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ABSTRACT

The problem we address is the following: how can a user employ a predictive
model that is held by a third party, without compromising private information.
For example, a hospital may wish to use a cloud service to predict the readmission
risk of a patient. However, due to regulations, the patient’s medical files cannot be
revealed. The goal is to make an inference using the model, without jeopardizing
the accuracy of the prediction or the privacy of the data.
To achieve high accuracy, we use neural networks, which have been shown to
outperform other learning models for many tasks. To achieve the privacy require-
ments, we use homomorphic encryption in the following protocol: the data owner
encrypts the data and sends the ciphertexts to the third party to obtain a prediction
from a trained model. The model operates on these ciphertexts and sends back the
encrypted prediction. In this protocol, not only the data remains private, even the
values predicted are available only to the data owner.
Using homomorphic encryption and modifications to the activation functions and
training algorithms of neural networks, we present crypto-nets and prove that they
can be constructed and may be feasible. This method paves the way to build
a secure cloud-based neural network prediction services without invading users’
privacy.

1 INTRODUCTION

Recently, many efforts have been devoted to cloud machine learning (CML), where machine learning
(ML) services are running on commercial providers’ infrastructure. Examples include Microsoft
Azure Machine Learning1, Google Prediction API2, GraphLab3 and Ersatz Labs4, to name a few.
CML allows training and deploying models on cloud servers. Once deployed users can use these
models to make predictions without having to worry about maintaining the service and the models.
Moreover, it allows the model owner to be paid for every prediction being made by the model. In

∗The work was done while this author was visiting Microsoft.
1http://azure.microsoft.com/en-us/services/machine-learning/
2https://developers.google.com/prediction/
3http://graphlab.com/
4http://www.ersatzlabs.com/
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Figure 1: Privacy preserving neural network prediction on encrypted data. The cloud holds a trained
neural network model which provides a prediction service. To protect their privacy, users encrypt
their data and upload the ciphertexts to the cloud. The cloud makes neural network predictions over
the encrypted data and obtains results in encrypted form. The cloud sends the encrypted prediction
results back to the users. Users locally decrypt and get the plaintext results. The cloud never learns
any information about the users’ data and the prediction results, while the results are guaranteed to
be correct.

a broader sense, it enables a model of Machine Learning as a Service (MLaaS), where there is a
separation between the data owner, the model owner and the compute provider (the cloud).

Despite the attractive benefits provided by MLaaS, it suffers from a severe problem, namely the
invasion of the security and privacy of users’ data. Traditional ML solutions require access to the
raw data, which creates a potential security and privacy risk. In some cases, for example that of
medical data, regulations may make these usage patterns illegal. Therefore, the goal of this work is
to enable data owners to use MLaaS without exposing their data.

This problem has been addressed before by Graepel et al. (2013). They proposed to perform machine
learning on encrypted data utilizing homomorphic encryption. A homomorphic encryption scheme
(Rivest et al., 1978) allows a certain computation to be performed on the encrypted data by manip-
ulating the corresponding ciphertexts without the need to decrypt them first. A fully homomorphic
encryption scheme (Gentry, 2009) allows arbitrary operations over encrypted data and therefore, any
function can be computed. However, fully homomorphic encryption schemes are still too inefficient
for practical use. One way to obtain better efficiency is to only use so-called somewhat homomor-
phic schemes that only allow the evaluation of functions up to a certain complexity. Such schemes
are often the cores of corresponding fully homomorphic encryption schemes. They usually provide
operations corresponding to addition and multiplication of encrypted integer values, and therefore,
are suitable to evaluate polynomial functions up to a certain maximal degree. The required degree
of the polynomial function along with the desired security level determines the scheme parameters
and thus has great implications on the size of the ciphertext as well as the computational complexity
of the cryptographic operations. Therefore, Graepel et al. (2013) suggested using linear or other low
degree models. While this method preserves the privacy and security of the data, it does not allow
for highly accurate predictions since linear models cannot compete with the state-of-the-art in terms
of accuracies on problems such as object recognition in image or speech data.

