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Abstract. BrowserID is a complex, real-world Single Sign-On (SSO)
System for web applications recently developed by Mozilla. This open
source system employs new HTML5 features (such as web messaging and
web storage) and cryptographic assertions to provide decentralized and
federated login, with the intent to respect users’ privacy. It can operate
in two modes, the primary identity provider mode and the secondary
identity provider mode. While in the primary mode BrowserID runs with
arbitrary identity providers, in the secondary mode there is one identity
provider only, namely Mozilla’s default identity provider.
In prior work, we have proposed an expressive general model for the web
infrastructure and based on this model, we analyzed the security of the
secondary identity provider mode of BrowserID. The analysis revealed
several severe vulnerabilities.
In this paper, we complement our prior work by analyzing the even more
complex primary identity provider mode of BrowserID. During the proof,
we discovered a new practical and interesting identity injection attack,
which violates a central security property of SSO systems. This attack
cannot be carried out in the secondary mode. We propose a fix and prove
that the fixed system satisfies all security requirements we consider.
The security analysis performed in this paper constitutes the most com-
plex formal analysis of a web application based on an expressive model
of the web infrastructure. The model that we employ is in fact the most
comprehensive such model.
Another contribution of this work, besides the analysis of BrowserID, is
that we identify and prove important security properties of generic web
features in our model. These properties will facilitate future analysis
efforts of web standards and web applications using the model.
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1 Introduction

Single sign-on (SSO) systems have become an important building block for au-
thentication in the web. Over the last years, many different SSO systems have
been developed, for example, OpenID, OAuth, and proprietary solutions such
as Facebook Connect. These systems usually allow a user to identify herself to
a so-called relying party, which provides some service, using an identity that is
managed by an identity provider, such as Facebook or Google.

Given their role as brokers between identity providers and relying parties, the
security of SSO systems is particularly crucial: Numerous attacks have shown
that vulnerabilities in SSO systems usually compromise the security of many
services (relying parties) and users at once (see, e.g., [2, 5, 19–22]).

BrowserID [17] is a relatively new complex SSO system which allows users to
utilize any of their existing email addresses as an identity. BrowserID, which is
also known by its marketing name Persona, was initiated by Mozilla and is an
actively developed open source project, providing decentralized and federated
login, with the intent to respect users’ privacy. Several web applications support
BrowserID authentication. For example, popular content management systems,
such as Drupal and WordPress allow users to log in using BrowserID. Also
Mozilla uses this SSO system on critical web sites, e.g., their bug tracker Bugzilla
and their developer network MDN.

BrowserID is based solely on native web technologies. It uses many new
HTML5 web features, such as web messaging and web storage. For example,
BrowserID uses the postMessage mechanism for cross-origin inter-frame commu-
nication (i.e., communication within a browser between different windows) and
the web storage concept of modern browsers to store user data on the client side.

There are two modes for BrowserID: For the best user experience, email
providers can actively support BrowserID (they are then called primary identity
providers). For all other email providers that do not support BrowserID yet,
the user can register her email address at a default identity provider, namely
Mozilla’s login.persona.org, the so-called secondary identity provider.

In prior work [10], we have proposed a general and expressive Dolev-Yao
style model for the web infrastructure and based on this model, we analyzed
the security of the secondary identity provider mode of BrowserID. The anal-
ysis revealed several severe vulnerabilities. The web model proposed in [10] is
designed to closely mimic standards and specifications for the web. It is the most
comprehensive one to date. Among others, HTTP(S) requests and responses, in-
cluding several headers, such as host, cookie, location, strict-transport-security
(STS), and origin headers, are modeled. The model of web browsers captures
the concepts of windows, documents, and iframes, including the complex naviga-
tion rules, as well as new technologies, such as web storage and cross-document
messaging. JavaScript is modeled in an abstract way by so-called scripting pro-
cesses. These processes can be sent around and, among others, they can create
iframes and initiate XMLHTTPRequests (XHRs). Browsers may be dynamically
corrupted by the attacker.



Contribution of this Paper. In this paper, we first slightly extend the web
model proposed in [10]. We complement our modeling of the web storage con-
cept of modern browsers by including both localStorage and sessionStorage [23].
So far, only localStorage has been supported in the model. These mechanisms
provide a convenient way for JavaScript to store user data in the browser. (Both
kinds of storage are used by BrowserID in its primary mode.) While data in
the localStorage is stored per origin, data in the sessionStorage is stored per
origin and (top-level) window. We also extend the model to include a set of user
identities (e.g., user names or email addresses) in addition to user secrets.

We then complement the security analysis of BrowserID by analyzing the
primary identity provider mode of BrowserID. This mode is even more complex
than the secondary mode (see also the remarks in Section 4.2). It involves more
components (such as an arbitrary set of identity providers, more iframes), a much
more complex communication structure, and requires weaker trust assumptions
(for example, some identity providers, and hence, the JavaScript they deliver,
might be malicious).

While carrying out the security proof for the primary mode of BrowserID,
we discovered a new attack, which violates a central security property of SSO
systems. The attack is an identity injection attack which allows the adversary to
log in the browser of an honest user at a relying party as the attacker. Depending
on the service provided by the relying party, this could allow the attacker to track
the honest user or to obtain user secrets. We confirmed the attack on the actual
implementation and reported it to Mozilla [7]. We note that this attack does not
apply to the secondary mode of BrowserID.

We have proposed a fix and proved that the fixed system satisfies central
security properties one would expect an SSO system to have.

The analysis we have performed is interesting by itself as it considers a rel-
evant real-world and complex web application, finds a practical attack, and es-
tablishes security properties for the fixed system. Moreover, so far there have
been only very few efforts for the formal analysis of web application based on a
formal model of the web infrastructure, with the work presented here certainly
constituting the most complex analysis based on an expressive web model (see
Section 6). Our web model is in fact the only one to date that can be applied
to BrowserID, given the many and diverse web features and technologies that
BrowserID employs.

The security analysis of BrowserID carried out here and the case study done
in [10] showed that certain security properties of the web model need to be
established in most security proofs for web standards and web applications. As
another contribution of this paper, we therefore identify and summarize central
security properties of generic web features in our model and formalize them in
a general way such that they can be used in and facilitate future analysis efforts
of web standards and web applications.

Structure of this Paper In Section 2, we present the basic communication
model and the web model, including the extensions mentioned above. We de-
duce general properties of this model, which are independent of specific web



applications, in Section 3. For our security analysis, we first, in Section 4, pro-
vide a description of the BrowserID system, focusing on the primary mode. We
then, in Section 5, present the analysis of BrowserID in primary mode using our
model. Related work is discussed in Section 6. We conclude in Section 7. Full
details can be found in the appendix.

2 The Web Model

In this section, we present the model of the web infrastructure as proposed in our
previous work [10, 11], along with the extensions mentioned in the introduction.
Full details are provided in Appendices A to C. We first present the generic
Dolev-Yao style communication model which the model is based on.

2.1 Communication Model

The main entities in the communication model are atomic processes, which are
used to model web browsers, web servers, DNS servers as well as web and network
attackers. Each atomic process has a list of addresses (representing IP addresses)
it listens to. A set of atomic processes forms what we call a system. The different
atomic processes in such a system can communicate via events, which consist of
a message as well as a receiver and a sender address. In every step of a run, one
event is chosen non-deterministically from the current “pool” of events and is
delivered to an atomic process that listens to the receiver address of that event;
if different atomic processes can listen to the same address, the atomic process to
which the event is delivered is chosen non-deterministically among the possible
processes. The (chosen) atomic process can then process the event and output
new events, which are added to the pool of events, and so on. More specifically,
messages, processes, etc. are defined as outlined in the following.

Terms, Messages and Events. As usual in Dolev-Yao models, messages are
expressed as formal terms over a signature. Based on this notion of messages, we
introduce events. In our setting, messages may, for instance, represent HTTP(S)
requests and responses.

The signature Σ for the terms and messages considered in this work is the
union of the following pairwise disjoint sets of function symbols: (1) constants
C = IPs ∪ S∪{⊤,⊥,♦} (IPs for (IP) addresses and S for ASCII strings) where the
three sets are pairwise disjoint, (2) function symbols for public keys, asymmet-
ric/symmetric encryption/decryption, and digital signatures: pub(·), enca(·, ·),
deca(·, ·), encs(·, ·), decs(·, ·), sig(·, ·), checksig(·, ·), extractmsg(·), (3) n-ary se-
quences 〈〉, 〈·〉, 〈·, ·〉, 〈·, ·, ·〉, etc., and (4) projection symbols πi(·) for all i ∈ N.
The equational theory associated with the signature Σ is defined as usual. For
instance, we have that deca(enca(x, pub(y)), y) = x. Ground terms over this sig-
nature are terms that do not contain variables. These terms represent messages.
By M we denote the set of messages. An event (over IPs and M ) is of the form
(a:f :m), for a, f ∈ IPs and m ∈ M , where a is interpreted to be the receiver
address and f is the sender address.



Atomic Processes, Systems and Runs. We now define atomic Dolev-Yao
processes, systems, and runs of systems.

A (generic) atomic process is a tuple p = (Ip, Zp, Rp, sp0) where Ip is a set
of addresses (the set of address the process listens to), Zp is a set of states,
sp0 ∈ Zp is an initial state, and Rp is a relation that takes an event and a state as
input and (non-deterministically) returns a new state and a set of events. This
relation models a non-deterministic computation step of the process, which upon
receiving an event in a given state non-deterministically moves to a new state
and outputs a set of messages (events).

For our web model, we consider specialized atomic processes only, called
atomic Dolev-Yao (DY) processes. For these processes, we require that the events
and states that they output can be computed (more formally, derived in the usual
Dolev-Yao style) from the current input event and state. In the rest of this paper,
we will consider DY processes only.

We also consider a special attacker process, which records all messages it
receives and outputs all messages it can possibly derive from its recorded mes-
sages. Hence, an attacker process is the maximally powerful DY process. It carries
out all attacks any DY process could possibly perform. The attacker process is
parametrized by the set of sender addresses it may use.

A system is a (possibly infinite) set of atomic processes. Its state (i.e., the
states of all contained atomic processes) together with a multi-set of waiting
events is called a configuration.

A run of a system for an initial set E0 of events is a sequence of configura-
tions, where each configuration (except for the first one, which consists of E0

and the initial states of the atomic processes) is obtained by delivering one of
the waiting events of the prior configuration to an atomic process (which lis-
tens to the receiver address of the event), say p, and which in turn performs a
computation step according to its relation Rp.

2.2 Scripting Processes

For our web model, we also define scripting processes, which model client-side
scripting technologies, such as JavaScript.

A scripting process (or simply, a script) is a relation of a certain form. It is
called by the browser which provides it with a (fresh, infinite) set N of nonces
and state information s. The script then outputs a term s′, which represents the
new internal state and some command which is interpreted by the browser (see
Section 2.5 for details). Again, we require that a script’s output s′ is derivable
from its input (s,N).

Similarly to an attacker process, we define the attacker script Ratt. This
script outputs everything that is derivable from the input.

2.3 Web System

In our web model, we formalize the web infrastructure and web applications
by what we call a web system. A web system, among others, contains a (possi-



bly infinite) set of DY processes, which model web browsers, web servers, DNS
servers, and attackers. As we will see, attackers may corrupt other entities, such
as browsers.

The model has been carefully designed to closely follow published (de-facto)
standards, for instance, the HTTP/1.1 standard, associated (proposed) stan-
dards (mainly RFCs), and the HTML5 W3C candidate recommendation.

Web System. A web system WS = (W , S , script, E0) is a tuple with its compo-
nents defined as follows:

The first component, W , denotes a system (a set of DY processes) and is par-
titioned into the sets Hon, Web, and Net of honest, web attacker, and network
attacker processes, respectively. In this paper, we do not consider web attackers,
i.e., Web = ∅, and one network attacker only, i.e., Net contains one atomic pro-
cess, namely the attacker process, which may listen to and spoof all addresses
(and may corrupt other entities). Hence, this attacker is the maximally pow-
erful attacker. Honest processes (contained in Hon) can be either web servers,
web browsers, or DNS servers. In this paper, DNS servers will be subsumed by
the network attacker, and hence, we do not need to model DNS servers. The
modeling of a web server heavily depends on the specific web application under
consideration. Our concrete models for the web servers of the BrowserID system
are provided in Sections 4 and following. Below, we present the modeling of web
browsers, which is independent of a specific web application (with full details
provided in Appendices B and C).

The second component, S , is a finite set of scripts, which include the attacker
script Ratt ∈ S . In a concrete model of a web application, the set S \ {Ratt}
typically describes the set of honest scripts used in the considered application.
Malicious scripts are modeled by the “worst-case” malicious script, Ratt.

The third component, script, is an injective mapping from S to S, i.e., by script

every s ∈ S is assigned its string representation script(s). Finally, E0 is a multi-
set of events, containing an infinite number of events of the form (a:a:TRIGGER)
for every process a in the web system. A run of WS is a run of W initiated by
E0.

2.4 HTTP Messages

Before we present the model of web browsers, we model HTTP requests and
responses. HTTP requests and responses are represented as ground terms that
contain a nonce, a method (e.g., GET or POST), a domain name, a path, URL pa-
rameters, request headers (such as Cookie or Origin), and a message body. For
example, an HTTP GET request for the URL http://example.com/show?p=1 is
modeled as the term r := 〈HTTPReq, n1, GET, example.com, /show, 〈〈p, 1〉〉, 〈〉, 〈〉〉,
where headers and body are empty. An HTTP response contains a nonce (match-
ing the one in the request), a status code, response headers, and a body. A re-
sponse to r could be s :=〈HTTPResp, n1, 200, 〈〈Set-Cookie, 〈SID, 〈n2,⊥,⊤,⊥〉〉〉〉,
〈script1, initst〉〉, where 〈SID, 〈n2,⊥,⊤,⊥〉〉 is a cookie with the name/value
pair SID = n2 and the attributes httpOnly, secure, session set or not set, and

http://example.com/show?p=1


〈script1, initst〉 is the body of the response, in this case an HTML document
that is to be delivered to the browser (an HTML document is modeled by the
string representation of a script and its initial state, see below).

For the HTTP request and response in the above examples, the corresponding
HTTPS request would be of the form enca(〈r, k

′〉, pub(kexample.com)) and the
response of the form encs(s, k

′) where k′ is a fresh symmetric key (a nonce) which
is typically generated by the sender of the request. The responder is supposed
to use this key to encrypt the response.

2.5 Web Browsers

We think of an honest browser to be used by one honest user. However, we
also allow browsers to be taken over by attackers. The honest user is modeled
as part of the web browser model. Actions a user takes are modeled as non-
deterministic actions of the web browser. For example, the web browser itself
can non-deterministically follow the links provided by a web page. Secrets, such
as passwords, typically provided by the user are stored in the initial state of
a browser and are given to a web page when needed, similar to the AutoFill
function in browsers (see below).

A web browser p is modeled as a DY process (Ip, Zp, Rp, sp0, N
p) where Ip ⊆

IPs is a finite set of addresses p may listen to and Np ⊆ N is an infinite set of
nonces p may use. The set of states Zp, the initial state sp0, and the relation Rp

are defined next.

Browser State: Zp and sp0. The set Zp of states of a browser consists of terms
of the form

〈windows , ids , secrets, cookies , localStorage, sessionStorage, keyMapping ,

sts,DNSaddress , nonces , pendingDNS , pendingRequests , isCorrupted〉.

Windows and documents. The most important part of the state are windows and
documents, both stored in the subterm windows . A browser may have several
windows open at any time (resembling the tabs in a real browser). Each window
contains a list of documents of which one is “active”. A document represents
a loaded HTML page with the current JavaScript execution state and other
information (see below). Being active means that this document is currently
presented to the user and is available for interaction, similarly to the definition
of active documents in the HTML5 specification [12]. The document list of a
window represents the history of visited web pages in that window. A window
may be navigated forward and backward (modeling forward and back buttons).
This deactivates one document and activates its successor or predecessor. Doc-
uments can contain iframes, which are represented as windows (subwindows)
nested inside of document terms in our model. This creates a tree of windows
and documents. Documents also contain (the string representation of) a script,
which is meant to model the static HTML code, including, for example, links and
forms, and possibly multiple JavaScript code parts. When called by the browser,



a script essentially outputs a command which is then interpreted by the browser,
such as following a link, creating an iframe, or issuing an XHR (see below).

Secrets and IDs. This subterm holds the secrets and the identities of the user of
the web browser. Secrets (such as passwords) are modeled as nonces and they
are indexed by origins (where an origin is a domain name plus the information
whether the connection to this domain is via HTTP or HTTPS). Secrets are
only released to documents (scripts) with the corresponding origin, similarly to
the AutoFill mechanism in browsers. Identities are arbitrary terms that model
public information of the user’s identity, such as email addresses. Identities are
released to any origin. As mentioned in the introduction, identities were not
considered in [10].

Cookies, localStorage, and sessionStorage. These subterms contain the cookies
(indexed by domains), localStorage data (indexed by origins), and sessionStorage
data (indexed by origins and top-level window references) stored in the browser.
As mentioned in the introduction, sessionStorage were not modeled in [10].

KeyMapping. This term is our equivalent to a certificate authority (CA) certifi-
cate store in the browser. Since, for simplicity, we currently do not formalize CAs
in the model, this term simply encodes a mapping assigning domains d ∈ Doms

to their respective public keys pub(kd).

STS. Domains that are listed in this term are contacted by the web browser only
over HTTPS. Connection attempts over HTTP are transparently rewritten to
HTTPS requests. Web sites can issue the Strict-Transport-Security header
to clients in order to add their domain to this list.

DNSaddress. This term contains the address of the DY process that is to be
contacted for DNS requests; typically a DNS server.

Nonces, pendingDNS, and pendingRequests. These terms are used for bookkeep-
ing purposes, recording the nonces that have been used by the browser so far,
the HTTP requests that await successful DNS resolution, and HTTP requests
that await a response, respectively.

IsCorrupted. This term indicates whether the browser is corrupted (6= ⊥) or not
(= ⊥). A corrupted browser behaves like a web attacker.

Initial state sp0 of a web browser. In the browser’s initial state, keyMapping ,
DNSAddress, secrets, and ids are defined as needed, isCorrupted is set to ⊥,
and all other subterms are 〈〉.

Web Browser Relation Rp. Figure 1 outlines how the web browser processes
incoming messages. In the first two lines, special messages that cause the brow-
ser to become corrupted are processed. If the browser becomes corrupted, it
essentially acts like the attacker process. There are two types of corruption: If
the browser gets fully corrupted, the attacker learns the entire current state of
the browser. If it gets close-corrupted, first any information about open win-
dows, documents and used nonces (i.e., HTTPS encryption keys) is discarded
from the browser’s state before it is handed over to the attacker, modeling that



Processing Input Message m

m = FULLCORRUPT: isCorrupted := FULLCORRUPT

m = CLOSECORRUPT: isCorrupted := CLOSECORRUPT

m = TRIGGER: non-det. choose action from {1, 2}
action = 1: Call script of some active document. Outputs

new state and command cmd.
cmd = HREF: → Initiate request

cmd = IFRAME: Create subwindow, → Initiate request

cmd = FORM: → Initiate request

cmd = SETSCRIPT: Change script in given document.
cmd = SETSCRIPTSTATE: Change state of script in

given document.
cmd = XMLHTTPREQUEST: → Initiate request

cmd = BACK or FORWARD: Navigate given window.
cmd = CLOSE: Close given window.
cmd = POSTMESSAGE: Send postMessage to specified

document.
action = 2: → Initiate request to some URL in new

window

m = DNS response: send corresponding HTTP request
m = HTTP(S) response: (decrypt,) find reference.

reference to window: create document in window
reference to document: add response body to document’s

script input

Fig. 1. The basic structure of the web browser relation Rp with an extract of the most
important processing steps, in the case that the browser is not already corrupted.

a user closed the browser, but a malicious user now uses the browser (and all
information left in the browser’s state).

The browser can receive special trigger messages, which model non-determin-
istic actions of the browser or user. One of these actions is to select one of the
current documents, trigger its JavaScript and evaluate the output of the script.
Scripts can change the state of the browser (e.g., by setting cookies) and can
trigger specific actions (e.g., following a link), which are modeled as commands
issued by the script.

Scripts or non-deterministic triggering of browsers can cause new HTTP(S)
requests to be issued. In this case, the browser always first sends a DNS request
to the configured DNS resolver, asking for the IP address that belongs to the
domain name in the HTTP(S) request. As soon as the DNS response arrives, the
browser sends the HTTP(S) request to the IP address in the DNS response.

If the HTTP(S) response arrives, its headers are evaluated and the body of
the request becomes the script of a newly created document that is then inserted
at an appropriate place in the window/document tree. However, if the HTTP(S)
response is a response to an XMLHTTPRequest (triggered by a script in a
document), the body of the response is added to the corresponding document
and can later be processed by the script of that document.



3 General Security Properties

As mentioned in the introduction, as one of the contributions of this work, we
have identified central application independent security properties of web fea-
tures in our model and have formalized them in a general way such that they
can be used in and facilitate future analysis efforts of web standards and web
applications. In this section, we provide a brief overview of these properties, with
precise formulations and proofs presented in Appendix D.

The first set of properties concerns encrypted connections (HTTPS): We show
that HTTP requests that were encrypted by an honest browser for an honest
receiver cannot be read or altered by the attacker (or any other party). This,
in particular, implies correct behavior on the browser’s side, i.e., that browsers
that are not fully corrupted never leak a symmetric key used for an HTTPS
connection to any other party. We also show that honest browsers set the host
header in their requests properly (i.e., the header reflects an actual domain name
of the receiver) and that only the designated receiver can (successfully) respond
to HTTPS requests.

The second set of properties concerns origins and origin headers. Using the
properties stated above, we show that browsers cannot be fooled about the origin
of an (HTTPS) document in their state: If the origin of a document in the
browser’s state is a secure origin (HTTPS), then the document was actually
sent by that origin. Moreover, for requests which contain an origin header with
a secure origin we prove that such requests were actually initated by a script
that was sent by that origin to the browser. In other words, in this case, the
origin header works as expected.

4 The BrowserID System

BrowserID [18] is a decentralized single sign-on (SSO) system developed by
Mozilla for user authentication on web sites. It is a complex full-fledged web
application deployed in practice, with currently ∼47k LOC (excluding some li-
braries). It allows web sites to delegate user authentication to email providers,
where users use their email addresses as identities. The BrowserID implementa-
tion makes use of a broad variety of browser features, such as XHRs, postMessage,
local- and sessionStorage, cookies, etc.

Following [10], we first, in Section 4.1, provide a high-level overview of the
BrowserID system. A more detailed description of the BrowserID implementation
is then given in Section 4.2.

The description of the BrowserID system presented in the following as well as
our BrowserID model (see Section 5.1) is extracted mainly from the BrowserID
source code [16] and the (very high-level) official BrowserID documentation [18].

4.1 Overview

The BrowserID system knows three distinct parties: the user, who wants to
authenticate herself using a browser, the relying party (RP) to which the user
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Fig. 2. BrowserID authentication: basic overview

wants to authenticate (log in) with one of her email addresses (say, user@eyedee.
me), and the identity/email address provider, the IdP. If the IdP (eyedee.me)
supports BrowserID directly, it is called a primary IdP. Otherwise, a Mozilla-
provided service, the so-called secondary IdP, takes the role of the IdP. As men-
tioned before, here we concentrate on the primary IdP mode. However, we briefly
discuss the differenes between the two modes at the end of Section 4.2.

A primary IdP provides information about its BrowserID setup in a so-called
support document, which it provides at a fixed URL derivable from the email
domain, e.g., https://eyedee.me/.well-known/browserid.

A user who wants to log in at an RP with an email address for some IdP
has to present two signed documents to the RP: A user certificate (UC) and
an identity assertion (IA). The UC contains the user’s email address and the
user’s public key. It is signed by the IdP. The IA contains the origin of the
RP and is signed with the private key corresponding to the user’s public key.
Both documents have a limited validity period. A pair consisting of a UC and
a matching IA is called a certificate assertion pair (CAP) or a backed identity
assertion. Intuitively, the UC in the CAP tells the RP that (the IdP certified
that) the owner of the email address is (or at least claims to be) the owner of the
public key. By the IA contained in the CAP the RP is ensured that the owner
of the given public key (i.e., the one who knows the corresponding private key)
wants to log in. Altogether, given a valid CAP, RP would consider the user (with
the email address mentioned in the CAP) to be logged in.

