A forgery attack on AES-OTR

Hassan Sadeghi, Javad Alizadeh

November 7, 2014

Abstract

AES-OTR is a submission to the CAESAR competition. In this note we present a forgery attack on AES-OTR Keywords: AES-OTR, Forgery attack.

1 Introduction

OTR is a blockcipher mode of operation to authenticated encryption with associated data (AEAD), proposed by Minematsu [1][2]. AES-OTR is based on AES blockcipher .

2 Algorithms in AES-OTR

The encryption algorithm of AES-OTR using blockcipher (here AES) E, tag bit length τ. Both algorithms take the following byte sequences: a key K, a nonce N, an associated data A and a plaintext M . The output is a pair (C, T) where C is a ciphertext and T is a tag. For encryption, we first partition a plaintext M into n-bit blocks, i.e. $(M[1], \ldots, M[m]) \leftarrow M$ where $|M[i]|=n, i=1, . ., m$ then $(M[2 i-1], M[2 i])$ is encrypted by a two-round Feistel permutation with masks as

$$
\begin{align*}
& C[2 i-1]=E_{K}\left(2^{i-1} L \oplus M[2 i-1]\right) \oplus M[2 i] \tag{1}\\
& C[2 i]=E_{K}\left(2^{i-1} L \oplus \delta \oplus C[2 i-1]\right) \oplus M[2 i-1] \tag{2}
\end{align*}
$$

where $\delta=E_{K}(\underline{N})$ and $L=4 \delta$.
The algorithms of encryption and decryption are described in Fig1

3 Forgery attack on AES-OTR

In this section we present an adversary that it can forge OTR by observations. First adversary outputs plaintext $M=M[1]\|M[2]\| \ldots \| M[m]$ where m is odd and

