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Abstract

In the 1970s, Motorola developed a proprietary cipher known internally
as Vulcan, implemented this cipher in a custom integrated circuit, and
marketed a secure communications system based upon Vulcan under the
trade name DVP. In this paper we reveal the Vulcan cipher algorithm and
develop an effective real-time ciphertext-only cryptanalytic attack against
it. We additionally present as much historical information as we have been
able to obtain.

1 Introduction

Vulcan is a proprietary self-synchronizing stream cipher developed by Motorola
in the mid-1970s for use in secure two-way radios. It was marketed under the
trade name DVP, an acronym for digital voice protection.

In this paper we reveal a complete description of the Vulcan cipher and pro-
vide cryptanalysis capable of recovering the cryptovariable from a small amount
of ciphertext in real time. To our knowledge, such information has never before
appeared in the open literature. Internet searches reveal little more than a few
pages of sparse and often inaccurate information [6, 7, 8].

Because Vulcan was developed in secret by Motorola, virtually nothing has
been publically known about the details of its design. Although we are now
certain of the technical aspects of Vulcan, we will never know the reasons why
certain design decisions were made, nor can we be confident of the precise history
of its development.

1.1 Caveats

Aside from a few marketing brochures, which are increasingly difficult to find
nowadays, we are unaware of any substantial technical information that has been
published regarding Vulcan or DVP. We wish to clarify in advance that some
of the information contained in this paper, especially our statements regarding
the history of Vulcan and the various code names used internal to Motorola,
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cannot be independently verified and must therefore be considered mere conjec-
ture. Nonetheless, every claim in this paper is made in good faith, in that we
believe the information to be as accurate as possible, and we are not trying to
deliberately deceive or mislead anyone. We certainly welcome any corrections
or additions to the information presented in this paper.

We are absolutely confident in our technical reporting of Vulcan because
that information was determined solely via reverse-engineering. Furthermore,
we verified the accuracy of our analysis by comparing simulation data to that
obtained from genuine DVP hardware.

1.2 Terminology

Unless specifically stated to the contrary, all mathematical operations described
in this paper are on the Galois Field GF (2). Accordingly, multiplication cor-
responds to a logical AND function and addition corresponds to a logical XOR
function. Additionally, we adopt digital filter terminology for shift register delay
elements, using the notation z−1 to indicate a delay of one bit.

In our figures, we use a square with the text z−1 inside it to denote a 1-
bit delay element that is equivalent to a D flip-flop. We use a circle with a
multiplication sign in to denote multiplication over GF (2), which is equivalent
to a logical AND gate. We use a circle with a plus sign in it to denote addition
over GF (2), which is equivalent to a logical XOR gate.

As much as possible, we try to use cryptographic vocabulary appropriate
for stream ciphers in this paper. As such, we prefer that the term key refer to
the keystream generated by the stream cipher instead of the user-selected secret
key, which we prefer to identify with the term cryptovariable (CV).

Thus when we refer to a bit of key, we are referring to a keystream bit
that is added modulo-2 to plaintext to produce ciphertext during an encrypt
operation, and added modulo-2 to ciphertext to produce plaintext during a
decrypt operation. Likewise when we refer to a bit of cryptovariable, we are
referring to a bit of the (preferably randomly selected) secret that must be
shared amongst all users of the cryptosystem in order for secure communication
to be possible.

Additionally, we prefer the term ciphertext autokey (or the equivalent acronym
CTAK) instead of cipher feedback (CFB) for describing the mode in which the
Vulcan stream cipher operates. Ciphertext autokey implies that the keystream
is generated automatically based solely upon prior ciphertext and the crypto-
variable. This provides a self-synchronizing property that is advantageous for
channels that do not easily provide for cryptographic synchronization [1].

As we previously mentioned, Vulcan is the internal code name by which
the cipher presented in this paper is known to Motorola. Motorola marketed
products based on the Vulcan cipher as DVP. We use the terms Vulcan and
DVP more or less interchangeably in this paper, but observe the convention
that Vulcan can only refer to the cipher itself, whereas DVP can refer to either
the cipher or a product that incorporates it.
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As a final comment concerning Motorola trade names, we briefly mention
the trademark Securenet [15]. Securenet refers to a broad family of secure voice
products that are all based on similar technology. Vulcan/DVP was the first
member of the Securenet family, followed by DES, DES-XL, DVP-XL, DVI-XL,
and others. A DVP encryption module can be referred to as Securenet, but
Securenet does not necessarily imply DVP encryption [6].

1.3 Background

Based on the best information available, we believe that Motorola first began
product development of digital encryption for two-way radios in 1973, although
they had developed some of the necessary building blocks somewhat earlier than
this. For example, US Patent #3639690, filed in 1969, describes a linear cipher
algorithm allegedly known to Motorola as Zeus [12]. Zeus was the immediate
predecessor of Vulcan and both ciphers have much in common.

Zeus, shown in Figure 1, is a trivial stream cipher that generates a key
bit from a linear sum modulo-2 of some combination (selected by the 26-bit
cryptovariable) of the previous 26 ciphertext bits. Since Zeus is catastrophically
weak, we will not discuss it further in this paper, aside from mentioning that
Vulcan was allegedly the successor to Zeus. We are uncertain as to whether
Zeus was purely experimental or whether it was ever sold to an end user in an
actual product.

z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1

k 0 k 1 k 2 k 3 k 22 k 23 k 24

plaintext
in

ciphertext
out

... k 25

Figure 1: Zeus Cipher

Rumors suggest that Vulcan was originally implemented using discrete logic
ICs, but we have not been able to find any evidence of this. Such an imple-
mentation during the mid-1970s would have been physically quite large and
rather power hungry, although it is nearly certain that Vulcan would have been
prototyped using discrete logic prior to designing a custom integrated circuit.

Further rumors suggest that the earliest customers for DVP included the
then newly-formed US Drug Enforcement Agency, as well as the Organization
of Petroleum Exporting Countries. Salt Lake City was also an early customer
of DVP [5].

Products marketed under the DVP trade name use the Vulcan cipher to
encrypt digitized voice. The technique Motorola selected to digitize voice is
continuously variable slope delta modulation (CVSD) at 12Kbps. Motorola
developed a custom CMOS integrated circuit (code named Butterscotch) to
perform CVSD encoding and decoding. This same IC was also used in secure
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voice products that succeeded DVP, such as Motorola’s DES encryption device,
introduced around 1980.

In a DVP-equipped radio, at the transmitter, microphone audio is converted
to 12Kbps CVSD plaintext and is then subsequently encrypted using the Vulcan
cipher, which operates in a self-synchronizing mode known as ciphertext autokey
(CTAK). The resulting ciphertext is then modulated onto the RF carrier as 2-
level FM and transmitted to the receiving radios.

In a DVP-equipped radio, at the receiver the 2-level FM signal is demodu-
lated and the digital ciphertext is recovered. These functions are performed by
an IC (believed to be a MC6800 family microprocessor) known as the control
and interface IC, also referred to using the code name Vanilla. The recovered
ciphertext is decrypted by the Vulcan cipher and the resulting plaintext is con-
verted back to analog audio by the CVSD decoder IC (Butterscotch).

We believe it likely that Motorola’s development of 12Kbps CVSD Securenet
was inspired by NSA’s VINSON (KY-57/KY-58) series of 16Kbps CVSD tactical
voice security equipment, which was developed in the early 1970s, immediately
prior to DVP [9].

The first radios to be offered with DVP were Motorola’s Micor mobile and
MX300 portable, both of which entered the market in 1975 [5]. In 1980 Motorola
added the DES cipher to its Securenet encryption products as a more secure
alternative to DVP. During the mid-1980s, Motorola replaced DVP with DVP-
XL and DVI-XL, both incorporating new proprietary cipher algorithms that
remain as yet unpublished.

As a side note, the XL term when used regarding Securenet indicates a
range extension technology best described in US Patent #4893339 [14]. The
XL method, known internally to Motorola as REX, a diminutive of “range ex-
tension”, is a clever technique of converting a block cipher operating in 1-bit
cipher feedback (CFB) mode into a block cipher operating in a sort of counter
addressing mode. The essential idea is to eliminate the error propagation char-
acteristics of CFB mode. Note that DVP-XL is not REX applied to DVP (Vul-
can), but is instead REX applied to Linus, the proprietary cipher that replaced
Vulcan.

1.4 Motivation

As to why we went to the effort to reverse-engineer and cryptanalyze Vulcan, we
have several motives. First, we wish to preserve a historical cipher that would
otherwise have been lost to the black hole that is corporate history. Nearly
all proprietary ciphers have suffered this fate, and all seem destined to it unless
some enterprising third party intervenes. Our hope is that future cryptographers
will find this paper an interesting and useful historical reference.

Second, we seek to reinforce the strong argument that one must never trust
ciphers that have not been exposed to open academic scrutiny. As our cryptanal-
ysis will show, Vulcan is a catastrophically weak cipher, even when measured
by 1970s standards. Vulcan would never have withstood public inspection and
DVP would have been far less successful in the marketplace had its customers
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known how vulnerable this cipher actually was. We strongly suspect that many
other proprietary ciphers are similarly weak and we warn against their use.

Third, we wish to assist budding cryptographers and reverse-engineers in
learning the basic skills. Vulcan, being both simple and weak, offers an excel-
lent learning opportunity for a beginning cryptographer. We believe that break-
ing a Vulcan-encrypted message would be a suitable homework assignment for
students enrolled in an undergraduate cryptography course. Other suitable as-
signments might include investigating ways of making simple changes to Vulcan
in order to improve its cryptographic strength.

Fourth, we undertook this effort for sheer enjoyment. This project required
us to learn many new skills and overcome many technical difficulties. Noth-
ing beats the satisfaction gained from solving a giant puzzle. Nothing more
thoroughly whets the appetite for knowledge than a secret.

We imagine that Motorola would prefer that this paper did not exist, and
we would not be surprised if they seek to remove it from the public eye, pre-
sumably under the feeble justification that our work threatens the security of
their customers. No doubt the real reason they might object to our work is to
avoid embarrassment resulting from the disclosure that DVP is far from secure.

In spite of these imagined protests, we are completely confident that no harm
will come to any end users for the simple reason that Vulcan and DVP are long
obsolete and have not been used to protect sensitive communications in decades.
For these same reasons, we are equally confident that no harm will be done to
any active NSA signal intelligence efforts. Furthermore, we are confident that
we have broken no laws in the course of our work, and we believe that this paper
is both legally and technically legitimate.

We want to make it perfectly clear that we do not wish to disparage Motorola
with our comment that Vulcan is weak; quite the contrary, in its era DVP
was revolutionary. We commend Motorola for developing the first digitally
encrypted two-way radio available to non-military customers at a time when
simple analog frequency inversion scrambling was considered “high tech”.

Furthermore, we wish to allay any concerns that our revelations will in any
way harm Motorola’s intellectual property. Had this paper been published in
1976, such a concern would have been legitimate, but in 2014 the technology
underlying Vulcan and DVP is not only long obsolete, but absolutely archaic.
None of Motorola’s competitors have anything to gain, or even learn, from our
disclosures.

1.5 Technique

We were surprised at how easy it was for us to learn the details of Vulcan.
Although the Vulcan cipher is implemented in a custom CMOS integrated cir-
cuit, techniques for reverse-engineering ICs are well known. We do not know
why the myth still persists that reverse-engineering hardware is more difficult
than reverse-engineering software. We caution that secrets cannot be hidden in
silicon or software; only a fool believes otherwise.
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The first step in our process was to acquire several DVP modules and a
DVP key loader, both of which are inexpensive and readily available on eBay
and at ham fests. We then examined the DVP modules to identify the purpose
of the various ICs these modules contain. Our attention quickly focused on an
IC labeled only with a Motorola logo and bearing the identifier SC76807 (see
Figure 2).

Figure 2: SC76807 Integrated Circuit

Unlike plastic IC packages, which require strong acids to unveil the die, the
SC76807 uses a ceramic and metal chip carrier package that can be de-capped
with a large soldering iron. Once we removed the metal lid, the die was exposed
for our inspection (see Figure 3).

We imaged the die at a magnification of 200 using a metallurgical microscope
and a digital camera, resulting in a clear view of the top metal layer of the
die. We quickly determined that the SC76807 is a medium scale integration
(MSI) metal gate CMOS chip of large geometry, typical of mid to late 1970s IC
process technology. Although we did not count the individual gates, this is a
fairly simple device, well within the ability of a single individual to analyze.

Once we had an image of the M1 layer of the SC76807, we began analyzing
the various circuits and their functions. Due to the large amount of repeated
circuitry, this task was not nearly as time-consuming as we had originally ex-
pected. Our detailed analysis of the SC76807 IC follows in Section 2.

Once we fully understood the workings of the SC76807, we realized that this
knowledge by itself was insufficient for a complete understanding of DVP. This
is because the DVP key loader plays a significant role in the overall operation of
DVP. We therefore had to obtain a DVP key loader and perform some reverse-
engineering on it as well.

Like the SC76807, the DVP key loader was easy to reverse-engineer, although
in this case it was primarily software rather than hardware that we had to
reverse-engineer. After reading the firmware ROM and disassembling the code,
we quickly discovered the portions of this software that determine how the 71-
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bit user-entered cryptovariable is converted into the 138-bit cryptovariable that
the SC76807 requires. Our full analysis of the DVP key loader follows in a
Section 4.

Once we understood the requisite technical details of both the SC76807
IC and the DVP key loader, we then created some software simulations that
implement the Vulcan cipher. We used GNU Octave (an open-source alternative
to Matlab) for our simulations and analysis, but our results can be replicated
easily in other languages such as C++ or Python. All of our Octave source code
is presented in the appendix.

To test the validity of our simulations, we used the DVP key loader itself to
create test vectors where the cryptovariable, plaintext, and ciphertext were all
known. This allowed us to confirm that our software simulations were correct,
and also provided verification that our analysis of both the SC76807 IC and the
DVP key loader is accurate.

After we had proven the validity of our software simulations, we then set
about analyzing Vulcan from a mathematical perspective. Although we are
not mathematicians per se, cryptanalysis of Vulcan requires little more than
an undergraduate understanding of linear algebra. We note later in this paper
that more elegant and efficient cryptanalytic attacks against Vulcan are almost
certainly possible, and thus a topic ripe for further research. Nonetheless, our
simple-minded attacks proved all too effective.

2 SC76807 CMOS IC

In this section, we present the findings of our hardware reverse-engineering
effort. Figure 3 illustrates the top metal (M1) layer of the SC76807 Vulcan IC.
This chip is a metal-gate CMOS IC of large (> 1 micron) geometry. To avoid
cluttering Figure 3 with labels, we will instead describe the various functions of
the circuit elements in the paragraphs below.

2.1 Technique

Understanding the SC76807 IC was a new and interesting challenge for us since
we had not previously reverse-engineered silicon integrated circuits. Fortunately
for us, the large geometry and low gate count of 1970s-era medium scale inte-
gration made it relatively easy to proceed.

Understanding how bits are stored in volatile memory on an IC is a critical
first step to reverse-engineering the SC76807. Many excellent tutorials can be
found on the web, so we will not duplicate that effort here [10]. The key obser-
vation is that a single bit is stored in a pair of inverters that are permanently
coupled together. Such pairs of coupled inverters are plentiful in the SC76807.

We assumed the SC76807 would consist largely of shift registers and static
random access memory, something the visual presence of a large number of cou-
pled inverters confirmed. We present a detailed analysis of the specific circuitry
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of the SC76807 in a later section, but for now we will briefly mention what we
discovered at our first glance.

The large regular structure in the center of the chip is clearly an SRAM
array. This is obvious due to the address decoding logic adjacent to the array,
along with the pre-charge circuitry and the word and bit lines that connect to
each cell. We quickly counted 128 individual bit cells.

The numerous ladder-like structures are clearly shift registers, as evidenced
by numerous pairs of coupled inverters separated by clocked gates. The repeti-
tive nature of these circuits makes them easy to analyze.

We strongly suspected that the single ladder-like structure that differed from
all the rest was likely a tree of XOR gates, an assumption that later proved
mostly correct. Other smaller circuits required more careful analysis to fully
understand. Examples of these include the various signal switching circuits and
the differential encoder and decoder.

Although we had signal traces of all I/O pins that we captured with a logic
analyzer, we did not have access to a schematic that provided names for these
pins. We had to figure out the functions of the I/O pins by examining both the
logic analyzer traces and the associated circuitry of the SC76807.