The BrowserID authentication process (with a primary IdP) consists of three
phases (see Figure 2 for an overview): I provisioning of the UC, II CAP
creation, and III verification of the CAP.

In Phase I , the (browser of the) user creates a public/private key pair A .
She then sends her public key as well as the email address she wants to use to log

https://eyedee.me/.well-known/browserid


in at some RP to the respective IdP B . The IdP now creates the UC C , which
is then sent to the user D . The above requires the user to be logged in at IdP.

With the user having received the UC, Phase II can start. The user wants
to authenticate to an RP, so she creates the IA E . The UC and the IA are
concatenated to a CAP, which is then sent to the RP F .

In Phase III , the RP checks the authenticity of the CAP. For this purpose,
the RP could use an external verification service provided by Mozilla or check the
CAP itself as follows: First, the RP fetches the public key of the IdP G , which
is contained in the support document. Afterwards, the RP checks the signatures
of the UC and the IA H . If this check is successful, the RP can, as mentioned
before, consider the user to be logged in with the given email address and send
her some token (e.g., a session ID), which we refer to as an RP service token.

4.2 Implementation Details

We now provide a more detailed description of the BrowserID implementation.
Since the system is very complex, with many HTTPS requests, XHRs, and
postMessages sent between different entities (servers as well as windows and
iframes within the browser), we here describe mainly the phases of the login
process without explaining every single message exchange done in the implemen-
tation. A more detailed step-by-step description can be found in Appendix E.
Note that BrowserID’s specification of IdPs fixes the interface to BrowserID only,
but otherwise does not further detail the specification of IdPs. Therefore, in what
follows, we consider a typical IdP, such as the example implementation provided
by Mozilla [16].

An overview of the BrowserID implementation is given in Figure 3. For
brevity of presentation, several messages and components, such as the CIF (see
below), are omitted in the figure.

In addition to the parties mentioned in the overview in Section 4.1, the ac-
tual implementation uses another party, Mozilla’s login.persona.org (LPO).
Among others, LPO provides the HTML and JavaScript files of the implemen-
tation core.

Windows and iframes in the Browser. By RP-Doc (see Figure 3) we denote
the window containing the document loaded from some RP, at which the user
wants to log in with an email address of some IdP. This document typically
includes JavaScript from LPO and contains a button “Login with BrowserID”.
The LPO JavaScript running in RP-Doc opens an auxiliary window called the
login dialog (LD). Its content is provided by LPO and it handles the interaction
with the user. During the login process, a temporary invisible iframe called the
provisioning iframe (PIF) can be created in the LD. The PIF is loaded from
IdP. It is used by LD to communicate (cross-origin) with the IdP via postMes-
sages: As the BrowserID implementation mainly runs under the origin of LPO,
it cannot directly communicate with the IdP, thus it uses the PIF as a proxy.
Temporarily, the LD may navigate itself to a web page at IdP to allow for direct
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Fig. 3. Simplified BrowserID implementation overview. Black arrows (open tips) de-
note HTTPS messages, blue arrows (filled tips) denote XHRs (over HTTPS), red
(dashed) arrows are postMessages, snake lines are commands to the browser. Note
that the communication iframe for automatic CAP creation is omitted for brevity.



user interaction with the IdP. We then call this window the authentication dialog
(AD).

Login Process. To describe the login process, for the sake of presentation we
assume for now that the user uses a “fresh” browser, i.e., the user has not been
logged in before. As mentioned, the process starts by the user visiting a web
site of some RP. After the user has clicked on the login button in RP-Doc, the
LD is opened and the interactive login flow is started. We can divide this login
flow into seven phases: In Phase i , essentially the LD is initialized and the
user is prompted to provide her email address. Also, LD fetches the support
document (see Section 4.1) of the IdP via LPO. In Phase ii , LD creates the
PIF from the provisioning URL provided in the support document. As (by our
assumption) the user is not logged in yet, the PIF notifies LD that the user is
not authenticated to the IdP yet. In Phase iii , LD navigates itself away to the
authentication URL which is also provided in the support document and links to
the IdP. Usually, this document will show a login form in which the user enters
her password to authenticate to the IdP. After the user has been authenticated
to IdP (which typically implies that the IdP sets a session cookie in the browser),
the window is navigated to LPO again. (This is done by JavaScript loaded from
LPO that the IdP document is supposed to include.)

Now, the login flow continues in Phase iv , which basically repeats Phase i .
However, the user is not prompted for her email address (it has previously been
saved in the localStorage under the origin of LPO along with a nonce, where the
nonce is stored in the sessionStorage). In Phase v , which essentially repeats
Phase ii , the PIF detects that the user is now authenticated to the IdP and the
provisioning phase is started ( I in Figure 2): The user’s keys are created by
LD and stored in the localStorage under the origin of LPO. The PIF forwards
the certification request to the IdP, which then creates the UC and sends it
back to the PIF. The PIF in turn forwards it to the LD, which stores it in the
localStorage under the origin of LPO.

In Phases vi and vii , mainly the IA is generated by LD for the origin of
RP-Doc and sent (together with the UC) to RP-Doc ( II in Figure 2). In the
localStorage, LD stores that the user’s email address is logged in at RP. Moreover,
the user’s email address is recorded at LPO (see the explanation on LPO Sessions
below). For this purpose, LD generates an IA for the origin of LPO and sends
the UC and IA to LPO.

LPO Session. LPO establishes a session with the browser by setting a cookie
browserid_state (Step 5 in Figure 3) on the client-side. LPO considers such a
session authenticated after having received a valid CAP (Step 22 in Figure 3). In
future runs, the user is presented a list of her email addresses (which is fetched
from LPO) in order to choose one address. Then, she is asked if she trusts the
computer she is using and is given the option to be logged in for one month
or “for this session only” (ephemeral session). In order to use any of the email
addresses, the user is required to authenticate to the IdP responsible for that



address to get an UC issued. If the localStorage (under the origin LPO) already
contains a valid UC, then, however, authentication at the IdP is not necessary.

Automatic CAP Creation. In addition to the interactive login presented
above, BrowserID also contains an automatic, non-interactive way for RPs to
obtain a freshly generated CAP: During initialization within RP-Doc, an invisi-
ble iframe called the communication iframe (CIF) is created inside RP-Doc. The
CIF’s JavaScript is loaded from LPO and behaves similar to LD, but without
user interaction. The CIF automatically issues a fresh CAP and sends it to RP-
Doc under specific conditions: among others, the email address must be marked
as logged in at RP in the localStorage. If necessary, a new key pair is created
and a corresponding new UC is requested at the IdP.

Differences to the Secondary IdP Mode. In the secondary IdP mode there
are three parties involved only: RP, Browser, and LPO, where LPO also takes
the role of the IdP; LPO is the only IdP that is present, rather than an arbitrary
set of (external) IdPs. Consequently, in the secondary IdP case the PIF and the
AD do not exist, LPO takes care of user authentication and UC generation itself.
Creating CAPLPO for LPO is not necessary either. Altogether, the secondary
IdP case requires much less communication between parties/components and
trust assumptions are simpler: while some external IdPs might be malicious
(and hence, also the scripts they deliver for the PIF and the AD), one has to
assume LPO to be trusted. The secondary IdP mode is described in detail in [11]
(Appendix F, Figure 6). Figure 6 in [11] includes the description of the CIF which,
however, in Figure 3 we have omitted for the sake of brevity of presentation. In
the primary mode, the behavior of the CIF is even more complex than the one in
the secondary mode. For example, in the primary mode, just like the LD, the CIF
might contain a PIF (iframe in iframe) and interact with it via postMessages.

5 Analysis of BrowserID

In this section, we present the analysis of the BrowserID system with primary
IdPs. As already mentioned, in [10], we merely analyzed the simpler case with
a secondary IdP. We first, in Section 5.1, describe our model of BrowserID with
primary IdPs, followed in Section 5.2 by a description of two central security
properties one would expect from an SSO system. As mentioned in the intro-
duction, during the analysis of BrowserID it turned out that one of the security
properties is not satisfied and that in fact there is an attack on BrowserID. We
confirmed that this attack works on the actual implementation of BrowserID
and reported it to Mozilla. In Section 5.3, the attack is presented along with a
fix. (The detailed model of BrowserID presented in Appendix F contains this
fix as well as fixes pointed out in [10].) In Section 5.4, we prove that the fixed
BrowserID system with primary IdPs satisfies both security properties.



5.1 Modeling of BrowserID with Primary IdPs

We model the BrowserID system with primary IdPs as a web system (in the sense
of Section 2). Note that while in Section 4 we give only a brief overview of the
BrowserID system, our modeling and analysis considers the complete system
with primary IdPs, where we have extracted the model from the BrowserID
source code [16].

We call a web system BID = (W , S , script, E0) a BrowserID web system if it
is of the form described in what follows.

The system W = Hon∪Web∪Net consists of the (network) attacker process
attacker, the web server for LPO, a finite set B of web browsers, a finite set
RP of web servers for the relying parties, and a finite set IDP of web servers
for the identity providers, with Hon := B ∪ RP ∪ IDP ∪ {LPO}, Web := ∅, and
Net := {attacker}. DNS servers are assumed to be dishonest, and hence, are
subsumed by attacker. IdPs and RPs can become corrupted (similar to browsers,
by a special message); LPO is assumed to be honest.

The set IPs of IP addresses (see Section 2.1) contains for LPO, attacker, every
relying party in RP, every identity provider in IDP, and every browser in B one
address each. By addr we denote the corresponding assignment from processes
to addresses. We define the set Doms ⊆ S to contain one domain for LPO, one
for every relying party in RP, a finite set of domains for every identity provider
in IDP, and a finite set of domains for attacker. Browsers do not have a domain.

The definition of the processes in W follows the description in Section 4.2.
We define the processes in W in full detail in Appendix F. In the following, we
only highlight important details.

All processes in W contain in their initial states all public keys and the
private keys of their respective domains (if any). For RP, we explicitely follow
the security considerations in [18] (Cross-site Request Forgery protection, e.g., by
checking origin headers and HTTPS only with STS enabled). When RP receives
a valid CAP (see below), RP responds with a fresh RP service token for ID i
where i is the ID (email address) for which the CAP was issued. Intuitively, a
client having such a token can use the service of the RP.

Each browser b ∈ B owns a set of email addresses (identities) of the form
〈name, d〉 with name ∈ S and d ∈ Doms and associated secrets (i.e., nonces),
modeling passwords. The domains belong to IdPs. The secrets and identities are
contained in the initial states of the browsers.

In our model, a UC uc for a user u with email address 〈name, d〉 and public
key (verification key) pub(ku), where d ∈ dom(y) is a domain of the IdP y that
issued the UC and ku is the private (signing) key of u, is modeled to be a message
of the form uc = sig(〈〈name, d〉, pub(ku)〉, signkey(y)), with signkey(y) being the
signing key of y. An IA ia for an origin o is a message of the form ia = sig(o, ku).
Now, a CAP is of the form 〈uc, ia〉. Note that the time stamps are omitted both
from the UC and the IA. This models that both certificates are valid indefinitely.
In reality, as explained in Section 4, they are valid for a certain period of time,
as indicated by the time stamps. So our modeling is a safe overapproximation.



The set S of BID contains six scripts, with their string representations de-
fined by script: the honest scripts running in RP-Doc, CIF, LD, AD, and PIF,
respectively, and the malicious script Ratt. The scripts for CIF and LD (issued by
LPO) are defined in a straightforward way following the implementation outlined
in Section 4. The script for RP-Doc (issued by RP) also includes the script that
is (in reality) loaded from LPO. In particular, this script creates the CIF and
the LD iframes/subwindows, whose contents (scripts) are loaded from LPO. The
scripts for the AD and PIF are modeled following the example implementation
provided by Mozilla [16]. Full formal specifications of all the above mentioned
scripts are provided in Appendix F.

The set E0 contains only the trigger events specified in the definition of a
web system (Section 2.3).

5.2 Security Properties of the BrowserID System

While the documentation of BrowserID does not contain explicit security goals,
we state two fundamental security properties every SSO system should satisfy.
These properties are adapted from [10].

Informally, these properties can be stated as follows: (A) The attacker should
not be able to use a service of RP as an honest user. In other words, the attacker
should not get hold of (be able to derive from his current knowledge) an RP
service token for an ID of an honest user (browser), even if the browser was
closed and then later used by a malicious user (i.e., after a CLOSECORRUPT).
(B) The attacker should not be able to authenticate an honest browser to an RP
with an ID that is not owned by the browser. We refer the reader to Appendix G
for the formal definition of these properties.

We call a BrowserID web system BID secure if the above conditions are
satisfied in all runs of the system.

5.3 Attack on BrowserID with Primary IdPs

As mentioned, our analysis of BrowserID with primary IdPs w.r.t. the above
security properties revealed a serious attack, which does not apply to the case
with secondary IdPs. We confirmed the attack on the actual implementation and
reported it to Mozilla [7].

During the provisioning phase v (see Figure 3), the IdP issues a UC for the
user’s identity and public key provided in 16 . This UC is finally sent to the LD
by the PIF in 20 . Unfortunately, LD fails to check whether the UC contains the
correct email address and public key, namely, the email address/public key pair
that was sent in 16 .

If the IdP is malicious, it can issue a UC with different data. In particular, it
could replace the email address by a different one, but keep the original public
key. This (malicious) UC is then later included in the CAP by LD. The CAP will
still be valid, because the public key is unchanged. Now, as the RP determines
the user’s identity by the UC contained in the CAP, RP issues a service token



for the spoofed email address. As a result, the honest user will use RP’s service
(and typically will be logged in to RP) under an ID that belongs to the attacker,
which, for example, could allow the attacker to track actions of the honest user
or obtain user secrets. This violates Condition (B).

Proposed fix. To fix this problem, upon receipt of the UC in 20 , LD should
check whether it contains the correct email address and public key, i.e., the one
requested by LD in 16 . The same is true for the CIF, which behaves similarly
to the LD. The formal model of BrowserID presented in Appendix F contains
these fixes.

5.4 Security of the Fixed System

For the fixed BrowserID system with primary IdPs, we have proven the following
theorem, which says that a fixed BrowserID web system (i.e., the system where
the above described fix is applied) satisfies the security properties (A) and (B).

Theorem 1. Let BID be a fixed BrowserID web system. Then, BID is secure.

We prove Conditions (A) and (B) separately. For both conditions, we assume
that they are not satisfied and lead this to a contradiction. In our proofs, we make
use of the general security properties of the web model presented in Section 3,
which helped a lot in making the proof for the primary IdP model more modular
and concise. The complete proof with all details is provided in Appendix H.

6 Related Work

The formal treatment of the security of the web infrastructure and web appli-
cations based on this infrastructure is a relatively young discipline. Of the few
works in this area even less are based on a general model that incorporates
essential mechanisms of the web.

Early work in formal web security analysis includes work by Kerschbaum [14],
in which a Cross-Site Request Forgery protection proposal is formally analyzed
using a simple model expressed using Alloy, a finite-state model checker [13].
Formal methods were also used by Armando et al. [2] to analyze SAML single
sign-on and by Sun et al. [21] to perform security analysis of OpenID. Chari
et al. [8] analyze OAuth using the Universal Composability approach. However,
all these works are based on very limited models developed specifically for the
application under scrutiny.

The first work to consider a general model of the web is the work by Akhawe
et al. [1]. Their model is again written in Alloy and they apply it to analyze the
Origin header concept, Cross-Origin Resource Sharing, Kerschbaum’s Referer
Validation (as mentioned above), HTML5 forms, and the WebAuth authentica-
tion mechanism. Inspired by this work, Bansal et al. [4,5] built a more expressive
model, called WebSpi, in ProVerif [6], a tool for symbolic cryptographic protocol
analysis. They use the model to analyze encrypted web storage and website au-
thorization. Recently, Kumar [15] presented a high-level Alloy model and applied



it to SAML single sign-on. Compared to our web model, on the one hand, the
above mentioned models are formulated in the specification languages of specific
analysis tools, and hence, are tailored towards automation (while we perform
manual analysis). On the other hand, the models considered in these works are
much less expressive and precise. For example, these models do not incorporate
a precise handling of windows, documents, or iframes; cross-document messag-
ing (postMessages) or session storage are not included at all. In fact, several
general web features and technologies that have been crucial for the analysis of
BrowserID are not supported by these models. Moreover, the complexity of the
system we analyzed, namely BrowserID, exceeds that of the systems analyzed
in these works in terms of the use of web features and technologies and in terms
of the complexity of the protocols. For example, BrowserID in primary mode
is a protocol consisting of 48 different (network and inter-frame) message types
compared to typically about 10–15 in the protocols analyzed in other models.

The BrowserID system in the primary mode has been analyzed before using
the AuthScan tool developed by Bai et al. [3]. Their work focusses on the auto-
mated extraction of a model from a protocol implementation. This tool-based
analysis did not reveal the identity injection attack, though. Dietz and Wallach
demonstrated a technique to secure BrowserID when specific flaws in TLS are
considered [9].

7 Conclusion

We have presented a detailed analysis of the BrowserID single sign-on system
in the so-called primary IdP mode. For this, we first slightly extended the web
model proposed in prior work. Our model is the most complete model of the
web so far. It contains many security-relevant features and is designed to closely
mimic standards and specifications for the web. As such, it constitutes a solid
basis for the analysis of a broad range of web standards and applications. During
the proof of the security of the primary IdP mode of BrowserID, we found
a flaw in BrowserID that leads to an identity injection attack, which violates
security Condition (B). We confirmed that the attack can in fact be carried
out on the BrowserID implementation and reported the flaw to Mozilla. We
proposed a fix and proved that the fixed system fulfills the security properties
(A) and (B), which are fundamental security properties of SSO systems. The
analysis carried out in this work constitutes the most complex formal analysis
of a web application to date. It illustrates that (manual) security analysis of
complex web applications in detailed web models, while laborious, is feasible
and yields meaningful and relevant results. In addition, we have identified and
proved important security properties of general application independent web
features in order to facilitate future analysis efforts of web standards and web
applications using the model.

As for future work, it is clear that our web model can serve as a basis and a
reference for automated approaches, where one could try to extend the existing
automated approaches or develop new ones (e.g., based on theorem provers,



where higher accuracy is typically paid by more interaction). The main obstacle
to overcome during this step will be the complex data structures and algorithms
that form essential parts of modern web browsers and are already part of our
model. Finally, we also plan to apply our model to other web applications and
web standards and to identify and prove further web properties.
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A Communication Model

Extending Section 2.1, we here present details and definitions on the basic con-
cepts of our communication model. For readability, some parts from Section 2.1
are repeated here.

A.1 Terms, Messages and Events

The signature Σ for the terms and messages considered in this work is the union
of the following pairwise disjoint sets of function symbols:

• constants C = IPs ∪ S∪{⊤,⊥,♦} where the three sets are pairwise disjoint,
S is interpreted to be the set of ASCII strings (including the empty string
ε), and IPs is interpreted to be a set of (IP) addresses,

• function symbols for public keys, asymmetric/symmetric encryption/decryp-
tion, and signatures: pub(·), enca(·, ·), deca(·, ·), encs(·, ·), decs(·, ·), sig(·, ·),
checksig(·, ·), extractmsg(·),
• n-ary sequences 〈〉, 〈·〉, 〈·, ·〉, 〈·, ·, ·〉, etc., and

• projection symbols πi(·) for all i ∈ N.

https://github.com/mozilla/browserid
https://login.persona.org
https://developer.mozilla.org/en/docs/persona
http://www.w3.org/TR/webstorage/


Definition 1. Let X = {x0, x1, . . . } be a set of variables and N be an infinite
set of constants (nonces) such that Σ, X, and N are pairwise disjoint. For
N ⊆ N , we define the set TN(X) of terms over Σ ∪N ∪X inductively as usual:
(1) If t ∈ N ∪X, then t is a term. (2) If f ∈ Σ is an n-ary function symbol in
Σ for some n ≥ 0 and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

By TN = TN(∅), we denote the set of all terms over Σ ∪N without variables,
called ground terms. The set M of messages (over N ) is defined to be the set of
ground terms TN .

Example 1. For example, k ∈ N and pub(k) are messages, where k typically
models a private key and pub(k) the corresponding public key. For constants a,
b, c and the nonce k ∈ N , the message enca(〈a, b, c〉, pub(k)) is interpreted to be
the message 〈a, b, c〉 (the sequence of constants a, b, c) encrypted by the public
key pub(k).

For strings, i.e., elements in S, we use a specific font. For example, HTTPReq
and HTTPResp are strings. We denote by Doms ⊆ S the set of domains, e.g.,
www.example.com ∈ Doms. We denote by Methods ⊆ S the set of methods used
in HTTP requests, e.g., GET, POST ∈ Methods.

The equational theory associated with the signature Σ is given in Figure 4.

deca(enca(x,pub(y)), y) = x (1)

decs(encs(x, y), y) = x (2)

extractmsg(sig(x, y)) = x (3)

checksig(sig(x, y), pub(y)) = ⊤ (4)

πi(〈x1, . . . , xn〉) = xi if 1 ≤ i ≤ n (5)

πj(〈x1, . . . , xn〉) = ♦ if j 6∈ {1, . . . , n} (6)

πj(t) = ♦ if t is not a sequence (7)

Fig. 4. Equational theory for Σ.

By ≡ we denote the congruence relation on TN (X) induced by this theory.
For example, we have that π1(deca(enca(〈a, b〉, pub(k)), k)) ≡ a.

Definition 2. An event (over IPs and M ) is of the form (a:f :m), for a, f ∈ IPs

and m ∈M , where a is interpreted to be the receiver address and f is the sender
address. We denote by E the set of all events.

A.2 Atomic Processes, Systems and Runs

We here define atomic processes, systems, and runs of systems.
An atomic process takes its current state and an event as input, and then

(non-deterministically) outputs a new state and a set of events.



Definition 3. A (generic) atomic process is a tuple p = (Ip, Zp, Rp, sp0) where
Ip ⊆ IPs, Zp is a set of states, Rp ⊆ (E × Zp) × (2E × Zp), and sp0 ∈ Zp is the
initial state of p. We write (e, z)R(E, z′) instead of ((e, z), (E, z′)) ∈ R.

A system P is a (possibly infinite) set of atomic processes.

Definition 4. A configuration of a system P is a tuple (S,E) where S maps
every atomic process p ∈ P to its current state S(p) ∈ Zp and E is a (possibly
infinite) multi-set of events waiting to be delivered.

Definition 5. A processing step of the system P is of the form

(S,E)
e→p
−−−−−→
p→Eout

(S′, E′)

such that (1) there exist e = (a:f :m) ∈ E, Eout ⊆ E′, and p ∈ P with
(e, S(p))Rp(Eout, S

′(p)) and a ∈ Ip, (2) S′(p′) = S(p′) for all p′ 6= p, and
(3) E′ = (E \ {e}) ∪ Eout (multi-set operations). We may omit the superscript
and/or subscript of the arrow.

Definition 6. Let P be a system and E0 be a multi-set of events. A run ρ of a sys-
tem P initiated by E0 is a finite sequence of configurations (S0, E0), . . . , (Sn, En)
or an infinite sequence of configurations (S0, E0), . . . such that S0(p) = sp0 for
all p ∈ P and (Si, Ei) −→ (Si+1, Ei+1) for all 0 ≤ i < n (finite run) or for all
i ≥ 0 (infinite run).

A.3 Atomic Dolev-Yao Processes

We next define atomic Dolev-Yao processes, for which we require that the mes-
sages and states that they output can be computed (more formally, derived)
from the current input event and state. For this purpose, we first define what it
means to derive a message from given messages.

Definition 7. Let N ⊆ N , τ ∈ TN ({x1, . . . , xn}), and t1, . . . , tn ∈ TN . Then,
by τ [t1/x1, . . . , tn/xn] we denote the (ground) term obtained from τ by replacing
all occurrences of xi in τ by ti, for all i ∈ {1, . . . , n}.

Definition 8. Let M ⊆ M be a set of messages. We say that a message m
can be derived from M with nonces N if there exist n ≥ 0, m1, . . . ,mn ∈ M ,
and τ ∈ TN ({x1, . . . , xn}) such that m ≡ τ [m1/x1, . . . ,mn/xn]. We denote by
dN (M) the set of all messages that can be derived from M with nonces N .

For example, a ∈ d{k}({enca(〈a, b, c〉, pub(k))}).