In this paper, we investigate how to perform neural network prediction on encrypted data. A neural
network is a nonlinear machine learning model with large model capacity. It has achieved great
success in speech recognition, image classification and natural language processing. Figure 1 illus-
trates the scenario of making secure predictions on encrypted data with a neural network. On the
cloud side, there is a neural network model trained on plaintext data. For example, let us assume
that the trained neural network takes medical images and predicts the likelihood of a pathology (dis-
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ease). A user possesses a medical image and wants to use the neural network model in the cloud
to predict whether he has the disease. Meanwhile, the user does not want the image to be seen by
the cloud, because it may leak his health conditions. The user encrypts the image into a ciphertext
and sends the ciphertext to the cloud. The cloud service evaluates the neural network prediction by
operating on the ciphertext only and produces a prediction result in encrypted form that the cloud
cannot decipher. The encrypted result is sent back to the user, who decrypts locally and retrieves
the result as readable plaintext. In this process, both the input image and the output prediction are
held in encrypted form. The cloud does not learn any information about the users’ input data and the
prediction result. Thereby, confidentiality of the user’s data and prediction results are guaranteed.

The main challenge in realizing this solution is the fact that the commonly used activation functions
in neural networks are not in polynomial form. This includes functions such as the sigmoid and
rectified linear functions. We first show that from theoretical point of view, since these functions are
continuous, they can be approximated by polynomials and therefore, the entire computation can be
thought of as applying a polynomial to the data. We also discuss ways to minimize the degree of
these polynomials such that the time to compute will remain feasible. We call this type of neural
networks crypto-nets.

2 RELATED WORK

Using Homomorphic Encryption (HE) to do machine learning and statistical analysis on encrypted
data has been investigated in (Bos et al., 2014; Bost et al., 2014; Graepel et al., 2013; Lauter et al.,
2014; Nikolaenko et al., 2013a;b; Wu & Haven, 2012). These works have studied how to do HE-
based privacy-preserving training or prediction of linear regression (Nikolaenko et al., 2013b; Wu
& Haven, 2012), linear classifiers (Bos et al., 2014; Bost et al., 2014; Graepel et al., 2013), decision
trees (Bost et al., 2014), matrix factorization (Nikolaenko et al., 2013a). As far as we know, ours is
the first work to show how to apply neural networks to encrypted data and therefore allow the use of
models that have been shown to be very accurate.

Orlandi et al. (2007) suggested a scheme for using homomorphic encryption with neural networks.
They suggest solving the problem of non-linear activation functions by creating an interactive pro-
tocol between the data owner and the model owner. In a nut-shell, every non-linear transformation
is computed by the data-owner: the model sends the input to the non-linear transformation in en-
crypted form to the data owner who decrypts the message, applies the transformation, encrypts the
result and sends it back. Unfortunately, this interaction requires large latencies and increases the
complexity on the data owner side, effectively making it impractical. Moreover, it leaks informa-
tion about the model. Therefore, Orlandi et al. (2007) had to introduce safety mechanisms, such as
random order of execution, to mitigate this issue. In comparison, the procedure we introduce does
not require complicated communication schemes: the data owner encrypts the data and sends it.
The model does its computation and sends back the (encrypted) prediction. Therefore, it allows for
asynchronous communication and it does not leak unnecessary information about the model.

Another line of work focuses on differential privacy (Chaudhuri et al., 2011; Duchi et al., 2012;
Dwork, 2008; Smith, 2011; Wasserman & Zhou, 2010). Differential privacy aims at allowing to
gather statistics from a database without revealing information about individual records. However,
this method is not suitable for privacy-preserving prediction since by its nature, in the inference
phase, a single record is being used and therefore fully exposed. Moreover, the method proposed
here provides a much higher level of security. For example, not only the row records are not exposed,
even the predicted value is not accessible to any party except the data owner since it is encrypted,
not even to the cloud service that computed it, since it is encrypted.

3 HOMOMORPHIC ENCRYPTION

A Homomorphic Encryption (HE) scheme (Rivest et al., 1978) preserves some structure of the
original message space. Here, we assume that it provides methods to add and multiply encrypted
messages and therefore preserves the message space ring structure. We also assume that it can be
used to operate on the ring of integers. In that case, messages are integers and the scheme preserves
the ability to perform additions and multiplications of such integers.
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For our purpose, a (secret key) HE scheme consists of four algorithms: encryption (E), decryption
(D), addition (⊕) and multiplication (⊗). The encryption algorithm takes as input a message and a
secret key k. We denote the dependence on the key by Ek, but will drop the subscript later when use
is clear from the context. The decryption takes as input an element from the ciphertext space and a
key, while the algorithms ⊕ and ⊗ do not depend on the secret key and only take two ciphertexts as
input. Let m1 and m2 be integer messages and let k be a secret key. Then the above algorithms have
the following properties:

1. Given Ek(m1), it is computationally infeasible to compute m1 without the private key k.
2. It holds that m1 = Dk(Ek(m1)).
3. It holds that m1 +m2 = Dk (Ek (m1)⊕ Ek (m2)).
4. It holds that m1 ×m2 = Dk (Ek (m1)⊗ Ek (m2)).
5. The algorithms ⊕ and ⊗ do not use the secret key used for encryption.

