 we show the number of possible settings for each one of the allowed overlap values.
The total number - an upper limit for the number of possible lug settings, is about 238, compared to
243 without operating procedures constraints.

The analysis for the case of the 1943 and later versions of the operating instructions is more
complex. On the one hand, there are more lug count patterns, from 300 to 469 vs. only 58 for 1942.
On the other hand, there are new restrictions on how the overlaps are to be distributed. Each revision
from 1943 had increasingly restrictive guidelines for overlap distribution. We therefore estimate that
the size of the effective keyspace for the lug settings is probably comparable or smaller than for the
1942 version, especially for the latest versions (1947 and later).

3.1.4 Combined Keyspace

The full, cryptographically relevant, keyspace of the Hagelin M-209 is therefore the combined keyspace
for the wheel pin settings and for the lug settings, i.e. approximately 2131 · 238 = 2169.

3.2 Prior Ciphertext-Only Attacks on the M-209

In addition to the method developed by Reeds, Ritchie, and Morris, which was never published, sev-
eral publications describe other ciphertext-only attacks on the M-209. According to the declassified
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Number of Overlaps v Possible Key Lug Settings
2 17 100 720 224

4 300 736 800 228

6 2 549 632 800 231

8 13 591 504 080 233

10 51 647 715 504 235

12 149 732 980 800 237

Total 217 839 670 704 238

Table 5: Number of Possible Key Lug Settings per Number of Lugs Overlaps

TICOM I-175 and DF-120 reports [24][23], the German cryptographic services in World War 2 were
able to recover key settings from ciphertext in special cases, such as messages ”in-depth”. Those spe-
cial cases included messages sent with the same key settings, messages retransmitted because of key
setting errors, or messages with closely related initial wheel settings. They also developed statistical
methods to determine whether messages were in-depth, fully or partially, as well as mechanical/-
electrical devices to facilitate the process. In addition, they investigated a more generic statistical
attack. According to the TICOM Report I-45 [25], they were only able to solve a synthetic message
in German with 5 000 letters.

In his 1977 book [1], Barker describes a ciphertext-only attack based on the statistical analysis of
letter frequency distribution patterns, applied to each one of the pins of a certain wheel. For example,
wheel number #6 has 17 pins. This wheel completes a full rotation cycle every 17 letters. According
to Barker’s method, the analyst gathers letter frequency statistics for each one of the 17 pins of wheel
#6. For pin #1, he gathers statistics for ciphertext letters at positions 1, 18, 35, and so on. For pin
#2, he gathers statistics for letters at positions 2, 19, 36, and so on. Same applies to the remaining
pins of wheel #6. For a message of length 2 500, the analyst may obtain letter frequency statistics
for a sample of N = 2 500

17 = 147 letters, for each pin of wheel #6. The other wheels (#1, #2, #3,
#4 and #5) also rotate, but with different cycles, and letter statistics for their pins are gathered
accordingly. Next, for each possible pair of pins pa and pb in a given wheel, the analyst performs a
Chi test on Fa and Fb, which are the letter frequency distribution for pins pa and pb, respectively, as
follows:

ΣZ
l=A

Fa[l]Fb[l]

NaNb
(5)

Na and Nb are the total numbers of samples, for pins pa and pb, respectively. This Chi test value
indicates how close the letter frequency distributions for pins pa and pb are. For any given wheel,
the letter frequency patterns for pins in effective state are expected to differ from letter frequency
patterns for pins in ineffective state. This is expected since only pins in effective state affect the
displacement sequence, while pins in ineffective state do not. The analyst uses the Chi test to divide
the pins of the wheel into two distinct classes. One class contains pins likely to be in ineffective state,
and the second pins likely to be in effective state. Barker describes techniques to identify the classes,
and to handle ambiguous cases. The analyst repeats the process for the other wheels, factoring in
the findings from previous wheels, until the pin settings for all wheels have been recovered. He finally
recovers the lug settings. Barker demonstrates this technique on a theoretical 4-wheel device, and
does not provide any quantitative analysis about the method’s performance.

In their 1982 book [2], Beker and Piper present a similar method. They propose different tech-
niques to divide the pins into classes, and to solve ambiguities. They demonstrate the method on a
M-209 sample message with 3 000 letters. The plaintext of this sample message has an usually high
number of space symbols, internally converted to Z symbols. Baker and Piper claim that their method
generally works with 2 500 letters, and often with only 2 000, but they do not provide any detailed
quantitative analysis. Interestingly enough, those numbers are similar to the numbers from Ritchie’s
account. On the other hand, Ritchie claimed that the Reeds-Ritchie-Morris method was different
from Barker’s method [19]. As the method developed by Beker and Piper is similar to Barker’s, this
comment probably applies to their method as well.

In [20], Rivest presents a theoretical analysis showing that 8 000 letters are required for cryptanal-
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ysis using Barker’s Chi test method. He nevertheless concludes that in practice 2 000 to 4 000 letters
are usually enough.

Finally, a method for ciphertext-only recovery of M-209 settings is presented by Geoff Sullivan in
[22]. Using a divide-and-conquer approach, the method incrementally recovers pin and lug settings,
one or two wheels at a time. It requires a text of at least 2 500 to recover most of the key settings.
Since our method relies on similar concepts for Stage 1 and Stage 2, we describe Sullivan’s method
in more detail in the following section, as well as its limitations.

3.3 Overview of Sullivan’s Ciphertext-Only Method

The method developed by Sullivan is a divide-and-conquer approach. It tries to incrementally recover
pin settings of certain wheels, while isolating the effects of the other wheels [22]. Sullivan’s method
relies on lug setting restrictions derived from the 1942 version of the operating instructions, as de-
scribed in Section 2.3. As a result of those restrictions, there is always one wheel, denoted by w1, in
front of which there is exactly one lug. Similarly, there is always one wheel, denoted by w2, in front
of which there are exactly two lugs. The goal of the first stage in the Sullivan method is to identify
the most likely w1 and w2 wheels, out of the 6 · 5 = 30 options.

We present here the core concept of Sullivan’s first stage algorithm. As depicted in Figure 2, at
each step of the decryption (or encryption) process, the lugs on the bars are affected only by the 6
pins in the active position, one per wheel. Those 6 pins constitute a boolean vector of size 6, therefore
having 26 = 64 possible vector values. If we know the correct pin settings for wheels w1 and w2, the
correct state of the active pins of wheels w1 and w2 is also known, at each position of the ciphertext
message. There are 24 = 16 possible values for the remaining four wheels for which pin settings are
unknown. Assuming those 16 values are equally distributed, there is a probability of 1/16 that all
the active pins of the remaining four wheels are in their ineffective case. For all such positions in the
message, only wheels w1 and w2 affect decryption (or encryption).

If we set the pin settings of w1 and w2 to their correct settings, the pin settings of the other wheels
as ineffective, assign one bar with a lug in front of w1 and two bars with a lug assigned to w2, and
decrypt the ciphertext using this putative key, we therefore may obtain a decrypted text with about
1/16 of the letters correctly decrypted. The Index of Coincidence for the resulting decrypted text is
expected to be higher than the Index of Coincidence of a text decrypted using random wrong keys.