Definition 9. An atomic Dolev-Yao process (or simply, a DY process) is a
tuple p = (Ip, Zp, Rp, sp0, N

p) such that (Ip, Zp, Rp, sp0) is an atomic process
and (1) Np ⊆ N is an (initial) set of nonces, (2) Zp ⊆ TN (and hence, sp0 ∈
TN ), and (3) for all a, a′, f, f ′ ∈ IPs, m,m′, s, s′ ∈ TN , set of events E with
((a:f :m), s)R(E, s′) and (a′:f ′:m′) ∈ E it holds true that m′, s′ ∈ dN ({m, s}).
(Note that a′, f ′ ∈ dN ({m, s}).)



Definition 10. An (atomic) attacker process for a set of sender addresses A ⊆
IPs is an atomic DY process p = (I, Z,R, s0, N) such that for all a, f ∈ IPs,
m ∈ TN , and s ∈ Z we have that ((a:f :m), s)R(E, s′) iff s′ = 〈〈a, f,m〉, s〉 and
E = {(a′:f ′:m′) | a′ ∈ IPs, f ′ ∈ A, m′ ∈ dN ({m, s})}.

B Message and Data Formats

We now provide some more details about data and message formats that are
needed for the formal treatment of our web model and the analysis of BrowserID
presented in the rest of the appendix.

B.1 Notations

Definition 11 (Sequence Notations). For a sequence t = 〈t1, . . . , tn〉 and a
set s we use t ⊂〈〉 s to say that t1, . . . , tn ∈ s. We define x ∈〈〉 t ⇐⇒ ∃i :
ti = x . We write t +〈〉 y to denote the sequence 〈t1, . . . , tn, y〉. For a sequence
t = 〈t1, . . . , tn〉 we define |t| = n. If t is not a sequence, we set |t| = ♦. For
a finite set M with M = {m1, . . . ,mn} we use 〈M〉 to denote the term of the
form 〈m1, . . . ,mn〉. (The order of the elements does not matter; one is chosen
arbitrarily.)

Definition 12. A dictionary over X and Y is a term of the form

〈〈k1, v1〉, . . . , 〈kn, vn〉〉

where k1, . . . , kn ∈ X, v1, . . . , vn ∈ Y , and the keys k1, . . . , kn are unique, i.e.,
∀i 6= j : ki 6= kj. We call every term 〈ki, vi〉, i ∈ {1, . . . , n}, an element of the dic-
tionary with key ki and value vi. We often write [k1 : v1, . . . , ki : vi, . . . , kn : vn]
instead of 〈〈k1, v1〉, . . . , 〈kn, vn〉〉. We denote the set of all dictionaries over X
and Y by [X × Y ].

We note that the empty dictionary is equivalent to the empty sequence, i.e.,
[] = 〈〉. Figure 5 shows the short notation for dictionary operations that will
be used when describing the browser atomic process. For a dictionary z =
[k1 : v1, k2 : v2, . . . , kn : vn] we write k ∈ z to say that there exists i such that
k = ki. We write z[kj ] := vj to extract elements. If k 6∈ z, we set z[k] := 〈〉.

[k1 : v1, . . . , ki : vi, . . . , kn : vn] [ki] = vi (8)

[k1 : v1, . . . , ki−1 : vi−1, ki : vi, ki+1 : vi+1 . . . , kn : vn]− ki =

[k1 : v1, . . . , ki−1 : vi−1, ki+1 : vi+1 . . . , kn : vn] (9)

Fig. 5. Dictionary operators with 1 ≤ i ≤ n.



Given a term t = 〈t1, . . . , tn〉, we can refer to any subterm using a sequence
of integers. The subterm is determined by repeated application of the projection
πi for the integers i in the sequence. We call such a sequence a pointer :

Definition 13. A pointer is a sequence of non-negative integers. We write τ.p
for the application of the pointer p to the term τ . This operator is applied from
left to right. For pointers consisting of a single integer, we may omit the sequence
braces for brevity.

Example 2. For the term τ = 〈a, b, 〈c, d, 〈e, f〉〉〉 and the pointer p = 〈3, 1〉, the
subterm of τ at the position p is c = π1(π3(τ)). Also, τ.3.〈3, 1〉 = τ.3.p =
τ.3.3.1 = e.

To improve readability, we try to avoid writing, e.g., o.2 or π2(o) in this
document. Instead, we will use the names of the components of a sequence that
is of a defined form as pointers that point to the corresponding subterms. E.g.,
if an Origin term is defined as 〈host , protocol 〉 and o is an Origin term, then we
can write o.protocol instead of π2(o) or o.2. See also Example 3.

In our pseudocode, we will write, for example,

let x, y such that 〈Constant, x, y〉 ≡ t if possible; otherwise doSomethingElse

for some variables x, y, a string Constant, and some term t to express that
x := π2(t), and y := π3(t) if Constant ≡ π1(t) and if |〈Constant, x, y〉| = |t|,
and that otherwise x and y are not set and doSomethingElse is executed.

B.2 URLs

Definition 14. A URL is a term of the form 〈URL, protocol , host , path, params〉
with protocol ∈ {P, S} (for plain (HTTP) and secure (HTTPS)), host ∈ Doms,
path ∈ S and params ∈

[
S× TN

]
. The set of all valid URLs is URLs.

Example 3. For the URL u = 〈URL, a, b, c, d〉, u.protocol = a. If, in the algo-
rithm described later, we say u.path := e then u = 〈URL, a, b, c, e〉 afterwards.

B.3 Origins

Definition 15. An origin is a term of the form 〈host , protocol〉 with host ∈
Doms, protocol ∈ {P, S}. We write Origins for the set of all origins. See Example 6
for an example of an origin.

B.4 Cookies

Definition 16. A cookie is a term of the form 〈name, content〉 where name ∈
TN , and content is a term of the form 〈value, secure, session , httpOnly〉 where
value ∈ TN , secure, session, httpOnly ∈ {⊤,⊥}. We write Cookies for the set of
all cookies.



If the secure attribute of a cookie is set, the browser will not transfer this
cookie over unencrypted HTTP connections. If the session flag is set, this cookie
will be deleted as soon as the browser is closed. The httpOnly attribute controls
whether JavaScript has access to this cookie.

Note that cookies of the form described here are only contained in HTTP(S)
requests. In responses, only the components name and value are transferred as
a pairing of the form 〈name, value〉.

B.5 HTTP Messages

Definition 17. An HTTP request is a term of the form shown in (10). An
HTTP response is a term of the form shown in (11).

〈HTTPReq, nonce,method , host , path, parameters , headers , body〉 (10)

〈HTTPResp, nonce, status, headers , body〉 (11)

The components are defined as follows:

• nonce ∈ N serves to map each response to the corresponding request
• method ∈ Methods is one of the HTTP methods.
• host ∈ Doms is the host name in the HOST header of HTTP/1.1.
• path ∈ S is a string indicating the requested resource at the server side
• status ∈ S is the HTTP status code (i.e., a number between 100 and 505, as

defined by the HTTP standard)
• parameters ∈

[
S× TN

]
contains URL parameters

• headers ∈
[
S× TN

]
, containing request/response headers. The dictionary

elements are terms of one of the following forms:
• 〈Origin, o〉 where o is an origin
• 〈Set-Cookie, c〉 where c is a sequence of cookies
• 〈Cookie, c〉 where c ∈

[
S× TN

]
(note that in this header, only names

and values of cookies are transferred)
• 〈Location, l〉 where l ∈ URLs

• 〈Strict-Transport-Security,⊤〉
• body ∈ TN in requests and responses.

We write HTTPRequests/HTTPResponses for the set of all HTTP requests or
responses, respectively.

Example 4 (HTTP Request and Response).

r :=〈HTTPReq, n1, POST, example.com, /show, 〈〈index, 1〉〉,

[Origin : 〈example.com, S〉], 〈foo, bar〉〉 (12)

s :=〈HTTPResp, n1, 200, 〈〈Set-Cookie, 〈〈SID, 〈n2,⊥,⊥,⊤〉〉〉〉〉, 〈somescript, x〉〉
(13)

An HTTP GET request for the URL http://example.com/show?index=1 is
shown in (12), with an Origin header and a body that contains 〈foo, bar〉. A

http://example.com/show?index=1


possible response is shown in (13), which contains an httpOnly cookie with name
SID and value n2 as well as the string representation somescript of the scripting
process script−1(somescript) (which should be an element of S) and its initial
state x.

Encrypted HTTP Messages. For HTTPS, requests are encrypted using the
public key of the server. Such a request contains an (ephemeral) symmetric key
chosen by the client that issued the request. The server is supported to encrypt
the response using the symmetric key.

Definition 18. An encrypted HTTP request is of the form enca(〈m, k′〉, k),
where k, k′ ∈ N and m ∈ HTTPRequests. The corresponding encrypted HTTP
response would be of the form encs(m

′, k′), where m′ ∈ HTTPResponses. We
call the sets of all encrypted HTTP requests and responses HTTPSRequests or
HTTPSResponses, respectively.

Example 5.

enca(〈r, k
′〉, pub(kexample.com)) (14)

encs(s, k
′) (15)

The term (14) shows an encrypted request (with r as in (12)). It is encrypted
using the public key pub(kexample.com). The term (15) is a response (with s as in
(13)). It is encrypted symmetrically using the (symmetric) key k′ that was sent
in the request (14).

B.6 DNS Messages

Definition 19. A DNS request is a term of the form 〈DNSResolve, domain , n〉
where domain ∈ Doms, n ∈ N . We call the set of all DNS requests DNSRequests.

Definition 20. A DNS response is a term of the form 〈DNSResolved, result , n〉
with result ∈ IPs, n ∈ N . We call the set of all DNS responses DNSResponses.

DNS servers are supposed to include the nonce they received in a DNS request
in the DNS response that they send back so that the party which issued the
request can match it with the request.

C Detailed Description of the Browser Model

Following the informal description of the browser model in Section 2.5, we now
present a formal model. We start by introducing some notation and terminology.



C.1 Notation and Terminology (Web Browser State)

Before we can define the state of a web browser, we first have to define windows
and documents. Concrete window and document terms are shown in Example 6.

Definition 21. A window is a term of the form w = 〈nonce, documents, opener 〉
with nonce ∈ N , documents ⊂〈〉 Documents (defined below), opener ∈ N ∪ {⊥}
where d.active = ⊤ for exactly one d ∈〈〉 documents if documents is not empty
(we then call d the active document of w). We write Windows for the set of
all windows. We write w.activedocument to denote the active document inside
window w if it exists and 〈〉 else.

We will refer to the window nonce as (window) reference.
The documents contained in a window term to the left of the active document

are the previously viewed documents (available to the user via the “back” button)
and the documents in the window term to the right of the currently active
document are documents available via the “forward” button, as will be clear
from the description of web browser model (see Section C.2).

A window a may have opened a top-level window b (i.e., a window term which
is not a subterm of a document term). In this case, the opener part of the term
b is the nonce of a, i.e., b.opener = a.nonce.

Definition 22. A document d is a term of the form

〈nonce, origin , script , scriptstate, scriptinput , subwindows , active〉

where nonce ∈ N , origin ∈ Origins, script , scriptstate, scriptinput ∈ TN ,

subwindows ⊂〈〉 Windows, active ∈ {⊤,⊥}. A limited document is a term
of the form 〈nonce, subwindows〉 with nonce, subwindows as above. A window
w ∈〈〉 subwindows is called a subwindow (of d). We write Documents for the set
of all documents.

We will refer to the document nonce as (document) reference.

Example 6. The following is an example of a window term with reference n1,
two documents, and an opener (n4):

〈n1,〈〈n2,〈example.com, P〉, script1, 〈〉, 〈〉, 〈〉,⊥〉,

〈n3,〈example.com, S〉, script2, 〈〉, 〈〉, 〈〉,⊤〉〉, n4〉

The first document has the reference n2. The document was loaded from the
origin 〈example.com, P〉, which translates into http://example.com. Its script-
ing process has the string representation script1, the last state and the input
history of this process are empty. The document does not have subwindows and
is inactive (⊥). The second document has the reference n3, its origin corresponds
to https://example.com, the scripting process is represented by script2, and
the document is active (⊤). All other components are empty.

http://example.com
https://example.com


We can now define the set of states of web browsers. Note that we use the
dictionary notation that we introduced in Definition 12.

Definition 23. Let OR := {〈o, r〉| o ∈ Origins, r ∈ N }. The set of states Zp of
a web browser atomic process p consists of the terms of the form

〈windows , ids , secrets, cookies , localStorage, sessionStorage, keyMapping ,

sts,DNSaddress , nonces, pendingDNS , pendingRequests, isCorrupted〉

where windows ⊂〈〉 Windows, ids ⊂〈〉 TN , secrets ∈ [Origins×N ], cookies is a
dictionary over Doms and dictionaries of Cookies, localStorage ∈

[
Origins× TN

]
,

sessionStorage ∈
[
OR × TN

]
, keyMapping ∈

[
Doms× TN

]
, sts ⊂〈〉 Doms,

DNSaddress ∈ IPs, nonces ⊂〈〉 N , pendingDNS ∈
[
N × TN

]
, pendingRequests ∈

TN , isCorrupted ∈ {⊥, FULLCORRUPT, CLOSECORRUPT}. We call the set of all
states of standard HTTP browsers SHBStates.

Definition 24. For two window terms w and w′ we write w
childof
−−−−→ w′ if w ∈〈〉

w′.activedocument.subwindows. We write
childof+

−−−−−→ for the transitive closure.

In the following description of the web browser relation Rp we will use the
helper functions Subwindows, Docs, Clean, CookieMerge and AddCookie.

Given a browser state s, Subwindows(s) denotes the set of all pointers1 to
windows in the window list s.windows, their (active) documents, and the sub-
windows of these documents (recursively). We exclude subwindows of inactive
documents and their subwindows. With Docs(s) we denote the set of pointers to
all active documents in the set of windows referenced by Subwindows(s).

Definition 25. For a browser state s we denote by Subwindows(s) the minimal
set of pointers that satisfies the following conditions: (1) For all windows w ∈〈〉

s.windows there is a p ∈ Subwindows(s) such that s.p = w. (2) For all p ∈
Subwindows(s), the active document d of the window s.p and every subwindow
w of d there is a pointer p′ ∈ Subwindows(s) such that s.p′ = w.

Given a browser state s, the set Docs(s) of pointers to active documents is the
minimal set such that for every p ∈ Subwindows(s), there is a pointer p′ ∈ Docs(s)
with s.p′ = s.p.activedocument.

The function Clean will be used to determine which information about windows
and documents the script running in the document d has access to.

Definition 26. Let s be a browser state and d a document. By Clean(s, d) we de-
note the term that equals s.windows but with all inactive documents removed (in-
cluding their subwindows etc.) and all subterms that represent non-same-origin
documents w.r.t. d replaced by a limited document d′ with the same nonce and
the same subwindow list. Note that non-same-origin documents on all levels are
replaced by their corresponding limited document.

1Recall the definition of a pointer in Definition 13.



The function CookieMerge merges two sequences of cookies together: When
used in the browser, oldcookies is the sequence of existing cookies for some origin,
newcookies is a sequence of new cookies that was outputted by some script. The
sequences are merged into a set of cookies using an algorithm that is based on
the Storage Mechanism algorithm described in RFC6265.

Definition 27. The set CookieMerge(oldcookies , newcookies) for two sequences
oldcookies and newcookies of cookies (where the cookies in oldcookies have pair-
wise different names) is defined by the following algorithm: From newcookies

remove all cookies c that have c.content.httpOnly ≡ ⊤. For any c, c′ ∈〈〉

newcookies , c.name ≡ c′.name, remove the cookie that appears left of the other in
newcookies . Let m be the set of cookies that have a name that either appears in
oldcookies or in newcookies , but not in both. For all pairs of cookies (cold, cnew)
with cold ∈〈〉 oldcookies , cnew ∈〈〉 newcookies , cold.name ≡ cnew.name, add cnew

to m if cold.content.httpOnly ≡ ⊥ and add cold to m otherwise. The result of
CookieMerge(oldcookies , newcookies) is m.

The function AddCookie adds a cookie c to the sequence of cookies contained in
the sequence oldcookies . It is again based on the algorithm described in RFC6265
but simplified for the use in the browser model.

Definition 28. The sequence AddCookie(oldcookies , c), where oldcookies is a se-
quence of cookies with different names and c is a cookie c, is defined by the
following algorithm: Let m := oldcookies . Remove any c′ from m that has
c.name ≡ c′.name. Append c to m and return m.

The function NavigableWindows returns a set of windows that a document is
allowed to navigate. We closely follow [12], Section 5.1.4 for this definition.

Definition 29. The set NavigableWindows(w, s′) is the set W ⊆ Subwindows(s′)
of pointers to windows that the active document in w is allowed to navigate. The
set W is defined to be the minimal set such that for every w′ ∈ Subwindows(s′)
the following is true:

• If s′.w′.activedocument.origin ≡ s′.w.activedocument.origin (the active
documents in w and w′ are same-origin), then w′ ∈ W , and

• If s′.w
childof∗

−−−−−→ s′.w′ ∧ ∄w′′ ∈ Subwindows(s′) with s′.w′ childof∗

−−−−−→ s′.w′′ (w′

is a top-level window and w is an ancestor window of w′), then w′ ∈W , and

• If ∃ p ∈ Subwindows(s′) such that s′.w′ childof+

−−−−−→ s′.p
∧ s′.p.activedocument.origin = s′.w.activedocument.origin (w′ is not
a top-level window but there is an ancestor window p of w′ with an active
document that has the same origin as the active document in w), then w′ ∈
W , and

• If ∃ p ∈ Subwindows(s′) such that s′.w′.opener = s′.p.nonce ∧ p ∈ W (w′

is a top-level window—it has an opener—and w is allowed to navigate the
opener window of w′, p), then w′ ∈W .



C.2 Description of the Web Browser Atomic Process

We will now describe the relation Rp of a standard HTTP browser p. For a tuple
r = (((a:f :m) , s) , (M, s′)) we define r to belong to Rp iff the non-deterministic
algorithm presented in Section 7, when given ((a:f :m) , s) as input, terminates
with stop M , s′, i.e., with output M and s′. Recall that (a:f :m) is an (input)
event and s is a (browser) state, M is a set of (output) events, and s′ is a new
(browser) state.

The notation let n← N is used to describe that n is chosen non-deterministic-
ally from the set N . We write for each s ∈M do to denote that the following
commands (until end for) are repeated for every element in M , where the
variable s is the current element. The order in which the elements are processed
is chosen non-deterministically.

We first define some functions which will be used in the main algorithm pre-
sented in Section 7.

Functions. In the description of the following functions we use a, f , m, s and
Np as read-only global input variables. Also, the functions use the set Np as a
read-only set. All other variables are local variables or arguments.
TAKENONCE returns a nonce from the set of unused nonces and modifies the

browser state such that the nonce is added to the sequence of used nonces. Note
that this function returns two values, the nonce n and the modified state s′.

Algorithm 1 Non-deterministically choose a fresh nonce.

1: function TAKENONCE(s′)

2: let n ←
{

x
∣

∣

∣x ∈ Np ∧ x 6∈〈〉 s′.nonces
}

3: let s′.nonces := s′.nonces +〈〉 n
4: return n, s′

5: end function

The following function, GETNAVIGABLEWINDOW, is called by the browser to
determine the window that is actually navigated when a script in the window
s′.w provides a window reference for navigation (e.g., for opening a link). When it
is given a window reference (nonce) window , GETNAVIGABLEWINDOW returns
a pointer to a selected window term in s′:

• If window is the string _BLANK, a new window is created and a pointer to
that window is returned.
• If window is a nonce (reference) and there is a window term with a reference

of that value in the windows in s′, a pointer w′ to that window term is re-
turned, as long as the window is navigable by the current window’s document
(as defined by NavigableWindows above).

In all other cases, w is returned instead (the script navigates its own window).

Algorithm 2 Determine window for navigation.

1: function GETNAVIGABLEWINDOW(w, window , s′)
2: if window ≡ _BLANK then ⊲ Open a new window when _BLANK is used



3: let n, s′ := TAKENONCE(s′)
4: let w′ := 〈n, 〈〉, s′.w.nonce〉
5: let s′.windows := s′.windows +〈〉 w′

→֒ and let w′ be a pointer to this new element in s′

6: return (w′, s′)
7: end if
8: let w′ ← NavigableWindows(w, s′) such that s′.w′.nonce ≡ window

→֒ if possible; otherwise return (w, s′)
9: return (w′, s′)

10: end function

The following function takes a window reference as input and returns a pointer
to a window as above, but it checks only that the active documents in both
windows are same-origin. It creates no new windows.

Algorithm 3 Determine same-origin window.

1: function GETWINDOW(w, window , s′)
2: let w′ ← Subwindows(s′) such that s′.w′.nonce ≡ window

→֒ if possible; otherwise return (w, s′)
3: if s′.w′.activedocument.origin ≡ s′.w.activedocument.origin then
4: return (w′, s′)
5: end if
6: return (w, s′)
7: end function

The next function is used to stop any pending requests for a specific window.
From the pending requests and pending DNS requests it removes any requests
with the given window reference n.

Algorithm 4 Cancel pending requests for given window.

1: function CANCELNAV(n, s′)
2: remove all 〈n, req , key , f 〉 from s′.pendingRequests for any req , key , f
3: remove all 〈x, 〈n,message , protocol 〉〉 from s′.pendingDNS

→֒ for any x , message , protocol
4: return s′

5: end function

The following function takes an HTTP request message as input, adds cookie
and origin headers to the message, creates a DNS request for the hostname given
in the request and stores the request in s′.pendingDNS until the DNS resolution
finishes. For normal HTTP requests, reference is a window reference. For XHRs,
reference is a value of the form 〈document , nonce〉 where document is a document
reference and nonce is some nonce that was chosen by the script that initiated
the request. protocol is either P or S. origin is the origin header value that is to
be added to the HTTP request.

Algorithm 5 Prepare headers, do DNS resolution, save message.

1: function SEND(reference , message , protocol , origin, s′)
2: if message .host ∈〈〉 s′.sts then



3: let protocol := S

4: end if
5: let cookies := 〈{〈c.name, c.content.value〉|c ∈〈〉 s′.cookies [message .host]

→֒ ∧ (c.content.secure =⇒ (protocol = S))}〉
6: let message .headers[Cookie] := cookies

7: if origin 6≡ ⊥ then
8: let message .headers[Origin] := origin

9: end if
10: let n, s′ := TAKENONCE(s′)
11: let s′.pendingDNS[n] := 〈reference ,message , protocol 〉
12: stop {(s′.DNSaddress : a : 〈DNSResolve, host , n〉)}, s′

13: end function

The following two functions have informally been described in Section 2.5.
The function RUNSCRIPT performs a script execution step of the script in the

document s′.d (which is part of the window s′.w). A new script and document
state is chosen according to the relation defined by the script and the new script
and document state is saved. Afterwards, the command that the script issued is
interpreted. Note that for each (Line 13) works in a non-deterministic order.

Algorithm 6 Execute a script.

1: function RUNSCRIPT(w, d, s′)
2: let n, s′ := TAKENONCE(s′)
3: let tree := Clean(s′, s′.d)
4: let cookies := 〈{〈c.name, c.content.value〉|c ∈〈〉 s′.cookies

[

s′.d.origin.host
]

→֒ ∧ c.content.httpOnly = ⊥
→֒ ∧

(

c.content.secure =⇒
(

s′.d.origin.protocol ≡ S
))

}〉

5: let tlw ← s′.windows such that tlw is the top-level window containing d
6: let sessionStorage := s′.sessionStorage

[

〈s′.d.origin, tlw .nonce〉
]

7: let localStorage := s′.localStorage
[

s′.d.origin
]

8: let secret := s′.secrets
[

s′.d.origin
]

9: let nonces be an infinite subset of
{

x
∣

∣

∣x ∈ Np ∧ x 6∈〈〉 s′.nonces
}

10: let R ← script−1(s′.d.script)
11: let in := 〈tree , s′.d.nonce, s′.d.scriptstate, s′.d.scriptinput, cookies ,

→֒ localStorage , sessionStorage , s′.ids, secret〉
12: let state ′ ← TN ,

→֒ cookies ′ ← Cookies,
→֒ localStorage ′ ← TN ,
→֒ command ← TN ,
→֒ out := 〈state ′, cookies ′, localStorage ′, sessionStorage ′, command〉
→֒ such that ((in,nonces), out) ∈ R .