2.2 A Guided Tour

Before we discuss specific circuits, we must first establish pin numbers and the
“correct” orientation of the chip. Figure 3 (when viewed with the caption at the
bottom) displays the IC in our preferred orientation, with Pin 1 clearly visible in
the upper right hand corner. Pin 1 is easily identified by the distinctly rounded
corners of its bonding pad.

We choose to numbers the pins, starting with Pin 1, in counterclockwise
ascending order. We observe that there are seven pins along the top of the chip
and six pins along the bottom. However, Figure 3 reveals that only six of the
seven pins along the top of the die are bonded, with one unavailable external to
the IC. We thus choose to omit the un-bonded pin and instead number only the
twelve bonded pins from one to twelve, counterclockwise from the upper right
hand corner.

Using this scheme, in Figure 3 we have: Pin 1 in the upper right hand corner,
Pin 6 in the upper left hand corner, Pin 7 in the lower left hand corner, and
Pin 12 in the lower right hand corner. With this numbering scheme in place,
we now proceed to discuss the name and function of each pin.

2.2.1 Inputs and Outputs

Pin 1 is C1/C2 (code select) input. It controls the cryptographic transformation
and acts as an extra bit of cryptovariable. This signal connects to the first XOR
gate in the XOR tree and inverts the sense of the AND function that is used
to enable or disable this XOR gate (this feature will be explained in a later
section). This pin is normally low (selecting C1).
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Pin 2 is cryptovariable input. It conveys the cryptovariable from the key
loader to the IC during key loading operations. It is connected directly to the
CV shift register seen at the far right of the chip.

Pin 3 is plaintext input. It connects to some switching logic near the top cen-
ter of the die. The switching logic routes plaintext and ciphertext to the appro-
priate circuits depending on whether the chip is operating in encrypt (transmit)
or decrypt (receive) mode.

Pin 4 is TX/RX input. It selects whether the chip encrypts (TX) or decrypts
(RX). This signal connects to the same switching logic circuitry as Pin 3.

Pin 5 is ciphertext input. It connects to a differential decoder and then to
the switching circuitry that routes it appropriately based on whether the chip
is encrypting or decrypting.

The un-bonded pin between Pin 5 and Pin 6 is a test output that is inacces-
sible external to the chip. This test pin allows the contents of the 128-bit SRAM
(discussed later) to be read, presumably to enable testing of the SRAM during
manufacturing. We have deliberately chosen not to give this pin a number since
it has no function during normal operation.

Pin 6 is V+, the positive supply voltage. It supplies Vdd to all the transistors
on the chip.

Pin 7 is ciphertext output. It is differentially encoded and is valid only
during encrypt (transmit) operations.

Pin 8 is clock input. It allows an externally sourced clock signal to act as a
time base for all synchronous logic on the chip. External inputs to the chip are
clocked in on the rising edge of this clock. The nominal clock rate should be 12
KHz during encrypt and decrypt operations, but we observe that the DVP key
loader supplies a faster clock than this during key loading.

Pin 9 is WE (write enable) input. When active (low), it allows the CV shift
register to operate, clocking in CV bits from Pin 2 in accordance with the clock
signal on Pin 8. Circuitry on the chip creates a single clock cycle delay between
the WE input and the clock and CV inputs, an observation that is important
when analyzing the exact temporal relationship of these three signals.

Pin 10 is output-enable input. This signal must be high in order for cipher-
text out (Pin 7) and plaintext out (Pin 11) to produce outputs. If Pin 10 is low,
ciphertext out and plaintext out will be in high impedance states.

Pin 11 is plaintext output. It connects to the bottom of the XOR tree and
is only valid during decrypt operations.

Pint 12 is ground. It provides Vss to all the transistors on the chip.

2.2.2 Circuitry

The large repetitive structure directly in the center of the chip is a static random
access memory (SRAM) array of 128 bits, arranged as eight rows by sixteen
columns. Address decoding circuitry is present immediately to the left of and
immediately below the SRAM array. The SRAM address is determined by bits
held in the shift register along the left side of the SRAM array.
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At the far right side of the chip is a vertical column of circuitry, the CV shift
register. It receives input from CV in (Pin 2) and is controlled by the clock (Pin
8) and WE (Pin 9). When WE is high (inactive), the CV shift register does not
shift. When WE is low, CV input bits from Pin 2 are clocked into the CV shift
register on the rising edge of the clock.

The CV shift register has a capacity of 10 bits and also supplies an output
to the SRAM array. When WE is low, CV bits are clocked through the CV
shift register and written into the 128-bit SRAM array in accordance with the
address contained in the shift register to the left of the SRAM array.

At the far left side of the chip are two vertical columns of circuitry. Together
these form a 21-bit ciphertext shift register, with 14 bits in the left column and
7 bits in the right column. The ciphertext shift register input comes from a
switching circuit located directly above the SRAM array.

The ciphertext shift register input is at the top of the right column and the
ciphertext shift register output is at the top of the left column. Bits in the right
column move down the circuitry and then across to the left column where they
then move up the circuitry. The output of the ciphertext shift register connects
to an XOR gate located above the SRAM array.

The circuit immediately above the right column of the ciphertext shift reg-
ister supplies bits of the cryptovariable to the SRAM array during key loading.
The circuit below the right column of the ciphertext shift register is a differential
encoder that encodes the output of the ciphertext shift register and supplies it
to the ciphertext output (Pin 7).

The newest seven bits in the ciphertext shift register form an address to the
SRAM row and column address decoding logic. Each cell of the first seven bits
in the ciphertext shift register supplies both inverted and non-inverted bits for
use in addressing the SRAM array.

The horizontal row of circuitry above the SRAM array performs a variety
of functions. The leftmost circuit in this row is a read sense amplifier for the
SRAM array, followed by an XOR gate that adds modulo-2 the output of the
ciphertext shift register to the bit of cryptovariable that is addressed by the
first seven bits of the ciphertext shift register. We will call the result of this
operation a modified ciphertext bit.

Modified ciphertext bits enter a 10-bit shift register that is the vertical col-
umn of circuitry immediately to the right of the SRAM array. Modified cipher-
text bits enter this shift register at the top and move down the circuitry. The
modified ciphertext bits in this shift register are also transferred in parallel to
the XOR tree, which is the column of circuitry immediately to the right of this
shift register.

Returning now to the circuitry above the SRAM array, immediately to the
right of the circuit that forms the modified ciphertext bit, we have a differential
decoder that decodes the ciphertext input signal of Pin 5 and supplies it to a
switching circuit to the right of this differential decoder.

Two such switching circuits are located at the right side of the row of cir-
cuitry directly above the SRAM array. The leftmost of these switching circuits
selects the ciphertext to be transferred to the ciphertext shift register. This
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ciphertext comes from the output of the XOR tree during encrypt (TX) and
comes from the differential decoder during decrypt (RX).

The rightmost of these switching circuits selects the input of the XOR tree.
The XOR tree input comes from plaintext in (Pin 3) during encrypt (TX) and
comes from the output of the differential decoder during decrypt (RX).

The XOR tree, visible as a vertical column of circuitry in between the mod-
ified ciphertext shift register and the CV shift register, has 10 stages, each of
which accepts an input from the previous stage, conditionally modifies this in-
put, and then provides an output to the next stage.

The modification performed by each stage of the XOR tree is simply a con-
ditional exclusive-or (addition modulo-2), conditioned on the value of the cor-
responding bit of CV from the CV shift register. The two bits being added
modulo-2 are the input to this stage of the XOR tree and a corresponding bit
of modified ciphertext from the modified ciphertext shift register.

Certain stages of the XOR tree behave differently from the aforementioned
general rule. Specifically, the first stage of the XOR tree is further modified by
the value of C1/C2 (Pin 1). The last stage of the XOR tree never performs an
XOR (i.e. acts as though the corresponding CV bit is always 0). The second-
to-last stage of the XOR tree always performs an XOR (i.e. acts as though the
corresponding CV bit is always 1). All other stages perform the XOR only if
the corresponding CV bit is 1. If the corresponding CV bit is 0, the output of
this stage is the same as its input.

Immediately below the modified ciphertext shift register is a circuit that
delays the WE signal by one clock cycle and then combines this signal with
the master clock to create a clock signal for the CV shift register. The overall
effect is that the CV shift register only clocks when WE is 0, and the effect of
transitions on WE is delayed by one clock cycle relative to all other signals.

The circuitry between Pin 7 and Pin 8 is a pair of test transistors. The
thin column of circuitry at the far right edge of the SRAM array is pre-charge
circuitry for the SRAM. All I/O input pins have diode protection and series resis-
tance to guard against damage. This concludes our description of the SC76807
circuitry. We turn now to the overall operation of the device.

2.3 Modes of Operation

The SC76807 IC can operate in at least three different modes: encrypt, decrypt,
and key loading. Each of these modes affects how input and output signals are
processed by the IC. Although the SC76807 IC is the device that performs the
cipher operations, the overall DVP module itself consists of additional circuitry
that we have not described here because it is not particularly interesting or
relevant.

During encrypt, the DVP module delivers plaintext CVSD bits to Pin 3
of the SC76807 and receives ciphertext bits from Pin 9 of the SC76807. The
TX/RX input on Pin 4 must be low. Each bit-wise encrypt operation requires
the clock signal on Pin 8 to transition from low to high once the plaintext input
is stable. The ciphertext output bit is retrieved on the falling edge of the clock
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signal. The WE input on Pin 9 and the output enable input on Pin 10 must
both be high during encrypt operation.

During decrypt, the DVP module delivers received ciphertext bits to Pin 5 of
the SC76807 and receives plaintext CVSD bits from Pin 11 of the SC76807. The
TX/RX input on Pin 4 must be high. Each bit-wise decrypt operation requires
the clock signal on Pin 8 to transition from low to high once the ciphertext
input is stable. The plaintext output bit is retrieved on the falling edge of the
clock signal. The WE input on Pin 9 and the output enable input on Pin 10
must both be high during decrypt operation.

During key loading, the DVP module, in conjunction with an external key
loader, must supply cryptovariable bits on Pin 2, ciphertext input bits (used
for SRAM addressing) on Pin 5, and an appropriate clock signal on Pin 8. The
WE input on Pin 9 and the TX/RX input on Pin 4 must both be low.

The DVP key loader only delivers cryptovariable and ciphertext input sig-
nals. All other necessary inputs (including the clock) are supplied to the
SC76807 IC by other circuitry on the DVP module itself.

The DVP key loader specially constructs the ciphertext stream to ensure
that the appropriate cryptovariable bits are written into the appropriate SRAM
addresses. The first 128 bits of the cryptovariable are written into the SRAM
array and the last 10 bits of the cryptovariable remain in the CV shift register.

3 Vulcan Cipher Algorithm

Vulcan is a self-synchronizing stream cipher with a 138-bit cryptovariable. In
this section we describe the cipher in complete detail.

Vulcan uses a ciphertext delay shift register to maintain a history of the
most recent 31 bits of ciphertext for use in ciphering operations. The first seven
of these 31 ciphertext bits form a 7-bit address into the 128-bit SRAM array.

The SRAM array holds 128 bits of cryptovariable, and each time a message
bit is encrypted or decrypted, the bit of cryptovariable addressed by the first
seven bits in the ciphertext shift register is read from the SRAM array and is
then added modulo-2 to the 21st bit in the ciphertext shift register. Therefore,
the last 10 bits in the ciphertext shift register have been modified by certain
bits of the cryptovariable.

The primary ciphering mechanism of Vulcan is a tree of interconnected XOR
gates that add modulo-2 certain ciphertext bits and cryptovariable bits to the
input bit, where the input bit is a plaintext bit during encrypt, and is a cipher-
text bit during decrypt.

Figure 4 illustrates a Vulcan encrypt operation. Plaintext bits serially enter
at the lower left in accordance with a clock signal (not shown). Differentially
encoded ciphertext bits serially exit at the lower right. The differential encoder
protects against arbitrary phase inversions on the communications channel and
is of no cryptographic importance. A non-differentially-encoded version of the
ciphertext output bit feeds back to the ciphertext shift register near the upper
left.
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Figure 4: Vulcan Cipher Encrypt

The most recent seven ciphertext bits in the ciphertext shift register form a 7-
bit address to the SRAM, addressing one bit of the first 128 bits of cryptovariable
(k000...k127). The specifically addressed bit of cryptovariable transfers to an
XOR gate at the far right of the ciphertext shift register, where it adds modulo-
2 to the 21st bit of ciphertext. The bit resulting from this XOR then enters
the modified ciphertext shift register, which holds 10 bits (only 9 of which are
shown).

The bits in the modified ciphertext shift register are added modulo-2 to the
plaintext bit, under conditional control of the last 8 cryptovariable bits (with
the exception of the last bit in the modified ciphertext shift register). In effect,
the 8 bits of cryptovariable (k130...k137) act as switches that either enable or
disable the corresponding XOR gate.

If the given cryptovariable bit is 1, then the corresponding XOR gate adds
the modified ciphertext bit to the partial ciphering result. If the given crypto-
variable bit is 0, then the XOR gate is disabled and the partial ciphering result
simply passes on to the next XOR gate unmodified.

Although the GF (2) multiplication (equivalent to a logical AND) shown here
is nonlinear, we can think of the overall effect of this multiply as simply enabling
or disabling the GF (2) addition (logical XOR) for this stage of the operation.
This perspective becomes important when we attempt cryptanalysis of Vulcan
in a later section.

A quick review of the XOR tree and its associated circuitry on the SC76807
IC reveals that the XOR tree has a total of 10 stages, whereas we show only 9
stages in Figure 4. This is because the logic of the last two stages is different
from that of the first eight stages.

The last stage of the XOR tree, which would have been controlled by cryp-
tovariable bit k128, simply passes its input to its output without modification.
This is why we omitted it from Figure 4.

The second to last stage of the XOR tree always adds the modified ciphertext
bit to the partial ciphering result, which is why this stage lacks the AND gate
that would have been controlled by cryptovariable bit k129.

As a consequence of how the last two stages of the XOR tree operate, cryp-
tovariable bits k128 and k129 have no effect whatsoever. Not surprisingly, these
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bits and are always set to 0 by the DVP key loader. Therefore, even though the
loaded cryptovariable is in fact 138 bits long, only 136 bits influence ciphering
operations.

Interestingly, although Vulcan uses a 138-bit cryptovariable (of which only
136 bits have any effect), the DVP key loader only allows the end user to enter
a 71-bit cryptovariable. Of the remaining 67 bits, two bits are always set to 0,
and 65 bits are formed from linear combinations of the user-supplied 71 bits.
We will discuss this fact in much greater detail in later sections of this paper.

Figure 5 illustrates a Vulcan decrypt operation, which is nearly identical to
the Vulcan encrypt operation shown in Figure 4. Differentially encoded cipher-
text bits serially enter at the lower left in accordance with a clock signal (not
shown). These bits are then differentially decoded to remove any dependence
on phase characteristics of the communications channel. Differential decoding
is of no cryptographic significance, but is shown here for completeness.

z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1

z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1

k137 k136 k135 k134 k133 k132 k131 k130

plaintext
out

ciphertext
in

...

7-bitvaddressvselects 1vbitvofvcryptovariable

127k

z-1
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Figure 5: Vulcan Cipher Decrypt

The differentially decoded ciphertext bit then enters both the XOR tree
logic at the bottom of Figure 5, and the ciphertext shift register at the top
of Figure 5. Once the ciphering operation is complete, plaintext bits serially
exit at the lower right. All other decrypt operation is identical to the encrypt
operation previously described.

3.1 Mathematical Description

For all stream ciphers, encrypt and decrypt operations are essentially identical
except for the inputs and outputs [1]. To encrypt, add the keystream to the
plaintext input to obtain the ciphertext output. To decrypt, add the keystream
to the ciphertext input to obtain the plaintext output. In both cases the cipher
is fully described by the keystream it generates.

Vulcan generates its keystream as a linear combination of prior ciphertext
bits and cryptovariable bits. In the description below, we consider the theoreti-
cal case where all 138 bits of the Vulcan cryptovariable can be freely specified by
the end user. In actuality, DVP only allows the end user to specify 71 of these
138 cryptovariable bits, with the remaining 67 bits being a linear combination
of the 71.
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We have designated the 138 cryptovariable bits as k000 through k137 in the
order that they are clocked into the SC76807 IC during key loading. We note
that the first 128 bits of the cryptovariable are clocked into various locations in
the SRAM array, whereas the last 10 bits of the cryptovariable are clocked into
the CV shift register.