The algorithm of the first stage of Sullivan’s method takes advantage of this characteristic. For
each possible {w1, w2} selection, it performs a hillclimbing search for the optimal pin settings of
wheels w1 and w2. The pins of the other four wheels are kept in ineffective state. One bar has one
lug set to w1, and two bars with one lug each set to w2. The lugs on the other 27 − 3 = 24 bars
are in neutral position. At each step of hillclimbing, the algorithm inverts the state of one of the
pins of either w1 or w2, from effective to ineffective, or vice versa. It then decrypts the message, and
if the Index of Coincidence score improves, it keeps the new settings. Otherwise, it rolls back and
discards the change. It completes the first stage by applying this hillclimbing algorithm to all the
possible {w1, w2} pairs, and selecting the {w1, w2} pair with the highest Index of Coincidence after
hillclimbing. It also keeps the putative pin settings of w1 and w2 for the second stage.

The goal of the second stage of Sullivan’s method is to find the pin settings for the other four
wheels, one wheel at a time. The first cycle of the second stage consists of finding the optimal pin
settings for a third wheel, as well as the most likely number of lugs in front of that third wheel. To
do so, Sullivan’s second stage algorithm first sets the pin settings of wheels w1 and w2 to those found
in the first stage. It also sets up one bar with one lug set to w1, and two bars with one lug each
set to w2. It then tests each one of the remaining four wheels, as follows: for each such candidate
wheel w, it tests different assumptions about the number of lugs which are in front of it, starting
from 3 lugs and up to 13 lugs, while assuming there are no bars with lugs overlaps. It applies a
hillclimbing search with the Index of Coincidence as the fitness score, for the optimal settings of the
pins of candidate wheel w. During hillclimbing, only the states of the pins of candidate wheel w are
changed. For each candidate wheel w, it keeps the Index of Coincidence value and the pin settings
obtained by hillclimbing, as well as the optimal number of lugs. When all candidate wheels have been
tested, it selects the candidate wheel for which hillclimbing achieved the highest Index of Coincidence.
Sullivan’s second stage algorithm repeats the whole process to find the best fourth wheel from the
remaining 3 wheels, using the settings obtained in the first stage and in prior cycles of the second
stage. It terminates when all the wheels have been processed. The results of the second stage include
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putative pin settings for all the wheels, as well as putative lug settings, although those lug settings
are inaccurate since they do not take into account lugs overlaps. Sullivan suggests an additional stage
of hillclimbing for improving the recovered lug settings.

While Sullivan’s method may often find most of the correct pin and lug settings, it has several
limitations. First, the algorithm is likely to fail if lugs set to wheels w1 or w2 are in bars with overlaps.
In general, lugs overlaps in any of the bars may disrupt the whole process. In addition, the second
stage depends on correctly selecting w1 and w2 in the first stage. Similarly, errors in one of the cycles
of the second stage while recovering pin settings or lug settings are likely to propagate and disrupt the
next cycles. Sullivan demonstrates his method on a 2 500 letters message. The Index of Coincidence
he obtains after decrypting the ciphertext with the recovered pin and lug settings is relatively low,
0.045, v.s. an expected plaintext Index of Coincidence of 0.0738. Therefore, the decrypted text is
probably hard if not impossible to read. In the next section, we describe our approach. In particular,
we describe how we addressed the limitations of Sullivan’s method by improving and extending the
scope of the two stages, and adding two additional stages.

4 Our Four-Stage Hillclimbing Ciphertext-Only Attack

The method we developed consists of a 4-stage hillclimbing algorithm. For simplicity, we describe
our method in the context of the key setting guidelines specified in the 1942 version of the operating
instructions (see Section 2.3). Our method, however, is not restricted to the 1942 version. It can be
applied to later versions as well, as described in Section 4.6.

The main challenge for any ciphertext-only attack is the need to recover both the lug settings
and the pin settings while none of the two are known. As shown by Sullivan in [22], it is possible
to recover the pin settings using hillclimbing, if the lug settings are known. Similarly, we were able
to implement a simple hillclimbing method to recover the lug settings once the correct pin settings
are known. In our attack described here, we try to incrementally recover elements of the correct lug
settings and pin settings, using a 4-stage algorithm, described in high-level in Figure 3.

Stage 1

Hillclimbing search for pin 

settings of wheels w1 and 

w2

Stage 4

Hillclimbing for pin and 

lug settings, using N-Gram 

score, for selected cases

Lug Count 

Patterns  (58)

Ciphertext

Putative pin settings for 

wheels w1 and w2 (30 cases) Sample Lug Settings

(41760 cases)

Putative pin settings and sample lug  

settings (41760 cases)

Improved pin and lug settings, 

and IC value (41760 cases)
Final pin and lug  

settings, 

for cases with 

highest scores

Compute Lug 

Count Patterns

Generate Sample 

Lug Settings

Constraints from 

operating instructions

Stage 2

Incremental hillclimbing 

search for pin settings of 

w3, w4, w5 and w6

Stage 3

Hillclimbing search for 

improved pin and lug  

settings, using IC score

Figure 3: High-Level Flow Diagram – 4-Stage Algorithm
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The first two stages improve Sullivan’s divide-and-conquer 2-stage approach, by significantly ex-
tending their scope. Stage 1 is similar to the first stage of Sullivan’s first stage. But instead of trying
to find the best w1 and w2, we keep the results for all 6 · 5 = 30 combinations of w1 and w2, as input
to Stage 2. In Stage 2, we extend the process of recovering pin settings for the remaining 4 wheels
to a set of 41 760 representative Sample Lug Settings. The outcome of Stage 2 is used as starting
points for Stage 3, in which we perform a comprehensive hillclimbing search for improved pin settings
and lug settings. We perform hillclimbing on all 41 760 cases from Stage 2, and use the Index of
Coincidence as the fitness score. At the end of Stage 3, we expect to have found most of the correct
pin and lug settings. In Stage 4, we perform a more in-depth hillclimbing process, using bigram and
monogram (N-Gram) statistics for scoring. Stage 4 is performed only on selected cases from Stage 3
which are most likely to converge, and is intended to fully recover the pin and lug settings. For longer
messages, Stage 3 is sometimes enough. The whole process of running Stages 1, 2, 3 and 4, is usually
repeated up to 100 times, or until a solution is found. Each stage of the algorithm is described in
detail in the following sections.

4.1 Stage 1

Stage 1 is similar to the first stage of Sullivan’s method. As a result of restrictions imposed by the
rules in the 1942 version of the operating procedures (see Section 3.1.3), we also assume that there is
always one wheel, w1, for which there is one bar with one lug set to it. We assume there is another
wheel w2, for which there are two bars, each one with one lug set to w2. But instead of looking for the
best {w1, w2} combination as in Sullivan’s method, we process in Stage 1 all 6 · 5 = 30 combinations
of {w1, w2}. We keep the results for all those 30 combinations as input for Stage 2. When processing
a pair of {w1, w2} wheels, we assume that all the pins on the other four wheels are ineffective. We
also assume that the lugs on the remaining 27− 3 = 24 bars are set to neutral(0). This means that
only wheels w1 and w2 affect the decryption process. We then run a hillclimbing algorithm which
searches for the optimal pin settings for wheels w1 and w2. As a fitness score, we use the Index of
Coincidence of the putative plaintext obtained by decrypting the ciphertext with the putative key
settings. The rationale for Stage 1 is presented in Section 3.3, where we describe Sullivan’s method.
More details are available in the pseudo-code in Appendix A.3.