13: for each n ∈ dN (〈in, out〉) ∩Np do

14: let s′.nonces := s′.nonces +〈〉 n
15: end for
16: let s′.cookies

[

s′.d.origin.host
]

→֒ := 〈CookieMerge(s′.cookies
[

s′.d.origin.host
]

, cookies ′)〉

17: let s′.localStorage
[

s′.d.origin
]

:= localStorage ′

18: let s′.sessionStorage
[

〈s′.d.origin, tlw .nonce〉
]

:= sessionStorage ′



19: let s′.d.scriptstate := state′

20: switch command do
21: case 〈〉
22: stop {}, s′

23: case 〈HREF, url , hrefwindow〉2

24: let w′, s′ := GETNAVIGABLEWINDOW(w, hrefwindow , s′)
25: let req := 〈HTTPReq, n, GET, url .host, url .path, 〈〉, url .params, 〈〉〉
26: let s′ := CANCELNAV(s′.w′.nonce, s′)
27: SEND(s′.w′.nonce, req , url .protocol, ⊥, s′)

28: case 〈IFRAME, url ,window〉
29: let w′, s′ := GETWINDOW(w,window , s′)
30: let req := 〈HTTPReq, n, GET, url .host, url .path, 〈〉, url .params, 〈〉〉
31: let n, s′ := TAKENONCE(s′)
32: let w′ := 〈n, 〈〉,⊥〉
33: let s′.w′.activedocument.subwindows

→֒ := s′.w′.activedocument.subwindows +〈〉 w′

34: SEND(n, req , url .protocol, ⊥, s′)

35: case 〈FORM, url ,method , data , hrefwindow 〉
36: if method 6∈ {GET, POST} then 3

37: stop {}, s′

38: end if
39: let w′, s′ := GETNAVIGABLEWINDOW(w, hrefwindow , s′)
40: if method = GET then
41: let body := 〈〉
42: let params := data

43: let origin := ⊥
44: else
45: let body := data

46: let params := url .params
47: let origin := s′.d.origin
48: end if
49: let req := 〈HTTPReq, n,method , url .host, url .path, 〈〉, params , body〉
50: let s′ := CANCELNAV(s′.w′.nonce, s′)
51: SEND(s′.w′.nonce, req , url .protocol, origin, s′)

52: case 〈SETSCRIPT,window , script〉
53: let w′, s′ := GETWINDOW(w,window , s′)
54: let s′.w′.activedocument.script := script

55: stop {}, s′

56: case 〈SETSCRIPTSTATE,window , scriptstate〉
57: let w′, s′ := GETWINDOW(w,window , s′)
58: let s′.w′.activedocument.scriptstate := scriptstate

59: stop {}, s′

60: case 〈XMLHTTPREQUEST, url ,method , data , xhrreference〉
61: if method ∈ {CONNECT, TRACE, TRACK} then

2See the definition of URLs in Appendix B.2.
3The working draft for HTML5 allowed for DELETE and PUT meth-

ods in HTML5 forms. However, these have since been removed. See
http://www.w3.org/TR/2010/WD-html5-diff-20101019/#changes-2010-06-24.

http://www.w3.org/TR/2010/WD-html5-diff-20101019/#changes-2010-06-24


62: stop {}, s′

63: end if
64: if url .host 6≡ s′.d.origin.host

→֒ ∨ url .protocol 6≡ s′.d.origin.protocol then
65: stop {}, s′

66: end if
67: if method ∈ {GET, HEAD} then
68: let data := 〈〉
69: let origin := ⊥
70: else
71: let origin := s′.d.origin
72: end if
73: let req := 〈HTTPReq, n,method , url .host, url .path, , url .params, data〉
74: SEND(〈s′.d.nonce, xhrreference〉, req , url .protocol, origin, s′)

75: case 〈BACK,window〉 4

76: let w′, s′ := GETNAVIGABLEWINDOW(w, window , s′)
77: if ∃ j ∈ N, j > 1 such that s′.w′.documents.j.active ≡ ⊤ then
78: let s′.w′.documents.j.active := ⊥
79: let s′.w′.documents.(j − 1).active := ⊤
80: let s′ := CANCELNAV(s′.w′.nonce, s′)
81: end if
82: stop {}, s′

83: case 〈FORWARD,window〉
84: let w′, s′ := GETNAVIGABLEWINDOW(w, window , s′)
85: if ∃ j ∈ N such that s′.w′.documents.j.active ≡ ⊤

→֒ ∧ s′.w′.documents.(j + 1) ∈ Documents then
86: let s′.w′.documents.j.active := ⊥
87: let s′.w′.documents.(j + 1).active := ⊤
88: let s′ := CANCELNAV(s′.w′.nonce, s′)
89: end if
90: stop {}, s′

91: case 〈CLOSE,window〉
92: let w′, s′ := GETNAVIGABLEWINDOW(w, window , s′)
93: remove s′.w′ from the sequence containing it
94: stop {}, s′

95: case 〈POSTMESSAGE,window ,message , origin〉
96: let w′ ← Subwindows(s′) such that s′.w′.nonce ≡ window

97: if ∃j ∈ N such that s′.w′.documents.j.active ≡ ⊤
→֒ ∧(origin 6≡ ⊥ =⇒ s′.w′.documents.j.origin ≡ origin) then

98: let s′.w′.documents.j.scriptinput
→֒ := s′.w′.documents.j.scriptinput
→֒ +〈〉 〈POSTMESSAGE, s′.w.nonce, s′.d.origin,message〉

99: end if
100: end function

4Note that navigating a window using the back/forward buttons does not trigger
a reload of the affected documents. While real world browser may chose to refresh
a document in this case, we assume that the complete state of a previously viewed
document is restored.



The function PROCESSRESPONSE is responsible for processing an HTTP
response (response) that was received as the response to a request (request) that
was sent earlier. In reference, either a window or a document reference is given
(see explanation for Algorithm 5 above). Again, protocol is either P or S.

The function first saves any cookies that were contained in the response to the
browser state, then checks whether a redirection is requested (Location header).
If that is not the case, the function creates a new document (for normal requests)
or delivers the contents of the response to the respective receiver (for XHR
responses).

Algorithm 7 Process an HTTP response.

1: function PROCESSRESPONSE(response , reference , request , protocol , s′)
2: let n, s′ := TAKENONCE(s′)
3: if Set-Cookie ∈ response .headers then
4: for each c ∈〈〉 response .headers [Set-Cookie], c ∈ Cookies do
5: let s′.cookies [request .url.host]

→֒ := AddCookie(s′.cookies [request .url.host] , c)
6: end for
7: end if
8: if Strict-Transport-Security ∈ response .headers ∧ protocol ≡ S then
9: let s′.sts := s′.sts +〈〉 request .host

10: end if
11: if Location ∈ response .headers ∧ response .status ∈ {303, 307} then 5

12: let url := response .headers [Location]
13: let method ′ := request .method 6

14: let body ′ := request .body 7

15: if Origin ∈ request.headers then
16: let origin := 〈request.headers[Origin], 〈request.host, protocol 〉〉
17: else
18: let origin := ⊥
19: end if
20: if response .status ≡ 303 ∧ request .method 6∈ {GET, HEAD} then
21: let method ′ := GET

22: let body ′ := 〈〉
23: end if

5The RFC for HTTPbis (currently in draft status), which obsoletes RFC 2616, does
not specify whether a POST/DELETE/etc. request that was answered with a status
code of 301 or 302 should be rewritten to a GET request or not (“for historic reasons”
that are detailed in Section 7.4.). As the specification is clear for the status codes 303
and 307 (and most browsers actually follow the specification in this regard), we focus
on modeling these.

6While the standard demands that users confirm redirections of non-safe-methods
(e.g., POST), we assume that users generally confirm these redirections.

7If, for example, a GET request is redirected and the original request contained a
body, this body is preserved, as HTTP allows for payloads in messages with all HTTP
methods, except for the TRACE method (a detail which we omit). Browsers will usually
not send body payloads for methods that do not specify semantics for such data in the
first place.



24: if ∄w ∈ Subwindows(s′) such that s′.w.nonce ≡ reference then
⊲ Do not redirect XHRs.

25: stop {}, s
26: end if
27: let req := 〈HTTPReq, n,method ′, url .host, url .path, 〈〉,url .params, body ′〉
28: SEND(reference , req , url .protocol, origin, s′)
29: end if
30: if ∃w ∈ Subwindows(s′) such that s′.w.nonce ≡ reference then

⊲ normal response
31: let script := π1(response .body)
32: let scriptstate := π2(response .body)
33: let d := 〈n, 〈request .host, request .protocol〉, script , scriptstate , 〈〉, 〈〉,⊤〉
34: if s′.w.documents ≡ 〈〉 then
35: let s′.w.documents := 〈d〉
36: else
37: let i ← N such that s′.w.documents.i.active ≡ ⊤
38: let s′.w.documents.i.active := ⊥
39: remove s′.w.documents.(i+ 1) and all following documents

→֒ from s′.w.documents
40: let s′.w.documents := s′.w.documents +〈〉 d
41: end if
42: stop {}, s′

43: else if ∃w ∈ Subwindows(s′), d such that s′.d.nonce ≡ π1(reference)
→֒ ∧ s′.d = s′.w.activedocument then ⊲ process XHR response

44: let s′.d.scriptinput := s′.d.scriptinput +〈〉

〈P, response .body, π2(reference)〉
45: end if
46: end function

Main Algorithm. This is the main algorithm of the browser relation. It was
already presented informally in Section 2.5 and follows the structure presented
there. It receives the message m as input, as well as a, f and s as above.

Algorithm 8 Main Algorithm

Input: (a:f :m), s
1: let s′ := s
2: if s.isCorrupted ≡ FULLCORRUPT then
3: let s′.pendingRequests := 〈m, s.pendingRequests〉

⊲ Collect incoming messages
4: let m′ ← dNp(s′)
5: let a′ ← IPs

6: stop {(a′:a:m′)}, s′

7: else if s.isCorrupted ≡ CLOSECORRUPT then
8: let s′.pendingRequests := 〈m, s.pendingRequests〉

⊲ Collect incoming messages
9: let Nclean := Np \ {n|n ∈〈〉 s.nonces}

10: let m′ ← dNclean(s′)
11: let a′ ← IPs

12: let s′.nonces := s.nonces



13: stop {(a′:a:m′)}, s′

14: end if
15: let n, s′ := TAKENONCE(s′)
16: if m ≡ TRIGGER then ⊲ A special trigger message.
17: let switch ← {1, 2}
18: if switch ≡ 1 then ⊲ Run some script.
19: let w ← Subwindows(s′) such that s′.w.documents 6= 〈〉

→֒ if possible; otherwise stop {}, s′

20: let d := w +〈〉
activedocument

21: RUNSCRIPT(w, d, s′)
22: else if switch ≡ 2 then ⊲ Create some new request.
23: let w′ := 〈n, 〈〉,⊥〉
24: let s′.windows := s′.windows +〈〉 w′

25: let protocol ← {P, S}
26: let host ← Doms

27: let path ← S
28: let parameters ← [S× S]
29: let n′, s′ := TAKENONCE(s′)
30: let req := 〈HTTPReq, n′, GET, host , path , 〈〉, parameters , 〈〉〉
31: SEND(n, req , protocol , ⊥, s′)
32: end if
33: else if m ≡ FULLCORRUPT then ⊲ Request to corrupt browser
34: let s′.isCorrupted := FULLCORRUPT

35: stop {}, s′

36: else if m ≡ CLOSECORRUPT then ⊲ Close the browser
37: let s′.secrets := 〈〉
38: let s′.windows := 〈〉
39: let s′.pendingDNS := 〈〉
40: let s′.pendingRequests := 〈〉
41: let s′.sessionStorage := 〈〉
42: let s′.cookies ⊂〈〉 Cookies such that

→֒ (c ∈〈〉 s′.cookies)⇐⇒ (c ∈〈〉 s.cookies ∧ c.content.session ≡ ⊥)
43: let s′.isCorrupted := CLOSECORRUPT

44: stop {}, s′

45: else if ∃ 〈reference , request , key , f〉 ∈〈〉 s′.pendingRequests
→֒ such that π1(decs(m, key)) ≡ HTTPResp then ⊲ Encrypted HTTP response

46: let m′ := decs(m, key)
47: if m′.nonce 6≡ request .nonce then
48: stop {}, s
49: end if
50: remove 〈reference , request , key , f〉 from s′.pendingRequests
51: PROCESSRESPONSE(m′, reference , request , S, s′)
52: else if π1(m) ≡ HTTPResp ∧ ∃ 〈reference , request ,⊥, f〉 ∈〈〉 s′.pendingRequests

→֒ such that m′.nonce ≡ request .key then
53: remove 〈reference , request ,⊥, f〉 from s′.pendingRequests
54: PROCESSRESPONSE(m, reference , request , P, s′)
55: else if m ∈ DNSResponses then ⊲ Successful DNS response
56: if m.nonce 6∈ s.pendingDNS then
57: stop {}, s
58: end if



59: let 〈reference ,message , protocol 〉 := s.pendingDNS[m.nonce]
60: if protocol ≡ S then
61: let k, s′ := TAKENONCE(s′)
62: let s′.pendingRequests := s′.pendingRequests

→֒ +〈〉 〈reference , message , k , m.result〉
63: let message := enca(〈message , k〉, s′.keyMapping [message .host])
64: else
65: let s′.pendingRequests := s′.pendingRequests

→֒ +〈〉 〈reference , message , ⊥, m.result〉
66: end if
67: let s′.pendingDNS := s′.pendingDNS −m.nonce
68: stop {(m.result:a:message)}, s′

69: else
70: stop {}, s
71: end if

D General Security Properties of the Web Model

We now formally state and prove the general application independent security
properties of the web which in Section 3 have been sketched only.

Let Web = (W , S , script, E0) be a web system. In the following, we write
sx = (Sx, Ex) for the states of a web system.

Definition 30. In what follows, given an atomic process p and a message m,
we say that p emits m in a run ρ = s0, s1, . . . if there is a processing step of the
form

su−1 −−−→
p→E

su

for some u ∈ N, a set of events E and some addresses x, y with (x:y:m) ∈ E.

Definition 31. We say that a term t is derivably contained in (a term) t′ for
(a set of DY processes) P (in a processing step si → si+1 of a run ρ = s0, s1, . . .)
if t is derivable from t′ with the knowledge available to P , i.e.,

t ∈ dη({t
′} ∪ ς) with η :=

⋃

p∈P

Np and ς :=
⋃

p∈P,j≤i

Sj(p) .

Definition 32. We say that a set of processes P leaks a term t (in a processing
step si → si+1) to a set of processes P ′ if there exists a message m that is emitted
(in si → si+1) by some p ∈ P and t is derivably contained in m for P ′ in the
processing step si → si+1. If we omit P ′, we define P ′ := W \ P . If P is a set
with a single element, we omit the set notation.

Definition 33. We say that an DY process p created a message m (at some
point) in a run if m is derivably contained in a message emitted by p in some
processing step and if there is no earlier processing step where m is derivably
contained in a message emitted by some DY process p′.



Definition 34. We say that a browser b accepted a message (as a response
to some request) if the browser decrypted the message (if it was an HTTPS
message) and called the function PROCESSRESPONSE, passing the message and
the request (see Algorithm 7).

Definition 35. We say that an atomic DY process p knows a term t in some
state s = (S,E) of a run if it can derive the term from its knowledge, i.e.,
t ∈ dNp(S(p)).

Definition 36. We say that a script initiated a request r if a browser triggered
the script (in Line 12 of Algorithm 6) and the first component of the command

output of the script relation is either HREF, IFRAME, FORM, or XMLHTTPREQUEST

such that the browser issues the request r in the same step as a result.

For a run ρ = s0, s1, . . . of any Web, we state the following lemmas:

Lemma 1. If in the processing step si → si+1 of a run ρ of Web an honest
browser b (I) emits an HTTPS request of the form

m = enca(〈req , k〉, pub(k
′))

(where req is an HTTP request, k is a nonce (symmetric key), and k′ is the
private key of some other DY process u), and (II) in the initial state s0 the
private key k′ is only known to u, and (III) u never leaks k′, then all of the
following statements are true:

1. There is no state of Web where any party except for u knows k′, thus no one
except for u can decrypt req.

2. If there is a processing step sj → sj+1 where the browser b leaks k to W \
{u, b} there is a processing step sh → sh+1 with h < j where u leaks the
symmetric key k to W \ {u, b} or the browser is fully corrupted in sj.

3. The value of the host header in req is the domain that is assigned the public
key pub(k′) in the browsers’ keymapping s0.keymapping (in its initial state).

4. If b accepts a response (say, m′) to m in a processing step sj → sj+1 and b
is honest in sj and u did not leak the symmetric key k to W \ {u, b} prior
to sj, then u created the HTTPS response m′ to the HTTPS request m, i.e.,
the nonce of the HTTP request req is not known to any atomic process p,
except for the atomic process b and u.

Proof. (1). follows immediately from the condition. If k′ is initially only known
to u and u never leaks k′, i.e., even with the knowledge of all nonces (except for
those of u), k′ can never be derived from any network output of u, k′ cannot be
known to any other party. Thus, nobody except for u can derive req from m.

(2). We assume that b leaks k to W \ {u, b} in the processing step sj → sj+1

without u prior leaking the key k to anyone except for u and b and that the
browser is not fully corrupted in sj , and lead this to a contradiction.

The browser is honest in si. From the definition of the browser b, we see that
the key k is always chosen from a fresh set of nonces (Line 61 of Algorithm 7)



that are not used anywhere else. Further, the key is stored in the browser’s state
in pendingRequests . The information from pendingRequests is not extracted or
used anywhere else (in particular it is not accessible by scripts). If the browser
becomes closecorrupted prior to sj (and after si), the key cannot be used any-
more (compare Line 9 of Algorithm 8). Hence, b does not leak k to any other
party in sj (except for u and b). This proves (2).

(3). Per the definition of browsers (Algorithm 8), a host header is always
contained in HTTP requests by browsers. From Line 63 of Algorithm 8 we can
see that the encryption key for the request req was chosen using the host header
of the message. It is chosen from the keymapping in the browser’s state, which
is never changed during ρ. This proves (3).

(4). An HTTPS response m′ that is accepted by b as a response to m has to be
encrypted with k. The nonce k is stored by the browser in the pendingRequests

state information. The browser only stores freshly chosen nonces there (i.e., the
nonces are not used twice, or for other purposes than sending one specific re-
quest). The information cannot be altered afterwards (only deleted) and cannot
be read except when the browser checks incoming messages. The nonce k is only
known to u (which did not leak it to any other party prior to sj) and b (which
did not leak it either, as u did not leak it and b is honest, see (2)). The browser
b cannot send responses. This proves (4). ⊓⊔

Corollary 1. In the situation of Lemma 1, as long as u does not leak the
symmetric key k to W \ {u, b} and the browser does not become fully cor-
rupted, k is not known to any DY process p 6∈ {b, u} (i.e., ∄ s′ = (S′, E′) ∈ ρ:
k ∈ dNp(S′(p))).

Lemma 2. If for some si ∈ ρ an honest browser b has a document d in
its state Si(b).windows with the origin 〈dom , S〉 where dom ∈ Domain, and
Si(b).keyMapping[dom ] ≡ pub(k) with k ∈ N being a private key, and there
is only one DY process p that knows the private key k in all sj, j ≤ i, then b ex-
tracted (in Line 33 in Algorithm 7) the script in that document from an HTTPS
response that was created by p.

Proof. The origin of the document d is set only once: In Line 33 of Algorithm 7.
The values (domain and protocol) used there stem from the information about
the request (say, req) that led to loading of d. These values have been stored
in pendingRequests between the request and the response actions. The contents
of pendingRequests are indexed by freshly chosen nonces and can never be al-
tered or overwritten (only deleted when the response to a request arrives). The
information about the request req was added to pendingRequests in Line 62 (or
Line 65 which we can exclude as we will see later) of Algorithm 8. In particular,
the request was an HTTPS request iff a (symmetric) key was added to the in-
formation in pendingRequests. When receiving the response to req, it is checked
against that information and accepted only if it is encrypted with the proper
key and contains the same nonce as the request (say, n). Only then the protocol
part of the origin of the newly created document becomes S. The domain part



of the origin (in our case dom) is taken directly from the pendingRequests and
is thus guaranteed to be unaltered.

From Line 63 of Algorithm 8 we can see that the encryption key for the request
req was actually chosen using the host header of the message which will finally
be the value of the origin of the document d. Since b therefore selects the public
key Si(b).keyMapping[dom ] = S0(b).keyMapping[dom ] ≡ pub(k) for p (the key
mapping cannot be altered during a run), we can see that req was encrypted
using a public key that matches a private key which is only (if at all) known to
p. With Lemma 1 we see that the symmetric encryption key for the response, k,
is only known to b and the respective web server. The same holds for the nonce
n that was chosen by the browser and included in the request. Thus, no other
party than p can encrypt a response that is accepted by the browser b and which
finally defines the script of the newly created document. ⊓⊔

Lemma 3. If in a processing step si → si+1 of a run ρ of Web an honest browser
b issues an HTTP(S) request with the Origin header value 〈dom , S〉 where and
Si(b).keyMapping[dom ] ≡ pub(k) with k ∈ N being a private key, and there is
only one DY process p that knows the private key k in all sj, j ≤ i, then that
request was initiated by a script that b extracted (in Line 33 in Algorithm 7)
from an HTTPS response that was created by p.

Proof. First, we can see that the request was initiated by a script: As it contains
an origin header, it must have been a POST request (see the browser definition
in Appendix C.2). POST requests can only be initiated in Lines 51, 74 of Al-
gorithm 6 and Line 28 of Algorithm 7. In the latter instance (Location header
redirect), the request contains at least two different origins, therefore it is im-
possible to create a request with exactly the origin 〈dom , S〉 using a redirect. In
the other two cases (FORM and XMLHTTPRequest), the request was initiated
by a script.

The Origin header of the request is defined by the origin of the script’s doc-
ument. With Lemma 2 we see that the content of the document, in particular
the script, was indeed provided by p. ⊓⊔

E Step-By-Step Description of BrowserID (Primary IdP)

We now present additional details of the implementation of BrowserID. While
the basic steps have been shown in Section 4.2, we will now again refer to Figure 3
and provide a step-by-step description. As above, for brevity of presentation, we
focus on the main login flow without the CIF, and we leave out steps for fetching
additional resources (like JavaScript files) and some less relevant postMessages
and XHRs. Also, we assume that a typical IdP implementation like the example
implementation provided by Mozilla is used.

We emphasize, however, that our formal model of BrowserID with primary
IdPs (cf. Section F) closely follows the full BrowserID implementation.

We (again) assume that the user uses a “fresh” browser, i.e., the user has not
been logged in before. The user has already opened a document of some RP



(RP-Doc) in her browser. RP-Doc includes a JavaScript file, which provides the
BrowserID API. The user is now about to click on a login button in order to
start a BrowserID login.

Phase i . After the user has clicked on the login button, RP-Doc opens a new
browser window, the login dialog (LD) 1 . The document of LD is loaded from
LPO 2 . Now, LD sends a ready postMessage 3 to its opener, which is RP-Doc.
RP-Doc then responds by sending a request postMessage 4 . This postMessage
may contain additional information like a name or a logo of RP-Doc. LD then
fetches the so-called session context from LPO using 5 . The session context con-
tains information about whether the user is already logged in at LPO, which, by
our assumption, is not the case at this point. The session context also contains
an XSRF protection token which will be sent in all subsequent POST requests to
LPO. Also, an httpOnly cookie called browserid_state is set, which contains
an LPO session identifier. Now, the user is prompted to enter her email address
(login email address), which she wants to use to log in at RP 6 . LD sends the
login email address to LPO via an XHR 7 , in order to get information about
the IdP the email address belongs to. The information from this so-called sup-
port document may be cached at LPO for further use. LPO extracts the domain
part of the login email address and fetches an information document 8 from a
fixed path (/.well-known/browserid) at the IdP. This document contains the
public key of IdP, and two paths, the provisioning path and the authentication
path at IdP. These paths will be used later in the login process by LD. LPO con-
verts these paths into URLs and sends them in its response 9 to the requesting
XHR 7 .