For our purposes here, we do not care about the actual addressing of the
SRAM so long as we remain consistent in our approach to how this addressing
works. This will not be the case once we consider the specifics of the actual
user-entered 71-bit cryptovariable, but for now it simplifies our mathematical
description of Vulcan.

Let each SRAM storage cell contain the cryptovariable bit identified by the
number that is the SRAM address (i.e. SRAM location 000 contains k000,
SRAM location 001 contains k001, etc.) We therefore have k000 through k127 in
SRAM locations 000 through 127. Furthermore, let the CV shift register contain
cryptovariable bits k128 through k137 in locations 10 (the bottom) through 1 (the
top) respectively.

Using the notation that c(n − x) designates a ciphertext bit from x clock
cycles ago, and using ordinary (as opposed to GF (2)) arithmetic for the SRAM
address computation, we can express the present keystream bit, K(n), as:

K(n) = (k137 AND (c(n−22) XOR k(64c(n−8)+32c(n−7)+16c(n−6)+8c(n−5)+4c(n−4)+2c(n−3)+c(n−2))))

XOR (k136 AND (c(n−23) XOR k(64c(n−9)+32c(n−8)+16c(n−7)+8c(n−6)+4c(n−5)+2c(n−4)+c(n−3))))

XOR (k135 AND (c(n−24) XOR k(64c(n−10)+32c(n−9)+16c(n−8)+8c(n−7)+4c(n−6)+2c(n−5)+c(n−4))))

XOR (k134 AND (c(n−25) XOR k(64c(n−11)+32c(n−10)+16c(n−9)+8c(n−8)+4c(n−7)+2c(n−6)+c(n−5))))

XOR (k133 AND (c(n−26) XOR k(64c(n−12)+32c(n−11)+16c(n−10)+8c(n−9)+4c(n−8)+2c(n−7)+c(n−6))))

XOR (k132 AND (c(n−27) XOR k(64c(n−13)+32c(n−12)+16c(n−11)+8c(n−10)+4c(n−9)+2c(n−8)+c(n−7))))

XOR (k131 AND (c(n−28) XOR k(64c(n−14)+32c(n−13)+16c(n−12)+8c(n−11)+4c(n−10)+2c(n−9)+c(n−8))))

XOR (k130 AND (c(n−29) XOR k(64c(n−15)+32c(n−14)+16c(n−13)+8c(n−12)+4c(n−11)+2c(n−10)+c(n−9))))

XOR (c(n−30) XOR k(64c(n−16)+32c(n−15)+16c(n−14)+8c(n−13)+4c(n−12)+2c(n−11)+c(n−10))).
(1)

This equation reveals that the Vulcan keystream depends only on the value
of certain prior ciphertext bits as well as certain cryptovariable bits. With the
exception of the GF (2) multiplication operations (the logical ANDs), the rest of
the equation is entirely linear (on GF (2)). This fact is of paramount importance
in cryptanalysis.

Given that DVP does not allow the end user to specify all 138 bits of the
Vulcan cryptovariable, we now turn to the issue of how the DVP key loader
transforms the 71-bit user-entered cryptovariable into the 138-bit version re-
quired by the SC76807 IC.
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4 DVP Key Loader

Based on our analysis of the SC76807 IC and the Vulcan cipher it implements,
we soon realized that our understanding of DVP was incomplete. We have just
described the Vulcan cipher itself, but we have not yet described how the 71-
bit cryptovariable entered by the end user into the DVP key loader affects the
cipher. That is the topic of this section.

Although there are several models of DVP key loaders, we acquired the
Motorola T3010AX key variable loader (KVL) shown in Figure 6. The T3010AX
is apparently the first revision of a second generation of DVP key loaders, the
original being the relatively rare (and collectible) P1001 series of code inserters
[8].

Figure 6: T3010AX DVP Key Loader
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4.1 Description and Operation

Our T3010AX KVL has a TRN6777B cryptographic hybrid in it. This hybrid
contains the SC76807 Vulcan IC and some additional non-cryptographic cir-
cuitry that is of no interest here. It is the presence of the TRN6777B crypto
hybrid within the KVL that allows us to gather a known triplet of cryptovari-
able, plaintext and ciphertext that we can use to verify the correctness of our
software simulations of the Vulcan cipher.

The KVL is a relatively simple device that allows an end user to manually
enter (via a membrane keypad) a cryptovariable into the key loader and then
transfer this cryptovariable into a DVP-equipped radio. Unlike more modern key
loaders (e.g. the KVL4000), the T3010 cannot generate a random cryptovariable
(this fact alone is a rather serious security flaw). Instead, the user must manually
enter 24 octal digits, with the final digit being restricted to values 0 to 3. Key
entry proceeds in four groups of six octal digits each, with the intermediate
result being displayed on a LED numeric display. The T3010 thus provides the
user the ability to enter a 71-bit cryptovariable even though the Vulcan cipher
itself requires a 138-bit cryptovariable.

Internally, the KVL is based on a Motorola 6802 microprocessor that per-
forms all the required functions except for encryption. Encryption is handled
exclusively by the embedded TRN6777B hybrid. The 6802 processor primarily
performs user interface functions such as handling the membrane keypad inputs
and numeric LED display outputs.

Interestingly, when transferring a cryptovariable from the KVL to a target
radio (a process commonly referred to as key loading), communication is strictly
one-way: from the KVL to the target. No provision exists for the target to
communicate to the KVL. This means that the KVL cannot be certain that a
key load operation was successful. Later generations of Securenet key loaders
implemented bidirectional communications between the KVL and the target
device.

To overcome the problem of not knowing if a key loading process was suc-
cessful or not, the KVL sends a short burst of encrypted CVSD immediately
following the cryptovariable transfer. If the CV was successfully transferred,
the target radio will correctly decrypt this ciphertext and play the resulting
plaintext (a tone) on the radio speaker. Therefore, if the user hears a beep from
the radio immediately after key loading, that means the CV was successfully
loaded. If no beep occurs, the key load process failed and only static will be
heard.

If it were not for this unusual form of verification, the KVL would not require
an internal crypto hybrid. The only reason the T3010 KVL has an internal
TRN6777B hybrid is so that it can generate the correct ciphertext to send to
the target radio to make it beep after a successful key load. We exploited this
operation by capturing data with a logic analyzer and then used that data to
confirm the validity of our software simulations of Vulcan.
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4.2 Reverse Engineering

Understanding the DVP key loader required us to reverse-engineer the 6802
microprocessor firmware. To do this, we extracted the contents of the ROM that
contains the 6802 firmware and then disassembled it. The firmware disassembly,
along with a few of our comments, is listed in Appendix E.

We quickly located several lookup tables and soon identified one as contain-
ing messages that are displayed on the LED. From our experience using the
DVP key loader, we knew that it displayed the message “beep?” when key
loading was complete. We therefore determined the address of this message in
the lookup table and then searched the code for a reference to this address.

This led us to the section of firmware that contained the algorithm for con-
verting the 71-bit user supplied cryptovariable into the 138-bit cryptovariable
that the Vulcan IC requires. We call this conversion algorithm the key schedule
and describe it fully below. Interested readers can refer to the firmware disas-
sembly in Appendix E, but we caution that the code there is rather convoluted
and far more difficult to understand than the summary description we provide
here.

4.3 Key Schedule

As we have previously noted, DVP allows the user to specify a 71-bit cryptovari-
able, but the Vulcan cipher itself requires a 138-bit cryptovariable. The DVP
key loader converts the 71 user-entered bits into a 138-bit cryptovariable and
then transfers this to the Vulcan IC. This conversion process is loosely analogous
to the key schedule of many common ciphers.

For convenience, we prefer the following terminology. Suppose that the end
user enters a 24-digit octal cryptovariable into the KVL. We will designate
these 24 octal digits as κ23, the most significant digit and the first digit en-
tered, through κ00, the least significant digit and the last digit entered (which
is furthermore restricted to the octal values 0 through 3).

Converting the 24-digit user-entered octal CV into 71 bits, we proceed left to
right (i.e. from most significant to least significant) in a straightforward manner.
We will designate the 71 bits of user-entered CV as v70 (most significant) through
v00 (least significant). Therefore: κ23 = v70.v69.v68, κ22 = v67.v66.v64, ...,
κ01 = v04.v03.v02, and κ00 = v01.v00 (since it has only 2 bits, having been
restricted to octal values 0 through 3).

The DVP key loader converts this 71-bit user-entered CV, v70...v00, into
a 138-bit cryptovariable and then loads this into the SC76807 IC. The exact
conversion and key loading process is somewhat convoluted, so we will describe
it in general terms and then give the precise final result.

Loosely speaking, the key loader creates a 64-bit data word from the 64 most
significant user key bits (roughly bits v70...v07). This process involves iterated
right shifts of each octal digit with the result that the final 64-bit data word is
not a straightforward copy of v70 through v07 (nor does it actually include v07).

Once the DVP key loader has built the 64-bit data word, the DVP key loader
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then computes a 64-bit parity word from the data word. The parity word is
generated using a Galois linear feedback shift register and a dense feedback
polynomial [2]. Precise details as to how this is done can be found in our key
schedule simulation in Appendix A.

Since the key loader started with 71 bits and used 64 of these to form the data
word, seven bits remain leftover. The key loader gathers these seven leftover
bits and creates an 8-bit data word from them. This data word contains user
key bits v00 through v04, v06, v07, as well as a fixed 0 bit. Details regarding
the precise construction of this 8-bit word can be found in our key schedule
simulation in Appendix A.

If the Hamming weight of this 8-bit word is less than four, the DVP key
loader complements this word so that the Hamming weight of the final result
is always four or greater. This curiosity restricts the final permissible values of
this 8-bit word to 163 values, of which only 128 are possible; a fact that is very
useful for cryptanalysis.

Once the DVP key loader has assembled the 64-bit data word, 64-bit parity
word, and 8-bit data word, the key loader then builds a table of SRAM addresses
and corresponding cryptovariable bits. Both the SRAM addresses (differentially
encoded) and the cryptovariable bits are then clocked into the SC76807 IC
during the key loading operation. A pair of null bits (always 0) fills the unused
space between the bits placed in the SRAM and the bits placed in the CV shift
register. Details regarding the key loading clock schedule can be found in our
key schedule simulation in Appendix A.

Ultimately the key loader effectively creates a key schedule that permutes
the 71 bits of user-entered cryptovariable across 128 bits that are stored in the
SRAM and 8 bits that are stored in the CV shift register. Our cryptanalysis
simulation in Appendix D contains a matrix that lists the SRAM contents in
terms of the user-supplied CV bits (v70 ... v00) by address. This matrix is
obviously useful for cryptanalysis.

5 Simulations

Our ultimate goal in reverse-engineering Vulcan was to understand it sufficiently
well to allow us to create bit-exact software simulations. Accurate software sim-
ulations of Vulcan eliminate the need for the custom IC and associated hardware
and also enable experimentation and cryptanalysis.

We chose to divide our software simulations into three major parts: the key
schedule, encryption, and decryption. We used GNU Octave as our development
environment of choice, and our simulations are all written in that language
(which is also compatible with Matlab). It should be very easy for anyone with
software skills to port our Octave simulations to another environment, such as
Python or Java.
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5.1 Key Schedule

We created an Octave script to simulate the portion of the DVP key loader that
transforms the 71-bit user-entered cryptovariable into the 138-bit cryptovariable
that gets clocked into the SC76807 IC during key loading. We provide a full
listing of our script in Appendix A. Although our source code is well commented,
we provide a broad overview of the operation here.

We first check the 24-octal-digit user-supplied cryptovariable for simple er-
rors and substitute a default test CV if necessary. Next we convert the 24 octal
digits into 71 bits and then extract 64 of these bits to form the 64-bit data word.
We then compute the 64-bit parity word from the 64-bit data word by using a
Galois linear feedback shift register. We also form the 8-bit CV shift register
contents from the leftover cryptovariable bits and complement it if necessary
based on the Hamming weight rule. Finally, we create the 128-bit SRAM array
and load it with the correct bits. The outputs of our key schedule script are the
128-bit SRAM contents and the 8-bit CV shift register contents.

5.2 Encrypt and Decrypt

We created Octave scripts to simulate both Vulcan encrypt and Vulcan decrypt
operations. Both require the outputs of the key schedule simulation in order
to properly set up the 138-bit cryptovariable. As was the case with our key
schedule simulation, our commented source code listings are in the appendix,
with board overviews presented here.

To encrypt, we first check for some common errors, and then we create a
random initialization vector if none was supplied. We then iterate over each bit
of user supplied plaintext to create a bit of ciphertext according to the Vulcan
encryption algorithm. We compute the output of the XOR tree with each stage
being conditionally controlled by cryptovariable bits in the CV shift register.
Next we differentially encode the resulting ciphertext bit and save it. We then
compute the SRAM address of the cryptovariable bit, and then add modulo-
2 this CV bit to the 21st bit of the ciphertext shift register, thus producing
the modified ciphertext bit. Finally, we clock the ciphertext shift register in
preparation for the next plaintext input bit.

Our decrypt simulation is nearly identical to our encrypt simulation; only
the order of the operations changes. We once again check for some simple ini-
tialization errors and then proceed to iterate on all the bits of the user supplied
ciphertext. We differentially decode the ciphertext bit and then compute the
SRAM address of the cryptovariable bit. We then add modulo-2 this crypto-
variable bit to the 21st bit of the ciphertext shift register, thus producing the
modified ciphertext bit. We then compute the output of the XOR tree using
the same procedure as the encrypt simulation. Finally, we save the resulting
plaintext bit and then clock the ciphertext shift register in preparation for the
next ciphertext input bit.

We note here that our software simulations in the appendix were optimized
for simplicity of understanding, not for performance. When we turn to crypt-
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analysis, we streamline our simulations somewhat, making them more efficient,
but somewhat less easy to understand.

6 Cryptanalysis

Vulcan is especially vulnerable to cryptanalysis because it is very nearly a linear
cipher. Although it has a long (for that era) cryptovariable, the linearity of the
cipher defeats any beneficial effect of having a long cryptovariable. Indeed,
we consider it ironic that Vulcan has such a long cryptovariable (of either 71
or 138 bits, depending on how you look at it) given that it can be broken
almost trivially. In the sections that follow, we show that far from requiring an
exhaustive search of order 271, Vulcan can be broken with an exhaustive search
of only 27.

We emphasize that no special knowledge of cryptanalysis is necessary to
break Vulcan; an undergraduate-level understanding of linear algebra is more
than sufficient. And whereas a more knowledgeable and experienced cryptogra-
pher might well come up with a far better attack than the one we present here,
ours works in real time and is easy to understand.

From (1) of Section 3, we obtain the necessary insight as to how to break
Vulcan. The crucial observation is this: if we view the effect of GF (2) multi-
plication as an enable/disable mechanism for the individual stages of the XOR
tree, then the remainder of Vulcan is completely linear on GF (2). We now
expand upon this idea in greater detail.

Suppose that we know the 10-bit contents of the CV shift register (also recall
that two of these 10 bits are always 0). This implies that we know which stages
of the XOR tree actively add (over GF (2)) modified ciphertext bits to the final
result, and which stages merely pass the intermediate result onto the next stage
unmodified. Therefore, we can compute the present ciphertext bit as a linear
combination of prior ciphertext bits and certain of the 128 unknown CV bits
stored in the SRAM.

If we so choose, we can approach cryptanalysis with the assumption that 136
bits of the 138-bit cryptovariable are unknown (recall that two bits are always
0). In fact however, only 71 bits of the 138-bit cryptovariable are linearly inde-
pendent due to the processing of the DVP key loader. It matters not whether
we assume 136 unknown CV bits or 71 unknown CV bits. Our attack works
in either case, revealing all 138 bits of the cryptovariable, although slightly less
ciphertext is required when we assume only 71 unknown CV bits.

We have repeatedly emphasized that the user-specified DVP cryptovariable
is only 71 bits even though the Vulcan cipher itself requires a 138-bit crypto-
variable. The matrix in our cryptanalysis simulation in Appendix D lists the
128-bit SRAM contents in terms of the 71 user-entered CV bits. We can ap-
ply this matrix to the linear ciphertext equations to produce a second matrix
that can be solved to reveal the cryptovariable bits. Our exact procedure now
follows.