4.2 Stage 2

As with Sullivan’s second stage, Stage 2 of our algorithm processes the remaining 4 wheels one wheel
at a time, to find optimal pin settings. The main difference is about how lug settings are deduced.
The inaccurate recovery of the lug settings was one of the main limitations of Sullivan’s method,
especially in the case of lug overlaps. In practice, lug settings always involve lug overlaps. The core
element of our solution to overcome those limitations is the novel concept of the Sample Lug Settings,
which we introduce in Section 4.2.1. After that we present the Stage 2 algorithm in Section 4.2.2.

4.2.1 Sample Lug Settings

The full keyspace of the key lug settings is about 238, therefore it is not feasible to run a hillclimbing
search for pin settings, for each possible case of lug settings in the keyspace. Furthermore, this is not
necessary. It is possible to recover most of the correct pin settings, if we only know an ”approximate”
set of lug settings, which includes most but not necessarily all of the correct lug settings.

Our approach is to build a set of sample lug settings, from which at least one is likely to be close
enough to our unknown lug settings. To do so, we start with the 58 valid Lug Count Patterns (see
Appendix A.1), which comply with the restrictions derived from the 1942 version of the operating
instructions. We then apply each pattern to each possible mapping of the wheels in the pattern, w1

to w6, to the physical wheels, #1 to #6. Since there are 6! = 720 ways to map the 6 wheels, we now
have a set of 720 · 58 = 41 760 Sample Lug Settings, or ≈ 215. For each Sample Lug Settings, we now
have a precise lug count for each physical wheel. The last missing part is how to distribute the lug
overlaps between the specific wheels. For that purpose we define a set of arbitrary but simple rules,
which are described in detail in Appendix A.2.

A different way to look at the same concept, is to consider each case of Sample Lug Settings
as a representative of the group of possible lug settings, which share the same lug counts and the
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same mapping of lug counts to physical wheels, but differ in the way the lug overlaps are distributed
among the wheels. The correct (and unknown) lug settings belong to one of those 41 760 groups. The
hope is that the Sample Lug Settings case, which represents that group, will not be too distant from
the correct lug settings. The Sample Lug Settings therefore constitute a representative subset of all
possible lug settings. This set is distributed over the whole lug settings keyspace, and it covers lug
overlaps as well.

We expect at least one of the 41 760 sample cases to be not too far away from the correct lug
settings, either the sample with the same lug counts and mapping of wheels, or even another sample.
Using approximate or partially correct lug settings enables hillclimbing to recover most of the correct
pin settings, so the processing of at least one of those 41 760 Sample Lug Settings cases should yield
partially correct pin settings. As the number of the Sample Lug Settings cases is only ≈ 215 compared
to the full lug settings keyspace size of 238, it is computationally feasible to process all of them and
run a hillclimbing search for pin settings for each case. Note that this approach may be fine-tuned,
using new rules, different from the rules used in this work and described in Appendix A.2. Another
approach could be to add more representative lug settings samples for each group, rather than just a
single one. This obviously requires more computing power, or more time to run the full algorithm.

An additional benefit of using Sample Lug Settings, is that lug settings assumptions are not
dependent on the success of earlier steps in either Stage 1 or 2. Each Sample Lug Settings case
specifies a full set of lug settings for all the lugs and their associated wheels, and for each case, the
lug settings are kept unchanged throughout the cycles of Stage 2. This is in contrast to Sullivan’s
second stage algorithm, where lug settings are recovered incrementally, and errors usually propagate
to later cycles.

As described in Section 4.6, both the number of valid Lug Count Patterns, and the number of
Sample Lug Settings, differ according to the version of the operating instructions.

4.2.2 Stage 2 Algorithm

For each case of Sample Lug Settings, Stage 2 starts with the putative pin settings for w1 and w2

which we obtained in Stage 1. We set the bars and the lugs in accordance with the Sample Lug
Settings case, and we process each one of the remaining four wheels, one by one. We start with the
wheels which have a lower number of lugs associated to it (according to the Sample Lug Settings).
At each cycle, we obtain putative pin settings for the wheel, using a hillclimbing search and the Index
of Coincidence as the fitness score. We also keep the wheel putative pin settings for the next cycles.
When we have processed all the wheels, we keep the putative pin settings and the lug settings for the
Sample Lug Settings case. The outcome of Stage 2 is a set of putative key settings, for each one of
the 41 760 cases. More details about Stage 2 are available in the pseudo-code in Appendix A.4.

4.3 Stage 3

In Stage 3, we seek to improve the approximate putative pin and lug settings (the Sample Lug
Settings) produced in Stage 2. We do this by running a combined hillclimbing search for optimal pin
settings and for optimal lug settings. We use the Index of Coincidence on the putative decrypted
text as the fitness score. We repeat this search for each one of the 41 760 cases produced by Stage 2.
In contrast to Stage 2, in this stage the search for improved lug settings is no longer limited to the
Lug Settings Samples. Rather, those Lug Settings Samples from Stage 2 serve as starting points for
the search for improved putative lug settings. Furthermore, there is no incremental processing of one
wheel at a time, as in Stage 2. The search is over the full key space, repeatedly testing whether a
change in the setting of any pin, in any wheel, or in the settings of any bar, may improve the fitness
score. The outcome of Stage 3 is a set of improved putative key settings for each one of the 41 760
cases, as well as the Index of Coincidence value for each case. Often, if the message is long enough,
the improved putative settings for one of the cases may already contain the correct key settings. More
details about Stage 3 are available in the pseudo-code in Appendix A.5.

4.4 Stage 4

Stage 4 is similar to Stage 3, with two major differences. First, we perform Stage 4 only on selected
cases from Stage 3, rather than on all the 41 760 cases. We select only those cases for which the
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Message Length Index of Coincidence Threshold
2 000 or more 0.050
1 500− 2 000 0.051
1 250− 1 500 0.052
1 000− 1 250 0.053
750− 1 000 0.055

less than 750 0.057

Table 6: Index of Coincidence Noise Threshold per Message Length

Index of Coincidence value obtained in Stage 3 is higher than a ”noise threshold”. If the Index of
Coincidence of a decrypted ciphertext is above this threshold, there is a high probability that most
of the putative key settings elements are correct. The Index of Coincidence threshold depends on the
length of the message, and was found empirically. Threshold levels for various messages lengths are
shown in Table 6. If none of the cases from Stage 3 had a sufficient Index of Coincidence, we still try
and process the top 3 best cases from Stage 3 (those with the highest Index of Coincidence values),
although the probability for finding the correct key settings is lower.