Phase ii . As there is no record about the login email address in the localStorage
under the origin of LPO, the LD now tries to get a UC for this identity. For that
to happen, the LD creates a new iframe, the provisioning iframe (PIF) 10 . The
PIF’s document is loaded 11 from the provisioning URL LD has just received
before in 9 . The PIF now interacts with the LD via postMessages 12 . As the user
is currently not logged in, the PIF tells the LD that the user is not authenticated
yet. This also indicates to the LD that the PIF has finished operation. The LD
then closes the PIF 13 .

Phase iii . Now, the LD saves the login email address in the localStorage indexed
by a fresh nonce. This nonce is stored in the sessionStorage to retrieve the
email address later from the localStorage again. Next, the LD navigates itself
to the authentication URL it has received in 9 . The loaded document now
interacts with the user and the IdP 14 in order to establish some authenticated
session depending on the actual IdP implementation, which is out of scope of
the BrowserID standard. For example, during this authentication procedure, the
IdP may issue some session cookie.

Phase iv . After the authentication to the IdP has been completed, the authen-
tication document navigates the LD to the LD URL again. The LD’s document
is fetched again from LPO and the login process starts over. The following steps

/.well-known/browserid


are similar to Phase i : The ready and request postMessages are exchanged
and the session context is fetched. As the user has not been authenticated to
LPO yet, the session context still contains the same information as above in 5 .
Now, the user is not prompted to enter her email address again. The email ad-
dress is fetched from the localStorage under the index of the nonce stored in the
sessionStorage. Now, the address information is requested again from LPO.

Phase v . As there still is no UC belonging to the login email address in
the localStorage, the PIF is created again. As the user now has established an
authenticated session with the IdP, the PIF asks the LD to generate a fresh key
pair. After the LD has generated the key pair 15 , it stores the key pair in the
localStorage (under the origin of LPO) and sends the public key to the PIF as
a postMessage 16 . The following steps 17 – 19 are not specified in the BrowserID
protocol. Typically, the PIF would send the public key to IdP (via an XHR) 17 .
The IdP would create the UC 18 and send it back to the PIF 19 . The PIF then
sends the UC to the LD 20 , which stores it in the localStorage. Now, the LD
closes the PIF.

Phase vi . The LD is now able to create a CAP, as it has access to a UC and
the corresponding private key in its localStorage. First, LD creates an IA for
LPO 21 . The IA and the UC is then combined to a CAP, which is then sent
to LPO in an XHR POST message 22 . LPO is now able to verify this CAP
with the public key of IdP, which LPO has already fetched and cached before
in 8 . If the CAP is valid, LPO considers its session with the user’s browser to
be authenticated for the email address the UC in the CAP is issued for.

Phase vii . Now, in 23 , the LD fetches a list of email addresses, which LPO
considers to be owned by the user. If the login email address would not appear in
this list, LD would abort the login process. After this, the LD fetches the address
information about the login email address again in 24 . Using this information,
LD validates if the UC is signed by the correct party (primary/secondary IdP).
Now, LD generates an IA for the sender’s origin of the request postMessage 4

(which was repeated in Phase iv ) using the private key from the localStorage 25

(the IA is generated for the login email address). Also, it is recorded in the
localStorage that the user is now logged in at RP with this email address. The
LD then combines the IA with the UC stored in the localStorage to the CAP,
which is then sent to RP-Doc in the response postMessage 26 .

This concludes the login process that runs in LD. Afterwards, RP-Doc closes
LD 27 .

F Model of BrowserID with Primary IdPs

We now present the full details of our formal model of BrowserID with primary
IdPs. We consider ephemeral sessions (the default), which are supposed to last
until the browser is closed. We note that the model is with the fixed version of
BrowserID (see Section 5.3).



We model the BrowserID system as a web system (in the sense of Section 2).
We call a web system BID = (W , S , script, E0) a BrowserID web system if it is
of the form described in what follows.

F.1 Outline

The system W = Hon ∪Web ∪ Net consists of the (network) attacker process
attacker, the web server for LPO, a finite set B of web browsers, a finite set
RP of web servers for the relying parties, and a finite set IDP of web servers
for the identity providers, with Hon := B ∪ RP ∪ IDP ∪ {LPO}, Web := ∅, and
Net := {attacker}. DNS servers are assumed to be dishonest, and hence, are
subsumed by attacker. More details on the processes in W are provided below.
Figure 6 shows the set of scripts S and their respective string representations
that are defined by the mapping script. The set E0 contains only the trigger
events as specified in Section 2.3.

s ∈ S script(s)

Ratt
att_script

script_rp_index script_rp_index

script_lpo_cif script_lpo_cif

script_lpo_ld script_lpo_ld

script_idp_pif script_idp_pif

script_idp_ad script_idp_ad

Fig. 6. List of scripts in S and their respective string representations.

This outlines BID. We will now define the DY processes and their addresses,
domain names, and secrets in more detail.

F.2 Addresses and Domain Names

The set IPs contains for LPO, attacker, every relying party in RP, every identity
provider in IDP, and every browser in B one address each. By addr we denote the
corresponding assignment from a process to its address. The set Doms contains
one domain for LPO, one for every relying party in RP, a finite set of domains for
every identity provider in IDP, and a finite set of domains for attacker. Browsers
(in B) do not have a domain.

By addr and dom we denote the assignments from atomic processes to sets of
IPs and Doms, respectively. If dom or addr returns a set with only one element,
we often write dom(x) or addr(x) to refer to the element.



F.3 Keys and Secrets

The set N of nonces is partitioned into four sets, an infinite set NW , an infinite
set KSSL, an infinite set Ksign, and a finite set Secrets. We thus have

N = NW

︸︷︷︸

infinite

∪̇KSSL
︸ ︷︷ ︸

finite

∪̇Ksign
︸ ︷︷ ︸

finite

∪̇Secrets
︸ ︷︷ ︸

finite

.

The set NW contains the nonces that are available for each DY process in W . It
is partitioned into infinite sets of nonces, one set Np ⊆ NW for every p ∈W .

The set KSSL contains the keys that will be used for SSL encryption. Let
sslkey : Doms→ KSSL be an injective mapping that assigns a (different) private
key to every domain.

The set Ksign contains the keys that will be used by IdPs for signing UCs. Let
signkey : IdPs→ Ksign be an injective mapping that assigns a (different) private
key to every identity provider.

The set Secrets ⊆ N is the set of passwords (secrets) the browsers share with
the identity providers.

F.4 Identities

Indentites are email addresses, which consist of a user name and a domain part.
For our model, this is defined as follows:

Definition 37. An identity (email address) i is a term of the form
〈name, domain〉 with name ∈ S and domain ∈ Doms.

Let ID be the finite set of identities. By IDy we denote the set
{〈name, domain〉 ∈ ID | domain ∈ dom(y)}.

We say that an ID is governed by the DY process to which the domain of the ID
belongs. Formally, we define the mapping governor : ID→W , 〈name, domain〉 7→
dom−1(domain).

The governor of an ID will usually be an IdP, but could also be the attacker.
Note that we omit delegation of authority over domains.

We further define UCs, IAs and CAPs formally:

Definition 38. A (valid) user certificate (UC) uc for a user u with email ad-
dress id = 〈name, d〉 and public key (verification key) pub(ku), where d ∈ dom(y)
is a domain of the governor y of id and ku is the private key (signing key) of u,
is a message of the form uc = sig(〈〈name, d〉, pub(ku)〉, signkey(y)).

An (valid) identity assertion (IA) ia for an origin o (e.g., 〈example.com, S〉)
signed with the key ku is a message of the form ia = sig(o, ku).

A certificate assertion pair (CAP) is of the form 〈uc, ia〉, with uc and ia as
above.8

8Note that the time stamps are omitted both from the UC and the IA. This models
that both certificates are valid indefinitely. In reality, they are valid for a certain period
of time, as indicated by the time stamps. So our modeling is a safe overapproximation.



Each browser b ∈ B owns a set of secrets (∈ Secrets). Each secret is assigned
a set S of IDs for a specific IdP y such that S ⊆ IDy. Browsers have disjoint
secrets and secrets have disjoint sets of IDs. The IdPs of the secrets of a browser
are disjoint. An ID i is owned by a browser b if the identity associated with i
belongs to b:

Let ownerOfSecret : Secrets → B denote the mapping that assigns to each
secret the browser that owns this secret. Let secretOfID : ID → Secrets denote
the mapping that assigns to each identity the associated secret. Now, we define
the mapping ownerOfID : ID → B, i 7→ ownerOfSecret(secretOfID(i)), which
assigns to each identity the browser that owns this identity (we say that the
identity belongs to the browser).

F.5 Corruption

RPs and IdPs can become corrupted: If they receive the message CORRUPT, they
start collecting all incoming messages in their state and (upon triggering) send
out all messages that are derivable from their state and collected input messages.
We say that an RP or IdP is honest if the according part of their state (s.corrupt)
is ⊥, and that they are corrupted otherwise.

We are now ready to define the processes in W as well as the scripts in S in
more detail.

F.6 Processes in W (Overview)

We first provide an overview of the processes in W . All processes in W contain in
their initial states all public keys and the private keys of their respective domains
(if any). We define Ip = {addr(p)} for all p ∈ Hon.

Attacker. The attacker process is a network attacker (see Section 2.3), who
uses all addresses for sending and listening. All parties use the attacker as a
DNS server. See Appendix F.7 for details.

Browsers. Each b ∈ B is a web browser as defined in Section 2.5. The initial
state contains all secrets owned by b, stored under the origin of the respective
IdP. See Appendix F.8 for details.

LPO. LPO is a web server that serves important scripts (script_lpo_cif and
script_lpo_ld) and manages user sessions. See Appendix F.9 for details.

IdPs. Each IdP is a web server. IdPs are modeled following the example imple-
mentation provided by Mozilla. As outlined in Section 4, users can authenticate
to the IdP with their credentials. IdP tracks the state of the users with sessions.
Authenticated users can receive signed UCs from the IdP. When receiving a spe-
cial message (CORRUPT) IdPs can become corrupted. Similar to the definition of
corruption for the browser, IdPs then start sending out all messages that are
derivable from their state.

Relying Parties. A relying party r ∈ RP is a web server. The definition of
Rr follows the description in Section 4 and the security considerations in [18]



(Cross-site Request Forgery protection, e.g., by checking origin headers, and
HTTPS only with STS enabled). RP answers any GET request with the script
script_rp_index (see below). When receiving an HTTPS POST message, RP
checks (among others) if the message contains a valid CAP. For this purpose,
all signing keys of the identity providers (see below) are contained in the initial
state of all RPs. If successful, RP responds with an RP service token for ID i of
the form 〈n, i〉, where i ∈ ID is the ID for which the CAP was issued and n is a
freshly chosen nonce. The RP r keeps a list of such tokens in its state. Intuitively,
a client having such a token can use the service of r for ID i. See Appendix F.10
for details. Just like IdPs, RPs can become corrupted.

F.7 Attacker

As mentioned, the attacker attacker is modeled to be a network attacker
as specified in Section 2.3. We allow it to listen to/spoof all available IP
addresses, and hence, define Iattacker = IPs. His initial state is sattacker0 =
〈attdoms , sslkeys , signkeys〉, where attdoms is a sequence of all domains along
with the corresponding private keys owned by the attacker, sslkeys is a sequence
of all domains and the corresponding public keys, and signkeys is a sequence
containing all public signing keys for all IdPs. All other parties use the attacker
as a DNS server.

F.8 Browsers

Each b ∈ B is a web browser as defined in Section 2.5, with Ib := {addr(b)} being
its address.

To define the inital state, first let IDb := ownerOfID−1(b) be the set of all IDs
of b, IDb,d := {i | ∃x : i = 〈x, d〉 ∈ IDb} be the set of IDs of b for a domain
d, and SecretDomainsb := {d | IDb,d 6= ∅} be the set of all domains that b owns
identities for.

Then, the initial state sb0 is defined as follows: the key mapping maps every
domain to its public (ssl) key, according to the mapping sslkey; the DNS address
is addr(attacker); the list of secrets contains an entry 〈〈d, S〉, s〉 for each d ∈
SecretDomainsb and s = secretOfID(i) for some i ∈ IDb,d (s is the same for all
i); ids is 〈IDb〉; sts is empty.

F.9 LPO

LPO is a an atomic DY process (ILPO, ZLPO, RLPO, sLPO0 , NLPO) with the IP ad-
dress ILPO = {addr(LPO)}. The initial state sLPO0 of LPO contains the private
key of its domain, and the signing keys of all IdPs (LPO does not need the public
ssl keys of other parties, which is why we omit them from LPO’s initial state.).
The definition of RLPO follows the description of LPO in Section E.

HTTP responses by LPO can contain strings representing scripts, namely the
script script_lpo_cif run in the CIF and the script script_lpo_ld run in
the LD. These scripts are defined in Appendices 12 and 13, respectively.



Client sessions at LPO. Any party can establish a session at LPO. Such a
session can either be authenticated or unauthenticated. Roughly speaking, a
session becomes authenticated if a client has provided a valid CAP (for the
origin of LPO) to LPO during the session. LPO manages groups of IDs, i.e., lists
of email addresses. If a user authenticates a session using any ID in the group,
she is authenticated for all IDs in the group. An authenticated session can (non-
deterministically) expire, i.e. the authenticated session can get unauthenticated
or it is removed completely. Such an expiration is used to model a user logout
or a session expiration caused by a timeout.

More specifically, a session is identified by a nonce, which is issued by LPO.
Each session is associated with some xsrfToken, which is also a nonce issued
by LPO. LPO stores all information about established sessions in its state as a
dictionary indexed by the session identifier. In this dictionary, for every session
LPO stores a pair containing the xsrfToken and, in authenticated sessions, the
sequence of all IDs associated with the secret provided in the session, or, in
unauthenticated sessions, the empty sequence 〈〉 of IDs. On the receiver side
(typically a browser) LPO places, by appropriate headers in its HTTPS responses,
a cookie named browserid_state whose value is the session identifier (a nonce).
This cookie is flagged to be a session, httpOnly, and secure cookie.

Before we provide a detailed formal specification of LPO, we first provide an
informal description.

HTTPSRequests to LPO. LPO answers only to certain requests (listed below).
In reality, all such requests have to be over HTTPS, and all responses send
by LPO contain the Strict-Transport-Security header. We overapproximate
safely here in omitting these two requirements from the model.

GET /cif. LPO replies to this request by providing the script script_lpo_cif.
GET /ld. LPO replies to this request by providing the script script_lpo_ld.
GET /ctx. This requests the session context information from LPO. The re-

sponse body is of the form 〈loggedIn , xsrfToken〉, where loggedIn is ⊤ or
⊥, depending on whether the user is logged in at LPO or not, and xsrfToken

is the token that the client is supposed to include into the auth request (see
below).

POST /auth. With this request, a client can log into LPO. The client has to
provide a sequence of a CAP and an XSRF token. The CAP must be valid
and issued for the origin of LPO.

We now define LPO formally as an atomic DY process
(ILPO, ZLPO, RLPO, sLPO0 , NLPO). As already mentioned, we define ILPO =
{addr(LPO)}.

In order to define the set ZLPO of states of LPO, we first define the terms
describing the session context of a session.

Definition 39. A term of the form 〈ids , xsrfToken〉 with ids ⊂〈〉 ID and
xsrfToken ∈ N is called an LPO session context. We denote the set of all LPO
session contexts by LPOSessionCTXs.



Now, we define the set ZLPO of states of LPO as well as the initial state sLPO0

of LPO.

Definition 40. A state s ∈ ZLPO of LPO is a term of the form 〈nonces,
sslkey , signkeys , sessions〉 where nonces ⊂〈〉 N (used nonces), sslkey =
sslkey(dom(LPO)), signkeys is a mapping of domain names to public signing
keys of the form signkeys = 〈{〈d, pub(signkey(y))〉 | y ∈ IdPs, d ∈ dom(y)}〉, and
sessions ∈ [N × LPOSessionCTXs].9

The initial state sLPO0 of LPO is a state of LPO with sLPO0 .nonces = 〈〉 and
sLPO0 .sessions = 〈〉.

Example 7. Let k be a private signing key for some identity provider which owns
the domain example.com. A possible state s of LPO may look like this:

s = 〈〈n1, . . . , nm〉, sslkey(dom(LPO)), [example.com : pub(k)], sessions〉

with

sessions = 〈〈sessionid1, 〈〈id
′
1, . . . , id

′
l〉, xsrfToken〉〉, . . .〉

We now specify the relation RLPO ⊆ (E × ZLPO)× (2E × ZLPO) of LPO. Just
like in Appendix C.2, we describe this relation by a non-deterministic algorithm.

Algorithm 9 Relation of LPO RLPO

Input: (a:f :m), s
1: let s′ := s
2: let sts := 〈Strict-Transport-Security,⊤〉
3: if m ≡ TRIGGER then
4: if s′.sessions ≡ 〈〉 then
5: stop {}, s
6: end if
7: let sessionid ← {id | id ∈〈〉 s′.sessions}
8: let choice ← {logout, expire}
9: if choice ≡ logout then

10: let s′.sessions[sessionid ].ids := 〈〉
11: else
12: let s′.sessions := s′.sessions − sessionid

13: end if
14: stop {}, s
15: end if
16: let mdec, k such that 〈mdec, k〉 ≡ deca(m,s.sslkey)

→֒ if possible; otherwise stop {}, s
17: let n, method , path , params , headers , body such that

→֒ 〈HTTPReq, n,method , dom(LPO), path , params , headers , body〉 ≡ mdec

→֒ if possible; otherwise stop {}, s
18: if method ≡ GET ∧ path ≡ /cif then ⊲ Deliver CIF script
19: let scriptinit := 〈init,⊥,⊥,⊥,⊥,⊥,⊥, 〈〉,⊥,⊥〉

9As mentioned before, the state of LPO does not need to contain public keys.



20: let m′ := encs(〈HTTPResp, n, 200, 〈sts〉, 〈script_lpo_cif, scriptinit〉〉, k,)
21: stop {(f :a:m′)}, s′

22: else if method ≡ GET ∧ path ≡ /ld then ⊲ Deliver LD script
23: let scriptinit := 〈init,⊥,⊥,⊥,⊥,⊥, 〈〉,⊥,⊥,⊥〉
24: let m′ := encs(〈HTTPResp, n, 200, 〈sts〉, 〈script_lpo_ld, scriptinit〉〉, k,)
25: stop {(f :a:m′)}, s′

26: else if method ≡ GET ∧ path ≡ /ctx then ⊲ Deliver context info.
27: let sessionid := headers [Cookie][browserid_state]
28: if sessionid 6∈〈〉 s.sessions then
29: let sessionid , s′ := TAKENONCE(s′)
30: let xsrfToken , s′ := TAKENONCE(s′)
31: let s′.sessions := s′.sessions +〈〉 〈sessionid , 〈〈〉, xsrfToken〉〉
32: end if
33: let context := 〈⊥, s′.sessions[sessionid ].xsrfToken〉
34: if s′.session[sessionid ].ids 6≡ 〈〉 then
35: let context .1 := ⊤
36: end if
37: let setCookie := 〈Set-Cookie, 〈〈browserid_state, sessionid ,⊤,⊤,⊤〉〉〉
38: let headers := 〈sts , setCookie〉
39: let m′ := encs(〈HTTPResp, n, 200, headers , context〉, k)
40: stop {(f :a:m′)}, s′

41: else if method ≡ POST ∧ path ≡ /auth then
42: let uc, ia, xsrfToken such that 〈〈uc, ia〉, xsrfToken〉 ≡ body

→֒ if possible; otherwise stop {}, s
43: let sessionid := headers [Cookie][browserid_state]
44: if s′.sessions[sessionid ].xsrfToken 6≡ xsrfToken then
45: stop {}, s
46: end if
47: let name, domain, userpubkey such that

→֒ 〈〈name, domain〉, userpubkey〉 ≡ extractmsg(uc)
→֒ if possible; otherwise stop {}, s

48: let id := 〈name, domain〉
49: let origin := extractmsg(ia)
50: if checksig(uc, s.signkeys[domain]) 6≡ ⊤ ∨ checksig(ia, userpubkey) 6≡ ⊤

→֒ ∨ origin 6≡ 〈s.domain, S〉 then
51: stop {}, s
52: end if
53: if s′.sessions[sessionid ].ids ≡ 〈〉 then
54: if 6 ∃n ∈ N such that id ∈〈〉 s′.idgroups.n then
55: let s′.idgroups := s′.idgroups +〈〉 〈id〉
56: end if
57: let n ← N such that id ∈〈〉 s′.idgroups.n
58: else
59: let n← N such that s′.idgroups.n ≡ s′.sessions[sessionid ].ids

→֒ if possible; otherwise stop {}, s
60: if id 6∈〈〉 s′.idgroups.n then
61: let s′.idgroups.n := s′.idgroups.n +〈〉 〈name, domain〉
62: end if
63: end if
64: let s′.sessions[sessionid ].ids := s′.idgroups.n



65: let m′ := encs(〈HTTPResp, n, 200, 〈sts〉,⊤〉, k)
66: stop {(f :a:m′)}, s′

67: end if
68: stop {}, s

F.10 Relying Parties

A relying party r ∈ RP is a web server modeled as an atomic DY process
(Ir, Zr, Rr, sr0, N

r) with the address Ir := {addr(r)}. Its initial state sr0 con-
tains its domain, the private key associated with its domain, the DNS server
address, and the signing keys of all IdPs.10 The full state additionally contains
the set of service tokens the RP has issued. The definition of Rr again follows
the description in Appendix E. RP accepts only HTTPS requests.

In a typical flow with one client, r will first receive an HTTP GET request.
In this case, it returns the script script_rp_index (see below) and sets the
Strict-Transport-Security header.

Afterwards, it will receive an HTTPS POST request. Provided that the mes-
sage contains a CAP, r checks that the UC and IA are valid and matching, and
that the IA contains the Origin of r (with HTTPS). If the check is successful,
r creates a new RP service token for the identity i, 〈n, i〉, and sends it to the
browser. The RP keeps a list of such tokens in its state. Intuitively, a client in
possession of such a token can use the service of r for ID i (e.g., access data of
i at r).

We now provide the formal definition of r as an atomic DY process
(Ir, Zr, Rr, sr0, N

r). As mentioned, we define Ir = {addr(r)}. Next, we define
the set Zr of states of r and the initial state sr0 of r.

Definition 41. A state s ∈ Zr of an RP r is a term of the
form 〈nonces, domain , sslkey , signkeys , serviceTokens , corrupt〉 where
nonces ⊂〈〉 N (used nonces), domain = dom(r), sslkey = sslkey(dom(r)),
signkeys = 〈{〈d, pub(signkey(y))〉 | y ∈ IdPs, d ∈ dom(y)}〉 (same as for LPO),
serviceTokens ∈ [N × S], corrupt ∈ TN .

The initial state sr0 of r is a state of r with sr0.nonces = sr0.serviceTokens=
〈〉 and sr0.corrupt = ⊥.

We now specify the relation Rr ⊆ (E × Zr) × (2E × Zr) of r. Just like in
Appendix C.2, we describe this relation by a non-deterministic algorithm. We
note that we use the function TAKENONCE introduced in Section C.2 for this
purpose.

Algorithm 10 Relation of a Relying Party Rr

Input: (a:f :m), s
1: let s′ := s
2: if s′.corrupt 6≡ ⊥ ∨m ≡ CORRUPT then

10We add the IdP signing keys to the initial status (instead of having RPs retrieve
them dynamically) in order to reduce the overall complexity.