$$
|M[i]|=n, \quad 1 \leq i \leq m
$$

Algorithm OTR- $\mathcal{E}_{E, \tau, p}(N, A, M)$ 1. $(C, T E) \leftarrow \mathrm{EF}_{E}(N, M)$ 2. if $A \neq \varepsilon$ then $T A \leftarrow \mathrm{AF}_{E}(A)$ 3. else $T A \leftarrow 0^{n}$ 4. $T \leftarrow \operatorname{msb}_{\tau}(T E \oplus T A)$ 5. return (C, T)	Algorithm OTR- $\mathcal{D}_{E, \tau, p}(N, A, C, T)$ 1. $(M, T E) \leftarrow \mathrm{DF}_{E}(N, C)$ 2. if $A \neq \varepsilon$ then $T A \leftarrow \mathrm{AF}_{E}(A)$ 3. else $T A \leftarrow 0^{n}$ 4. $\widehat{T} \leftarrow \mathrm{msb}_{\tau}(T E \oplus T A)$ 5. if $\widehat{T}=T$ return M 6. else return \perp										
```Algorithm \(\mathrm{EF}_{E}(N, M)\) \(\Sigma \leftarrow 0^{n}\) \(\delta \leftarrow E(\underline{N}), L \leftarrow 4 \delta\) \((M[1], \ldots, M[m]) \stackrel{n}{\leftarrow}_{\leftarrow}^{\leftarrow} M\) for \(i=1\) to \(\lceil m / 2\rceil-1\) do \(C[2 i-1] \leftarrow E(L \oplus M[2 i-1]) \oplus M[2 i]\) \(C[2 i] \leftarrow E(L \oplus \delta \oplus C[2 i-1]) \oplus M[2 i-1]\) \(\Sigma \leftarrow \Sigma \oplus M[2 i]\) \(L \leftarrow 2 L\) if \(m\) is even \(L^{*} \leftarrow L \oplus \delta\) \(Z \leftarrow E(L \oplus M[m-1])\) \(C[m] \leftarrow \operatorname{msb}_{\|M[m]	}(Z) \oplus M[m]\) \(C[m-1] \leftarrow E\left(L^{*} \oplus \underline{C[m]}\right) \oplus M[m-1]\) \(\Sigma \leftarrow \Sigma \oplus Z \oplus \underline{C[m]}\) if \(m\) is odd \(L^{*} \leftarrow L\) \(C[m] \leftarrow \operatorname{msb}_{	M[m]	}\left(E\left(L^{*}\right)\right) \oplus M[m]\) \(\Sigma \leftarrow \Sigma \oplus M[m]\) if \(	M[m]	\neq \bar{n}\) then \(T E \leftarrow E\left(3 L^{*} \oplus \Sigma\right)\) else \(T E \leftarrow E\left(3 L^{*} \oplus \delta \oplus \Sigma\right)\) \(C \leftarrow(C[1], \ldots, C[m])\) return ( \(C, T E\) )```	```Algorithm \(\mathrm{DF}_{E}(N, C)\) \(\Sigma \leftarrow 0^{n}\) \(\delta \leftarrow E(\underline{N}), L \leftarrow 4 \delta\) \((C[1], \ldots, C[m]) \stackrel{n}{\leftarrow} C\) for \(i=1\) to \(\lceil m / 2\rceil-1\) do \(M[2 i-1] \leftarrow E(L \oplus \delta \oplus C[2 i-1]) \oplus C[2 i]\) \(M[2 i] \leftarrow E(L \oplus M[2 i-1]) \oplus C[2 i-1]\) \(\Sigma \leftarrow \Sigma \oplus M[2 i]\) \(L \leftarrow 2 L\) if \(m\) is even \(L^{*} \leftarrow L \oplus \delta\) \(M[m-1] \leftarrow E\left(L^{*} \oplus C[m]\right) \oplus C[m-1]\) \(Z \leftarrow E(L \oplus M[m-1])\) \(M[m] \leftarrow \operatorname{msb}_{\|C[m]	}(Z) \oplus C[m]\) \(\Sigma \leftarrow \Sigma \oplus Z \oplus \underline{C[m]}\) if \(m\) is odd \(L^{*} \leftarrow L\) \(M[m] \leftarrow \mathrm{msb}_{	C[m]	}\left(E\left(L^{*}\right)\right) \oplus C[m]\) \(\Sigma \leftarrow \Sigma \oplus M[m]\) if \(	C[m]	\neq \overline{n \text { then }} T E \leftarrow E\left(3 L^{*} \oplus \Sigma\right)\) else \(T E \leftarrow E\left(3 L^{*} \oplus \delta \oplus \Sigma\right)\) \(M \leftarrow(M[1], \ldots, M[m])\) return ( \(M, T E\) )```
```Algorithm \(\mathrm{AF}_{E}(A)\) 1. \(\Xi \leftarrow 0^{n}\) 2. \(\gamma \leftarrow E\left(0^{n}\right), Q \leftarrow 4 \gamma\) 3. \((A[1], \ldots, A[a]) \leftarrow A\) for \(i=1\) to \(a-1\) do \(\Xi \leftarrow \Xi \oplus E(Q \oplus A[i])\) \(Q \leftarrow 2 Q\) \(\Xi \leftarrow \Xi \oplus A[a]\) . if \(\|A[a]	\neq n\) then \(T A \leftarrow E(Q \oplus \gamma \oplus \Xi)\) else \(T A \leftarrow E(Q \oplus 2 \gamma \oplus \Xi)\) 10. return \(T A\)```										

Fig. 1 Algorithms of AES-OTR with parallel ADP. Tag bit size is $0<\tau \leq n$, and \underline{X} denotes the 10* padding of X

We (privately) choose a key K and a nonce N then we give adversary a pair $(C[1]\|C[2]\| \ldots \| C[m], T)$ where

$$
(C[1]\|C[2]\| \ldots \| C[m], T)=O T R-\xi_{E, \tau}(N, \varepsilon, M)
$$

Adversary examines pair $(C[1]\|C[2]\| \ldots \| C[m], T)$ in five distinct cases:
Case1: There exists a number $i \in\left\{1,2, \ldots, \frac{m-1}{2}\right\}$ such that:

$$
\begin{equation*}
C[2 i-1] \oplus M[2 i]=C[2 i] \oplus M[2 i-1] \tag{3}
\end{equation*}
$$