In addition, we use a different scoring method for hillclimbing in Stage 4. In Stages 1, 2 and
3, we used the Index of Coincidence as the fitness score. For hillclimbing in Stage 4, we use N-
Gram statistics. N-Gram statistics are more accurate than the Index of Coincidence, but they are
effective only if most of the key elements are already correct. We therefore use N-Gram statistics
only for the last stage of our algorithm, for those selected cases in which most of the key elements
are already correct. Furthermore, the longer the N-Grams, e.g. trigrams vs. bigrams, the more
accurate the score. On the other hand, higher level N-Grams are also less effective in the presence
of key setting errors. We therefore used a combination of monogram statistics and bigram statistics,
as a compromise to balance between accuracy and effectiveness in the presence of setting errors. To
compute the fitness score for Stage 4, we first decrypt the message with the putative pin and lug
settings. We then compute the sum of the counts of all bigrams in the decrypted text, multiplied
by their respective log-frequencies in the English language. To this score, we add the sum of the
counts for all monograms, multiplied by their respective log-frequencies in the English language. If
hillclimbing of Stage 4 results in a N-Gram score above a certain value, there is a very high probability
that all key settings are correct. In this case, we stop, and there is no need to process the remaining
cases.

4.5 Summary of the Four Stages

The 4-stage algorithm is relatively complex, yet each one of the stages plays a critical role. We made
some experiments, such as skipping Stage 3, or running only Stages 3 and 4, and in almost all cases,
solutions could not be found. The main purpose of Stage 1 and Stage 2 is to provide good starting
points for Stage 3, with approximate putative pin and lug settings. In Stage 2, we use a set of 41 760
Sample Lug Settings, and we search for the optimal pin settings under each one of those lug settings
cases. The Sample Lug Settings are designed to provide a reasonable coverage and well distributed
starting points over the lug settings space. In Stage 3, we hillclimb to try and improve putative pin
settings as well as lug settings. The search for improved lug settings in Stage 3 is no more limited to
the Sample Lug Settings as in Stage 2. In Stage 3 we use the Index of Coincidence as the fitness score,
even though the N-Gram statistics are more accurate. We do so because at this stage we may still
have a high number of errors. We conclude the process in Stage 4 with a similar hillclimbing using
N-Gram statistics, which are more likely to allow for final convergence. Stage 4 runs only on those
cases which are most likely to converge. For longer messages (e.g. 2 000 letters or more) and few lug
overlaps, a single pass of the 4 stages is often enough to find the solution. More passes are usually
required for shorter messages and/or more lug overlaps. For the performance analysis presented in
the next section, we allowed the algorithm to run up to 100 times, or until the key settings were
recovered.
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4.6 Other Versions of the Operating Instructions

For simplicity, in the previous sections, the description of our ciphertext-only attack assumed that
the 1942 version of the operating instructions was in effect. The method, however, can also be applied
to other versions, as described here:

1. With the 1942 version, there are 58 valid Lug Count Patterns. With other versions, there are
different sets of patterns. As mentioned in Section 2.3, there are 334, 348, 300 and 469 patterns
for the 1943, 1944, 1947 and 1953 versions, respectively.

2. Accordingly, while we run our algorithms on 720·58 = 41 760 Sample Lug Settings with the 1942
version, we run the algorithms on 240 480, 250 560, 216 000 and 337 680 Sample Lug Settings
for the 1943, 1944, 1947 and 1953 versions, respectively. This has the effect of requiring more
processing time to cover this increased number of Sample Lug Settings.

3. In addition, in the Lug Count Patterns for the 1942 version, the wheels with the lowest lug
counts, w1 and w2, always had a lug count of 1 and 2, respectively. With the 1943 and above
version, while w1 will always have a lug count of 1, w2 may have a lug count of either 1 or 2,
and not just 2. The algorithm of Stage 1 handles both cases.

5 Performance Evaluation

We present here a performance evaluation of our methods, in terms of success rate and work factor,
under several scenarios - message length, number of lug overlaps, and the version of the operating
instructions. In addition, we show how we solved publicly available M-209 ciphertext-only challenges
using this method.

5.1 Success Rate

We tested the algorithm on simulated messages in English. The length of the messages varied from 750
to 2 500, and the number of lug overlaps was 2, 6 or 12. The keys were randomly generated and were
designed to comply with the requirements of the operating instructions. The operating instructions
for 1943, 1944 and 1947 are very similar, with incremental changes designed to increase cryptographic
security. On the other hand, those later versions differ significantly from the instructions in the 1942
version. We therefore tested the performance of our ciphertext-only attack in the context of the 1942
version and of the 1947 version. Those two versions cover the period from 1942 to 1951. Some details
are missing about the 1951 and 1953 rules, and we did not include them in our measurements. We
estimate that the performance of the algorithms in the context of those later versions would not differ
too much from the performance with the 1947 version.

For each case of a given length and number of lug overlaps, we processed a batch of 100 simulated
messages. For each message we ran the four stages up to 100 times or less if the key was recovered
earlier. The success rate of the algorithm is displayed in Figure 4. For comparison, we show the
performance of the Reeds-Ritchie-Morris algorithm. According to Ritchie, their method could recover
key settings for most of the messages with 2 500 letters, and for half of the messages with 2 000 letters.
In Figure 4, we interpreted ’most’ as 90%. Our multistage hillclimbing method performs significantly
better. It can also be seen that using messages shorter than 750 letters, and at least 6 lug overlaps,
significantly increases the security of the M-209. Surprisingly, the improvements introduced up to
the 1947 version had almost not effect on the success rate of the algorithm for 2 and 6 overlaps, while
they reduced the success rate for 12 overlaps by about 10%, e.g. 49% instead of 59% for messages of
with 1 250 letters.

5.2 Work Factor Analysis

We also analyzed the work factor for the algorithm. When running the algorithm, the vast majority
of the time is spent while decrypting the ciphertext after each change on the key, and computing
the Index of Coincidence. In Stages 1 and 2, almost all key changes are changes on the pin settings.
Stages 3 and 4, there are also changes on lug settings, but those account for less than 10% of the key
settings changes. Furthermore, almost all of the changes in pin settings consist of changing the state
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Figure 4: Success Rate for Full Key Recovery vs. Message Length and Number of Overlaps

of a single pin. To shorten the time processing changes in pin settings, we introduced an optimization
in the decryption process. Instead of decrypting again the entire ciphertext after each change in the
state of a pin, we only decrypt those characters of the message which are in positions affected by the
change. For example, if we modify the state of a single pin in wheel #1, which has 26 pins, we only
need to update the decrypted text at every 26th position. This optimization reduced the processing
time by more than 70%.

We measured the total numbers of decryptions required to fully recover the key settings. In
Figure 5, we show the average number of decryptions, only for those cases where the full key settings
were successfully recovered. The numbers are shown on a log2 scale. For comparison, the size of
the full keyspace is 2169. On a 3.4 GHz Intel Core i7 quad-core PC and using multiple threads, the
solution for a long message (2 500 letters) with 2 lug overlaps usually requires a few minutes. For
a short message (1 000 letters) encrypted with key settings with 12 lug overlaps, several hours are
usually required.

The time required for a solution for a key complying to the 1947 version of the operating instruc-
tions is about 4-5 times longer than the time required with the 1942 version. This is expected, as
there are 300 valid patterns for the 1947 version vs. 58 for the 1942 version, about 5 times more.
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5.3 Solving Challenges

Using our method, we also solved several ciphertext-only challenges (without messages ’in-depth’)
from the M-209 Challenge site [3] of Jean-Francois Bouchaudy, including a message with 1 000 char-
acters (Bonus #11). For another message with only 620 letters, key settings could not be recovered.