For each bit of ciphertext we assume a known value of the corresponding
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plaintext bit (i.e. we are mounting a known plaintext attack). For our simulation
we chose an all-zero plaintext for convenience; however, in a real-world situation
a dotting pattern (0101...) would be preferred due to the nature of the CVSD
encoder [3].

We now digress briefly to emphasize that a known plaintext attack is com-
pletely legitimate when mounted against any cryptosystem based on CVSD au-
dio encoding. This is because approximately half of all spoken speech is silence,
and the CVSD waveform coder encodes silence as a simple dotting pattern.
Therefore, approximately half of all plaintext will consist of this simple dotting
pattern, making the known plaintext assumption a valid one [3].

For any stream cipher, assuming knowledge of the plaintext and having
access to the corresponding ciphertext allows us to determine the keystream
via modulo-2 addition [1]. In the case of Vulcan, (1) specifies the keystream
precisely.

To attack Vulcan, we collect delayed ciphertext bits to determine the cor-
responding SRAM addresses of the cryptovariable. These CV bits from the
SRAM are used to form the keystream, as indicated by (1). Although we do
not know the value of these CV bits, we do know which specific CV bits were
involved in forming a specific bit of the keystream. Furthermore, since we are
mounting a known plaintext attack, we also know the value of the keystream.

The net result is that we end up with a linear equation that relates certain
SRAM CV bits to specific keystream bits. Again, we know the addresses of the
SRAM contents, but not the values contained in these addresses. By iterating
over the ciphertext bits we can create a matrix of linear equations that can be
solved to reveal the unknown values of the SRAM contents. Our procedure for
accomplishing this is in Appendix D. We now explain how it works.

6.1 Automated Procedure

We created two lookup tables and an Octave script to recover the entire cryp-
tovariable from a ciphertext stream. The first lookup table is a 128 row by 64
column matrix that describes the contents of the SRAM in terms of the 64-bit
data word referred to in Section 4. Recall that this data word consists of 64 of
the 71 user-entered cryptovariable bits, although not in a straightforward order.
Given an SRAM address, this matrix provides the linear combination of CV
bits that are stored in that address.

The second lookup table is simply a list of the 128 possible values of the
8-bit data word mentioned in Section 4. These eight bits reside in the CV shift
register and control the operation of the corresponding stages in the XOR tree.
Our procedure uses simple linear algebra to solve for 64 of the 71 unknown
cryptovariable bits, and uses this list to guess the remaining seven bits until a
consistent solution is found. In the worst case we must try all 128 values in the
list, although typically the solution comes much sooner than this.

Our cryptanalysis script begins by forming a null solution matrix of 64 rows
by 65 columns, and by using the first entry from the second lookup table as the
starting value of the eight CV bits in the CV shift register. We then proceed to
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process the ciphertext, creating a single linear equation relating SRAM contents
to keystream bits for each bit of ciphertext. For each such equation, we update
our partially completed solution matrix until one of the following occurs: we
found an inconsistent solution, we ran out of ciphertext bits, or we completely
filled the solution matrix, which is now in row echelon form.

When we guess the CV shift register bits incorrectly, we will eventually
encounter an inconsistent equation (i.e. 0=1) and thus know that our guess
was incorrect. Should this happen, we simply move on to the next value in the
second lookup table, load that entry as the eight CV shift register bits, and
start processing ciphertext bits from the beginning once again.

When we guess the CV shift register bits correctly, our solution matrix
will eventually be completely filled and will also be in row echelon form. At
this point all we have to do is put the solution matrix in reduced row echelon
form and read the solved cryptovariable bits from the rightmost column. Our
final solution consists of our correct guess of the CV shift register bits and the
rightmost column of the consistently completed solution matrix.

The precise details of our procedure are evident in our commented source
code listing of Appendix D, but here we offer a few additional remarks to aid
understanding. From (1) of Section 3 we can compute a keystream bit from
delayed ciphertext bits and cryptovariable bits. This equation is central to our
cryptanalysis routine.

For each bit of ciphertext, our cryptanalysis routine forms a linear equation
based on (1) such that we have a linear (on GF (2)) combination of 64 unknown
variables (cryptovariable bits) equal to a single known value (the keystream bit).
We place this linear equation in our solution matrix and perform elementary
row operations on it to ensure that our solution matrix is in row echelon form
at all times.

As we continue to process ciphertext bits (assuming we have an adequate
supply), we will eventually reach one of two possible outcomes: a correct so-
lution or an inconsistent solution. An inconsistent solution occurs when, after
performing elementary row operations on a candidate equation, we obtain the
impossible result that 0=1. A correct solution occurs when we have completely
filled our solution matrix with 64 linearly independent equations, none of which
resulted in an inconsistency.

Once we have 64 linearly independent consistent equations in our solution
matrix, we again use elementary row operations to fully reduce the matrix into
reduced row echelon form. This simply places the 64 solved cryptovariable bits
in the rightmost column of the matrix, thus completing our solution.

Experimentally, we have found that approximately 100 ciphertext bits are
necessary to generate a complete solution for the Vulcan cryptovariable. If our
technique is expanded to allow all 138 bits of the Vulcan cryptovariable to be
independently specified — a situation not permitted by the DVP key loader
— then we can still solve for the 138 bits, but we require about an order of
magnitude (i.e. 1000 bits) more ciphertext to obtain a full solution. Either way,
our cryptanalysis routine runs in real time and does not require any significant
computational resources. We are fully confident in our ability to recover a DVP
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cryptovariable in real time solely from ciphertext captured over-the-air from an
actual DVP-equipped radio (although we did not actually do so because we were
unable to procure a working DVP-equipped radio).

Given that it is possible to recover the Vulcan cryptovariable from ciphertext
in real time, we must declare this cipher to be trivially weak and unsuitable for
providing even rudimentary privacy. Although modern computing resources
have made such an attach simple, they are not necessary.

Such an attack could have been accomplished 40 years ago, albeit somewhat
less conveniently. We therefore speculate that DVP-secured radio communica-
tions were routinely compromised during the era of their use, although we have
no proof of this. Believing otherwise simply cannot be supported given the
ease of breaking Vulcan. The inherent weakness of Vulcan raises a number of
interesting questions, which are the topic of our next section.

7 Conclusion

In this paper we have completely exposed the proprietary Vulcan cipher used in
Motorola DVP encryption modules of the 1970s. Furthermore, we have shown
that Vulcan is trivially weak and we have presented a simple technique that
enables real-time ciphertext-only cryptanalysis. Before ending this paper, we
wish to present a few open questions, propose future work, and offer some
general comments.

7.1 Open Questions

During our reverse-engineering and analysis of Vulcan, a number of questions
came to mind. In this section we list some of those questions and offer our
opinions regarding likely answers.

Our first question is why Vulcan uses a 71-bit cryptovariable. This is a very
unusual length and we are not aware of any other cipher with such a strange
length for the cryptovariable. Furthermore, the end user is required to enter the
cryptovariable as 24 octal digits, but this creates the awkward situation where
the very last octal digit is restricted to the range of 0 to 3. Why did Motorola
choose to truncate this last octal digit instead of simply allowing the user to
enter 72 bits? This makes no sense to us.

For that matter, why did Motorola not allow the user to enter all 138 bits
of the Vulcan cryptovariable? We can only speculate as to the reasons behind
this decision, but our best guess is that Motorola marketing felt that 138 bits,
presumably entered as 46 octal digits, was simply too long for most users to
manage.

Even entering 24 octal digits in four groups of six digits, as must be done
on the DVP key loader, is somewhat cumbersome. Certainly entering 46 octal
digits using a primitive user interface such as that of the DVP key loader would
be bothersome. Nonetheless, Vulcan requires a 138-bit cryptovariable. It seems
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to us that it would have made more sense to either have allowed the user to
enter all 138 bits, or to have made Vulcan use a shorter cryptovariable.

As an aside, we also note that the DVP key loader lacks the ability to
generate a random cryptovariable, requiring the user to enter a CV of their own
creation. This is certain to lead to poorly-chosen values, as our experience is
that many users of cryptographic equipment, when allowed to choose their own
CV, will simply enter an easily guessed sequence such as 1234..., etc.

One might intuitively think that limiting the CV to 71 bits greatly reduces
overall security, given that the Vulcan CV is natively 138 bits; however, since the
Vulcan cipher is effectively linear, the length of the CV is of little consequence.
Solving a system of linear equations in 138 unknowns is scarcely more difficult
than solving a system of linear equations in 71 unknowns (or far fewer, for
that matter). Motorola most likely realized this and made their decision on
cryptovariable length accordingly.

Another possibility regarding the length of the cryptovariable is the influence
of external constraints, such as export restrictions. We know that in the 1990s,
the US government would only allow export of cryptography restricted to 40 or
fewer bits of cryptovariable [4]. We do not know what the restrictions were in
the 1970s, but we can safely assume they were no more permissive than they
were in the 1990s, and were likely less so. Again we are left to guess as to what
the true reasons behind Vulcan’s unusual CV length were.

Our second question is why Vulcan is so weak. Admittedly, cryptography
was much less well understood in the early 1970s than it is today; nonetheless,
anyone with an undergraduate education in mathematics would have known at
that time that Vulcan was seriously weak. It would not surprise us if this was
deliberate.

Inspection of the SC76807 IC layout reveals certain clues as to alternatives
the designers might have had in mind. Specifically, the XOR tree has provisions
to accommodate additional bits from the CV shift register, yet this circuitry is
not hooked up. Also, the ciphertext shift register has a provision for insertion
or extraction of bits approximately half-way through its 21 bits, a feature that
was not used and the purpose of which is not clear to us.

Strictly speaking, Vulcan is nonlinear due to the GF (2) multiplications
present in the XOR tree; however, as we have shown, we can linearize Vul-
can by assuming these GF (2) multiplications simply represent bits that must
be solved for via exhaustive search. Since there are only seven unknowns, this
exhaustive search is trivial. The designers could have made exhaustive search
far less fruitful by including more bits from the CV shift register in the GF (2)
multiplications, but they chose not to do so. We are puzzled by this.

Furthermore, even a simple nonlinear operation in the ciphertext mixing
function would have eliminated the simple attack of linear algebra, but the
designers chose not to do this either. We cannot offer a reasonable explanation
why a simple nonlinearity was not included in order to strengthen Vulcan. Our
suspicion is that Vulcan is deliberately weak, although we have no proof of
this. Nonetheless, we prefer this explanation to the alternative possibility that
the designers were simply incompetent. Now that Vulcan has been thoroughly
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exposed, it would be enlightening if one of its creators stepped forward with the
rationale behind the design decisions.

If Vulcan was designed solely to prevent casual eavesdropping then it was
undoubtedly successful in achieving that goal. We are unaware of so much as a
rumor of anyone publicly admitting success in recovering DVP encrypted voice.
Indeed, most hams and hobbyists seem to have been sufficiently frustrated by
various analog scrambling schemes, which were widely used to protect radio
communications during the same era as DVP [11].

On the other hand, if Vulcan was intended to prevent determined adversaries
from monitoring secret communications, we cannot believe it would have had
any success in this regard. No intelligence agency anywhere in the world would
have had difficulty cracking Vulcan in the 1970s. Perhaps when NSA declassifies
some of their signals intelligence operations of the 1970s — something not likely
to occur for another 60 years — future cryptographers will have solid evidence
of this claim.

7.2 Future Work

Regarding future work, we have little doubt that a skilled cryptographer can
greatly improve upon our simple cryptanalytic attack, although there is little
motivation to do so. Such talent should be reserved for greater challenges,
which leads us to comment that that Vulcan is merely one of several proprietary
ciphers developed by Motorola. We suspect that the others might prove far more
interesting.

Specifically, we know that Vulcan was replaced with an allegedly much
stronger cipher known internally as Linus sometime in the early 1980s. Li-
nus was sold under the trade name DVP-XL and is alleged to have a 96-bit
cryptovariable [6]. We know that the early implementations of Linus were done
on a fully custom programmable cryptographic IC known as Son of Vulcan or
SOV and marked as SC380001.

The challenge in reverse-engineering SOV is that it is a programmable device
that can implement many different ciphers, including Vulcan itself, depending
on how it is programmed. Not only would one have to reverse-engineer the hard-
ware, one would also have to successfully extract the contents of the EEPROM
memory of the SOV IC and determine how this data controls the chip.

Son of Vulcan was also used to implement algorithms other than Vulcan and
Linus. Specifically, we know of an export algorithm referred to internally as
Lucy and marketed at DVI-XL, as well as several different variations of Lucy
that were sold as DVI-SPFL for Lucy Special Flavor. There are rumored to be
many special flavors of Lucy, but we have no confirmation of this.

Nothing is publically known about Linus or any of the various flavors of Lucy.
We would be eager to learn the details of these ciphers, but reverse-engineering
them will be considerably more difficult than reverse-engineering Vulcan. We
would hope that these algorithms are more secure than Vulcan, although we
have no doubt that Lucy was deliberately weakened to comply with US export
restrictions on cryptography.
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Linus and Lucy might also have been implemented in forms other than the
SOV IC, perhaps even in software. We are simply unaware of specific details
and would welcome further information and analysis. As with Vulcan, all of
these proprietary ciphers have been rendered obsolete in favor of more recent
ciphers such as AES. Nonetheless, Linus and Lucy are tempting targets.

For that matter, Motorola is far from the only manufacturer that sold pro-
prietary cryptographic devices. We know of many different manufacturers of
equipment, much of which is now cheaply available at ham fests and on eBay.
Recent advances in tools and techniques for reverse-engineering place most his-
torical cryptographic equipment within easy reach of anyone with the will to
understand how these devices work.

7.3 Epilog

We undertook this endeavor primarily as a learning exercise. We hope that
others will find this material both interesting and informative. Furthermore, we
hope this project inspires others to undertake similar projects, uncovering the
hidden secrets lurking beneath every proprietary cryptographic device. Many
such proprietary devices exist, providing ample material for would-be reverse-
engineers and cryptographers. The Son-of-Vulcan device we mentioned is but
one of a plethora.

Many older cryptographic devices are simple enough to allow a complete
analysis by a single individual. However, some devices are sufficiently complex
to require a team effort to fully reverse-engineer and understand. To this end, we
recognize and wish to call attention to the need for an anonymous and secure
collaboration framework that would allow multiple team members to remain
anonymous while still enabling cooperation on potentially sensitive work such
as cryptographic reverse engineering. Anyone seeking a noble thesis project
should give serious thought to this most critical need.
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A Vulcan Key Schedule Simulation

%-----------------------------------------------------------

% Vulcan "key schedule" simulation

% 2014-05-28 --- CJR

% input: 24-digit octal cryptovariable "cv"

% outputs: 128-bit SRAM array "sram"

% 8-bit CV shift register "cv8"

% converts 71-bit user-supplied CV into 138-bit Vulcan CV

% prints out various intermediate results for inspection

%-----------------------------------------------------------

% check for user-supplied input & substitute default if none

if((exist(’cv’) == 0)||(length(cv) != 24))

cv = [7 6 5 4 3 2 1 0,...

7 6 5 4 3 2 1 0,...

7 6 5 4 3 2 1 0];

end

% convert CV from 24 octal digits to 72 bits

cvb = zeros(1,72);

for ii = 1:24

dig = cv(ii);

for jj = 1:3

cvb(3*(ii-1)+(3-jj)+1) = mod(dig,2);

dig = floor(dig/2);

end

end

printf("CV = %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d...

%0d %0d %0d %0d %0d %0d %0d\n", reshape(cvb,3,24)’*[4 2 1]’);

% toss out MSB of last octal digit to get correct 71-bit CV

cvb = [cvb(1:69) cvb(71:72)];

% form 64-bit data word from 64 bits of CV

cv64 = reshape(cvb(1:66),3,22)’;

cv64 = reshape(flipud(cv64)’,1,66);

cv64 = cv64(3:66);

printf("data64 = %02X %02X %02X %02X %02X %02X %02X %02X\n",...

reshape(cv64,8,8)’*[128 64 32 16 8 4 2 1]’);

% compute 64-bit parity word from 64-bit data word

pr64 = zeros(1,64);

taps = [0, 1, 0, 1, 0, 0, 1, 0,...

0, 0, 0, 0, 0, 0, 0, 0,...