3: let s′.corrupt := 〈〈a, f,m〉, s′.corrupt〉
4: let m′ ← dNp(s′)
5: let a′ ← IPs

6: stop {(a′:a:m′)}, s′

7: end if
8: let sts := 〈Strict-Transport-Security,⊤〉
9: let mdec, k such that 〈mdec, k〉 ≡ deca(m,s.sslkey)
→֒ if possible; otherwise stop {}, s

10: let n, method , path , params , headers , body such that
→֒ 〈HTTPReq, n,method , s.domain, path , params , headers , body〉 ≡ mdec

→֒ if possible; otherwise stop {}, s
11: if method ≡ GET then ⊲ Deliver CIF script
12: let scriptinit := 〈init,⊥,⊥,⊥, 〈〉, 〈〉,⊥〉
13: let m′ := encs(〈HTTPResp, n, 200, 〈sts〉, 〈script_rp_index, scriptinit〉〉, k)
14: stop {(f :a:m′)}, s′

15: else if method ≡ POST ∧ headers ≡ 〈Origin, 〈s.domain, S〉〉 then
16: let uc, ia such that 〈uc, ia〉 ≡ body if possible; otherwise stop {}, s
17: let name, domain, userpubkey such that

→֒ 〈〈name, domain〉, userpubkey〉 ≡ extractmsg(uc)
→֒ if possible; otherwise stop {}, s

18: let id := 〈name, domain〉
19: let origin := extractmsg(ia)
20: if checksig(uc, s.signkeys[domain]) 6≡ ⊤ ∨ checksig(ia, userpubkey) 6≡ ⊤∨

→֒ origin 6≡ 〈s.domain, S〉 then
21: stop {}, s
22: end if
23: let ntoken, s′ := TAKENONCE(s′)
24: let s′.serviceTokens := s′.serviceTokens +〈〉 〈ntoken, id〉
25: let m′ := encs(〈HTTPResp, n, 200, 〈sts〉, 〈ntoken, id〉〉, k)
26: stop {(f :a:m′)}, s′

27: end if

F.11 Identity Providers

An identity provider i ∈ IdPs is a web server modeled as an atomic process
(Ii, Zi, Ri, si0, N

i) with the address Ii := {addr(i)}. Its initial state si0 contains
a list of domains and (private) SSL keys (see below), a list of users and identites
(see below), and a private key for signing UCs. Besides this, the full state of i
further contains a list of used nonces, and information about active sessions.

Sessions are structured as a dictionary: For each session identifier (session ID)
the dictionary contains the list of identities for which the session is authenticated.

IdPs, in our model, only accept SSL connections. Thus, after receiving a re-
quest, an IdP first decodes the message. It then checks whether a valid session
ID is contained in the cookie that was sent with the request. If there is no such
ID, a new session with a freshly chosen session ID is created. IdP saves this ID
into its list of active sessions, along with the initial session data (an empty list
of authenticated identities). A Set-Cookie header is added to IdPs response to
the browser in order to add the session cookie to the client’s cookie store.



The IdP then checks the method and the path of the request and acts as
follows:

If the method is GET, IdP serves, depending on the path, the provisioning
iframe (script_idp_pif) or the authentication dialog (script_idp_ad).

If the method is POST, the IdP can either authenticate the user or sign a
UC. In the first case, IdP extracts the identity of the user (an email address)
and the user’s secret from the request. If the secret and the identity are found
in the user database, the session is considered to be logged in for all identities
associated with this secret. In the second case (signing UC), the IdP extracts
the user’s identity and the public key of the user from the request. If the session
is considered to be logged in for this identity, the IdP creates a UC and signs it
with its signing key before sending it to the user.

Formal description. In the following, we will first define the (initial) state of
i formally and afterwards present the definition of the relation Ri.

To define the initial state, we will need a term that represents the “user
database” of the IdP i. We will call this term userset i. This database defines,
which secret is valid for which set of identities. It is encoded as a mapping of
secrets to lists of identities for which these secrets are valid. For example, if the
secret secret1 is valid for the identites id1 and id2 and the secret secret2 is valid
for the identities id3 and id4, the userset i looks as follows:

userset i = [secret1:〈id1, id2〉, secret2:〈id3, id4〉]

To define userset i (for the identity provider i), we first define the set
Secretsp =

⋃

j∈IDp secretOfID(j), the function IDsofSecret : Secrets → ID, s 7→

{j | j ∈ ID, secretOfID(j) = s}, and finally userset i = 〈{〈s, 〈IDsofSecret(s)〉〉 | s ∈
Secretsi}〉.

We also need a term that represents a dictionary that maps domains to (pri-
vate) SSL keys of the IdP i. We define sslkeys i = 〈{〈d, sslkey(d)〉 | d ∈ dom(i)}〉.

Definition 42. A state s ∈ Zi of an IdP i is a term of the form 〈nonces,
sslkeys , users, signkey , sessions , corrupt〉 where nonces ⊂〈〉 N (used nonces),
sslkeys = sslkeys i, users = userset i, signkey ∈ N (the key used by the IdP i to
sign UCs), sessions ∈

[
N × TN

]
, corrupt ∈ TN .

The initial state si0 of i is the state 〈〈〉, sslkeys i, userset i, signkey(i), 〈〉,⊥〉.

The relation Ri that defines the behavior of the IdP i is defined as follows:

Algorithm 11 Relation of IdP Ri

Input: (a:f :m), s
1: let s′ := s
2: if s′.corrupt 6≡ ⊥ ∨m ≡ CORRUPT then
3: let s′.corrupt := 〈〈a, f,m〉, s′.corrupt〉
4: let m′ ← dNp(s′)
5: let a′ ← IPs

6: stop {(a′:a:m′)}, s′

7: end if



8: let sts := 〈Strict-Transport-Security,⊤〉
9: let mdec, k, k′, inDomain such that
→֒ 〈mdec, k〉 ≡ deca(m,k′) ∧ 〈inDomain, k′〉 ∈ s.sslkeys
→֒ if possible; otherwise stop {}, s

10: let n, method , path , params , headers , body such that
→֒ 〈HTTPReq, n,method , inDomain, path , params , headers , body〉 ≡ mdec

→֒ if possible; otherwise stop {}, s
11: if method ≡ POST then
12: if path 6≡ /certreq then ⊲ User logs in.
13: let id , secret such that 〈id , secret 〉 ≡ body

→֒ if possible; otherwise stop {}, s
14: if headers 6≡ 〈Origin, 〈inDomain, S〉〉 then
15: stop {}, s
16: end if
17: let ids := s.users[secret ]
18: if ids ≡ 〈〉 ∨ id ≡ 〈〉 ∨ id 6∈〈〉 ids then ⊲ Check id/secret pair.
19: stop {}, s
20: end if
21: let sessionid , s′ := TAKENONCE(s′)
22: let s′.sessions[sessionid ] := ids

23: let setCookie := 〈Set-Cookie, 〈〈sessionid, sessionid ,⊤,⊤,⊤〉〉〉
24: let m′ := encs(〈HTTPResp, n, 200, 〈sts, setCookie〉,⊤〉, k)
25: stop {(f :a:m′)}, s′

26: else ⊲ User wants a certificate.
27: let id , pubkey such that 〈id , pubkey〉 ≡ body

→֒ if possible; otherwise stop {}, s
28: let sessionid := headers [Cookie][sessionid]
29: if id 6∈〈〉 s′.sessions[sessionid ] then ⊲ Check if user is logged in.
30: stop {}, s
31: end if
32: let uc := sig(〈id , pubkey〉, s.signkey)
33: let m′ := encs(〈HTTPResp, n, 200, 〈sts〉, uc〉, k)
34: stop {(f :a:m′)}, s′

35: end if
36: else
37: if path ≡ /pif then
38: let m′ := encs(〈HTTPResp, n, 200, 〈sts〉, 〈script_idp_pif,

→֒ 〈init, 〈〉, 〈〉, 〈〉,⊥,⊥,⊥〉〉〉, k)
39: else
40: let m′ := encs(〈HTTPResp, n, 200, 〈sts〉, 〈script_idp_ad, 〈〉〉〉, k)
41: end if
42: stop {(f :a:m′)}, s′

43: end if
44: stop {}, s

F.12 BrowserID Scripts

As already mentioned in Section F.1, the set S of the web system
BIDprimary = (W , S , script, E0) consists of the scripts Ratt, script_rp_index ,



script_lpo_cif , script_lpo_ld , script_idp_pif , and script_idp_ad

with their string representations being att_script, script_rp_index,
script_lpo_cif, script_lpo_ld, script_idp_pif, and script_idp_ad

(defined by script).
The script Ratt is the attacker script (see Section 2.3). The formal model of the

other scripts follows the description in Appendix E. The script script_rp_index

defines the script of the RP index page. In reality, this page has its own script(s)
and includes a script from LPO. In our model, we combine both scripts into
script_rp_index . In particular, this script is responsible for creating the CIF
and the LD iframes/subwindows, whose contents are loaded from LPO.

In what follows, the scripts script_rp_index , script_lpo_cif , and
script_lpo_ld are defined formally. First, we introduce some notation and helper
functions.

Notations and Helper Functions. In the formal description of the scripts we
use an abbreviation for URLs at LPO. We write URLLPOpath to describe the following
URL term: 〈URL, S, dom(LPO), path, 〈〉〉. Also, we call originLPO the origin of LPO
which describes the following origin term: 〈dom(LPO), S〉.

In order to simplify the description of the scripts, several helper functions are
used.

CHOOSEINPUT. As explained in Section 2.5, the state of a document con-
tains a term, say, scriptinputs , which records the input this document has ob-
tained so far (via XHRs and postMessages). If the script of the document is
activated, it will typically need to pick one input message from scriptinputs

and record which input it has already processed. For this purpose, the function
CHOOSEINPUT(s′, scriptinputs) is used, where s′ denotes the scripts current
state. It saves the indexes of already handled messages in the scriptstate s′ and
chooses a yet unhandled input message from scriptinputs . The index of this
message is then saved in the scriptstate (which is returned to the script).

Algorithm 12 Choose an unhandled input message for a script

1: function CHOOSEINPUT(s′, scriptinputs)
2: let iid such that iid ∈ {1, · · · , |scriptinputs |} ∧ iid 6∈〈〉 s′.handledInputs

→֒ if possible; otherwise return (⊥, s′)
3: let input := πiid (scriptinputs)
4: let s′.handledInputs := s′.handledInputs +〈〉 iid

5: return (input , s′)
6: end function

PARENTWINDOW. To determine the nonce referencing the parent window in
the browser, the function PARENTWINDOW(tree, docnonce) is used. It takes
the term tree, which is the (partly cleaned) tree of browser windows the script
is able to see and the document nonce docnonce, which is the nonce referencing
the current document the script is running in, as input. It outputs the nonce
referencing the window which directly contains in its subwindows the window of
the document referenced by docnonce. If there is no such window (which is the



case if the script runs in a document of a top-level window), PARENTWINDOW

returns ⊥.

SUBWINDOWS. This function takes a term tree and a document nonce
docnonce as input just as the function above. If docnonce is not a reference
to a document contained in tree, then SUBWINDOWS(tree, docnonce) returns
〈〉. Otherwise, let 〈docnonce, origin , script , scriptstate, scriptinput , subwindows ,
active〉 denote the subterm of tree corresponding to the document referred to by
docnonce. Then, SUBWINDOWS(tree, docnonce) returns subwindows .

AUXWINDOW. This function takes a term tree and a document nonce docnonce
as input as above. From all window terms in tree that have the window contain-
ing the document identified by docnonce as their opener, it selects one non-
deterministically and returns its nonce. If there is no such window, it returns
the nonce of the window containing docnonce.

OPENERWINDOW. This function takes a term tree and a document nonce
docnonce as input as above. It returns the window nonce of the opener window
of the window that contains the document identified by docnonce. Recall that
the nonce identifying the opener of each window is stored inside the window term.
If no document with nonce docnonce is found in the tree tree, ♦ is returned.

GETWINDOW. This function takes a term tree and a document nonce docnonce
as input as above. It returns the nonce of the window containing docnonce.

GETORIGIN. To extract the origin of a document, the function
GETORIGIN(tree, docnonce) is used. This function searches for the docu-
ment with the identifier docnonce in the (cleaned) tree tree of the browser’s
windows and documents. It returns the origin o of the document. If no document
with nonce docnonce is found in the tree tree, ♦ is returned.

Web storage under LPO’s origin. The web storage under the origin of LPO
used by the scripts script_lpo_cif and script_lpo_ld (see below) is organized
as follows:

The localStorage is a dictionary. There are two types of entries in this dictio-
nary: Under the key siteInfo, a dictionary is stored which has origins as keys
and IDs as values. An entry in this dictionary indicates that the user is logged in
at the referenced origin with a certain ID. The second type of entry has a nonce
as a key. The value is an email address (ID). This models the email address a
user entered in the LD before being navigated away to the AD. The nonce is
also stored in the sessionStorage (see below).

Example 8.
〈〈siteInfo, 〈〈〈domainRP1, S〉, id1 〉,

〈〈domainRP2, S〉, id1 〉,
〈〈domainRP3, S〉, id2 〉〉〉,

〈n1, id1〉,
〈n2, id3〉〉

This example shows a localStorage under the origin of LPO, indicating that
the user is logged in at domainRP1 and domainRP2 with id1 and at domainRP3 with



id2 (using HTTPS). Further, the nonces n1 and n2 each refer to an email address
which the user entered in the LD.

The sessionStorage is also a dictionary. It may only contain one key, idpnonce.
Its value is a nonce (like n1 or n2 in the example above) which references the
latest email address entry in the localStorage (see above).

login.persona.org Communication Iframe Script (script_lpo_cif). As
defined in Section 2.3, a script is a relation that takes as input a term and a set
of nonces it may use. It outputs a new term. As specified in Section 2.5 (Trig-
gering the Script of a Document (m = TRIGGER, action = 1)) and formally
specified in Algorithm 6, the input term is provided by the browser. It contains
the current internal state of the script (which we call scriptstate in what follows)
and additional information containing all browser state information the script
has access to, such as the input the script has obtained so far via XHRs and
postMessages, information about windows, etc. The browser expects the output
term to have a specific form, as also specified in Section 2.5 and Algorithm 6. The
output term contains, among other information, the new internal scriptstate.

As for script_lpo_cif , this script models the script run in the CIF, as sketched
in Appendix E.

We first describe the structure of the internal scriptstate of the script
script_lpo_cif .

Definition 43. A scriptstate s of script_lpo_cif is a term of the form 〈q,
requestOrigin, loggedInUser , pause, context, key , uc, handledInputs , refXHRctx ,
PIFindex 〉 where q ∈ S, requestOrigin ∈ Origins ∪ {⊥}, loggedInUser ∈
ID ∪ {〈〉,⊥}, pause ∈ {⊤,⊥}, context ∈ TN , key ∈ N ∪ {⊥}, uc ∈

TN , handledInputs ⊂〈〉 N, refXHRctx ∈ N ∪ {⊥}, PIFindex ∈ N ∪
{⊥}. The initial scriptstate initStatecif of script_lpo_cif is the state
〈init,⊥,⊥,⊥,⊥,⊥,⊥, 〈〉,⊥,⊥〉.

Before we provide the formal specification of the relation that defines the
behavior of script_lpo_cif , we present an informal description. The behavior
mainly depends on the state q the script is in.

q = init This is the initial state. Its only transition handles no input and
outputs a postMessage cifready to its parent window and transitions to
default.

q = default This is the state to which script_lpo_cif always returns to.
This state handles all postMessages the CIF expects to receive from its parent
window. If the postMessage received was sent from the parent window of the
CIF, it behaves as follows, depending on the first element of the received
postMessage:

postMessage loaded The script records the sender’s origin of the received
postMessage as the remote origin in the scriptstate if the scriptstate did
not contain any information about the remote origin yet. Also, an ID,
which represents the assumption of the sender on who it believes to be



logged in, is saved in the scriptstate. If the pause flag in the scriptstate
is ⊤ it transitions to the state default. Otherwise, it is checked, if the
current context in the scriptstate is ⊥. If the check is true, the script
transitions to the state fetchContext, or to the state checkAndEmit

otherwise.
postMessage dlgRun The script sets the pause flag in the scriptstate to ⊤

and transitions to default.
postMessage dlgCmplt The script sets the pause flag in the scriptstate to
⊥. It then transitions to the state fetchContext.

postMessage loggedInUser This message has to contain an ID. This ID
is saved in the scriptstate and then the script transitions to default.

postMessage logout The script removes the entry for the RP (recorded in
the scriptstate) from the localStorage and then transitions to the state
sendLogout. If no remote origin is set in the script’s state, it is now set
to the sender’s origin of the received postMessage.

q = fetchContext In this state, the script sends an XHR to LPO with a GET

request to the path /ctx and then transitions to the state receiveContext.
q = receiveContext In this state, the script expects an XHR response as input

containing the session context. This context is saved as the current context
in the scriptstate. The script transitions to checkAndEmit.

q = checkAndEmit This state lets the script create the provisioning iframe and
transition to startPIF iff (1) some email address is marked as logged in at
RP in the localStorage, (2) if an email address is recorded in the current
scriptstate, this email address differs from the one recorded in the localStor-
age, and (3) the user is marked as logged in in the current context. Otherwise,
if the email address recorded in the current scriptstate is 〈〉, the script tran-
sitions to default, else it transitions to sendLogout.

q = startPIF In this state, the script waits for a postMessage from the PIF
containing a ping message. If such a message is received and the sender’s
window and origin match the PIF, the script sends a pong message back to
the PIF and transitions to the state runPIF.

q = runPIF This is the state in which script_lpo_cif interacts with the PIF.
This state handles all postMessages the CIF expects to receive from the
latest PIF (as recorded in PIFindex in its state). If the postMessage received
was sent from the PIF’s window and the PIF’s origin, it behaves as follows,
depending on the first element of the postMessage:

postMessage beginProvisioning The script responds with a postMes-
sage to the PIF containing the email address of the identity which is
to authenticate to the relying party (as recorded in the CIF’s state).

postMessage genKeyPair The script creates a fresh key pair (i.e. the CIF
chooses a fresh nonce) and sends the public key contained in a postMes-
sage to the PIF.

postMessage registerCertificate The script stores the UC received
in this postMessage in the CIF’s state and transitions to the state
createCAPforRP.



postMessage raiseProvisioningFailure This message indicates that no
one is logged in. This is recorded in the CIF’s state accordingly. The
script transitions to the state sendLogout in which the CIF’s parent
window will be notified that no one is logged in.

q = createCAPforRP In this state, the script creates an IA for the request origin
(as recorded in the script’s state), combines the IA with the UC to a CAP,
and sends the CAP in a postMessage to its parent restricting the receiver to
the request origin.

q = sendLogout In this state, the script sends a logout postMessage to the
parent document and then transitions to the default state.

We now specify the relation script_lpo_cif ⊆ (TN × 2N ) × TN of the CIF’s
scripting process formally. Just like in Appendix C.2, we describe this relation
by a non-deterministic algorithm.

Just like all scripts, as explained in Section 2.5 (see also Algorithm 6 for
the formal specification), the input term this script obtains from the browser
contains the cleaned tree of the browser’s windows and documents tree, the nonce
of the current document docnonce, its own scriptstate scriptstate (as defined
in Definition 43), a sequence of all inputs scriptinput (also containing already
handled inputs), a dictionary cookies of all accessible cookies of the document’s
domain, the localStorage localStorage belonging to the document’s origin, the
secrets secret of the document’s origin, and a set nonces of fresh nonces as input.
The script returns a new scriptstate s′, a new set of cookies cookies ′, a new
localStorage localStorage ′, and a term command denoting a command to the
browser.

Algorithm 13 Relation of script_lpo_cif

Input: 〈tree , docnonce , scriptstate , scriptinputs , cookies , localStorage , sessionStorage ,
→֒ ids, secret〉, nonces
1: let s′ := scriptstate

2: let cookies ′ := cookies

3: let localStorage ′ := localStorage

4: let sessionStorage ′ := sessionStorage

5: switch s′.q do
6: case init

7: let command := 〈POSTMESSAGE, PARENTWINDOW(tree , docnonce),
→֒ 〈cifready, 〈〉〉, ⊥〉

8: let s′.q := default

9: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉

10: case default

11: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
12: if π1(input) ≡ POSTMESSAGE then
13: let senderWindow := π2(input)
14: let senderOrigin := π3(input)
15: let m := π4(input)
16: if senderWindow ≡ PARENTWINDOW(tree , docnonce) then
17: switch m do



18: case 〈loaded, id〉
19: if s′.requestOrigin ≡ ⊥ then
20: let s′.requestOrigin := senderOrigin

21: end if
22: let s′.loggedInUser := id

23: if s′.pause ≡ ⊤ then
24: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, 〈〉〉
25: else if s′.context ≡ ⊥ then
26: let s′.q := fetchContext

27: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, 〈〉〉
28: else
29: let s′.q := checkAndEmit

30: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, 〈〉〉
31: end if
32: case 〈dlgRun, 〈〉〉
33: let s′.pause := ⊤
34: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, 〈〉〉

35: case 〈dlgCmplt, 〈〉〉
36: let s′.pause := ⊥
37: let s′.q := fetchContext

38: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, 〈〉〉

39: case 〈loggedInUser, id〉
40: let s′.loggedInUser := id

41: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, 〈〉〉

42: case 〈logout, 〈〉〉
43: if s′.requestOrigin ≡ ⊥ then
44: let s′.requestOrigin := senderOrigin

45: end if
46: let s′.loggedInUser := ⊥
47: remove the element with key s′.requestOrigin

→֒ from the dictionary localStorage ′[siteInfo]
48: let s′.q := sendLogout

49: end if
50: end if
51: case fetchContext

52: let s′.refXHRctx ← nonces

53: let command := 〈XMLHTTPREQUEST,URL
LPO

/ctx, GET, 〈〉, s
′.refXHRctx〉

54: let s′.q := receiveContext

55: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉

56: case receiveContext

57: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
58: if (π1(input) ≡ XMLHTTPREQUEST) ∧ (π3(input) ≡ s′.refXHRctx) then
59: let s′.context := π2(input)
60: let s′.q := checkAndEmit

61: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, 〈〉〉
62: end if
63: case checkAndEmit

64: let s′.email := localStorage ′[siteInfo][s′.requestOrigin]



65: if (s′.email 6≡ 〈〉)
→֒ ∧(s′.loggedInUser /∈ {〈〉,⊥} ⇒ (s′.loggedInUser 6≡ s′.email))
→֒ ∧(π1(s

′.context) ≡ ⊤) then
66: let s′.q := startPIF

67: let url := 〈URL, S, π2(s
′.email), /pif〉

68: let s′.PIFindex := |subwindows |+ 1
⊲ Index of the next subwindow to be created.

69: let command := 〈IFRAME, url ,_SELF〉
70: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉
71: else if s′.loggedInUser ≡ 〈〉 then
72: let s′.q := default

73: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, 〈〉〉
74: else
75: let s′.q := sendLogout

76: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, 〈〉〉
77: end if
78: case startPIF

79: let idpOrigin := 〈π2(s
′.email), S〉

80: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
81: let pifNonce := πs′.PIFindex(subwindows).nonce
82: if π1(input) ≡ POSTMESSAGE then
83: let senderWindow := π2(input)
84: let senderOrigin := π3(input)
85: let m := π4(input)
86: if m ≡ ping ∧ senderWindow ≡ pifNonce

→֒ ∧senderOrigin ≡ idpOrigin then
87: let command := 〈POSTMESSAGE, pifNonce, pong, idpOrigin〉
88: let s′.q := runPIF

89: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉
90: end if
91: end if
92: case runPIF

93: let idpOrigin := 〈π2(s
′.email), S〉

94: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
95: let pifNonce := πs′.PIFindex(subwindows).nonce
96: if π1(input) ≡ POSTMESSAGE then
97: let senderWindow := π2(input)
98: let senderOrigin := π3(input)
99: let m := π4(input)
100: if senderWindow ≡ pifNonce ∧ senderOrigin ≡ idpOrigin then
101: switch π1(m) do
102: case beginProvisioning

103: let jschannel_nonce := π2(m)
104: let command := 〈POSTMESSAGE, pifNonce,

→֒ 〈jschannel_nonce, s′.email〉, idpOrigin〉
105: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉

106: case genKeyPair

107: let jschannel_nonce := π2(m)
108: let s′.key ← nonces



109: let command := 〈POSTMESSAGE, pifNonce,
→֒ 〈jschannel_nonce, pub(s′.key)〉, idpOrigin〉

110: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉

111: case registerCertificate

112: if π1(extractmsg(π2(m))) ≡ s′.email ∧ s′.email 6≡ 〈〉 then
⊲ This check is our fix against identity injection.

113: let s′.uc := π2(m)
114: let s′.q := createCAPforRP

115: end if
116: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉

117: case raiseProvisioningFailure

118: let s′.loggedInUser := ⊥
119: let s′.q := sendLogout

120: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉

121: end if
122: end if
123: case createCAPforRP

124: let ia := sig(s′.requestOrigin, s′.key)
125: let cap := 〈s′.uc, ia〉
126: let command := 〈POSTMESSAGE, PARENTWINDOW(tree , docnonce),

→֒ 〈response, cap〉, s′.requestOrigin〉
127: let s′.q := null

128: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉

129: case sendLogout

130: let command := 〈POSTMESSAGE, PARENTWINDOW(tree , docnonce),
→֒ 〈logout, 〈〉〉, ⊥〉

131: let s′.q := default

132: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉

133: stop 〈scriptstate , cookies , localStorage , sessionStorage , 〈〉〉

login.persona.org Login Dialog Script (script_lpo_ld). This script mod-
els the LD contents. Its formal specification, presented next, follows the one
presented above for script_lpo_cif .