In the example given by Beker and Piper [2], the message has 3 000 letters and the lug settings
have 6 lug overlaps. Our method recovered the correct key settings in a few minutes. It was also
able to recover the correct key settings after truncating the message and leaving only the first 1 000
letters.

We also found solutions for the final exercises, #60 to #63, in Barker’s book [1]. They consist of
4 messages, of lengths 1035, 1145, 520 and 545 respectively. They were encrypted using the same lug
settings and pin settings, but with different (and unrelated) wheel starting positions. The cryptograms
were created by Greg Mellen (1926-1998), Editor Emeritus of Cryptologia, and published in 1977.
Barker proposes an extension to his Chi test method for the solution of the exercises, however, we were
not successful in applying the suggested method to the 4 messages. To date, we are not aware of any
published solution to those exercises, which conclude a series of exercises with increasing difficulty.

We applied our ciphertext-only method to the two longer cryptograms, setting our program to
apply the rules from the 1944 version of the operating instructions. We let our program run for two
days, without success. After changing the settings of the program to instead apply the rules from the
1942 version, a solution was produced in two hours, for the first message (with 1035 letters). The
lug settings include 6 overlaps. Wheels w1 (physical wheel #6) and w2 (physical wheel #2) are both
involved in lug overlaps. This may have affected the algorithm performance. The full lug settings
are as follows: 0-1 0-1 0-1 0-2 0-3 0-3 0-3 0-3 0-3 0-4 0-4 0-4 0-4 0-4 0-4 0-5 0-5 0-5 0-5 0-5 0-5 1-2
3-4 3-4 4-5 4-5 5-6. Using those known lug settings, a simple hillclimbing search for the pin settings
produced solutions for the other 3 messages.

All four plaintexts are excerpts from classical cryptography publications. The first message starts
with DECIPHERING IS BOTH A SCIENCE AND AN ART, from William F. Friedman’s An In-
troduction to Methods for the Solutions of Ciphers [7]. The second message starts with WE CAN
DISTINGUISH RATHER CLEARLY THREE KINDS OF COMMUNICATION WHICH ARE TO
BE ENCIPHERED, from the Manual of Cryptography by Luigi Sacco (English version) [21]. The
third message starts with AN EXAMINATION OF EITHER PLAIN TEXT OR CRYPTOGRAPHIC
TEXT, from Solomon Kullback’s Statistical Methods in Cryptanalysis [11]. The last message starts
with IT IS A CURIOUS TWIST IN HUMAN PSYCHOLOGY, from Friedman’s Elements of Crypt-
analysis [8].

6 Conclusion

In this paper we presented a complex but effective 4-stage hillclimbing method for the ciphertext-only
cryptanalysis of Hagelin M-209 messages. Our method uses a mix of keyspace reduction techniques
and targeted search heuristics, such as the novel concept of representative Sample Lug Settings. Our
performance evaluation shows that our method is significantly more effective than any other published
statistical method.

In addition, we may draw several conclusions in regards to the cryptographic security of the
device. M-209 messages longer than 750 letters are susceptible to our ciphertext-only attack. On the
other hand, the lug overlap feature of the device, especially with 12 overlaps, significantly increases
its operational security.

Operating instructions, originally intended to increase operational cryptographic security, also
have the effect of restricting the size of the keyspace, and therefore allowing for this kind of targeted
search attack. Revisions introduced in 1943 and later versions to improve the cryptographic security
of the device do not significantly affect the performance of the attack described here. A guideline to
limit message length to 500 and split longer messages was eventually introduced but only in the 1947
version.

The method presented here is applicable, possibly with some minor changes, to all the C-Series
models developed in the 1930s and 1940s. Further research is needed to evaluate the applicability
of our attack to Hagelin encryption devices developed in the 1950s, such as the C-52/CX-52 or the
CD-57. Another direction for further research could be to fine-tune the set of representative Sample
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Lug Settings, or to improve the performance of the whole algorithm by simply extending the set to
cover more cases, using more computing power.
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A Appendices

A.1 Lug Count Patterns

We show in Table 7 the full set of Lug Count Patterns, 58 in total, which comply with the rules set in
the 1942 version of the Technical Manual [26]. For example, pattern #51 specifies that there should
be one wheel, denoted as w1, with one bar with one lug set in front of that wheel, as well as another
wheel (w2) with a count of 2 lugs. In addition, it specifies that there should be one wheel (w3) with 3
lugs associated to it, one wheel with 6 lugs (w4), one wheel with 12 lugs (w5), and the last one with
13 lugs (w6). This pattern has 10 lug overlaps.

Note that a pattern does not specify which physical wheel is w1 and has a lug count of 1, which
wheel is w2, and so on. Furthermore, while it does specify the total number of overlaps, it does not
specify how those overlaps are distributed between the wheels.

An important observation from Table 7 is that lug counts for w1 and w2 are always 1 and 2,
respectively, for any one of the 58 patterns. Note that this is true only for the 1942 version of the
operating instructions. The patterns for 1943 and later versions also allow for cases where w2 has a
lug count of 1 as well. In addition, in the 1942 version, the number of overlaps is always even (2, 4,
6, 8, 10, or 12) while in later versions the number of overlaps may also be odd. Furthermore, in the
1943 and 1944 versions, there are patterns with only one overlap. Such patterns were considered as
less secure, and were removed in 1947. Finally, there are about 5-6 times more patterns for the later
versions, varying from 300 (1947) to about 469 (1953), compared with 58 in the 1942 version.
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Pattern No w1 w2 w3 w4 w5 w6 Overlaps
1 1 2 3 4 9 10 2
2 1 2 3 4 8 11 2
3 1 2 3 4 7 12 2
4 1 2 3 4 6 13 2
5 1 2 3 5 8 10 2
6 1 2 3 5 6 12 2
7 1 2 3 6 8 9 2
8 1 2 3 6 7 10 2
9 1 2 4 5 8 9 2
10 1 2 4 5 7 10 2
11 1 2 4 5 6 11 2
12 1 2 4 6 7 9 2
13 1 2 3 4 10 11 4
14 1 2 3 4 9 12 4
15 1 2 3 4 8 13 4
16 1 2 3 5 8 12 4
17 1 2 3 6 9 10 4
18 1 2 3 6 8 11 4
19 1 2 3 6 7 12 4
20 1 2 3 7 8 10 4
21 1 2 4 5 9 10 4
22 1 2 4 5 8 11 4
23 1 2 4 5 7 12 4
24 1 2 4 5 6 13 4
25 1 2 4 6 7 11 4
26 1 2 4 7 8 9 4
27 1 2 3 4 11 12 6
28 1 2 3 4 10 13 6
29 1 2 3 5 10 12 6
30 1 2 3 6 10 11 6
31 1 2 3 6 9 12 6
32 1 2 3 6 8 13 6
33 1 2 3 7 8 12 6
34 1 2 4 5 10 11 6
35 1 2 4 5 9 12 6
36 1 2 4 5 8 13 6
37 1 2 4 6 9 11 6
38 1 2 4 6 7 13 6
39 1 2 4 7 9 10 6
40 1 2 4 7 8 11 6
41 1 2 3 6 11 12 8
42 1 2 3 6 10 13 8
43 1 2 3 7 10 12 8
44 1 2 4 5 11 12 8
45 1 2 4 5 10 13 8
46 1 2 4 6 9 13 8
47 1 2 4 7 10 11 8
48 1 2 4 7 9 12 8
49 1 2 4 7 8 13 8
50 1 2 4 8 9 11 8
51 1 2 3 6 12 13 10
52 1 2 4 5 12 13 10
53 1 2 4 6 11 13 10
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54 1 2 4 7 11 12 10
55 1 2 4 7 10 13 10
56 1 2 4 8 9 13 10
57 1 2 4 7 12 13 12
58 1 2 4 8 11 13 12