Furthermore, we require that the scheme can evaluate the algorithms ⊗ and ⊕ repeatedly for a
certain number of times, while decryption still gives the correct result. More precisely, let P be a
polynomial on n variables of degree at most d. Denote by P̃ the function on input n ciphertexts,
which is given by replacing each addition in P by the algorithm ⊕ and each multiplication by ⊗.
Let m1, . . . ,mn be messages. Then the above algorithms satisfy the following property:

P (m1, . . . ,mn) = D(P̃ (E(m1), . . . , E(mn))).

This means that our HE scheme allows to compute any degree-bounded polynomial function P as
above over encrypted messages without decrypting them first.

Gentry (2009) was the first to show that it is possible to construct a Fully Homomorphic Encryption
(FHE) scheme, which means that there is no limit on the degree of the polynomial P above. In
theory, this allows to evaluate arbitrary computations (since any computation can be written as a bi-
nary polynomial in terms of binary addition and multiplication on the single bits of the input). Even
though there has been great progress in making FHE schemes more efficient and secure (see, for
example, Brakerski & Vaikuntanathan (2014)), this approach is currently not feasible for practical
applications. Efficiency can be increased by restricting to somewhat homomorphic schemes and by
operating on integers instead of bits, see Lauter et al. (2011). With this approach, both the com-
putational complexity and the length of ciphertexts increase with the number of desired operations
performed on the encrypted data in order to guarantee correct decryption after polynomial evalua-
tion. While this increase is benign when increasing the number of additions, it is more significant
when adding multiplications. Thus, a solution that builds upon these encryption schemes has to be
restricted to computing low degree polynomials.

4 POLYNOMIAL APPROXIMATION TO NEURAL NETWORKS

From the discussion above, in Section 3 we conclude that certain polynomial functions can be com-
puted over encrypted data given that their degree is not too large. However, activation functions
such as sigmoids and rectified-linear functions are not polynomials and the same applies to other,
commonly used non-linear transformations in neural-networks such as max pooling. Nevertheless,
since all these functions are continuous, the results, that is the neural net, viewed as a function, is a
continuous function. If the domain, that is the input space, is a compact set, then from the Stone-
Weierstrass theorem (Stone, 1948) it follows that it can be approximated uniformly by polynomials.
We will begin the discussion with the inference case, therefore we assume that the neural network
has already been trained and the goal is to apply it to encrypted data.
Lemma 1. Let N be a neural network in which all non-linear transformations are continuous. Let
X ⊂ Rn be the domain on which N acts and assume that X is compact, then for every ε > 0 there
exists a polynomial P such that

sup
x∈X
‖N(x)− P (x)‖ < ε .

Proof. The functionN is constructed by compositions, additions and multiplications over the inputs
and the non-linear transformations. Since compositions, additions and multiplications of continuous

4



Under review as a conference paper at ICLR 2015

functions are continuous, the function N is continuous. Since N is a continuous function over a
compact space and since the set of polynomials is an Algebra that separates points it follows from
the Stone-Weierstrass theorem (Stone, 1948) that there exists a polynomial P such that

sup
x∈X
‖N(x)− P (x)‖ < ε .

Note that the assumption that the non-linearity is continuous is very mild since the back propagation
algorithm used for learning neural networks assumes the existence of a gradient or a sub-gradient to
these functions which implies continuity.
Theorem 1. Let (E,D) be the encryption and decryption functions of a HE system. Let N be a
neural network in which all non-linear transformations are continuous. Let X ⊂ Rn be the domain
on which N acts and assume that X is compact, then for every ε > 0 there exists a function N ′ such
that

sup
x∈X
‖N(x)−D (N ′ (E(x)))‖ < ε

Note that for a vector x = (x1, . . . , xn) we use the notation E(x) = (E(x1), . . . , E(xn)) and
D(x) = (D(x1), . . . , D(xn))

Proof. From Lemma 1 it follows that there exists a polynomial P such that
supx∈X ‖N(x)− P (x)‖ < ε. N ′ can be constructed from P by replacing the addition and
multiplications by the appropriate HE functions (⊕,⊗) and by replacing the constants in the
polynomials by the encrypted versions of these constants. This can be done by accessing only the
public encryption function E.