By (1) and (2) we conclude

$$
\begin{equation*}
\delta=M[2 i-1] \oplus C[2 i-1] \tag{4}
\end{equation*}
$$

Adversary chooses M^{*} such that

$$
\begin{aligned}
& \left|M^{*}\right|<n, \\
& \operatorname{pad}\left(M^{*}\right)=M[m] \oplus \delta=M[m] \oplus M[2 i-1] \oplus C[2 i-1]
\end{aligned}
$$

and puts $C^{*}:=m s b_{\left|M^{*}\right|}(C[m] \oplus M[m]) \oplus M^{*}$. Adversary claims that pair

$$
\left(C[1]\|C[2]\| \ldots\|C[m-1]\| C^{*}, T\right)
$$

is a valid (Ciphertext, Tag) and it decrypted to

$$
M[1]\|M[2]\| \ldots\|M[m-1]\| M^{*}
$$

Case2: There exist two number $i, j \in\left\{1,2, \ldots, \frac{m-1}{2}\right\}$ such that:

$$
C[2 i] \oplus M[2 i-1]=C[2 j] \oplus M[2 j-1]
$$

By (2) we conclude

$$
2^{i-1} L \oplus C[2 i-1]=2^{j-1} L \oplus C[2 j-1]
$$

So we have

$$
\begin{equation*}
2^{i-1} L \oplus M[2 i-1]=2^{j-1} L \oplus C[2 j-1] \oplus M[2 i-1] \oplus C[2 i-1] \tag{5}
\end{equation*}
$$

By (1) and (5) we conclude

$$
\begin{equation*}
C[2 i-1] \oplus M[2 i]=E_{K}\left(2^{j-1} L \oplus C[2 j-1] \oplus M[2 i-1] \oplus C[2 i-1]\right) \tag{6}
\end{equation*}
$$

Adversary chooses $\{\tilde{M}[k] 1 \leq k \leq m\}$ and $\{\tilde{C}[k] 1 \leq k \leq m\}$ as follow:
$\tilde{M}[k]=\left\{\begin{array}{lll}C[2 j-1] \oplus M[2 i-1] \oplus C[2 i-1] & \text { if } & k=2 j-1 \\ C[2 i-1] \oplus M[2 i] \oplus C[2 j-1] & \text { if } & k=2 j \\ M[m] \oplus M[2 j] \oplus C[2 i-1] \oplus M[2 i] \oplus C[2 j-1] & \text { if } & k=m \\ M[k] & \text { if } & k \notin\{2 j-1,2 j, m\}\end{array}\right.$
$\tilde{C}[k]=\left\{\begin{array}{lll}C[2 j] \oplus M[2 j-1] \oplus C[2 j-1] \oplus M[2 i-1] \oplus C[2 i-1] & \text { if } & k=2 j \\ C[m] \oplus M[2 j] \oplus C[2 i-1] \oplus M[2 i] \oplus C[2 j-1] & \text { if } & k=m \\ C[k] & \text { if } & k \notin\{2 j, m\}\end{array}\right.$
By (6) adversary finds $(\tilde{C}[1]\|\tilde{C}[2]\| \ldots \| \tilde{C}[m], T)$ is a valid (Ciphertext,Tag) and it decrypted to

$$
\tilde{M}[1]\|\tilde{M}[2]\| \ldots . . \| \tilde{M}[m]
$$

Case3: There exist two number $i, j \in\left\{1,2, . ., \frac{m-1}{2}\right\}$ such that:

$$
M[2 i] \oplus C[2 i-1]=M[2 j] \oplus C[2 j-1]
$$

By (1) we have

$$
\begin{equation*}
M[2 i-1] \oplus M[2 j-1]=2^{i-1} L \oplus 2^{j-1} L \tag{7}
\end{equation*}
$$

Adversary puts: $\tilde{M}[k]=\left\{\begin{array}{lll}M[2 i] \oplus M[2 i-1] \oplus M[2 j-1] & \text { if } & k=2 j \\ M[2 j] \oplus M[2 i-1] \oplus M[2 j-1] & \text { if } & k=2 i \\ M[k] & \text { if } & k \notin\{2 j, 2 i\}\end{array}\right.$
and $\tilde{C}[k]=\left\{\begin{array}{l}C[2 i] \oplus M[2 i-1] \oplus M[2 j-1] \\ C[2 j] \oplus M[2 i-1] \oplus M[2 j-1] \\ C[2 j-1] \oplus M[2 i-1] \oplus M[2 j-1] \\ C[2 i-1] \oplus M[2 i-1] \oplus M[2 j-1] \\ C[k]\end{array}\right.$
if $\quad k=2 j$