Table 7: Lug Count Patterns for 1942 Operating Instructions

A.2 Sample Lug Settings Rules

Sample Lug Settings are generated by applying each one of the valid Lug Count Patterns (see Ap-
pendix A.1) to a all 6! = 720 possible mappings of the six wheels in the pattern, w1 to w6, to the
physical wheels #1 to #6. For example, for the 58 Lug Count Patterns derived from the 1942 version
of the operating instructions, there are 58 · 720 = 41 760 Sample Lug Settings. There 334, 348, 300
and 469 patterns for the 1943, 1944, 1947 and 1953 versions, respectively. Accordingly, we generate
240 480, 250 560, 216 000 and 337 680 Sample Lug Settings when using the 1943, 1944, 1947 and 1953
versions, respectively. This has the effect of requiring more processing time to cover this increased
number of Sample Lug Settings.

In addition, we apply arbitrary (but simple) rules for the allocation of lug overlaps. First, no
overlap is allowed for the lugs set to wheels w1 and w2. In addition, lugs in front of wheel w3 may
share bars (lug overlap) only with lugs set in front of wheel w4. Same applies to wheels w5 and w6,
respectively. Furthermore, the number of overlaps is divided between the pairs {w3, w4} and {w5, w6}
in proportion to the number of lugs set to w3 and w5 in the Lug Count Pattern, respectively. Note
that those rules for distributing the overlaps among the various wheels when generating the Sample
Lug Settings, were primarily designed for simplicity. They may be incompatible with the guidelines
specified in certain versions of the operating instructions (1943 and later). Therefore, other rules,
better tailored to match the guidelines from the later versions of the operating instructions, may yield
better results.

To illustrate the concept, we show in Table 8 how to derive sample lug settings from Lug Count
Pattern #51 = {1, 2, 3, 6, 12, 13}. We apply the pattern to the following order of the wheels: w1 =
#5, w2 = #6, w3 = #1, w4 = #3, w5 = #2 and w6 = #4, where #1 to #6 are physical wheels
numbers. There is one bar with a lug set in front of wheel w1 = #5, without sharing (”0-5” lug
settings). There are two bars with a lug set in front of w2 = #6, without sharing (”0-6” settings).
The sum of the elements in Lug Count Pattern #51 is 37, and as there are 27 bars in the M-209,
there are 10 lug overlaps in this pattern. Since wheel w3 (#1) has a count of 3 lugs in the pattern,
and w5 (#2) has a count of 12 lugs, we allocate the 10 overlaps at a ratio of 3:12=2:8 between the
pairs {w3, w4} and {w5, w6}. Since w3 = #1 and w4 = #3, there are two bars with the lug settings
”1-3”. Similarly, there are 8 bars with the settings ”2-4”. All the remaining bars are without overlap.
For example, wheel w5 (mapped to #2) has a count of 12 lugs in the Lug Count Pattern. Since 8 of
them are on shared bars (with overlap), the remaining 4 are on non-shared bars, so we have 4 bars
with the lug settings ”0-2”. The full Sample Lug Settings are displayed in Table 9 (only entries with
Number of Bars > 0 are displayed).

A.3 Pseudo Code for Stage 1

//
// Stage 1 Algorithm .
//
Input : c i p h e r t e x t
// The c i p h e r t e x t .
//
Output : s t a g e 1 w 1 p i n s s e t t i n g s
// Array o f s i z e 30 , each entry conta in s
// the pin s e t t i n g s f o r w1 , as found by Stage 1 h i l l c l i m b i n g ,
// per each combination o f {w1 , w2} .

s t a g e 1 w 2 p i n s s e t t i n g s
// Same , f o r pin s e t t i n g s o f w2 .
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w1 w2 w3 w4 w5 w6 Comment

Physical Wheel
#

Wheel
#5

Wheel
#6

Wheel
#1

Wheel
#3

Wheel
#2

Wheel
#4

Physical wheel num-
bers shown in this line

Lug Counts Pat-
tern (#51)

1 2 3 6 12 13
Total Count = 37,
Overlaps = 37 − 27 =
10

Lugs with Bar
Sharing

0 0 10 · 3
3+12 = 2 10 · 12

3+12 = 8
The 10 overlaps are al-
located at a ratio of 3 :
12 = 2 : 8

Lugs without
Bar Sharing

1 2 3-2=1 6-2=4 12-8=4 13-8=5

The remaining lugs are
on bars without over-
lap

Table 8: Applying Lug Count Pattern #51 to Create Sample Lug Settings

Type Number of Bars
0-1 1
0-2 4
0-3 4
0-4 5
0-5 1
0-6 2
1-3 2
2-4 8

Table 9: An Example of Sample Lug Settings

// Also with 30 e n t r i e s , one per each combination o f {w1 , w2}
//

for each ordered pa i r {w1 , w2} from wheels {1 ,2 ,3 ,4 ,5 ,6} {

l u g s e t t i n g s = neut ra l // Lugs on a l l bars in neut ra l p o s i t i o n .
a l l o c a t e b a r s ( l u g s e t t i n g s , w1 , 1 ) // A l l o ca t e 1 bar with 1 lug s e t to w1 .
a l l o c a t e b a r s ( l u g s e t t i n g s , w2 , 2 ) // A l l o ca t e 2 bars with 1 lug s e t to w2 .
b e s t i c = 0

// Repeat h i l l c l i m b i n g 5 t imes and keep the best r e s u l t s f o r pa i r {w1 , w2} .
for ( c y c l e s = 0 , c y c l e s < 5 , c y c l e s++) {

// Star t the c y c l e with random s e t t i n g s f o r p ins o f w1 and w2 .
// The p ins in the other 4 wheels are kept in i n e f f e c t i v e s t a t e .
// No change in the lug s e t t i n g s .
p i n s e t t i n g s [ w1 ] = random p ins s e t t i ng s (w1)
p i n s e t t i n g s [ w2 ] = random p ins s e t t i ng s (w2)
for each wheel w not in {w1 , w2} {

p i n s e t t i n g s [w] = i n e f f e c t i v e
}

dec rypted tex t = decrypt ( c iphe r t ex t , p i n s e t t i n g s , l u g s e t t i n g s )
i c = i n d e x o f c o i n c i d e n c e ( dec rypted tex t )