Theorem 2 shows that an existing neural network can be applied to encrypted data. This is done
by a two stage process: first the network is approximated by a polynomial and next this polynomial
is ”encrypted”. Next we look at the learning process. The common way to learn a neural network
is using back-propagation. This is a gradient descent type algorithm. That requires computing the
derivative of the neural network with respect to the weights. If the neural network is a polynomial
function (or is approximated by one) then the derivatives are polynomials as well and hence can be
computed over encrypted data. However, some further restrictions are needed in some cases.
Theorem 2. Fix the topology of a neural network and assume that all the non-linear transformations
and the loss function are polynomials. Then the back propagation algorithm can be converted to
work on encrypted data such that it will learn the encrypted version of the coefficients that the back
propagation will learn on plain data.

Proof. Since all transformations are polynomials then the function that the neural network computes
is a polynomial. Since the loss function is polynomial as well it implies that the gradient is a
polynomial too and therefore it can be computed over encrypted data.

Theorem 2 suggests the following method for learning with encrypted data: first approximate all
non-linear transformations with polynomials which will result in a polynomial network that can be
learned exactly even when the data is encrypted. Note, however that when learning over encrypted
data the results, that is the weights, are encrypted and if the learning algorithm does not have ac-
cess to the secret key for use in the decryption function D it will not be able to know what these
coefficients are.

Another approach for learning with encrypted data is to approximate the back-propagation step with
polynomials as illustrated by the following theorem.
Theorem 3. Assume that the domain of the networkX ⊂ Rn is compact. Assume that the non-linear
transformations and the loss function have continuous derivatives. Let L be the back-propagation
learning algorithm that maps a sample of size T to the weight vector of the neural net. For every
ε > 0 there exists a learning algorithm L′ such that if L learns the weights w1, . . . , wk from the
sample S of size T then L′ learns the weights E(w′1), . . . , E(w′k) form the sample E(S) such that
∀j, |wj − w′j | < ε.
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The proof is very similar to previous proofs and therefore we skip details.

Proof. The learning algorithm L is made of addition, multiplication and compositions of the con-
stants, non-linear transformations, the loss function and their gradients. According to the assumption
of this theorem, all these functions are continuous and therefore L is a continuous function over a
compact space which can be approximated by a polynomial. The algorithm L′ is this polynomial
approximation of L after all constants have been replaced by their encrypted versions and additions
and multiplications have been replaced by the ⊕,⊗ operations.

5 PRACTICAL CONSIDERATION

In Section 4 we have shown that it is possible to learn neural networks over encrypted data and
to apply neural networks to encrypted data. However, some scenarios may be infeasible due to
excessive computational complexity. In this section we discuss practical considerations in more
details.

While HE schemes allow the evaluation of polynomial functions, these computations are much
slower than computations done on plain data. Furthermore, in current implementations of HE, high
degree polynomials are slower to compute than lower degree polynomials. The reason for that, in a
nut shell, is that as part of the encryption process some random noise is added to the message. When
adding two numbers via the ⊕ operation, the noise in the resulting ciphertext increases linearly with
respect to the number of additions, however, when multiplying, the noise grows super–linearly. For
an FHE scheme, when the noise size reaches a certain level, a time consuming cleaning process
is performed which slows down the entire process. For HE schemes as the one considered in this
work, the parameters of the scheme have to be chosen to accommodate the noise growth incurred
by the desired computation. A higher complexity requires larger parameters, which leads to slower
execution of the algorithms. Therefore, special considerations should be taken to approximate the
neural network with polynomials with the lowest degree possible.