1, 0, 0, 1, 1, 0, 1, 1,...

1, 1, 1, 1, 0, 0, 0, 1,...

1, 1, 1, 0, 1, 1, 0, 1,...

0, 1, 0, 0, 0, 0, 0, 0,...

1, 1, 1, 0, 1, 0, 1, 0,...

1, 1, 0, 0, 0, 0, 1, 0];

for ii = 64:-1:1

bb = bitxor(cv64(ii),pr64(64));

pr64 = [0 pr64(1:63)];

if(bb == 1)

pr64 = bitxor(pr64,taps);

end

end

pp = mod(sum(cv64),2);

pr64 = [pp pr64(2:64)];

printf("parity64 = %02X %02X %02X %02X %02X %02X %02X %02X\n",...

reshape(pr64,8,8)’*[128 64 32 16 8 4 2 1]’);
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% form 8-bit data word from 7 bits of CV

cv8 = [0 cvb(70) cvb(71) cvb(67) cvb(68) cvb(69) cvb(64) cvb(65)];

if(sum(cv8) <= 3)

cv8 = bitxor(cv8, ones(1,8));

end

printf("data8 = %02X\n", cv8*[128 64 32 16 8 4 2 1]’);

% clock out the 138-bit cryptovariable in correct order

clk = [pr64(64) pr64(63) pr64(62) pr64(61) pr64(60) pr64(59) pr64(58) cv64(64)];

clk = [clk pr64(57) pr64(56) pr64(55) pr64(54) pr64(53) cv64(63) cv64(62) pr64(52)];

clk = [clk pr64(51) pr64(50) pr64(49) cv64(61) pr64(48) cv64(60) pr64(47) pr64(46)];

clk = [clk pr64(45) cv64(59) cv64(58) cv64(57) cv64(56) pr64(44) pr64(43) cv64(55)];

clk = [clk pr64(42) pr64(41) pr64(40) cv64(54) pr64(39) cv64(53) cv64(52) pr64(38)];

clk = [clk pr64(37) cv64(51) cv64(50) cv64(49) pr64(36) cv64(48) pr64(35) cv64(47)];

clk = [clk pr64(34) pr64(33) cv64(46) cv64(45) cv64(44) cv64(43) cv64(42) pr64(32)];

clk = [clk cv64(41) pr64(31) pr64(30) pr64(29) pr64(28) cv64(40) cv64(39) cv64(38)];

clk = [clk pr64(27) pr64(26) pr64(25) cv64(37) pr64(24) pr64(23) cv64(36) pr64(22)];

clk = [clk pr64(21) cv64(35) cv64(34) pr64(20) cv64(33) cv64(32) pr64(19) cv64(31)];

clk = [clk pr64(18) cv64(30) cv64(29) pr64(17) cv64(28) cv64(27) cv64(26) cv64(25)];

clk = [clk pr64(16) cv64(24) cv64(23) pr64(15) pr64(14) pr64(13) cv64(22) cv64(21)];

clk = [clk pr64(12) cv64(20) pr64(11) pr64(10) cv64(19) pr64(09) cv64(18) cv64(17)];

clk = [clk cv64(16) pr64(08) cv64(15) cv64(14) cv64(13) pr64(07) pr64(06) cv64(12)];

clk = [clk cv64(11) pr64(05) pr64(04) cv64(10) pr64(03) cv64(09) pr64(02) cv64(08)];

clk = [clk pr64(01) cv64(07) cv64(06) cv64(05) cv64(04) cv64(03) cv64(02) cv64(01)];

clk = [clk 0 0 cv8(8) cv8(7) cv8(6) cv8(5) cv8(4) cv8(3) cv8(2) cv8(1)];

printf("138 bits clocked out of DVP key loader:\n");

printf("%0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d...

%0d %0d %0d %0d %0d\n", clk(1:23));

printf("%0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d...

%0d %0d %0d %0d %0d\n", clk(24:46));

printf("%0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d...

%0d %0d %0d %0d %0d\n", clk(47:69));

printf("%0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d...

%0d %0d %0d %0d %0d\n", clk(70:92));

printf("%0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d...

%0d %0d %0d %0d %0d\n", clk(93:115));

printf("%0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d...

%0d %0d %0d %0d %0d\n", clk(116:138));

% place 64 data bits and 64 parity bits into 128-bit SRAM at correct addresses

sram = zeros(1,128);

addr = [000, 001, 002, 004, 008, 016, 032, 065,...

003, 006, 012, 024, 048, 097, 066, 005,...

010, 020, 040, 081, 035, 071, 015, 030,...

060, 121, 114, 100, 072, 017, 034, 069,...

011, 022, 044, 089, 051, 103, 078, 029,...

058, 117, 106, 084, 041, 083, 039, 079,...

031, 062, 125, 122, 116, 104, 080, 033,...

067, 007, 014, 028, 056, 113, 098, 068,...

009, 018, 036, 073, 019, 038, 077, 027,...

054, 109, 090, 053, 107, 086, 045, 091,...

055, 111, 094, 061, 123, 118, 108, 088,...

049, 099, 070, 013, 026, 052, 105, 082,...

037, 075, 023, 046, 093, 059, 119, 110,...

092, 057, 115, 102, 076, 025, 050, 101,...

074, 021, 042, 085, 043, 087, 047, 095,...

063, 127, 126, 124, 120, 112, 096, 064];

for ii = 1:128

sram(addr(ii)+1) = clk(ii);
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B Vulcan Encrypt Simulation
%-----------------------------------------------------------

% Vulcan encryption simulation

% 2014-06-12 --- CJR

% inputs: 128-bit SRAM array contents "sram"

% 8-bit CV shift register contents "cv8"

% n-bit plaintext "pti"

% (31-bit ciphertext shift register contents "ctsr")

% outputs: n-bit ciphertext "cto"

% encrypts plaintext into ciphertext using Vulcan cipher

% requires "key schedule" to have been run prior to use

%-----------------------------------------------------------

% check user-supplied inputs for simple errors

if((exist(’sram’) == 0)||(length(sram) != 128))

error("128-bit SRAM array not found -- run key schedule")

end

if((exist(’cv8’) == 0)||(length(cv8) != 8))

error("8-bit CV shift register not found -- run key schedule")

end

if(exist(’pti’) == 0)

error("plaintext input not found -- create some plaintext")

end

if((exist(’ctsr’) == 0)||(length(ctsr) != 31))

ctsr = 1*(rand(1,31)>0.5); % create random initialization vector

end

% set up required variables

last = 0; % last plaintext output bit for differential encoder

cto = zeros(1,length(pti)); % pre-allocate ciphertext output

% process all bits of plaintext input

for ii = 1:length(pti)

% compute the XOR tree results

ct0 = pti(ii);

ct0 = bitxor(ct0,bitand(cv8(1),ctsr(22)));

ct0 = bitxor(ct0,bitand(cv8(2),ctsr(23)));

ct0 = bitxor(ct0,bitand(cv8(3),ctsr(24)));

ct0 = bitxor(ct0,bitand(cv8(4),ctsr(25)));

ct0 = bitxor(ct0,bitand(cv8(5),ctsr(26)));

ct0 = bitxor(ct0,bitand(cv8(6),ctsr(27)));

ct0 = bitxor(ct0,bitand(cv8(7),ctsr(28)));

ct0 = bitxor(ct0,bitand(cv8(8),ctsr(29)));

ct0 = bitxor(ct0,ctsr(30));

% differentially encode and save the output ciphertext bit

cto(ii) = last;

last = bitxor(ct0,last);

% compute the current SRAM address

addr = ctsr(1:7);

addr = addr*[1 2 4 8 16 32 64]’;

addr = addr+1;

% combine SRAM bit with CT21

keyb = sram(addr);

m0 = bitxor(ctsr(21),keyb);

% clock the ciphertext shift-register

ctsr = [ct0 ctsr(1:20) m0 ctsr(22:30)];

end
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C Vulcan Decrypt Simulation
%-----------------------------------------------------------

% Vulcan decryption simulation

% 2014-06-04 --- CJR

% inputs: 128-bit SRAM array contents "sram"

% 8-bit CV shift register contents "cv8"

% n-bit ciphertext "cti"

% outputs: n-bit plaintext "pto"

% > first 31 bits of plaintext will be gibberish

% decrypts ciphertext into plaintext using Vulcan cipher

% requires "key schedule" to have been run prior to use

%-----------------------------------------------------------

% check user-supplied inputs for simple errors

if((exist(’sram’) == 0)||(length(sram) != 128))

error("128-bit SRAM array not found -- run key schedule")

end

if((exist(’cv8’) == 0)||(length(cv8) != 8))

error("8-bit CV shift register not found -- run key schedule")

end

if(exist(’cti’) == 0)

error("ciphertext input not found -- create some ciphertext")

end

% set up required variables

last = 0; % last ciphertext input bit for differential decoder

ctsr = zeros(1,31); % 31-bit ciphertext shift-register

pto = zeros(1,length(cti)); % pre-allocate plaintext output

% process all bits of ciphertext input

for ii = 1:length(cti)

% differentially decode the ciphertext input bit

ct0 = bitxor(cti(ii),last);

last = cti(ii);

% compute the current SRAM address

addr = ctsr(1:7);

addr = addr*[1 2 4 8 16 32 64]’;

addr = addr+1;

% combine SRAM bit with CT21

keyb = sram(addr);

m0 = bitxor(ctsr(21),keyb);

% compute the XOR tree results

pt = ct0;

pt = bitxor(pt,bitand(cv8(1),ctsr(22)));

pt = bitxor(pt,bitand(cv8(2),ctsr(23)));

pt = bitxor(pt,bitand(cv8(3),ctsr(24)));

pt = bitxor(pt,bitand(cv8(4),ctsr(25)));

pt = bitxor(pt,bitand(cv8(5),ctsr(26)));

pt = bitxor(pt,bitand(cv8(6),ctsr(27)));

pt = bitxor(pt,bitand(cv8(7),ctsr(28)));

pt = bitxor(pt,bitand(cv8(8),ctsr(29)));

pt = bitxor(pt,ctsr(30));

% save decrypted plaintext

pto(ii) = pt;

% clock the ciphertext shift-register

ctsr = [ct0 ctsr(1:20) m0 ctsr(22:30)];

end
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D Vulcan Cryptanalysis Simulation
%-----------------------------------------------------------

% Vulcan cryptanalysis simulation

% 2014-07-15 --- CJR

% input: n-bit ciphertext "ct"

% output: 71-bit cryptovariable "cv"

% recovers Vulcan CV from ciphertext assuming all-0 plaintext

%-----------------------------------------------------------

% check user-supplied inputs for simple errors

if(exist(’ct’) == 0)

error("ciphertext not found -- create some ciphertext")

end

% table of 128-bit SRAM contents in terms of 64 CV bits (of 71-bit user CV)

% each row represents the contents of the corresponding SRAM address from 000 to 127

% the columns are user CV bits v70 v69 v68 v67 ... v10 v09 v08 v05

% (note that rows containing more than a single 1 represent parity bits)

% (note that user CV bits v07 v06 v04 v03 v02 v01 v00 are NOT stored in SRAM)

sr = [...

1,0,1,1,1,0,1,0,1,0,0,1,1,1,0,1,1,0,1,0,1,0,0,0,0,1,1,1,0,1,0,0,...

1,1,1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,1,1,0,1,0;...

0,1,0,1,0,1,0,1,1,0,1,1,1,0,0,1,0,1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,...

1,1,0,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0,0,0,0,1,1,1,0,0,1,0,1;...

0,0,1,1,0,0,0,1,0,1,1,1,1,1,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,0,1,1,...

1,1,1,0,0,0,0,1,0,0,1,1,1,0,1,1,0,0,0,1,1,0,0,1,1,1,1,1,0,0,0,0;...

1,0,1,0,1,0,1,0,1,0,1,1,0,1,1,1,0,1,0,1,0,0,1,0,0,1,0,0,0,0,0,1,...

0,0,1,0,1,0,0,0,0,0,1,1,0,1,1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1;...

0,1,0,0,0,0,1,0,1,1,1,0,1,0,1,0,1,1,1,0,1,1,0,0,1,1,0,0,0,1,1,1,...

0,1,0,1,0,0,1,0,0,0,1,1,1,1,1,1,0,0,0,1,0,0,1,1,1,1,1,0,0,0,1,0;...

0,0,1,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,0,1,0,0,1,1,1,1,1,1,1,1,1,0,...

0,1,0,1,1,0,1,0,1,0,0,1,0,1,1,1,0,1,0,0,0,1,0,0,0,1,0,1,1,1,0,0;...

1,1,1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,1,1,0,1,1,0,...

1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,1,1,0,0,0;...

0,1,1,0,0,0,1,0,0,0,0,0,0,1,0,1,1,0,1,0,0,1,0,1,1,1,0,0,1,1,0,1,...

0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,1,1,1,1,0,0,0,0,1,0;...

1,0,0,0,0,0,0,1,0,1,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,1,0,1,1,1,0,...

0,0,1,1,0,1,1,0,0,0,1,1,0,1,1,1,0,0,1,0,0,0,1,1,1,1,0,1,0,1,1,0;...

1,0,1,0,0,0,1,0,1,0,0,1,1,1,1,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,1,1,...

0,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,1,0,0,1;...

0,1,0,1,0,0,0,1,0,0,1,1,1,1,0,0,0,0,1,0,1,1,1,0,1,1,0,1,1,1,0,0,...

1,0,1,1,0,1,1,1,0,1,1,0,0,1,1,0,1,0,1,0,1,0,0,0,0,0,1,0,1,0,1,1;...

0,0,0,0,0,0,0,1,1,0,1,1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,1,1,...

1,1,0,0,0,1,1,0,1,1,1,0,0,0,0,0,1,1,0,1,1,0,1,1,0,1,1,1,0,0,0,1;...

1,1,0,1,1,1,1,1,0,1,0,1,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1,0,1,1,0,1,...

1,1,0,1,1,1,0,1,0,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,1,1,0,0,0,0,1;...

0,1,0,0,1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0,0,0,0,0,1,1,0,0,0,0,1,0,...

0,1,1,0,1,0,0,1,1,1,0,0,0,0,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0;...

1,1,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,1,0,1,1,1,0,1,1,1,1,1,0,...

0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,1,0,0,0,0,1,1,1,1,0,0,1,0,1,1,0;...

1,1,0,1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,1,1,1,0,0,1,1,1,...

1,1,1,0,0,0,0,0,0,1,1,0,0,1,0,1,1,0,1,1,1,1,0,0,1,0,1,0,0,0,0,0;...

0,0,0,0,0,1,1,0,0,0,1,0,1,1,1,1,1,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,...

0,1,1,1,1,1,0,0,0,0,1,0,0,1,1,1,0,1,1,0,0,0,1,1,0,0,1,1,1,1,1,0;...

0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,1,1,1,0,0,...

1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,1,0,1,1,0,1,1,1,1,0,0,1,0,1,0,0;...

1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,1,1,1,1,1,0,1,0,0,1,1,1,0,1,1,0,...

1,0,1,1,0,0,1,1,1,0,1,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,1,1,1,0,0,1;...

0,1,1,1,0,0,0,0,1,0,0,1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0,1,0,...
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0,1,0,0,1,0,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,1;...

0,0,1,1,1,0,0,0,0,1,1,1,0,1,0,1,1,1,1,1,1,1,0,1,1,1,0,0,1,0,0,1,...

0,0,0,0,0,0,1,0,0,1,1,1,1,1,0,1,0,1,1,0,1,1,0,0,0,1,1,1,1,1,1,1;...

0,1,0,1,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,1,0,1,1,1,0,0,0,1,1,0,1,...

1,0,0,0,1,1,0,1,1,1,0,0,1,0,0,0,1,1,1,1,0,1,0,1,1,0,0,0,1,0,0,0;...

1,0,1,1,1,0,0,1,1,1,1,1,1,0,0,0,1,1,1,1,0,1,0,0,0,0,0,0,0,1,1,1,...

0,1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,1,0,0,0,1,1,1,0,1,1,0,0,1,0,0,0;...

0,0,0,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,...

1,0,0,0,1,0,1,0,0,1,1,1,1,0,0,1,0,1,0,1,1,0,1,1,0,1,0,1,0,0,0,0;...

0,0,1,0,0,1,0,0,0,0,1,0,1,0,1,1,1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,1,...