// Repeatedly look f o r changes in w1 and w2 pin s e t t i n g s which
// improve the Index o f Coinc idence . I f no more improvement
// can be achieved , s t a r t a new c y c l e .
do {

improved = fa l se
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// We proce s s only p ins o f wheels w1 and w2 .
for each wheel w in {w1 , w2} {

for each pin p in wheel w {
// Inve r t the s t a t e o f the pin . Decrypt and check whether
// the Index o f Coinc idence has improved .
t o g g l e p i n ( p i n s e t t i n g s ,w, p)
dec rypted tex t = decrypt ( c iphe r t ex t , p i n s e t t i n g s , l u g s e t t i n g s )
new ic = i n d e x o f c o i n c i d e n c e ( dec rypted tex t )
i f ( new ic > i c ) {

// Improvement was achieved with the change in pin s e t t i n g s .
// Keep the change .
improved = true
i c = new ic
i f ( i c > b e s t i c ) {

// I f t h i s i s a l s o the best Index o f Coinc idence so f a r
// f o r pa i r {w1 , w2} , then keep pin s e t t i n g s o f w1 and w2
// in the r e l e v a n t entry in the output ar rays .
b e s t i c = i c
w1w2 index = i n d e x o f p a i r (w1 , w2)
s t a g e 1 w 1 p i n s s e t t i n g s [ w1w2 index ] = p i n s e t t i n g s [ w1 ]
s t a g e 1 w 2 p i n s s e t t i n g s [ w1w2 index ] = p i n s e t t i n g s [ w2 ]

}
} else {

// No improvement − r o l l back the change .
t o g g l e p i n ( p i n s e t t i n g s ,w, p)

}
} // end o f : f o r each pin . . .

} // end o f : f o r each wheel . . .
} while ( improved )

} // end o f : f o r c y c l e s . . .
} // end f o r : each ordered pa i r . . .

// Return optimal pin s e t t i n g s f o r wheels w1 and w2 ,
// per each p o s s i b l e {w1 , w2} combination ( t o t a l o f 30 e n t r i e s ) .
return ( s t a g e 1 w 1 p i n s s e t t i n g s , s t a g e 1 w 2 p i n s s e t t i n g s )

//
// End o f Stage 1 Algorithm .
//

A.4 Pseudo Code for Stage 2

//
// Stage 2 Algorithm .
//
Input : c i p h e r t e x t
// The c i p h e r t e x t .

s t a g e 1 w 1 p i n s s e t t i n g s , s t a g e 1 w 2 p i n s s e t t i n g s
// Pin s e t t i n g s f o r w1 and w2 , obta ined in Stage 1 .
// Both are ar rays o f s i z e 30 , one entry per each
// combination o f {w1 , w2} .
//
Output : s t a g e 2 l u g s s e t t i n g s
// Array ( s i z e 41760) with the sample lug s e t t i n g s .

s t a g e 2 p i n s s e t t i n g s
// Array with the best pin s e t t i n g s f o r each
// one o f 41760 sample lug s e t t i n g s . Each entry conta in s the p ins
// s e t t i n g s f o r a l l 6 wheels .
//
//
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// Precompute the 58 Lug Count Patterns .
// See Sec t i on 3 . 1 . 3 and Appendix 1 .
l u g s c o u n t s p a t t e r n s = precompute lug s count s pat t e rn s ( )

// I t e r a t e on a l l 30 p o s s i b l e p a i r s o f {w1 , w2} .
for each pa i r {w1 , w2} from wheels {1 ,2 ,3 ,4 ,5 ,6} {

// We use the pin s e t t i n g s f o r w1 and w2 as obta ined from Stage 1 .
w1w2 index = i n d e x o f p a i r (w1 , w2)
p i n s e t t i n g s [ w1 ] = s t a g e 1 w 1 p i n s s e t t i n g s [ w1w2 index ]
p i n s e t t i n g s [ w2 ] = s t a g e 1 w 2 p i n s s e t t i n g s [ w1w2 index ]

// I t e r a t e on each one o f the 58 pat t e rns .
for each pattern in l u g s c o u n t s p a t t e r n s {

// I t e r a t e on each one o f the 4 ! = 24 o rd e r i ng s
// o f the remaining 4 wheels .
for each order {w3 , w4 , w5 , w6} o f wheels not in {w1 , w2} {

// We apply the Lug Count Pattern to the s p e c i f i c o rde r ing
// o f the 6 wheels {w1 , w2 , w3 , w4 , w5 , w6} , to obta in the
// correspond ing Sample Lug S e t t i n g s . See Appendix 2 .
l u g s e t t i n g s = g e t s a m p l e l u g s s e t t i n g s ( pattern ,{w1 , w2 , w3 , w4 , w5 , w6})

// Also keep the sample lug s e t t i n g s case in to the output array .
index = s a m p l e l u g s s e t t i n g s i n d e x ( l u g s e t t i n g s )
s t a g e 2 l u g s s e t t i n g s [ index ,w] = l u g s e t t i n g s [w]

// The p ins f o r the wheels not yet proce s sed are i n e f f e c t i v e .
for each wheel w not in {w1 , w2}{

p i n s e t t i n g s [w] = i n e f f e c t i v e
}

// We proce s s the 4 remaining wheels one by one .
for each wheel w in wheels {w3 , w4 , w5 , w6} {

b e s t i c = 0

// Run h i l l c l i m b i n g 3 times , keep the best r e s u l t s .
for ( c y c l e s = 0 , c y c l e s < 3 , c y c l e s++) {

// Star t c y c l e by us ing random pin s e t t i n g s f o r w.
p i n s e t t i n g s [w] = random p ins s e t t i ng s (w)

dec rypted tex t = decrypt ( c iphe r t ex t , p i n s e t t i n g s , l u g s e t t i n g s )
i c = i n d e x o f c o i n c i d e n c e ( dec rypted tex t )

// Continue as long as the Index o f Coinc idence can be
// improved by changing wheel w pin s e t t i n g s .
do {

improved = fa l se
For each pin p o f wheel w {

// Inve r t the s t a t e o f the pin , and check whether
// the change improves the Index o f Coinc idence .
t o g g l e p i n ( p i n s e t t i n g s ,w, p)
dec rypted tex t = decrypt ( c iphe r t ex t , p i n s e t t i n g s ,

l u g s e t t i n g s )
new ic = i n d e x o f c o i n c i d e n c e ( dec rypted tex t )
i f ( new ic > i c ) {

// The change in s e t t i n g s o f pin improved the
// Index o f Coinc idence . Keep the change .
improved = true
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i c = new ic
i f ( i c > b e s t i c ) {

// This i s a l s o h igher than the best Index o f
// Coinc idence so f a r f o r w ( f o r the s p e c i f i c
// case o f Sample Lug S e t t i n g s ) .
// Keep the pin s e t t i n g s o f wheel w in the
// r e l e v a n t entry in the output array .
b e s t i c = i c
index = s a m p l e l u g s s e t t i n g s i n d e x ( l u g s e t t i n g s )
s t a g e 2 p i n s s e t t i n g s [ index ,w] = p i n s e t t i n g s [w]

}
} else {

// No improvement − r o l l back the change .
t o g g l e p i n ( p i n s e t t i n g s ,w, p)

}
} // end o f : f o r each pin . . .

} while ( improved )
} // end o f : f o r c y c l e s . . .

// We use the best pin s e t t i n g s f o r wheel w, when p r o c e s s i n g
// the next wheels .
index = s a m p l e l u g s s e t t i n g s i n d e x ( l u g s e t t i n g s )
p i n s e t t i n g s [w] = s t a g e 2 p i n s s e t t i n g s [ index ,w]

} // end o f : f o r each wheel . . .
} // end o f : f o r each order . . .