By (7) adversary finds $(\tilde{C}[1]\|\tilde{C}[2]\| \ldots \| \tilde{C}[m], T)$ is a valid (Ciphertext,Tag) and it decrypted to

$$
\tilde{M}[1]\|\tilde{M}[2]\| \ldots . . \| \tilde{M}[m]
$$

Case4: (when $\tau=n$) There exists a number $i \in\left\{1,2, \ldots, \frac{m-1}{2}\right\}$ such that

$$
T=C[2 i-1] \oplus M[2 i]
$$

Since $A=\varepsilon$ we have $T=T E=E_{K}\left(3 L^{*} \oplus \delta \oplus \Sigma\right)$ so by (1) we conclude

$$
\begin{equation*}
3 L^{*} \oplus \delta \oplus \Sigma=2^{i-1} L \oplus M[2 i-1] \tag{8}
\end{equation*}
$$

From (8) we obtain

$$
\begin{equation*}
3 L^{*} \oplus \Sigma \oplus M[2 i-1] \oplus C[2 i-1]=2^{i-1} L \oplus \delta \oplus C[2 i-1] \tag{9}
\end{equation*}
$$

By (2) and (9) we obtain

$$
\begin{equation*}
E_{K}\left(3 L^{*} \oplus \Sigma \oplus M[2 i-1] \oplus C[2 i-1]\right)=C[2 i] \oplus M[2 i-1] \tag{10}
\end{equation*}
$$

Adversary chooses \hat{M} such that

$$
\begin{aligned}
& |\hat{M}|<n \\
& \operatorname{pad}(\hat{M})=M[m] \oplus M[2 i-1] \oplus C[2 i-1]
\end{aligned}
$$

and it puts $\hat{C}:=m s b_{|\hat{M}|}(C[m] \oplus M[2 i-1] \oplus C[2 i-1])$. By (10) adversary finds

$$
(C[1]\|C[2]\| \ldots\|C[m-1]\| \hat{C}, C[2 i] \oplus M[2 i-1])
$$

is a valid (Ciphertext,Tag) and it decryped to

$$
M[1]\|M[2]\| \ldots .\|M[m-1]\| \hat{M}
$$

Case5: (when $\tau=n$) There exists a number $i \in\left\{1,2, . ., \frac{m-1}{2}\right\}$ such that

$$
T=C[2 i] \oplus M[2 i-1]
$$

Since $A=\varepsilon$ we have $T=T E=E_{K}\left(3 L^{*} \oplus \delta \oplus \Sigma\right)$ so by (1) we conclude

$$
\begin{equation*}
3 L^{*} \oplus \Sigma=2^{i-1} L \oplus C[2 i-1] \tag{11}
\end{equation*}
$$

From (11) we obtain

$$
\begin{equation*}
3 L^{*} \oplus \Sigma \oplus M[2 i-1] \oplus C[2 i-1]=2^{i-1} L \oplus M[2 i-1] \tag{12}
\end{equation*}
$$

By (1) and (12) we obtain

$$
\begin{equation*}
E_{K}\left(3 L^{*} \oplus \Sigma \oplus M[2 i-1] \oplus C[2 i-1]\right)=C[2 i-1] \oplus M[2 i] \tag{13}
\end{equation*}
$$

Adversary chooses \hat{M} such that

$$
\begin{aligned}
& |\hat{M}|<n \\
& \operatorname{pad}(\hat{M})=M[m] \oplus M[2 i-1] \oplus C[2 i-1]
\end{aligned}
$$

and it puts $\hat{C}:=m s b_{|\hat{M}|}(C[m] \oplus M[2 i-1] \oplus C[2 i-1])$. By (13) adversary finds

$$
(C[1]\|C[2]\| \ldots\|C[m-1]\| \hat{C}, C[2 i-1] \oplus M[2 i])
$$

is a valid (Ciphertext,Tag) and it decryped to

$$
M[1]\|M[2]\| \ldots .\|M[m-1]\| \hat{M}
$$

4 Advanage of adversary

Advantage of our adversary is

$$
A d v(A)=\left(\frac{3(m-1)}{2}+2 C\left(\frac{m-1}{2}, 2\right)\right) 2^{-128}
$$

References

[1] Minematsu, K.: Parallelizable Authenticated Encryption from Functions. IACR Cryptology ePrint Archive 2013, 628 (2013)
[2] Minematsu, K.: Parallelizable Rate-1 Authenticated Encryption from Pseudorandom Functions. In: Eurocrypt (2014), to appear

Hassan Sadeghi
Department of Mathematics, Faculty of Science
University of Qom
Qom. Iran
Email: sadeghihassan64@gmail.com