1,1,0,0,0,1,0,0,0,0,1,1,1,1,0,1,1,1,0,0,0,1,1,0,0,1,1,1,1,0,0,0;...

0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,1,0,1,1,0,1,1,0,0,0,1,0,0,0,0,0,0,...

0,0,1,1,0,0,0,0,1,0,0,1,1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,1,0,1,1,1;...

1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,...

0,1,0,1,0,0,1,1,1,1,0,0,1,0,1,0,1,1,0,1,1,0,1,0,1,0,0,0,0,0,0,0;...

0,1,1,0,1,0,0,0,0,1,1,0,1,1,0,1,1,0,0,0,1,0,0,0,1,0,0,1,1,1,0,1,...

1,0,0,0,1,1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0,0,0,1,0,1,1,1,1,0;...

1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1,1,0,0,1,0,1,1,1,0,0,...

1,0,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,1,1,1,0,0;...

0,1,0,0,0,0,1,0,1,0,0,0,0,1,1,0,0,1,0,0,0,1,1,1,0,1,0,0,1,0,0,1,...

0,0,1,0,0,0,0,1,1,1,0,0,1,1,1,1,0,0,1,0,0,0,0,1,0,0,1,1,1,1,0,1;...

1,0,0,1,0,1,1,0,1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,1,1,1,1,...

0,1,0,1,0,0,1,0,1,0,0,0,0,0,1,1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0;...

0,0,1,1,0,1,1,0,0,0,0,0,1,1,0,1,0,1,1,1,0,1,1,1,0,0,1,1,1,0,1,1,...

0,0,1,1,0,1,0,0,1,1,0,1,0,1,1,0,1,1,0,1,0,1,1,0,1,0,1,1,1,0,1,1;...

0,0,0,0,1,0,0,0,0,1,0,1,1,1,0,1,0,1,0,1,1,1,0,1,1,0,0,1,1,0,0,0,...

1,1,1,0,1,0,1,0,0,1,0,0,0,1,1,1,1,1,1,0,0,0,1,0,0,1,1,1,1,1,0,1;...

0,1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,0,1,0,0,1,1,0,0,1,0,1,1,1,0,0,...

1,1,0,1,0,0,1,0,0,1,0,1,1,0,0,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1,0,1;...

0,0,0,1,0,0,1,0,1,1,0,1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,1,...

1,1,1,0,1,0,1,0,0,1,0,1,0,0,0,0,0,1,1,0,1,1,1,1,1,0,1,1,1,0,0,0;...

0,1,1,0,1,1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,1,1,1,1,0,0,0,1,...

1,0,1,1,1,0,0,0,0,0,1,1,0,1,1,0,1,1,0,1,1,1,0,0,0,0,0,1,0,0,0,0;...

0,1,1,0,0,1,0,1,0,1,0,0,1,1,0,0,0,0,0,1,1,1,0,1,1,0,1,1,1,1,0,1,...

0,0,0,1,1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,1,0,1,0,0,1,0,1,1,0,1,1;...

0,0,0,0,1,0,0,1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0,0,0,0,0,1,1,0,0,0,...

0,1,0,0,1,1,0,1,0,0,1,1,1,0,0,0,0,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0;...

0,1,1,1,1,0,1,1,0,0,1,1,0,0,0,0,0,0,0,1,0,1,0,0,0,1,1,0,0,1,0,0,...

1,1,1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0,0,0,0,1,1,0,0,1,1;...

1,1,0,1,0,1,1,0,0,0,0,0,1,0,0,1,0,1,1,0,1,0,1,1,1,0,1,1,0,1,1,1,...

1,1,1,0,0,1,0,0,0,0,0,1,0,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0,1;...

1,1,1,0,1,0,1,0,0,1,1,1,0,1,1,0,0,0,0,1,0,0,1,1,1,1,0,0,0,0,1,0,...

1,1,1,0,1,0,1,0,0,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0,1;...

1,1,1,0,1,0,0,1,0,0,0,0,1,1,0,1,1,0,1,1,0,1,0,1,1,1,0,1,1,0,0,1,...

1,0,1,1,0,0,1,0,0,0,1,0,1,1,0,1,1,1,1,0,1,0,0,0,1,0,0,0,1,1,0,0;...

1,0,0,0,1,0,1,1,1,1,1,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,0,1,1,1,1,1,...

0,0,0,0,1,0,0,1,1,1,0,1,1,0,0,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0,1;...

1,0,1,0,1,1,0,1,1,1,0,0,1,0,1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,1,1,0,...

0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0,0,0,0,1,1,1,0,0,1,0,1,0,1,0;...

0,1,0,1,0,1,1,1,1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0,1,0,...

0,1,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0,0,0,1,0,0,1,1;...

1,1,1,0,0,0,1,0,0,0,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,0,1,0,1,1,1,0,...

1,0,0,1,0,0,0,0,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,1,0,1,0,1,0,0;...

0,0,0,0,0,0,1,0,1,0,0,1,1,0,1,1,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,1,...

1,0,0,0,0,1,0,0,1,1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,0,1,0;...

0,1,0,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0,1,0,1,0,0,1,0,1,1,1,0,0,0,...

0,1,1,1,1,1,1,0,0,1,0,1,1,0,0,0,0,0,0,0,1,1,1,0,0,1,0,1,0,1,0,1;...
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0,1,0,0,1,0,0,0,0,1,0,0,0,1,0,1,0,1,1,1,1,0,0,1,0,1,0,1,0,1,1,1,...

0,0,0,1,1,0,1,0,0,0,1,1,0,0,1,1,1,0,1,0,1,1,0,0,0,1,1,1,0,0,1,1;...

1,0,1,0,0,1,1,0,1,1,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,...

0,0,1,1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,0,1,0,0,0,0,0,0,0;...

1,0,1,1,1,0,1,0,1,0,1,1,1,0,1,1,0,0,1,1,0,0,0,1,1,1,0,1,0,1,0,0,...

1,0,0,0,1,1,1,1,1,1,0,0,0,1,0,0,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0,0;...

0,0,1,1,0,0,0,1,0,1,0,0,1,0,1,0,0,0,1,0,0,0,1,1,0,0,1,0,0,1,0,0,...

1,0,0,1,1,0,0,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0,1,0,1,0,0,1,1,1,1,0;...

0,0,0,1,0,1,0,0,1,1,0,1,1,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,...

0,0,1,0,0,1,1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,0,1,0,0,0,0;...

0,0,1,1,1,1,1,0,0,0,0,1,1,0,1,1,0,1,0,1,0,0,0,0,0,1,1,0,1,1,1,1,...

0,1,1,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,1,1,0,0,1,1,1,1,0,1,1,1;...

1,1,0,1,0,0,0,0,0,1,0,0,1,0,1,1,0,1,0,1,1,0,0,0,0,0,0,1,1,1,1,1,...

1,0,0,0,1,0,0,1,0,1,0,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,1,1,1;...

1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,0,1,1,0,0,1,0,0,0,0,1,0,1,1,1,0,1,...

0,0,1,1,0,0,0,1,0,0,0,0,0,0,1,1,0,1,1,0,1,1,1,1,0,0,1,0,1,0,1,0;...

0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,1,0,1,1,0,1,0,0,1,0,1,1,1,0,0,1,...

1,0,1,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,1,1,1,1,0,0,1;...

0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,...

0,0,0,1,0,0,0,1,0,1,0,0,1,1,1,1,0,0,1,0,1,0,1,1,0,1,1,0,1,0,1,0;...

0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0,0,1,0,1,1,1,0,1,1,0,0,0,1,1,0,...

1,0,1,0,1,1,1,1,0,1,1,0,1,1,1,0,0,1,1,1,1,0,1,0,0,1,0,1,0,0,1,1;...

0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0,0,0,0,0,1,1,...

0,0,0,0,1,0,0,1,1,0,1,0,0,1,1,1,0,0,0,0,0,1,0,1,1,1,1,1,0,1,0,0;...

0,0,0,0,1,1,0,1,1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,1,1,1,1,0,...

0,0,1,1,0,1,1,1,0,0,0,0,0,1,1,0,1,1,0,1,1,0,1,1,1,0,0,0,0,0,1,0;...

1,0,0,0,1,1,0,0,0,0,1,0,0,0,1,1,1,0,0,1,0,0,0,0,1,0,0,1,1,0,1,0,...

1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1;...

1,1,1,1,0,0,1,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,1,1,0,0,0,0,0,1,1,0,...

0,0,0,1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,1,0,1,1,1,0,0,1,1,1,1;...

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;...

0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

37



0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0;...

0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

38



0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0;...

0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0;...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,...

];

% table of all 128 possible values of 8-bit CV shift register

cs = [...

255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 015,...

239, 238, 237, 236, 235, 234, 233, 023, 231, 230, 229, 027, 227, 029, 030, 031,...

223, 222, 221, 220, 219, 218, 217, 039, 215, 214, 213, 043, 211, 045, 046, 047,...

207, 206, 205, 051, 203, 053, 054, 055, 199, 057, 058, 059, 060, 061, 062, 063,...

191, 190, 189, 188, 187, 186, 185, 071, 183, 182, 181, 075, 179, 077, 078, 079,...

175, 174, 173, 083, 171, 085, 086, 087, 167, 089, 090, 091, 092, 093, 094, 095,...

159, 158, 157, 099, 155, 101, 102, 103, 151, 105, 106, 107, 108, 109, 110, 111,...

143, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,...
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];

% differentially decode the ciphertext prior to processing

ctd = abs(diff(ct));

% set up initial conditions

solved = 0; % no solution

outernotdone = 1; % loop flag

ii = 1; % CV shift register table index

while(outernotdone)

% get 8-bit CV shift register candidate from table & convert to binary

v = dec2bin(cs(ii),8);

cv8 = toascii(v)-48;

% set up new blank solution

qqq = zeros(64,65); % augmented solution matrix

rrr = zeros(64,1); % vector of matrix rows that have been filled

innernotdone = 1;

nn = 32; % index of ciphertext bit

while(innernotdone)

% form SRAM addresses

a1 = ctd(nn-8:nn-2)*[64 32 16 8 4 2 1]’;

a2 = ctd(nn-9:nn-3)*[64 32 16 8 4 2 1]’;

a3 = ctd(nn-10:nn-4)*[64 32 16 8 4 2 1]’;

a4 = ctd(nn-11:nn-5)*[64 32 16 8 4 2 1]’;

a5 = ctd(nn-12:nn-6)*[64 32 16 8 4 2 1]’;

a6 = ctd(nn-13:nn-7)*[64 32 16 8 4 2 1]’;

a7 = ctd(nn-14:nn-8)*[64 32 16 8 4 2 1]’;

a8 = ctd(nn-15:nn-9)*[64 32 16 8 4 2 1]’;

a9 = ctd(nn-16:nn-10)*[64 32 16 8 4 2 1]’;

% get SRAM content vectors

v1 = sr(a1+1,:);

v2 = sr(a2+1,:);

v3 = sr(a3+1,:);

v4 = sr(a4+1,:);

v5 = sr(a5+1,:);

v6 = sr(a6+1,:);

v7 = sr(a7+1,:);

v8 = sr(a8+1,:);

v9 = sr(a9+1,:);

% build left side of linear equation describing this ciphertext bit

vv = zeros(1,64);

vv = bitxor(vv,bitand(cv8(1),v1));

vv = bitxor(vv,bitand(cv8(2),v2));

vv = bitxor(vv,bitand(cv8(3),v3));

vv = bitxor(vv,bitand(cv8(4),v4));

vv = bitxor(vv,bitand(cv8(5),v5));

vv = bitxor(vv,bitand(cv8(6),v6));

vv = bitxor(vv,bitand(cv8(7),v7));

vv = bitxor(vv,bitand(cv8(8),v8));

vv = bitxor(vv,v9);

% build right side of linear equation describing this ciphertext bit

% i.e. calculate resulting keystream bit (assuming plaintext was 0)

c = ctd(nn); % (if plaintext was NOT 0, XOR the known plaintext bit here)

c = bitxor(c,bitand(cv8(1),ctd(nn-22)));

c = bitxor(c,bitand(cv8(2),ctd(nn-23)));

c = bitxor(c,bitand(cv8(3),ctd(nn-24)));

c = bitxor(c,bitand(cv8(4),ctd(nn-25)));

c = bitxor(c,bitand(cv8(5),ctd(nn-26)));

c = bitxor(c,bitand(cv8(6),ctd(nn-27)));
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c = bitxor(c,bitand(cv8(7),ctd(nn-28)));

c = bitxor(c,bitand(cv8(8),ctd(nn-29)));

c = bitxor(c,ctd(nn-30));

% build the overall equation

qq = [vv,c];

notdone = 1;

% put the linear equation into the augmented solution matrix

while(notdone)

cc = find(qq==1,1); % column of leftmost 1 in candidate

if(cc==65) % this is an inconsistent solution

ii = ii + 1; % try next CV shift register value

% break out of inner loop

innernotdone = 0;

break;

end

if(!isempty(cc)) % vector was not all 0s

if(rrr(cc)) % this row already exists in the matrix

qq = bitxor(qq, qqq(cc,:));

else % this row does not exist yet

qqq(cc,:) = qq; % save it in the matrix

rrr(cc) = 1; % show this row now full

notdone = 0; % break out of vector loop

end

else % vector was all 0s and is thus of no use to us

notdone = 0; % break out of vector loop

end

end

if(sum(rrr)==64) % have we filled the entire solution matrix

innernotdone = 0; % we are done

outernotdone = 0;

solved = 1; % we have a solution

end

nn = nn + 1; % move on to next ciphertext bit

if(nn>length(ctd)) % have we run out of ciphertext

innernotdone = 0; % we are done

outernotdone = 0;

end

end

end

if(solved) % we have a valid & complete solution matrix

% put the solution matrix in reduced row echelon form

for ii = 64:-1:2 % work up from bottom row to top row

qq = qqq(ii,:); % get row

for jj = ii-1:-1:1 % check all rows above this one

if(qqq(jj,ii)==1) % target row has a 1 in our column

qqq(jj,:) = bitxor(qqq(jj,:),qq); % XOR it out of there

end

end

end

% form & print the final answer

% right-most column of solution matrix holds CV bits 70.69.68.67...10.09.08.05

% cv8 holds CV bits X.01.00.04.03.02.07.06, bits inverted if bin2dec(cv8) > 127

tmp = qqq(:,65)’;

if(cv8*[128 64 32 16 8 4 2 1]’>127) % invert cv8 if necessary

cv8 = bitxor(cv8,ones(1,8));

end

cv = [tmp(1:63) cv8(7:8) tmp(64) cv8(4:6) cv8(2:3)]; % recovered CV
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printf("recovery complete\n");

printf("CV = ");

printf("%d",cv);

printf("\n");

else

printf("full solution not found -- try longer ciphertext input\n");

end
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E DVP Key Loader Firmware Disassembly
internal RAM : $0000..$007F

PIA : $0080..$0083

external RAM : $0100..$01FF

program ROM : $F000..$FFFF

$0080 = port A

7 = keypad function in

6 = display mode out

5 = display write out

4 = external TSC (KID enable) out

3 = internal CTO (ciphertext out) in

2 = internal REX-/CFB+ out = display ID2 out

1 = internal TX-/RX+ out = display ID1 out

0 = internal keyed A+ out = display ID0 out

$0081 = ctrl A

CA2 = external WE- out

$0082 = port B

7 = keypad digit in

6 = internal CTI/PTI (ciphertext/plaintext in) out = display ID7 out

5 = internal key out = scan D out = display ID6 out

4 = scan C out = display ID5 out

3 = internal WE- out = scan B out = display ID4 out

2 = internal clock out = scan A out = display ID3 out

1 = beep out

0 = external key out

$0083 = ctrl B

CB2 = power hold out

xtal = 3.84MHz -> clock = 960KHz -> 80cyc/bit (@12Kbps)

----------------------------------------------

F000 : 0F " " sei

F001 : 86 3B " ;" ldaa #$3B

F003 : 97 83 " " staa CRB

F005 : 86 7F " " ldaa #$7F

F007 : 97 82 " " staa PB

F009 : 86 3F " ?" ldaa #$3F

F00B : 97 83 " " staa CRB

F00D : 7F 00 81 " " clr CRA

F010 : 86 77 " w" ldaa #$77

F012 : 97 80 " " staa PA

F014 : 86 3E " >" ldaa #$3E

F016 : 97 81 " " staa CRA

F018 : 8E 00 7F " " lds #$007F

F01B : BD F3 68 " h" jsr $F368

F01E : BD FF 34 " 4" jsr $FF34

F021 : C6 0C " " ldab #$0C

F023 : D7 66 " f" stab $0066

. . . . . . . . . . . . . . . .