} // end o f : f o r each pattern . . .
} // end o f : f o r each ordered pa i r . . .

// Return best pin s e t t i n g s , and sample lug s e t t i n g s
// f o r each one o f the 41760 Sample Lug S e t t i n g s ca s e s .
return ( s t a g e 2 p i n s s e t t i n g s , s t a g e 2 l u g s s e t t i n g s )

//
// End o f Stage 2 Algorithm .
//

A.5 Pseudo Code for Stage 3

//
// Stage 3 Algorithm .
//
Input : c i p h e r t e x t
// The c i p h e r t e x t .

s t a g e 2 p i n s s e t t i n g s
// One entry , conta in ing the pin s e t t i n g s
// f o r a l l wheels as found in Stage 2 , per each Sample Lugs
// S e t t i n g s case . There are 41760 ca s e s .

s t a g e 2 l u g s s e t t i n g s
// One entry , per each Sample Lug S e t t i n g s
// case , as proce s sed in Stage 2 (41760 ca s e s ) .
//
Output : s t a g e 3 p i n s s e t t i n g s
// One entry , conta in ing improved p ins
// s e t t i n g s f o r a l l wheels as found in Stage 3 , f o r each one
// o f the 41760 ca s e s from Stage 2 .

s t a g e 3 l u g s s e t t i n g s
// One entry , conta in ing improved lug s
// s e t t i n g s as found in Stage 3 , f o r each one o f the
// 41760 ca s e s from Stage 2 .

s t a g e 3 i c
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// The best Index o f Coinc idence as found by Stage 3 ,
// f o r each one o f the 41760 ca s e s from Stage 2 .
//

// We proce s s each case from the 41760 r e c e i v e d from Stage 2 .
// For each such case , we try to improve the pin s e t t i n g s .
// We a l s o t ry to improve the lug s e t t i n g s .
for index from 1 to 41760 {

s t a g e 3 i c [ index ]= 0

// Run h i l l c l i m b i n g 10 t imes and keep the best r e s u l t s .
for ( c y c l e s = 0 , c y c l e s < 10 , c y c l e s++) {

// Star t with the pin s e t t i n g s obta ined from Stage 2 .
p i n s e t t i n g s = s t a g e 2 p i n s s e t t i n g s [ index ]
// Star t with the lug s e t t i n g s obta ined from Stage 2 .
// Note : Those are in f a c t the Sample Lug S e t t i n g s .
l u g s e t t i n g s = s t a g e 2 l u g s s e t t i n g s [ index ]
dec rypted tex t = decrypt ( c iphe r t ex t , p i n s e t t i n g s , l u g s e t t i n g s )
i c = i n d e x o f c o i n c i d e n c e ( dec rypted tex t )

do {
improved = fa l se

// Test t rans f o rmat i ons on lug s e t t i n g s . We do so by changing
// the counts o f the var i ous bar Lug Se t t i ng Types
// ( s ee Sec t i on 3 . 1 . 2 ) .

// We have 6 types o f lug s e t t i n g s f o r a bar
// without over lap (0−1 ,0−2 , . . . , 0−6) ,
// and 15 types with over lap (1−2 , 1−3, . . . , 5−6) .
for each cu r r type in a l l b a r l u g s s e t t i n g s t y p e s {

// Check that we have bars with such lug s e t t i n g s .
i f ( count types ( l u g s e t t i n g s , cu r r type ) == 0) cont inue

for each new type in a l l b a r l u g s s e t t i n g s t y p e s {

i f ( cu r r type == new type ) cont inue

// We change the lug s e t t i n g s o f a s i n g l e bar .
// Decrease by one the number o f bars with cur r type .
// I n c r e a s e by one the number o f bars with new type .
dec r ea s e type ( l u g s e t t i n g s , cu r r type )
i n c r e a s e t y p e ( l u g s e t t i n g s , new type )

dec rypted tex t = decrypt ( c iphe r t ex t , p i n s e t t i n g s , l u g s e t t i n g s )
new ic = i n d e x o f c o i n c i d e n c e ( dec rypted tex t )

// Test whether the Index o f Coinc idence improved
// a f t e r the change .
i f ( new ic > i c ) {

// Improved , keep the change .
improved = true
i c = new ic
i f ( i c > s t a g e 3 i c [ index ] ) {

// This i s a l s o h igher that the best Index o f Coinc idence
// so f a r f o r the case . Keep the lug s e t t i n g s and the
// pin s e t t i n g s , and the Index o f Coinc idence value ,
// in the r e l e v a n t e n t r i e s in the output ar rays .
s t a g e 3 i c [ index ]= i c
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s t a g e 3 p i n s s e t t i n g s [ index ]= p i n s e t t i n g s
s t a g e 3 l u g s s e t t i n g s [ index ]= l u g s e t t i n g s

}
} else {

// Change did not improve − r o l l back .
// I n c r e a s e by one the number o f bars with cur r type .
// Decrease by one the number o f bars with new type .
i n c r e a s e t y p e ( l u g s e t t i n g s , cu r r type )
dec r ea s e type ( l u g s e t t i n g s , new type )

}
} // end o f : f o r each cur r type

} // end o f : f o r each new type

// Test t rans f o rmat i ons on pin s e t t i n g s , in any o f the 6 wheels .
for each wheel w in {1 ,2 ,3 ,4 ,5 ,6} {

for each pin p o f wheel w {

// Inve r t the s t a t e o f the pin .
t o g g l e p i n ( p i n s e t t i n g s ,w, p)
dec rypted tex t = decrypt ( c iphe r t ex t , p i n s e t t i n g s , l u g s e t t i n g s )
new ic = i n d e x o f c o i n c i d e n c e ( dec rypted tex t )

// Test whether the Index o f Coinc idence improved
// a f t e r the change .
i f ( new ic > i c )

// Improved , keep the change .
improved = true
i c = new ic
i f ( i c > s t a g e 3 i c [ index ] ) {

// This i s a l s o h igher that the best Index o f Coinc idence
// so f a r f o r the case . Keep the lug s e t t i n g s and the
// pin s e t t i n g s , and the Index o f Coincidence ,
// in the r e l e v a n t e n t r i e s in the output ar rays .
s t a g e 3 i c [ index ]= i c
s t a g e 3 p i n s s e t t i n g s [ index ]= p i n s e t t i n g s
s t a g e 3 l u g s s e t t i n g s [ index ]= l u g s e t t i n g s

}
} else {

// Change did not improve − r o l l back the change .
t o g g l e p i n ( p i n s e t t i n g s ,w, p)

}
} // end o f : f o r each pin . . .

} // end o f : f o r each wheel . . .
} while ( improved )

} // end o f : f o r c y c l e s . . .
} // end o f : f o r index

// Return r e s u l t s ( pins , l ug s and Index o f Coinc idence ) f o r each one
// o f the 41760 ca s e s .
return ( s t a g e 3 p i n s s e t t i n g s , s t a g e 3 l u g s s e t t i n g s , s t a g e 3 i c )

//
// End o f Stage 3 Algorithm .
//
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