Definition 44. A scriptstate s of script_lpo_ld is a term of the form
〈q, requestOrigin, context, email , key , uc, handledInputs , refXHRctx ,
refXHRLPOauth, PIFindex 〉 with q ∈ S, requestOrigin ∈ Origins ∪ {⊥},
context ∈ TN , email ∈ ID∪{⊥}, key ∈ N ∪{⊥}, uc ∈ TN , handledInputs ⊂〈〉 N,
refXHRctx , refXHRLPOauth ∈ N ∪{⊥}, PIFindex ∈ N∪{⊥}. The initial script-
state initStateld is the state 〈init,⊥,⊥,⊥,⊥,⊥, 〈〉,⊥,⊥,⊥〉.

Before we provide the formal specification of the relation that defines the
behavior of script_lpo_ld , we present an informal description. The behavior
mainly depends on the state q the script is in.

q ≡ init This is the initial state. Its only transition takes no input and outputs
a postMessage ldready to its parent window and transitions to start.

q ≡ start In this state, the script expects a request postMessage. The sender’s
origin of this postMessage is recorded as the requesting origin in the script-



state. An XHR is sent to LPO with a GET request to the path /ctx and then
the script transitions to the state receiveContext.

q ≡ receiveContext In this state, the script expects an XHR response as input
containing the session context. This context is saved as the current con-
text in the scriptstate. The script checks if an idpNonce is recorded in
the sessionStorage. The presence of this nonce indicates that there was a
run of script_lpo_ld in the same window previously. Indexed by this
nonce, there can be an email address (identity) recorded in the localStorage
which is then copied to the script’s state. Otherwise an email address is non-
deterministically choosen (and copied to the script’s state) out of the email
addresses owned by the browser.

The script now always issues the command to create an iframe, the PIF.
The URL for the PIF is determined by the domain of the email address now
recorded in the state. The script then transitions to the state startPIF.

q = startPIF In this state, the script waits for a postMessage from the PIF
containing a ping message. If such a message is received and the sender’s
window and origin match the PIF, the script sends a pong message back to
the PIF and transitions to the state runPIF.

q = runPIF This is the state in which script_lpo_ld interacts with the PIF.
This state handles all postMessages the LD expects to receive from the latest
PIF (as recorded in PIFindex in its state). If the postMessage received was
sent from the PIF’s window and the PIF’s origin, it behaves as follows,
depending on the first element of the received postMessage:

postMessage beginProvisioning The script responds with a postMes-
sage to the PIF containing the email address of the identity which is
to authenticate to the relying party (as recorded in the LD’s state).

postMessage genKeyPair The script creates a fresh key pair (i.e. the LD
chooses a fresh nonce) and sends the public key contained in an postMes-
sage to the PIF.

postMessage registerCertificate The script stores the UC received in
this postMessage in the LD’s state. If the context contained in the script’s
state indicates that the browser is authenticated to LPO, the script tran-
sitions to the state createCAPforRP. Otherwise, the script transitions to
the state createCAPforLPO.

postMessage raiseProvisioningFailure This message indicates that no
one is logged in. The script now chooses a fresh nonce, the so-called
idpNonce, which is stored in the sessionStorage. In the localStorage, this
nonce is used as a key under which the email address is stored, the LD is
currently trying to get an UC for. The script navigates the window it is
running to the authentication path at the identity provider responsible
for the email address.

q = createCAPforLD In this state, the script creates an IA for LPO, combines
it with the UC (stored in the script’s state) to a CAP and sends the CAP to
LPO in an XHR. The nonce identifying the XHR is stored as refXHRLPOauth
in the script’s state.



q = receiveLPOauthresponse In this state, the script expects the response to
the XHR identified by the nonce refXHRLPOauth. If the response indicates a
successful authentication at LPO, the context recorded in the script’s state is
changed accordingly and the script transitions to the state createCAPforRP.

q = createCAPforRP In this state, the script creates an IA for the request origin
(as recorded in the script’s state), combines the IA with the UC to a CAP,
and sends the CAP in a postMessage to its parent restricting the receiver
to the request origin. The script records in the localStorage that the email
address it is currently using is logged in at the request origin. The script
then transitions to the state null.

q ≡ null In this state, the script does nothing.

We now formally specify the relation script_lpo_ld ⊆ (TN × 2N )× TN of the
LD’s scripting process. Just like in Appendix C.2, we describe this relation by a
non-deterministic algorithm. Like all scripts, the input term given to this script
is determined by the browser and the browser expects a term of a specific form
(see Algorithm 6)

Algorithm 14 Relation of script_lpo_ld

Input: 〈tree , docnonce , scriptstate , scriptinputs , cookies , localStorage , sessionStorage ,
→֒ ids, secret〉, nonces
1: let s′ := scriptstate

2: let cookies ′ := cookies

3: let localStorage ′ := localStorage

4: let sessionStorage ′ := sessionStorage

5: switch s′.q do
6: case init

7: let command := 〈POSTMESSAGE, OPENERWINDOW(tree , docnonce),
→֒ 〈ldready, 〈〉〉, ⊥〉

8: let s′.q := start

9: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉

10: case start

11: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
12: if π1(input) ≡ POSTMESSAGE then
13: let senderWindow := π2(input)
14: let senderOrigin := π3(input)
15: let m := π4(input)
16: if m ≡ 〈request, 〈〉〉 then
17: let s′.requestOrigin := senderOrigin

18: let s′.refXHRctx ← nonces

19: let command := 〈XMLHTTPREQUEST,URL
LPO

/ctx, GET, 〈〉, s
′.refXHRctx〉

20: let s′.q := receiveContext

21: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉
22: end if
23: end if
24: case receiveContext

25: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
26: if (π1(input) ≡ XMLHTTPREQUEST) ∧ (π3(input) ≡ s′.refXHRctx) then



27: let s′.context := π2(input)
28: let s′.q := startPIF

29: let idpnonce := sessionStorage [idpnonce]
30: if idpnonce ≡ 〈〉 ∨ localStorage [idpnonce ] ≡ 〈〉 then
31: let s′.email ← ids

32: else
33: let s′.email := localStorage [idpnonce ]
34: let sessionStorage [idpnonce] := 〈〉
35: end if
36: let url := 〈URL, S, π2(s

′.email), /pif〉
37: let s′.PIFindex := |subwindows |+ 1

⊲ Index of the next subwindow to be created.
38: let command := 〈IFRAME, url ,_SELF〉
39: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉
40: end if
41: case startPIF

42: let idpOrigin := 〈π2(s
′.email), S〉

43: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
44: let pifNonce := πs′.PIFindex(subwindows).nonce
45: if π1(input) ≡ POSTMESSAGE then
46: let senderWindow := π2(input)
47: let senderOrigin := π3(input)
48: let m := π4(input)
49: if m ≡ ping ∧ senderWindow ≡ pifNonce

→֒ ∧senderOrigin ≡ idpOrigin then
50: let command := 〈POSTMESSAGE, pifNonce, pong, idpOrigin〉
51: let s′.q := runPIF

52: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉
53: end if
54: end if
55: case runPIF

56: let idpOrigin := 〈π2(s
′.email), S〉

57: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
58: let pifNonce := πs′.PIFindex(subwindows).nonce
59: if π1(input) ≡ POSTMESSAGE then
60: let senderWindow := π2(input)
61: let senderOrigin := π3(input)
62: let m := π4(input)
63: if senderWindow ≡ pifNonce ∧ senderOrigin ≡ idpOrigin then
64: switch π1(m) do
65: case beginProvisioning

66: let jschannel_nonce := π2(m)
67: let command := 〈POSTMESSAGE, pifNonce,

→֒ 〈jschannel_nonce, s′.email〉, idpOrigin〉
68: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉

69: case genKeyPair

70: let jschannel_nonce := π2(m)
71: let s′.key ← nonces



72: let command := 〈POSTMESSAGE, pifNonce,
→֒ 〈jschannel_nonce, pub(s′.key)〉, idpOrigin〉

73: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉

74: case registerCertificate

75: if π1(extractmsg(π2(m))) ≡ s′.email ∧ s′.email 6≡ 〈〉 then
⊲ This check is our fix against identity injection.

76: let s′.uc := π2(m)
77: let loggedIn := π1(s

′.context)
78: if loggedIn ≡ ⊤ then
79: let s′.q := createCAPforRP

80: end if
81: let s′.q := createCAPforLPO

82: end if
83: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉

84: case raiseProvisioningFailure

85: let idpnonce ← nonces

86: let localStorage ′[idpnonoce ] := s′.email
87: let sessionStorage ′[idpnonce] := idpnonce

88: let command := 〈HREF, 〈URL, S, π2(s
′.email), 〈〉〉,_SELF〉

89: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉

90: end if
91: end if
92: case createCAPforLPO

93: let ia := sig(〈dom(LPO), S〉, s′.key)
94: let cap := 〈s′.uc, ia〉
95: let body := 〈cap, π2(s

′.context)〉
96: let s′.refXHRLPOauth ← nonces

97: let command := 〈XMLHTTPREQUEST,URL
LPO

/auth, POST, body , s
′.refXHRLPOauth〉

98: let s′.q := receiveLPOauthresponse

99: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉

100: case receiveLPOauthresponse

101: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
102: if (π1(input) ≡ XMLHTTPREQUEST) ∧ (π3(input) ≡ s′.refXHRLPOauth)

→֒ ∧π2(input) ≡ ⊤ then
103: let π1(s

′.context) := ⊤
104: let s′.q := createCAPforRP

105: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉
106: end if
107: case createCAPforRP

108: let ia := sig(s′.requestOrigin, s′.key)
109: let cap := 〈s′.uc, ia〉
110: let command := 〈POSTMESSAGE, OPENERWINDOW(tree , docnonce),

→֒ 〈response, cap〉, s′.requestOrigin〉
111: let s′.q := null

112: let localStorage ′[siteInfo][s′.requestOrigin] := s′.email
113: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉

114: stop 〈scriptstate , cookies , localStorage , sessionStorage , 〈〉〉



Relying Party Web Page Script (script_rp_index). This script models
the default web page at a RP. The user usually triggers the login process on this
page. Its formal specification, presented next, follows the one presented for the
other scripts above.

Definition 45. A scriptstate s of script_rp_index is a term of the form 〈q,
CIFindex , LDindex , dialogRunning , cap, handledInputs , refXHRcap〉 with q ∈ S,
CIFindex ∈ N ∪ {⊥}, dialogRunning ∈ {⊤,⊥}, cap ∈ TN , handledInputs ⊂〈〉 N,
refXHRcap ∈ N ∪ {⊥}. We call s the initial scriptstate of script_rp_index iff
s ≡ 〈init,⊥,⊥,⊥, 〈〉, 〈〉,⊥〉.

Before we provide the formal specification of the relation that defines the
behavior of script_rp_index , we present an informal description. The behavior
mainly depends on the state q the script is in.

q ≡ init This is the initial state. The script creates the CIF iframe and then
transitions to receiveCIFReady.

q ≡ receiveCIFReady In this state, the script expects a cifready postMessage
from the CIF iframe with the sender origin of LPO. The script chooses some
ID, 〈〉, or ⊥ and sends this in a loaded postMessage to the CIF iframe with
receiver’s origin set to the origin of LPO.11 It then transitions to the state
default.

q ≡ default In this state, the script chooses non-deterministically between (1)
opening the LD subwindow and then transitioning to the same state or (2)
handling one of the following postMessages (identified by their first element):

postMessage login This message has to be sent from the CIF with ori-
gin of LPO. Handling this postMessage stores the CAP (contained in
the postMessage) in the scriptstate and then transitions to the sendCAP

state.
postMessage logout This message has to be sent from the CIF with origin

of LPO. Handling this postMessage has no effect and results in the same
state.

postMessage ldready This message can only be handled after the LD has
been opened and before a response postMessage has been received. The
ldready postMessage has to be sent from the origin of LPO. The script
sends a request postMessage to the LD and stays in the default state.

postMessage response This message can only be handled after the LD
has been opened and before another response postMessage has been
received. The ldready postMessage has to be sent from the origin
of LPO. Handling this postMessage stores the CAP (contained in the
postMessage) in the scriptstate, closes the LD, and then transitions to
the dlgClosed state.

11From the point of view of the real scripts running at RP either some ID is consid-
ered to be logged in (e.g. from some former “session”), or no one is considered to be
logged in (〈〉), or the script script_rp_index does not know if it should consider anyone
to be logged in (⊥). This is overapproximated here by allowing script_rp_index to
choose non-deterministically between these cases.



q ≡ dlgClosed In this state, the script sends a loggedInUser postMessage to
the CIF and transitions to the loggedInUser state.

q ≡ loggedInUser In this state, the script sends a dlgCmplt postMessage to
the CIF and transitions to the sendCAP state.

q ≡ sendCAP In this state, the script sends the CAP to RP as a POST XHR and
then transitions to the receiveServiceToken state.

q ≡ receiveServiceToken In this state, the script receives 〈n, i〉 from RP, but
does not do anything with it. The script then transitions to the default

state.

We now formally specify the relation script_rp_index ⊆ (TN × 2N ) × TN

of the RP-Doc’s scripting process. Just like in Appendix C.2, we describe this
relation by a non-deterministic algorithm. Like all scripts, the input term given
to this script is determined by the browser and the browser expects a term of a
specific form (see Algorithm 6). Following Algorithm 15, we provide some more
explanation.

Algorithm 15 Relation of script_rp_index

Input: 〈tree , docnonce , scriptstate , scriptinputs , cookies , localStorage , sessionStorage ,
→֒ ids, secret〉, nonces
1: let s′ := scriptstate

2: let cookies ′ := cookies

3: let localStorage ′ := localStorage

4: let sessionStorage ′ := sessionStorage

5: switch s′.q do
6: case init

7: let command := 〈IFRAME,URL
LPO

/cif,GETWINDOW(tree , docnonce)〉
8: let s′.q := receiveCIFReady

9: let subwindows := SUBWINDOWS(tree , docnonce)
10: let s′.CIFindex := |subwindows |+ 1

⊲ Index of the next subwindow to be created.
11: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉

12: case receiveCIFReady

13: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
14: if π1(input) ≡ POSTMESSAGE then
15: let senderWindow := π2(input)
16: let senderOrigin := π3(input)
17: let m := π4(input)
18: let subwindows := SUBWINDOWS(tree , docnonce)
19: if (m ≡ 〈cifready, 〈〉〉)

→֒ ∧(senderOrigin ≡ originLPO)
→֒ ∧(senderWindow ≡ πs′.CIFindex(subwindows).nonce) then

20: let id ← {⊥, 〈〉} ∪ ID

21: let command := 〈POSTMESSAGE, πs′.CIFindex(subwindows),
→֒ 〈loaded, id〉, originLPO〉

22: let s′.q := default

23: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉
24: end if



25: end if
26: case default

27: if s′.dialogRunning ≡ ⊥ then
28: let choice ← {openLD, handlePM}
29: else
30: let choice := handlePM

31: end if
32: if choice ≡ openLD then
33: let s′.dialogRunning := ⊤
34: let command := 〈HREF,URL

LPO

/ld ,_BLANK〉
35: let s′.q := default

36: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉
37: else
38: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
39: if π1(input) ≡ POSTMESSAGE then
40: let senderWindow := π2(input)
41: let senderOrigin := π3(input)
42: let m := π4(input)
43: let subwindows := SUBWINDOWS(tree , docnonce)
44: if senderOrigin ≡ originLPO then
45: if senderWindow ≡ πs′.CIFindex(subwindows).nonce then
46: if π1(m) ≡ login then
47: let s′.cap := π2(m)
48: let s′.q := sendCAP

49: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, 〈〉〉
50: else if π1(m) ≡ logout then
51: let s′.q := default

52: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, 〈〉〉
53: end if
54: else if s′.dialogRunning ≡ ⊤ then
55: if π1(m) ≡ ldready then
56: let command := 〈POSTMESSAGE,

→֒ AUXWINDOW(tree , docnonce), 〈request,〈〉〉, originLPO〉
57: let s′.q := default

58: stop〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉
59: else if π1(m) ≡ response then
60: let s′.dialogRunning := ⊥
61: let s′.cap := π2(m)
62: let command := 〈CLOSE,AUXWINDOW(tree , docnonce)〉
63: let s′.q := dlgClosed

64: stop〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉
65: end if
66: end if
67: end if
68: end if
69: end if
70: case dlgClosed

71: let subwindows := SUBWINDOWS(tree , docnonce)
72: let id := π1(extractmsg(π1(s

′.cap))) ⊲ Extract ID from CAP.



73: let command := 〈POSTMESSAGE, πs′.CIFindex(subwindows).nonce,
→֒ 〈loggedInUser, id〉, originLPO〉

74: let s′.q := loggedInUser

75: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉

76: case loggedInUser

77: let subwindows := SUBWINDOWS(tree , docnonce)
78: let command :=

→֒ 〈POSTMESSAGE, πs′.CIFindex(subwindows).nonce, 〈dlgCmplt, 〈〉〉, originLPO〉
79: let s′.q := sendCAP

80: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉

81: case sendCAP

82: let s′.refXHRcap ← nonces

83: let host , protocol such that
→֒ 〈host, protocol〉 ≡ GETORIGIN(tree , docnonce)
→֒ if possible; otherwise stop
→֒ 〈scriptstate , cookies , localStorage , sessionStorage , command〉

84: let command := 〈XMLHTTPREQUEST, 〈URL, protocol , host , /, 〈〉〉, POST, s′.cap,
→֒ s′.refXHRcap〉 ⊲ Relay received CAP to RP.

85: let s′.q := receiveServiceToken

86: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, command〉

87: case receiveServiceToken

88: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
89: if (π1(input) ≡ XMLHTTPREQUEST) ∧ (π3(input) ≡ s′.refXHRcap) then
90: let s′.q := default

91: stop 〈s′, cookies ′, localStorage ′, sessionStorage ′, 〈〉〉
92: end if
93: stop 〈scriptstate , cookies , localStorage , sessionStorage , 〈〉〉

In Lines 7–11 and 33–36 the script asks the browser to create iframes. To
obtain the window reference for these iframes, the script first determines the
current number of subwindows and stores it (incremented by 1) in the scriptstate
(CIFindex and LDindex, respectively). When the script is invoked the next time,
the iframe the script asked to be created will have been added to the sequence of
subwindows by the browser directly following the previously existing subwindows.
The script can therefore access the iframe by the indexes CIFindex and LDindex,
respectively.

Identity Provider Authentication Dialog Script (script_idp_ad). This
script runs in the LD after script_lpo_ld has navigated the LD window. The
purpose of this script is to authenticate the browser to the identity provider.

The script non-deterministically chooses if it sends authentication data to the
IdP (i.e. its origin) via an XHR, or if it navigates the window to an URL at LPO
which servers script_lpo_ld . Note that script_idp_ad does not read or change
its scriptstate. Hence, we omit the definition of the scriptstate for this script.

Algorithm 16 Relation of script_idp_ad

Input: 〈tree , docnonce , scriptstate , scriptinputs , cookies , localStorage , sessionStorage ,
→֒ ids, secret〉, nonces



1: let action ← {authenticate, navigate}
2: if action ≡ authenticate then
3: let email ← ids

4: let body := 〈email , secret〉
5: let host , protocol such that

→֒ 〈host, protocol〉 ≡ GETORIGIN(tree , docnonce)
→֒ if possible; otherwise
→֒ stop 〈scriptstate , cookies , localStorage , sessionStorage , 〈〉〉

6: let command := 〈XMLHTTPREQUEST, 〈URL, protocol , host , /auth, 〈〉〉,POST, body ,⊥〉
7: stop 〈scriptstate , cookies ′, localStorage ′, sessionStorage ′, command〉
8: else
9: let command := 〈HREF, 〈URL, S, dom(LPO), /ld, 〈〉〉,_SELF〉

10: stop 〈scriptstate , cookies ′, localStorage ′, sessionStorage ′, command〉
11: end if

Identity Provider Provisioning Iframe Script (script_idp_pif). This
script acts as a proxy between the LD or CIF and the IdP server.

Definition 46. A scriptstate s of script_idp_pif is a term of the form
〈q, emails , pubkeys , ucs, provisioningnonces , genkeypairnonces , xhrnonces,
handledInputs〉 with q ∈ S, emails , pubkeys , ucs ∈ TN , provisioningnonces ,

genkeypairnonces , xhrnonces ∈ N ∪ {⊥}, handledInputs ⊂〈〉 N. We call s the
initial scriptstate of script_idp_pif iff s ≡ 〈init, 〈〉, 〈〉, 〈〉,⊥,⊥,⊥〉.

Before we provide the formal specification of the relation that defines the
behavior of script_idp_pif , we present an informal description. The behavior
mainly depends on the state q the script is in.

q = init This is the initial state. Its only transition handles no input and out-
puts a postMessage ping to its parent window, which has to have the origin
of LPO, and transitions to waiting.

q = waiting In this state, the script expects a postMessage containing either
ping or pong, which has to be sent by the parent window from the origin
of LPO. If such a postMessage has been received, the script transitions to
default.

q = default In this state, the script chooses an action non-deterministically out
of the following:
beginprovisioning The script sends a postMessage to the parent window,

which has to have the origin of LPO, indicating that the provisioning pro-
cess of a UC should start. A fresh nonce is chosen, stored in the script’s
state, and included in this postMessage. The postMessage requests the
email address of the user from the receiver. The address is to be sent to
the PIF in a postMessage which is identified by the nonce in the request.

genkeypair The script sends a postMessage to the parent window, which
has to have the origin of LPO, indicating that a new key pair should
be generated. This postMessage requests the public key of this fresh key
pair. As above, a nonce is included to identify the response corresponding
to the request.



registercert The script sends a postMessage containing a UC to the par-
ent window, which has to have the origin of LPO. This postMessage is
only sent if the script has received a UC before.

raisefailure The script sends a postMessage to the parent window, which
has to have the origin of LPO, indicating that the browser is currently
not authenticated to the identity provider.

requestuc The script sends an XHR to the origin of the current document
if the scriptstate contains at least one email address and one public key.
The message contains a non-deterministically chosen email address and
a public key (from the scriptstate). The nonce identifying this XHR is
non-deterministically chosen and stored in the scriptstate.

handleresponse The script chooses non-deterministically a script input and
distinguishes if this input is a postMessage or an XHR response.
If the chosen input is a postMessage, it is checked if the postMessage
was sent by the parent window and if this window has the origin of
LPO. If this check is successful, it is checked if the message contains a
nonce, which was previously been recorded in the script’s state. If this
nonce indicates that this message is a response to a beginProvisioning

postMessage, the second part is assumed to contain an email address.
This address is then recorded in the script’s state. If the nonce indicates
that this message is a response to a genKeyPair postMessage, the second
part is assumed to contain a public key. This public key is then recorded
in the script’s state.
If the chosen input is an XHR response, it is checked if the nonce iden-
tifying the XHR is recorded in the script’s state. If this is the case, the
message is assumed to contain an UC. The content of the message is
stored in the script’s state.