F025 : BD FE 1C " " jsr $FE1C

F028 : D6 80 " " ldab PA

F02A : C4 80 " " andb #$80

F02C : 26 02 "& " bne $F030

F02E : 8A 80 " " oraa #$80

. . . . . . . . . . . . . . . .
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F030 : 44 "D" lsra

F031 : 7C 00 66 "| f" inc $0066

F034 : D6 66 " f" ldab $0066

F036 : C1 10 " " cmpb #$10

F038 : 26 EB "& " bne $F025

F03A : 16 " " tab

F03B : 48 "H" asla

F03C : 54 "T" lsrb

F03D : 54 "T" lsrb

F03E : 84 C0 " " anda #$C0

F040 : C4 06 " " andb #$06

F042 : 97 67 " g" staa $0067

F044 : D7 74 " t" stab $0074

F046 : C6 07 " " ldab #$07

F048 : D7 71 " q" stab $0071

F04A : 96 67 " g" ldaa $0067

F04C : 2B 06 "+ " bmi $F054

F04E : 86 19 " " ldaa #$19

F050 : C6 08 " " ldab #$08

F052 : 20 10 " " bra $F064

----------------------------------------------

F054 : C6 0F " " ldab #$0F

F056 : D7 71 " q" stab $0071

F058 : C6 06 " " ldab #$06

F05A : 84 40 " @" anda #$40

F05C : 27 04 "’ " beq $F062

F05E : 86 0F " " ldaa #$0F

F060 : 20 02 " " bra $F064

----------------------------------------------

F062 : 86 11 " " ldaa #$11

. . . . . . . . . . . . . . . .

F064 : 97 6F " o" staa $006F

F066 : D7 70 " p" stab $0070

F068 : BD FE 25 " %" jsr $FE25

F06B : F6 01 E2 " " ldab $01E2

F06E : 58 "X" aslb

F06F : 58 "X" aslb

F070 : 58 "X" aslb

F071 : 58 "X" aslb

F072 : D7 75 " u" stab $0075

F074 : F6 01 E1 " " ldab $01E1

F077 : C4 0F " " andb #$0F

F079 : DA 75 " u" orab $0075

F07B : 10 " " sba

F07C : 26 3A "&:" bne $F0B8

F07E : B6 01 FD " " ldaa $01FD

F081 : 84 0F " " anda #$0F

F083 : 81 0A " " cmpa #$0A

F085 : 26 31 "&1" bne $F0B8

F087 : C6 81 " " ldab #$81

F089 : D7 68 " h" stab $0068

F08B : BD FE 1C " " jsr $FE1C

F08E : 96 80 " " ldaa PA

F090 : 85 80 " " bita #$80

F092 : 26 1F "& " bne $F0B3

F094 : 7C 00 6B "| k" inc $006B

F097 : CE FF 8E " " ldx #$FF8E All Erased
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F09A : BD F1 C0 " " jsr $F1C0 put table chars in buffer

F09D : 86 EC " " ldaa #$EC

F09F : 97 58 " X" staa $0058

F0A1 : BD F1 70 " p" jsr $F170 write buffer to display

F0A4 : 86 07 " " ldaa #$07

F0A6 : 97 69 " i" staa $0069

F0A8 : BD FB AA " " jsr $FBAA

F0AB : CE 00 80 " " ldx #$0080

F0AE : DF 6C " l" stx $006C

F0B0 : 7E F1 3A "~ :" jmp $F13A

----------------------------------------------

F0B3 : BD F1 D2 " " jsr $F1D2

F0B6 : 20 03 " " bra $F0BB

----------------------------------------------

F0B8 : BD FF 4B " K" jsr $FF4B

. . . . . . . . . . . . . . . .

F0BB : C6 85 " " ldab #$85

F0BD : BD FE 1C " " jsr $FE1C

F0C0 : 86 05 " " ldaa #$05

F0C2 : D6 80 " " ldab PA

F0C4 : C5 80 " " bitb #$80

F0C6 : 27 45 "’E" beq $F10D

. . . . . . . . . . . . . . . .

F0C8 : D6 67 " g" ldab $0067

F0CA : C4 20 " " andb #$20

F0CC : 26 01 "& " bne $F0CF

F0CE : 0E " " cli

. . . . . . . . . . . . . . . .

F0CF : 7F 00 66 " f" clr $0066

F0D2 : 0F " " sei

. . . . . . . . . . . . . . . .

F0D3 : D6 66 " f" ldab $0066

F0D5 : BD FE 1C " " jsr $FE1C

F0D8 : D6 66 " f" ldab $0066

F0DA : C1 0B " " cmpb #$0B

F0DC : 2C 06 ", " bge $F0E4

F0DE : 96 80 " " ldaa PA

F0E0 : 85 80 " " bita #$80

F0E2 : 27 27 "’’" beq $F10B

. . . . . . . . . . . . . . . .

F0E4 : 96 82 " " ldaa PB

F0E6 : 85 80 " " bita #$80

F0E8 : 27 2C "’," beq $F116

F0EA : 96 66 " f" ldaa $0066

F0EC : 91 71 " q" cmpa $0071

F0EE : 27 05 "’ " beq $F0F5

F0F0 : 7C 00 66 "| f" inc $0066

F0F3 : 20 DE " " bra $F0D3

----------------------------------------------

F0F5 : 96 67 " g" ldaa $0067

F0F7 : BD FF 0C " " jsr $FF0C

F0FA : 2B 09 "+ " bmi $F105

F0FC : 01 " " nop

F0FD : 88 10 " " eora #$10

F0FF : 97 67 " g" staa $0067

F101 : 84 10 " " anda #$10

F103 : 27 03 "’ " beq $F108
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. . . . . . . . . . . . . . . .

F105 : BD FE 6C " l" jsr $FE6C

. . . . . . . . . . . . . . . .

F108 : 7E F0 C8 "~ " jmp $F0C8

----------------------------------------------

F10B : 96 66 " f" ldaa $0066

. . . . . . . . . . . . . . . .

F10D : 8A 80 " " oraa #$80

F10F : 97 68 " h" staa $0068

F111 : CE 00 80 " " ldx #$0080

F114 : 20 07 " " bra $F11D

----------------------------------------------

F116 : 96 66 " f" ldaa $0066

F118 : 97 68 " h" staa $0068

F11A : CE 00 82 " " ldx #$0082

. . . . . . . . . . . . . . . .

F11D : 5F "_" clrb

. . . . . . . . . . . . . . . .

F11E : A6 00 " " ldaa $00,x

F120 : 85 80 " " bita #$80

F122 : 26 A4 "& " bne $F0C8

F124 : BD FF 04 " " jsr $FF04

F127 : 5C "\" incb

F128 : C1 FF " " cmpb #$FF

F12A : 26 F2 "& " bne $F11E

F12C : DF 6C " l" stx $006C

F12E : BD F1 53 " S" jsr $F153

F131 : BD FF 19 " " jsr $FF19

F134 : BD F2 12 " " jsr $F212

F137 : BD F3 68 " h" jsr $F368

. . . . . . . . . . . . . . . .

F13A : D6 68 " h" ldab $0068

F13C : BD FE 1C " " jsr $FE1C

. . . . . . . . . . . . . . . .

F13F : 5F "_" clrb

F140 : DE 6C " l" ldx $006C

. . . . . . . . . . . . . . . .

F142 : A6 00 " " ldaa $00,x

F144 : 85 80 " " bita #$80

F146 : 27 F7 "’ " beq $F13F

F148 : BD FF 04 " " jsr $FF04

F14B : 5C "\" incb

F14C : C1 FF " " cmpb #$FF

F14E : 26 F2 "& " bne $F142

F150 : 7E F0 C8 "~ " jmp $F0C8

----------------------------------------------

F153 : 7F 00 66 " f" clr $0066

. . . . . . . . . . . . . . . .

F156 : 7C 00 66 "| f" inc $0066

F159 : 5F "_" clrb

F15A : 96 4C " L" ldaa $004C

F15C : 88 02 " " eora #$02

F15E : 97 82 " " staa PB

F160 : 97 4C " L" staa $004C

. . . . . . . . . . . . . . . .

F162 : C1 0E " " cmpb #$0E

F164 : 27 03 "’ " beq $F169
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F166 : 5C "\" incb

F167 : 20 F9 " " bra $F162

----------------------------------------------

F169 : D6 66 " f" ldab $0066

F16B : C1 80 " " cmpb #$80

F16D : 26 E7 "& " bne $F156

F16F : 39 "9" rts

----------------------------------------------

F170 : CE 00 51 " Q" ldx #$0051 write buffer 51.59 to display

F173 : 86 67 " g" ldaa #$67

F175 : 97 80 " " staa PA enable display

F177 : C6 FD " " ldab #$FD

F179 : D7 82 " " stab PB

F17B : C6 47 " G" ldab #$47

F17D : D7 80 " " stab PA drop dsp write

F17F : 97 80 " " staa PA raise dsp write

. . . . . . . . . . . . . . . .

F181 : A6 00 " " ldaa $00,x get byte from table

F183 : 84 07 " " anda #$07

F185 : 8A 20 " " oraa #$20

F187 : 97 80 " " staa PA save to display

F189 : E6 00 " " ldab $00,x get same byte

F18B : 54 "T" lsrb move as required

F18C : C4 FD " " andb #$FD

F18E : CA 01 " " orab #$01

F190 : D7 82 " " stab PB save to display

F192 : 84 CF " " anda #$CF

F194 : 97 80 " " staa PA

F196 : 8A 20 " " oraa #$20 display write

F198 : 97 80 " " staa PA

F19A : 08 " " inx

F19B : 8C 00 59 " Y" cpx #$0059 done with 8 chars?

F19E : 26 E1 "& " bne $F181

F1A0 : D7 4C " L" stab $004C 4C <- last char

F1A2 : 86 E3 " " ldaa #$E3 a <- 227

F1A4 : D6 67 " g" ldab $0067 b <- (67)

F1A6 : 2A 02 "* " bpl $F1AA

F1A8 : 84 FD " " anda #$FD

. . . . . . . . . . . . . . . .

F1AA : 97 4B " K" staa $004B

F1AC : 97 80 " " staa PA

F1AE : 39 "9" rts

----------------------------------------------

F1AF : CE FF 7E " ~" ldx #$FF7E numbers table

. . . . . . . . . . . . . . . .

F1B2 : 4D "M" tsta a is octal digit

F1B3 : 27 04 "’ " beq $F1B9

F1B5 : 08 " " inx inc table index until digit found

F1B6 : 4A "J" deca

F1B7 : 20 F9 " " bra $F1B2

----------------------------------------------

F1B9 : A6 00 " " ldaa $00,x we have correct index of digit char

F1BB : DE 63 " c" ldx $0063

F1BD : A7 00 " " staa $00,x save digit in display buffer

F1BF : 39 "9" rts

----------------------------------------------

F1C0 : 9F 63 " c" sts $0063 load characters from table to 51.59
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F1C2 : 35 "5" txs

F1C3 : CE 00 51 " Q" ldx #$0051

. . . . . . . . . . . . . . . .

F1C6 : 33 "3" pulb

F1C7 : E7 00 " " stab $00,x

F1C9 : 08 " " inx

F1CA : 8C 00 59 " Y" cpx #$0059

F1CD : 26 F7 "& " bne $F1C6

F1CF : 9E 63 " c" lds $0063

F1D1 : 39 "9" rts

----------------------------------------------

F1D2 : B6 01 C8 " " ldaa $01C8 a <- key#

F1D5 : 84 08 " " anda #$08

F1D7 : 27 12 "’ " beq $F1EB

F1D9 : CE FF B3 " " ldx #$FFB3 Loc?

F1DC : DF 61 " a" stx $0061

F1DE : BD F1 C0 " " jsr $F1C0 put table chars in buffer

F1E1 : 86 80 " " ldaa #$80

F1E3 : 97 56 " V" staa $0056 56 <- 128

F1E5 : 86 01 " " ldaa #$01

F1E7 : 97 72 " r" staa $0072 72 <- 1

F1E9 : 20 23 " #" bra $F20E

----------------------------------------------

F1EB : BD FE 51 " Q" jsr $FE51 x <- 1c0.1c7 based on key#

F1EE : A6 00 " " ldaa $00,x

F1F0 : 27 05 "’ " beq $F1F7

F1F2 : CE FF 96 " " ldx #$FF96 ready

F1F5 : 20 03 " " bra $F1FA

----------------------------------------------

F1F7 : CE FF 8E " " ldx #$FF8E All Erased

. . . . . . . . . . . . . . . .

F1FA : BD F1 C0 " " jsr $F1C0 put table chars in buffer

F1FD : 86 80 " " ldaa #$80

F1FF : 97 51 " Q" staa $0051

F201 : B6 01 FE " " ldaa $01FE get a byte from RAM

F204 : 84 07 " " anda #$07 keep only octal digit

F206 : CE 00 52 " R" ldx #$0052 point to display buffer

F209 : DF 63 " c" stx $0063

F20B : BD F1 AF " " jsr $F1AF convert oct to char

. . . . . . . . . . . . . . . .

F20E : BD F1 70 " p" jsr $F170 write buffer to display

F211 : 39 "9" rts

----------------------------------------------

F212 : 96 68 " h" ldaa $0068

F214 : 2B 34 "+4" bmi $F24A

F216 : D6 6B " k" ldab $006B

F218 : C1 04 " " cmpb #$04

F21A : 27 2A "’*" beq $F246

F21C : F6 01 C8 " " ldab $01C8

F21F : C4 08 " " andb #$08

F221 : 26 23 "&#" bne $F246

F223 : D6 6B " k" ldab $006B

F225 : 27 13 "’ " beq $F23A

F227 : C1 03 " " cmpb #$03

F229 : 27 4A "’J" beq $F275

F22B : 39 "9" rts

----------------------------------------------
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F22C : CE FF 9D " " ldx #$FF9D Load _

F22F : BD F1 C0 " " jsr $F1C0 put table chars in buffer

F232 : BD F1 70 " p" jsr $F170 write buffer to display

F235 : C6 07 " " ldab #$07

F237 : D7 69 " i" stab $0069

F239 : 39 "9" rts

----------------------------------------------

F23A : 85 08 " " bita #$08

F23C : 27 01 "’ " beq $F23F

F23E : 39 "9" rts

----------------------------------------------

F23F : B7 01 FE " " staa $01FE

F242 : BD F1 D2 " " jsr $F1D2

F245 : 39 "9" rts

----------------------------------------------

F246 : BD FD AF " " jsr $FDAF

F249 : 39 "9" rts

----------------------------------------------

F24A : CE F2 5D " ]" ldx #$F25D

F24D : 84 7F " " anda #$7F

. . . . . . . . . . . . . . . .

F24F : 27 06 "’ " beq $F257

F251 : 08 " " inx

F252 : 08 " " inx

F253 : 08 " " inx

F254 : 4A "J" deca

F255 : 20 F8 " " bra $F24F

----------------------------------------------

F257 : AD 00 " " jsr $00,x

F259 : BD F1 70 " p" jsr $F170 write buffer to display

F25C : 39 "9" rts

----------------------------------------------

F25D : 7E F3 B5 "~ " jmp $F3B5

----------------------------------------------

F260 : 7E F4 65 "~ e" jmp $F465

----------------------------------------------

F263 : 7E F4 C5 "~ " jmp $F4C5

----------------------------------------------

F266 : 7E F3 57 "~ W" jmp $F357

----------------------------------------------

F269 : 7E F5 7B "~ {" jmp $F57B

----------------------------------------------

F26C : 7E F5 9E "~ " jmp $F59E !keyload!