Let N be a neural network with l layers. If the composition of the activation function and pooling
functions in each layer is approximated by a polynomial of degree d then the polynomial approx-
imation of N will be a polynomial of degree dl since when composing polynomials, the degrees
of the polynomials multiply. Therefore, in order to end up with low degree polynomials, we need
both d and l to be small. Minimizing d, the degree of the polynomial approximation to non-linear
functions, is a standard exercise in approximation theory. Tools, such as, Chebyshev polynomials,
can be used to find optimal or close to optimal approximations. Even more significant is minimiz-
ing the number of layers l. This goes against the current trend of learning deep neural networks.
However, recent work on model compression (Bucilu et al., 2006; Ba & Caruana, 2014) show that
deep nets can be closely approximated by shallow nets (1-2 hidden layers). These studies suggest
that the success of deep nets might be due to better optimization and not necessarily from the kind
of function space spanned by deep nets. Therefore, once you have a deep net, you can use it to train
a shallow net by labeling a large set of unlabeled instances. This procedure converts deep nets to
shallow, but wider, nets. In terms of polynomials, the deep nets convert to high degree polynomials
while the shallow but wide nets convert to low degree polynomials with many monomials. Hence
this conversions results in polynomials that are faster to execute on encrypted data.

While inference using crypto-nets may be feasible, learning is a more difficult to scale tasks. Train-
ing neural networks is a computational intensive task. Even without encryption, high throughput
computing units such as GPUs or multi-node clusters are needed to make learning neural nets fea-
sible on large datasets (Dean et al., 2012; Coates et al., 2013). Furthermore, assuming, as before,
that the neural network has l layers such that each layer is approximated by a polynomial of degree
d results in the neural network of degree dl. The gradient of this network, with respect to the weight
vector, is a polynomial of the same degree. To make gradient step, the gradient polynomial is eval-
uated on the value predicted by the current network. Therefor, the gradient step is a polynomial of
degree d2l. On top of that, the loss function needs to be taken into account which will make the
degree even higher. Hence, learning from encrypted data in the way proposed here is feasible only
for small datasets or for simple models such as linear models.
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6 DISCUSSION

In Section 1 we have seen that from a theoretical point of view, it is possible to learn over encrypted
data as well as to apply networks to encrypted data. However, in Section 5 we have seen that from
practical consideration, some applications of crypto-nets are not feasible with the current construc-
tion. Therefore, it makes sense to study different use-cases and discuss the theoretical and practical
implications of these scenarios.

Doing inference with crypto-nets is a promising direction. In this scenario, the net is learned over
plain data and is applied to encrypted data. For example, consider a dentist that may take X-ray
images of suspect tooth and send them to be classified in a cloud service. With crypto-nets, the
dentist can encrypt the image and send for evaluation without compromising the privacy of clients
since not only the image is encrypted but also the prediction is only visible to the dentist and not
to the owner of the predictive models. Another example includes a client that would like to apply
for a loan from a bank. Currently, the client has to reveal private financial details to allow the bank
to predict the risk associated with the loan. However, with crypto-nets, this can be done without
revealing any private information. At the same time, inference over encrypted data is still slower
than inference on plain data and hence suitable only in cases where latency and throughput are not
major concerns.

Learning with crypto-nets requires more detailed inspection. We propose three scenarios of learning
with encrypted data.

1. Assume that a sample is encrypted and the goal is to learn a model from this sample. As
discussed in Section 4, the theory suggests that this is possible. However, in practice this is
feasible only if the sample is small or the network is shallow.

2. Assume that there are multiple samples, each encrypted with a different key, and the goal
is to learn a model by aggregating these datasets. This is the case, for example, if multiple
dentists store the medical records of their patients, each dentist using a different key. This
scenario is not supported by the kind of homomorphic encryption we discussed so far.
However, this could be addressed by secure multi-party computation (Du & Atallah, 2001).
López-Alt et al. (2012) presented a fully homomorphic encryption scheme that allows joint
computation over data that was encrypted with different keys. The result would be owned
by all parties that contributed data in the sense that decryption requires all data owners who
contributed data to the computation to jointly decrypt.

3. Assume that a model has been trained using plain data but users may wish to adapt it to
their data. Therefore, the model is already trained and the goal is to perform few gradient
steps to fine tune it. This scenario is theoretically feasible and may be practical provided
that the data size is small and that the network can be approximated by a polynomial of
not-too-high degree.

7 CONCLUSION

In this work we have presented crypto-nets: a way to learn and apply neural networks to encrypted
data. We have discussed the theoretical aspects of learning and inferencing over encrypted data as
well as the practical implications. We conjecture that for medical and financial applications, crypto-
nets may be feasible for the inference stage and maybe even for some limited learning. Implementing
crypto-nets require careful work both in the machine learning side and in the cryptology side and is
subject of ongoing research.
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