Algorithm 17 Relation of script_idp_pif

Input: 〈tree , docnonce , scriptstate , scriptinputs , cookies , localStorage , sessionStorage ,
→֒ ids, secret〉, nonces
1: let s′ := scriptstate

2: switch s′.q do
3: case init

4: let command := 〈POSTMESSAGE, PARENTWINDOW(tree , docnonce),
→֒ 〈ping, 〈〉〉, 〈dom(LPO), S〉〉

5: let s′.q := waiting

6: stop 〈s′, cookies , localStorage , sessionStorage , command〉

7: case waiting

8: let input , s′ := CHOOSEINPUT(s′, scriptinputs)
9: let senderWindow := π2(input)

10: let senderOrigin := π3(input)
11: let m := π4(input)
12: if π1(input) ∈ {ping, pong}

→֒ ∧senderWindow ≡ PARENTWINDOW(tree , docnonce)
→֒ ∧senderOrigin ≡ 〈dom(LPO), S〉 then



13: let s′.q := default

14: end if
15: stop 〈s′, cookies , localStorage , sessionStorage , 〈〉〉

16: case default

17: let action ← {beginprovisioning, genkeypair, registercert,
→֒ raisefailure, requestuc, handleresponse}

18: switch action do
19: case beginprovisioning

20: let jschannel_nonce ← nonces

21: let command := 〈POSTMESSAGE, PARENTWINDOW(tree , docnonce),
→֒ 〈beginProvisioning, jschannel_nonce〉, dom(LPO)〉

22: let s′.provisioningnonces :=
→֒ s′.provisioningnonces +〈〉 jschannel_nonce

23: stop 〈s′, cookies , localStorage , sessionStorage , command〉

24: case genkeypair

25: let jschannel_nonce ← nonces

26: let command := 〈POSTMESSAGE, PARENTWINDOW(tree , docnonce),
→֒ 〈genKeyPair, jschannel_nonce〉, dom(LPO)〉

27: let s′.genkeypairnonces :=
→֒ s′.genkeypairnonces +〈〉 jschannel_nonce

28: stop 〈s′, cookies , localStorage , sessionStorage , command〉

29: case registercert

30: if s′.ucs 6≡ 〈〉 then
31: let uc ← s′.ucs
32: let command := 〈POSTMESSAGE,PARENTWINDOW(tree ,docnonce),

→֒ 〈registerCertificate, uc〉, dom(LPO)〉
33: stop 〈s′, cookies , localStorage , sessionStorage , command〉
34: end if
35: case raisefailure

36: let command := 〈POSTMESSAGE, PARENTWINDOW(tree , docnonce),
→֒ 〈raiseProvisioningFailure,⊥〉, dom(LPO)〉

37: stop 〈s′, cookies , localStorage , sessionStorage , command〉

38: case requestuc

39: if s′.emails 6≡ 〈〉 ∧ s′.pubkeys 6≡ 〈〉 then
40: let email ← s′.emails
41: let pubkey ← s′.pubkeys
42: let body := 〈email , pubkey〉
43: let xhrnonce ← nonces

44: let s′.xhrnonces := s′.xhrnonces +〈〉 xhrnonce

45: let host ,protocol such that
→֒ 〈host , protocol 〉 ≡ GETORIGIN(tree , docnonce)
→֒ if possible; otherwise
→֒ stop 〈s′, cookies , localStorage , sessionStorage , 〈〉〉

46: let command := 〈XMLHTTPREQUEST,
→֒ 〈URL, protocol , host , /certreq, 〈〉〉,POST,body ,xhrnonce〉

47: stop 〈s′, cookies , localStorage , sessionStorage , command〉
48: end if
49: case handleresponse

50: let input , s′ := CHOOSEINPUT(s′, scriptinputs)



51: if π1(input) ≡ POSTMESSAGE then
52: let senderWindow := π2(input)
53: let senderOrigin := π3(input)
54: let m := π4(input)
55: if senderWindow ≡ PARENTWINDOW(tree , docnonce)

→֒ ∧senderOrigin ≡ 〈dom(LPO), S〉 then
56: if π1(m) ∈ s′.provisioningnonces then
57: let s′.emails := s′.emails +〈〉 π2(m)
58: else if π1(m) ∈ s′.genkeypairnonces then
59: let s′.pubkeys := s′.pubkeys +〈〉 π2(m)
60: end if
61: stop 〈s′, cookies , localStorage , sessionStorage , 〈〉〉
62: end if
63: else if π1(input) ≡ XMLHTTPREQUEST

→֒ ∧π3(input) ∈ s′.xhrnonces then
64: let s′.ucs := s′.ucs +〈〉 π2(input)
65: stop 〈s′, cookies , localStorage , sessionStorage , 〈〉〉
66: end if
67: stop 〈scriptstate , cookies , localStorage , sessionStorage , 〈〉〉

G Formal Security Properties

The security properties for BrowserID, informally introduced in Section 5.2, are
formally defined as follows. First note that every RP service token 〈n, i〉 recorded
in RP was created by RP as the result of a unique HTTPS POST request m with
a valid CAP for ID i. We refer to m as the request corresponding to 〈n, i〉.

Definition 47. Let BID be a BrowserID web system. We say that BID is secure
if for every run ρ of BID, every state (Sj , Ej) in ρ, every r ∈ RP that is honest
in Sj, every RP service token of the form 〈n, i〉 recorded in r in the state Sj(r),
the following two conditions are satisfied:

(A) If 〈n, i〉 is derivable from the attackers knowledge in Sj (i.e., 〈n, i〉 ∈
dN attacker(Sj(attacker))), then it follows that the browser b owning i is fully cor-
rupted in Sj (i.e., the value of isCorrupted is FULLCORRUPT) or governor(i) is
not an honest IdP (in Sj).

(B) If the request corresponding to 〈n, i〉 was sent by some b ∈ B which is
honest in Sj, then b owns i.

H Proof for Primary IdPs

In order to prove Theorem 1, we have to prove Conditions A and B of Defini-
tion 47. We prove these conditions separately. First, we provide an overview of
the proofs.

H.1 Overview

For Condition (A), we analyze the request to an honest RP r upon which r
returned a service token 〈n, i〉, where i is an ID and n a nonce. We show that



it must contain a valid CAP (for the identity i). For this, it must in particular
contain a valid UC and a matching IA. We show that the UC must have been
created by the IdP that governs the identity i (which is honest by assumption).
We can then show that only b can request a UC at the IdP for the identity i,
and that b does not leak the private key that corresponds to the public key used
for this UC, and that this key was chosen from b’s set of fresh nonces. Thus,
only b can know the key that is used in the creation of the UC in the CAP. We
show that neither the private key corresponding to the public key in the UC, nor
the IA can leak to the attacker. Thus, the attacker cannot have sent the request
corresponding to 〈n, i〉 to the RP r. Also, 〈n, i〉 does not leak to the attacker.
The attacker can therefore not know 〈n, i〉, which contradicts the assumption
and proves that Condition (A) is satisfied.

For Condition (B), we focus on the request corresponding to 〈n, i〉 as well. We
observe that if the request was sent by b, the script that initiated the request was
script_rp_index , which again got the CAP that is finally used in the request
from either script_lpo_cif or script_lpo_ld (any other sources, including the
attacker script, can be ruled out). In both of these scripts, the identity in the
CAP is checked against the list of identities of the browser (here, the proposed
patch comes into play). This ensures that the request corresponding to 〈n, i〉
contains a CAP for an identity of the browser, which contradicts the assumption
that Condition (B) is not satisfied and thus proves the theorem.

H.2 Condition A

We assume that Condition A is not satisfied and prove that this leads to a
contradiction. That is, we make the following assumption: There is a run ρ =
s0, s1, . . . of BID, a state sj = (Sj , Ej) in ρ, an r ∈ RP that is honest in Sj , an
RP service token of the form 〈n, i〉 recorded in r in the state Sj(r) such that
〈n, i〉 ∈ dN attacker(Sj(attacker)) and the browser b owning i is not fully corrupted
in Sj and governor(i) is an honest IdP in Sj .

By definition of RPs, for 〈n, i〉 there exists a corresponding HTTPS request
received by r, which we call reqcap, and a corresponding response respcap. The
request must contain a valid CAP c and must have been sent by some atomic
process p to r. The response must contain 〈n, i〉 and it must be encrypted by
some symmetric encryption key k sent in reqcap.

In particular, it follows that the request and the response must be of the
following form, where dr ∈ dom(r) is the domain of r, ncap, k ∈ N are some
nonces, path, params ∈ TN , c is some valid CAP, and sts is the Strict-Transport-
Security header (as in the definition of RP’s relation):

reqcap = enca(〈〈HTTPReq, ncap, POST, dr, path, params , [Origin : 〈dr, S〉], c〉,

k〉, pub(key(dr))) (16)

respcap = encs(〈HTTPResp, ncap, 200, 〈sts〉, 〈n, i〉〉, k) (17)



Moreover, there must exist a processing step of the following form, where m ≤ j,
ar ∈ addr(r), and x is some address:

sm−1

(ar :x:reqcap)→r
−−−−−−−−−−−−→
r→{(x:ar:respcap)}

sm .

From the assumption and the definition of RPs it follows that c is of the
following form:

c = 〈uc, ia〉

≡ 〈sig(〈i, pub(ku)〉, ksign), sig(〈dr , S〉, ku)〉

where ku and ksign are some private keys. When we write i = 〈iname, idomain〉, we
have that:

c ≡ 〈sig(〈〈iname, idomain〉, pub(ku)〉, ksign), sig(〈dr , S〉, ku)〉 .

As r accepts the CAP c, we know that pub(ksign) ≡ Sj(r).signkeys[idomain].
As the subterm signkeys of r’s state is never changed, we have
Sj(r).signkeys = S0(r).signkeys. With the definition of the initial state of
r (See Definition 41), we have that pub(ksign) ≡ Sj(r).signkeys[idomain] ≡
pub(signkey(dom−1(idomain))).

The private key signkey(dom−1(idomain)) is initially only known to the DY
process idp := dom−1(idomain) = governor(i). From the assumption we know
that idp is an honest IdP (and not the attacker, a corrupted IdP, or some other
DY process). As we can see in Algorithm 11 (that defines the behavior of IdPs),
the signkey can only be used in Line 4 and in Line 32. We know that Line 4
cannot be invoked as long as idp is honest, which it is in sj and ever since s0.
For Line 32, we see that the key is not sent out to other processes. In sj , the key
can therefore not have been leaked to any other DY processes.

Knowing that in or before sj , only idp can derive ksign from its knowledge, it
is easy to see that only idp can derive sig(x, ksign) for any x, and in particular,
uc.

Now we want to see exactly how idp creates uc and which data it uses in this
process.

We have already seen that idp creates the uc in Line 32 of Algorithm 11. There
may be more than one processing step in ρ where idp outputs uc.

Lemma 4. For all processing steps of the form

sβ−1
(aidp :x:requc

)→idp
−−−−−−−−−−−−−−→
idp→{(x:aidp :respuc

)}
sβ (18)

(for some addresses x, aidp with sβ < sj, where respuc is an encrypted HTTP
response with the body 〈uc〉) it holds that requc was emitted by b.

Proof. To reach Line 32 of Algorithm 11, several conditions have to be met for
requc: It must be an encrypted HTTPS POST request with the path /certreq.



The body of requc must be congruent to 〈i, pub(ku)〉. The request must contain
a cookie with the name sessionid and some value sessionid . This value must
be a valid key for the dictionary s′.sessions and

i ∈〈〉 s′.sessions[sessionid ] . (19)

Initially, s′.sessions is empty. It is only populated in Line 22 of Algorithm 11.
This line must have been executed in a previous processing step of the following
form:

sα−1
(aidp :x:reqauth)→idp
−−−−−−−−−−−−−−−→
idp→{(x:aidp :respauth)}

sα (20)

(for some addresses x, aidp with sα < sβ). In this step, s′.sessionswas populated
with a new entry for the session id sessionid .

From Algorithm 11 we can see that reqauth must meet the following condi-
tions: It must be an HTTPS POST request, must contain a specific Origin
header and its body must contain a pair 〈iin, secret in〉 such that the id/password
combination matches a combination stored in Sα−1(idp).users. As we have that
Sα−1(idp).users = S0(idp).users and with the initial definition

S0(idp).users = 〈{〈s, 〈IDsofSecret(s)〉〉|Secretsi}〉 (21)

we can see that iin ∈ IDsofSecret(secret in). As the list of authenticated ids in the
session is then (in Line 22 of Algorithm 11) populated with IDsofSecret(secret in)
and with (19) we have that i ∈ IDsofSecret(secret in). Now, IDsofSecret assigns
the IDs to their secrets according to secretOfID, i.e., it must hold that

secretOfID(i) = secret in . (22)

This secret can be owned by at most one browser, and according to the definitions
of the initial knowledge of the DY processes in F, it is initially only known to the
owner of the secret ownerOfSecret(secret in) (see Section F.8) and to one specific
IdP (see Section F.11), in this case idomain ∈ dom(idp) (because otherwise, idp
would not accept this ID).

From Algorithm 11 we can see that the IdP never uses this secret to create
messages as long as it is honest, which it is by precondition.

With (22) we see that initially, only ownerOfSecret(secretOfID(i)) =
ownerOfID(i) knows the secret secret in, which, by assumption, is not fully cor-
rupted in sj , and thus, with the request order given for (18) and (20) is not fully
corrupted in sα. (Once fully corrupted, browsers stay fully corrupted.)

(*): Honest browsers release secrets only to scripts that are loaded from a
specific origin. In this case, according to the initial state given in Section F.8,
the secret secretOfID(i) is only released to scripts from the origin 〈idomain, S〉.
For any such script (or document), with Lemma 2 and the definition of the
browser’s key mapping in Section F.8, we can see that any script that has ac-
cess to the secret was sent by idp. This DY process is also the governor of i,
which is, by assumption, not corrupted. Therefore, idp can only deliver either



the script script_idp_pif or the script script_idp_ad . We can now check, that
both scripts, running in a browser, never send this secret to any other DY process
than idp, and trigger only encrypted requests to do so.

In script_idp_pif (Algorithm 17), the subterm secret of the state is not used
at all; therefore, the script triggers no outgoing message containing the secret at
all.

In script_idp_ad (Algorithm 16), secret is only used as a part of a an HTTP
request to the document’s own origin (which therefore is the origin for which
the secret is stored in the browser’s list of secrets, which therefore must be
〈idomain, S〉). The request’s data is not stored in the script’s state.

We now know that all entities that have access to secret (the browser b and
the IdP idp) never leak it. As idp never creates any HTTP(S) requests, b must
have created reqauth before the processing step sα−1 → sα.

In this processing step, idp creates a new session id (sessionid ). This id is sent
out only once (in Line 25 of Algorithm 11), which, in our case, is respauth. With
Corollary 1 we can see that from this (encrypted) response respauth, only b can
derive the contents, especially the contents of the Set-Cookie header. As in b,
the cookie is stored as a secure, HTTP only cookie, b releases the contents of this
cookie only as a Cookie header to the origin 〈idomain, S〉. Given the keymapping
in b’s state, requests to this origin are handled by idp, and with Algorithm 11 it
is easy to see that the Cookie header is only used for validating the UC request,
but is not used anywhere else. All in all, b and idp do not leak the session id
sessionid .

As sessionid is an important part of requc, we can see that this request must
have been emitted by b. ⊓⊔

Lemma 5. The secret key ku was chosen by the browser b from its own nonces,
i.e., ku ⊂ N b.

Proof. First of all, we know that for idp to generate uc, there must be a process-
ing step in ρ of the form (described in Lemma 4):

sβ−1
(aidp :x:requc)→idp
−−−−−−−−−−−−−−→
idp→{(x:aidp :respuc)}

sβ (23)

(for some addresses x, aidp with sβ < sj, where respuc is an encrypted HTTP
response with the body 〈uc〉). For the request requc, the method must be POST

and the path component must be /certreq.
With Lemma 4 we know that requc was emitted by b, which is honest at this

point in the run. With the same arguments as in (*) we can see that either
script_idp_pif or the script script_idp_ad initiated requc.

For script_idp_ad it is easy to see that this script never sends a POST request
to idp.

The script script_idp_pif can only send a POST request to /certreq in
Line 47 of Algorithm 17. In this case, the public key is chosen from the subterm
pubkeys of the script’s state. This subterm is only populated in Line 59 of
Algorithm 17. It can only be populated by a postMessage pm from an immediate



parent window and from the origin 〈dom(LPO), S〉 (given how a browser checks
and transmits postMessages, see Line 97f. of Algorithm 6). Further, the message
in pm must be of the form 〈n, pub(ku)〉 where n is a nonce that was freshly
chosen for a 〈genKeyPair, n〉 postMessage in Line 28 of Algorithm 17.

Given that b’s keymapping assigns the private key of LPO to the domain
of LPO and with Lemma 3 we see that the only scripts that can send such a
postMessage are script_lpo_cif and script_lpo_ld .

In the script script_lpo_cif (Algorithm 13), postMessages of the form of pm
can only be sent in Line 110 (the message sent in Line 105 would not carry the
correct nonce for a response to a genKeyPair message).

The same holds true for the script script_lpo_ld (Algorithm 13).
Therefore, the key ku is a nonce that was chosen from the browser’s nonces.

⊓⊔

Lemma 6. ku does not leak from b.

Proof. As we have seen above, the key ku was chosen either in the script
script_lpo_cif or in the script script_lpo_ld running in the honest browser
b.

In both scripts, any nonce that is chosen from the script’s nonces will not be
given to the script (as part of nonces) by the browser again, thus, the nonce was
chosen freshly. Further, the nonce is stored in the subterm key of the script’s
state and (besides the derivation of the public key) is only used to sign IAs.

There are no other scripts running in the origin of 〈dom(LPO), S〉. The (honest)
browser b does not leak the script’s state. Therefore, ku does not leak from b. ⊓⊔

With Lemma 4, 5, and 6, we can see that only b knows ku and the at-
tacker cannot know ku. Therefore, only b can create the ia = sig(〈dr, S〉, ku).
As ku is only accessible to scripts with the origin 〈dom(LPO), S〉, only the script
script_lpo_cif or the script script_lpo_ld can create sig(〈dr, S〉, ku). In both
scripts, after creation, ia is sent in postMessage only to scripts that have the
origin for which ia was created (= 〈dr, S〉). With Lemma 3 and the definition
of relying parties (see Algorithm 10) we see, that the only potential receiver is
script_rp_index .

After receiving this response postMessage, script_rp_index stores the UC
and the IA in the subterm called cap of its scriptstate (see Algorithm 15, Line 47).
After doing so, this subterm is read only in Line 72 (where only the identity is
extracted) and in Line 84. There, the ia is sent to r (in the encrypted request
reqcap).

The RP r, which is not corrupted, and the browser b do not leak ia. After
receiving ia, r sends the newly created service token 〈n, i〉 to b, which ignores it
(see Algorithm 15 Line 90f.). Therefore, b and r do not leak 〈n, i〉.

Therefore, the attacker cannot know 〈n, i〉 in Sj , i.e., 〈n, i〉 6∈
dN attacker(Sj(attacker)). This is a contradiction to our assumption. ⊓⊔



H.3 Condition B

Similar to before, we assume that Condition B does not hold and lead this to
a contradiction. We therefore make the following assumption: There is a run ρ
of BID, some state sj = (Sj , Ej) in ρ, some r ∈ RP that is honest in Sj , some
RP service token of the form 〈n, i〉 recorded in r in the state Sj(r), the request
corresponding to 〈n, i〉 was sent by some b ∈ B which is honest in Sj , and b does
not own i.

By definition of RPs, for 〈n, i〉 there exists a corresponding HTTPS request
received by r, which we call reqcap, and a corresponding response respcap. The
request must contain a valid CAP c and must have been sent by some atomic
process p to r. The response must contain 〈n, i〉 and it must be encrypted by
some symmetric encryption key k sent in reqcap.

In particular, it follows that the request and the response must be of the
following form, where dr ∈ dom(r) is the domain of r, ncap, k ∈ N are some
nonces, path, params ∈ TN , c is some valid CAP, and sts is the Strict-Transport-
Security header (as in the definition of RP’s relation):

reqcap = enca(〈〈HTTPReq, ncap, POST, dr, path, params , [Origin : 〈dr, S〉], c〉,

k〉, pub(key(dr))) (24)

respcap = encs(〈HTTPResp, ncap, 200, 〈sts〉, 〈n, i〉〉, k) (25)

Moreover, there must exist a processing step of the following form, where m ≤ j,
ar ∈ addr(r), and x is some address:

sm−1

(ar :x:reqcap)→r
−−−−−−−−−−−−→
r→{(x:ar:respcap)}

sm .

From the assumption and the definition of RPs it follows that c is of the
following form:

c = 〈uc, ia〉

≡ 〈sig(〈i, pub(ku)〉, ksign), sig(〈dr , S〉, ku)〉

where ku and ksign are some private keys. When we write i = 〈iname, idomain〉, we
have that:

c ≡ 〈sig(〈〈iname, idomain〉, pub(ku)〉, ksign), sig(〈dr , S〉, ku)〉 .

With Lemma 3 we see that this request was initiated by a script that b ex-
tracted from an HTTPS response by r. The only script that r sends in its
responses is script_rp_index .

In this script (Algorithm 14), the only place where a request is initiated is
in Line 47. We can see that the cap c is taken from the script’s state, i.e.,
s′.cap ≡ c before the execution of Line 47 must hold. Initially, this term is
empty, therefore the value must have been set during the prior execution of the



script. This happens in Line 47 and in Line 61 of the algorithm. For both lines
to be executed, there must arrive a postMessage at script_rp_index (either a
login or a response postMessage) from the origin of LPO.

With Lemma 2, Lemma 3, and the definition of the web browser, we can
see that the message must indeed come from one of LPO’s scripts, that is, ei-
ther script_lpo_ld or script_lpo_cif . Before we proceed by showing that both
scripts never send a UC for an identity that is not owned by browser b to the
script script_rp_index (and later to r), we first proof the following lemma:

Lemma 7. The value of s′.email in script_lpo_ld is always either one of the
browser’s identities or empty.

Proof. We show this by induction:
Base case: The value of s′.email is initially empty (see initial scriptstate).
Induction step: The value is set only in Lines 31 and 33. In the first case, the

identity is chosen non-deterministically from the browser’s identities ids , which
are the identities that the browser owns (see Section F.8).

In the second case, the value of s′.email is taken from the localStorage, with
the help of the key idpnonce that is taken from the sessionStorage. We can now
show that what is retrieved from the localStorage is either empty or a previous
value of s′.email:

First, we show that the value of idpnonce, taken from sessionStorage in Line 29,
is always a nonce or empty: The browser’s sessionStorage is separated by origins
(and root windows), and therefore, only scripts under the origin of LPO have read
or write access. Thus, the only two scripts that can possibly write the idpnonce

value are script_lpo_cif and script_lpo_ld . The script script_lpo_cif does not
write to sessionStorage. The script script_lpo_ld only writes to sessionStorage
in Line 87. It only writes a fresh nonce (chosen in Line 85). Therefore, the value
of idpnonce is always a nonce (or empty).

As we are already in the second case of the if-statement in Line 30 (we know
that Line 33 was executed) idpnonce cannot be empty and must be a nonce.

Now, we can show that localStorage [idpnonce] is either empty or a previous
value of s′.email: The browser’s localStorage is separated by origins, and there-
fore, only scripts under the origin of LPO have read or write access. As above,
the only two scripts that can write values to the localStorage are script_lpo_cif

and script_lpo_ld . The script script_lpo_cif does not write to localStorage (it
only removes subterms form localStorage in Line 47). We can thus focus on
script_lpo_ld .

There are two lines where this script writes to the localStorage: Lines 112
and 86. We can safely ignore the first case, as it does not use a nonce as a key
(but the fixed string siteInfo instead). In the latter case, it writes a value of
s′.email.

This concludes the induction. ⊓⊔

We can now show (for both scripts), that they never send a UC for an identity
that is not owned by the browser b:



(I) For script_lpo_ld (Algorithm 14), it is easy to see that the UC that is
finally used to create a CAP for RP in Line 109 is set in Line 76. There, the
identity in the UC is checked against the identity in s′.email in the script’s state
(and it is checked that s′.email is not empty).

With Lemma 7 and the observations above we can conclude that in
script_lpo_ld , it is not possible that a UC for an identity that the browser
does not own is accepted. Therefore, the UC that is sent to script_rp_index is
issued for an identity of the browser b.

(II) For script_lpo_cif (Algorithm 13), it is easy to see that the UC that is
finally used in Line 125 is set in Line 113. There, the identity in the UC is checked
against the value of s′.email (and, that s′.email is not empty). Initially, s′.email
is empty. It is set only in Line 64. There, it is taken from the localStorage, using
the key siteInfo. As we have seen above, the only place where values are stored
using this key is in Line 112 of Algorithm 14. There, it is taken from the script’s
s′.email, which, according to Lemma 7, is either empty or one of the browser’s
identities. Note that the value of siteInfo is a dictionary. The keys which are
used inside of this dictionary are not relevant here, but only the values.

Thus, in script_lpo_cif , it is not possible that a UC for an identity that
the browser does not own is accepted. Therefore, the UC that is sent to
script_rp_index is issued for an identity of the browser b.

With (I) and (II), we see that all UCs that are sent to script_rp_index

(and later to r) are issued for identities of the browser b. This contradicts the
assumption, which proves that Condition B holds true. ⊓⊔
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