----------------------------------------------

F26F : 7E F3 68 "~ h" jmp $F368

----------------------------------------------

F272 : 7E F3 7C "~ |" jmp $F37C

----------------------------------------------

F275 : 96 6E " n" ldaa $006E

F277 : 26 1A "& " bne $F293

F279 : 96 68 " h" ldaa $0068

F27B : 85 08 " " bita #$08

F27D : 27 01 "’ " beq $F280

F27F : 39 "9" rts

----------------------------------------------

F280 : 7F 00 00 " " clr $0000

F283 : 7F 00 01 " " clr $0001
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F286 : B7 01 FE " " staa $01FE

F289 : CE 00 02 " " ldx #$0002

F28C : DF 4D " M" stx $004D

F28E : 7F 00 6A " j" clr $006A

F291 : 20 0D " " bra $F2A0

----------------------------------------------

F293 : 96 6E " n" ldaa $006E

F295 : 91 6F " o" cmpa $006F

F297 : 26 01 "& " bne $F29A

F299 : 39 "9" rts

----------------------------------------------

F29A : 96 69 " i" ldaa $0069

F29C : 91 70 " p" cmpa $0070

F29E : 26 12 "& " bne $F2B2

. . . . . . . . . . . . . . . .

F2A0 : BD FE CD " " jsr $FECD

F2A3 : 7C 00 6A "| j" inc $006A

F2A6 : 96 6A " j" ldaa $006A

F2A8 : 08 " " inx

F2A9 : DF 63 " c" stx $0063

F2AB : BD F1 AF " " jsr $F1AF convert oct to char

F2AE : 86 02 " " ldaa #$02

F2B0 : 97 69 " i" staa $0069

. . . . . . . . . . . . . . . .

F2B2 : 96 6E " n" ldaa $006E

F2B4 : 27 1B "’ " beq $F2D1

F2B6 : DE 4D " M" ldx $004D

F2B8 : 96 68 " h" ldaa $0068

F2BA : A7 00 " " staa $00,x

F2BC : 08 " " inx

F2BD : DF 4D " M" stx $004D

F2BF : BD FE 60 " ‘" jsr $FE60

F2C2 : DF 63 " c" stx $0063

F2C4 : 96 68 " h" ldaa $0068

F2C6 : BD F1 AF " " jsr $F1AF convert oct to char

F2C9 : 96 67 " g" ldaa $0067

F2CB : 84 C0 " " anda #$C0

F2CD : 81 80 " " cmpa #$80

F2CF : 27 4D "’M" beq $F31E

. . . . . . . . . . . . . . . .

F2D1 : BD FF 0D " " jsr $FF0D

F2D4 : 96 6E " n" ldaa $006E

F2D6 : 91 6F " o" cmpa $006F

F2D8 : 26 37 "&7" bne $F311

F2DA : 96 6A " j" ldaa $006A

F2DC : 81 04 " " cmpa #$04

F2DE : 26 31 "&1" bne $F311

F2E0 : 96 67 " g" ldaa $0067

F2E2 : 84 C0 " " anda #$C0

F2E4 : 81 C0 " " cmpa #$C0

F2E6 : 26 0C "& " bne $F2F4

F2E8 : 96 54 " T" ldaa $0054

F2EA : 84 7F " " anda #$7F

F2EC : 97 54 " T" staa $0054

F2EE : 86 80 " " ldaa #$80

F2F0 : 97 55 " U" staa $0055

F2F2 : 20 1D " " bra $F311
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----------------------------------------------

F2F4 : 96 68 " h" ldaa $0068

F2F6 : 84 04 " " anda #$04

F2F8 : 27 11 "’ " beq $F30B

F2FA : 7A 00 6E "z n" dec $006E

F2FD : 7A 00 69 "z i" dec $0069

F300 : DE 4D " M" ldx $004D

F302 : 09 " " dex

F303 : DF 4D " M" stx $004D

F305 : 86 CF " " ldaa #$CF

F307 : 97 58 " X" staa $0058

F309 : 20 06 " " bra $F311

----------------------------------------------

F30B : 96 58 " X" ldaa $0058

F30D : 84 7F " " anda #$7F

F30F : 97 58 " X" staa $0058

. . . . . . . . . . . . . . . .

F311 : BD F1 70 " p" jsr $F170 write buffer to display

F314 : 96 6E " n" ldaa $006E

F316 : 81 01 " " cmpa #$01

F318 : 26 03 "& " bne $F31D

F31A : 7A 00 69 "z i" dec $0069

. . . . . . . . . . . . . . . .

F31D : 39 "9" rts

----------------------------------------------

F31E : 96 6E " n" ldaa $006E

F320 : 84 01 " " anda #$01

F322 : 26 14 "& " bne $F338

F324 : BD FE 0D " " jsr $FE0D

F327 : D6 00 " " ldab $0000

F329 : C4 01 " " andb #$01

F32B : 26 15 "& " bne $F342

F32D : DE 4D " M" ldx $004D

F32F : 09 " " dex

F330 : DF 4D " M" stx $004D

F332 : 96 01 " " ldaa $0001

F334 : 97 00 " " staa $0000

F336 : 20 0D " " bra $F345

----------------------------------------------

F338 : 7F 00 00 " " clr $0000

F33B : BD FE 0D " " jsr $FE0D

F33E : 96 00 " " ldaa $0000

F340 : 97 01 " " staa $0001

. . . . . . . . . . . . . . . .

F342 : BD FF 0D " " jsr $FF0D

. . . . . . . . . . . . . . . .

F345 : 96 6E " n" ldaa $006E

F347 : 91 6F " o" cmpa $006F

F349 : 26 C6 "& " bne $F311

F34B : 96 56 " V" ldaa $0056

F34D : 84 7F " " anda #$7F

F34F : 97 56 " V" staa $0056

F351 : 86 80 " " ldaa #$80

F353 : 97 57 " W" staa $0057

F355 : 20 BA " " bra $F311

----------------------------------------------

F357 : B6 01 C8 " " ldaa $01C8
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F35A : 84 08 " " anda #$08

F35C : 9A 6B " k" oraa $006B

F35E : 26 07 "& " bne $F367

F360 : 86 03 " " ldaa #$03

F362 : 97 6B " k" staa $006B

F364 : BD F2 2C " ," jsr $F22C

. . . . . . . . . . . . . . . .

F367 : 39 "9" rts

----------------------------------------------

F368 : 4F "O" clra

F369 : 97 4F " O" staa $004F

F36B : 97 50 " P" staa $0050

F36D : 96 68 " h" ldaa $0068

F36F : 81 87 " " cmpa #$87

F371 : 27 08 "’ " beq $F37B

F373 : B6 01 C8 " " ldaa $01C8

F376 : 84 FD " " anda #$FD

F378 : B7 01 C8 " " staa $01C8

. . . . . . . . . . . . . . . .

F37B : 39 "9" rts

----------------------------------------------

F37C : B6 01 C8 " " ldaa $01C8

F37F : 84 08 " " anda #$08

F381 : 9A 6B " k" oraa $006B

F383 : 27 01 "’ " beq $F386

F385 : 39 "9" rts

----------------------------------------------

F386 : B6 01 C8 " " ldaa $01C8

F389 : 84 04 " " anda #$04

F38B : 27 09 "’ " beq $F396

F38D : 86 06 " " ldaa #$06

F38F : B7 01 C8 " " staa $01C8

F392 : BD F1 D2 " " jsr $F1D2

F395 : 39 "9" rts

----------------------------------------------

F396 : 4F "O" clra

F397 : CE 01 C0 " " ldx #$01C0

. . . . . . . . . . . . . . . .

F39A : AA 00 " " oraa $00,x

F39C : 84 0F " " anda #$0F

F39E : 8C 01 C8 " " cpx #$01C8

F3A1 : 27 03 "’ " beq $F3A6

F3A3 : 08 " " inx

F3A4 : 20 F4 " " bra $F39A

----------------------------------------------

F3A6 : 4D "M" tsta

F3A7 : 27 01 "’ " beq $F3AA

F3A9 : 39 "9" rts

----------------------------------------------

F3AA : 7F 00 72 " r" clr $0072

F3AD : 86 04 " " ldaa #$04

F3AF : 97 6B " k" staa $006B

F3B1 : BD FD AF " " jsr $FDAF

F3B4 : 39 "9" rts

----------------------------------------------

F3B5 : 96 6B " k" ldaa $006B

F3B7 : 27 2B "’+" beq $F3E4
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F3B9 : 81 04 " " cmpa #$04

F3BB : 27 4E "’N" beq $F40B

F3BD : 81 03 " " cmpa #$03

F3BF : 27 05 "’ " beq $F3C6

F3C1 : 81 01 " " cmpa #$01

F3C3 : 27 22 "’"" beq $F3E7

F3C5 : 39 "9" rts

----------------------------------------------

F3C6 : 96 6E " n" ldaa $006E

F3C8 : 26 01 "& " bne $F3CB

F3CA : 39 "9" rts

----------------------------------------------

F3CB : 91 6F " o" cmpa $006F

F3CD : 27 1F "’ " beq $F3EE

F3CF : BD FE 51 " Q" jsr $FE51 x <- 1c0.1c7 based on key#

F3D2 : 6F 00 "o " clr $00,x

F3D4 : BD FE E7 " " jsr $FEE7 63.64 <- ram addr of 24-digit key

F3D7 : DE 63 " c" ldx $0063

F3D9 : 4F "O" clra

. . . . . . . . . . . . . . . .

F3DA : 6F 00 "o " clr $00,x

F3DC : 4C "L" inca

F3DD : 08 " " inx

F3DE : 81 18 " " cmpa #$18

F3E0 : 26 F8 "& " bne $F3DA

F3E2 : 20 20 " " bra $F404

----------------------------------------------

F3E4 : 7E F4 30 "~ 0" jmp $F430

----------------------------------------------

F3E7 : BD FF 4B " K" jsr $FF4B

F3EA : 7F 00 6B " k" clr $006B

F3ED : 39 "9" rts

----------------------------------------------

F3EE : BD FE E7 " " jsr $FEE7 63.64 <- ram addr of 24-digit key

F3F1 : 86 18 " " ldaa #$18

F3F3 : CE 00 02 " " ldx #$0002

F3F6 : DF 61 " a" stx $0061

F3F8 : DE 63 " c" ldx $0063

F3FA : BD FF 3C " <" jsr $FF3C

F3FD : BD FE 51 " Q" jsr $FE51 x <- 1c0.1c7 based on key#

F400 : 6F 00 "o " clr $00,x

F402 : 6C 00 "l " inc $00,x

. . . . . . . . . . . . . . . .

F404 : BD FF 34 " 4" jsr $FF34

F407 : BD F1 D2 " " jsr $F1D2

F40A : 39 "9" rts

----------------------------------------------

F40B : 96 72 " r" ldaa $0072

F40D : 84 07 " " anda #$07

F40F : 81 01 " " cmpa #$01

F411 : 22 01 "" " bhi $F414

F413 : 39 "9" rts

----------------------------------------------

F414 : 86 06 " " ldaa #$06

F416 : CE 00 02 " " ldx #$0002

F419 : DF 61 " a" stx $0061

F41B : CE 01 C9 " " ldx #$01C9
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F41E : BD FF 3C " <" jsr $FF3C

F421 : 86 0C " " ldaa #$0C

F423 : D6 72 " r" ldab $0072

F425 : F7 01 E0 " " stab $01E0

. . . . . . . . . . . . . . . .

F428 : 7F 00 72 " r" clr $0072

F42B : B7 01 C8 " " staa $01C8

F42E : 20 D4 " " bra $F404

----------------------------------------------

F430 : B6 01 C8 " " ldaa $01C8

F433 : 84 08 " " anda #$08

F435 : 26 01 "& " bne $F438

F437 : 39 "9" rts

----------------------------------------------

F438 : 9F 63 " c" sts $0063

F43A : 8E 01 C8 " " lds #$01C8

F43D : CE 00 02 " " ldx #$0002

. . . . . . . . . . . . . . . .

F440 : 33 "3" pulb

F441 : E0 00 " " subb $00,x

F443 : C4 0F " " andb #$0F

F445 : 26 15 "& " bne $F45C

F447 : 08 " " inx

F448 : 8C 00 08 " " cpx #$0008

F44B : 26 F3 "& " bne $F440

F44D : 9E 63 " c" lds $0063

F44F : F6 01 E0 " " ldab $01E0

F452 : C4 07 " " andb #$07

F454 : D1 72 " r" cmpb $0072

F456 : 26 04 "& " bne $F45C

F458 : 86 04 " " ldaa #$04

F45A : 20 CC " " bra $F428

----------------------------------------------

F45C : 9E 63 " c" lds $0063

F45E : 7F 00 72 " r" clr $0072

F461 : BD F1 D2 " " jsr $F1D2

F464 : 39 "9" rts

----------------------------------------------

F465 : B6 01 C8 " " ldaa $01C8

F468 : 84 08 " " anda #$08

F46A : 26 0C "& " bne $F478

F46C : 96 6B " k" ldaa $006B

F46E : 27 08 "’ " beq $F478

F470 : 81 03 " " cmpa #$03

F472 : 27 18 "’ " beq $F48C

F474 : 81 04 " " cmpa #$04

F476 : 27 07 "’ " beq $F47F

. . . . . . . . . . . . . . . .

F478 : BD FF 34 " 4" jsr $FF34

F47B : BD F1 D2 " " jsr $F1D2

F47E : 39 "9" rts

----------------------------------------------

F47F : D6 72 " r" ldab $0072

F481 : C1 01 " " cmpb #$01

F483 : 27 F3 "’ " beq $F478

F485 : 7F 00 72 " r" clr $0072

F488 : BD FD AF " " jsr $FDAF
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F48B : 39 "9" rts

----------------------------------------------

F48C : 96 6E " n" ldaa $006E

F48E : 26 02 "& " bne $F492

F490 : 20 E6 " " bra $F478

----------------------------------------------

F492 : 96 69 " i" ldaa $0069

F494 : 81 02 " " cmpa #$02

F496 : 26 07 "& " bne $F49F

F498 : 7F 00 6E " n" clr $006E

F49B : BD F2 2C " ," jsr $F22C

F49E : 39 "9" rts

----------------------------------------------

F49F : D6 69 " i" ldab $0069

F4A1 : C0 02 " " subb #$02

F4A3 : 96 6E " n" ldaa $006E

F4A5 : 10 " " sba

F4A6 : 97 6E " n" staa $006E

F4A8 : BD FF 65 " e" jsr $FF65

F4AB : CE 00 53 " S" ldx #$0053

F4AE : 86 80 " " ldaa #$80

. . . . . . . . . . . . . . . .

F4B0 : A7 00 " " staa $00,x

F4B2 : 8C 00 58 " X" cpx #$0058

F4B5 : 27 03 "’ " beq $F4BA

F4B7 : 08 " " inx

F4B8 : 20 F6 " " bra $F4B0

----------------------------------------------

F4BA : 4C "L" inca

F4BB : 97 53 " S" staa $0053

F4BD : BD F1 70 " p" jsr $F170 write buffer to display

F4C0 : 86 02 " " ldaa #$02

F4C2 : 97 69 " i" staa $0069

F4C4 : 39 "9" rts

----------------------------------------------

F4C5 : B6 01 C8 " " ldaa $01C8

F4C8 : 84 08 " " anda #$08

F4CA : 27 01 "’ " beq $F4CD

F4CC : 39 "9" rts

----------------------------------------------

F4CD : 96 6B " k" ldaa $006B

F4CF : 81 04 " " cmpa #$04

F4D1 : 26 01 "& " bne $F4D4

F4D3 : 39 "9" rts

----------------------------------------------

F4D4 : 81 03 " " cmpa #$03

F4D6 : 27 12 "’ " beq $F4EA

F4D8 : 81 01 " " cmpa #$01

F4DA : 26 01 "& " bne $F4DD

F4DC : 39 "9" rts

----------------------------------------------

F4DD : B6 01 FE " " ldaa $01FE

F4E0 : 4C "L" inca

F4E1 : 84 07 " " anda #$07

F4E3 : B7 01 FE " " staa $01FE

F4E6 : BD F1 D2 " " jsr $F1D2

F4E9 : 39 "9" rts

55



----------------------------------------------

F4EA : 96 6E " n" ldaa $006E

F4EC : 27 05 "’ " beq $F4F3

F4EE : 91 6F " o" cmpa $006F

F4F0 : 27 14 "’ " beq $F506

F4F2 : 39 "9" rts

----------------------------------------------

F4F3 : B6 01 FE " " ldaa $01FE

F4F6 : 4C "L" inca

F4F7 : 84 07 " " anda #$07

F4F9 : B7 01 FE " " staa $01FE

F4FC : 97 68 " h" staa $0068

F4FE : BD F2 75 " u" jsr $F275

F501 : 86 82 " " ldaa #$82

F503 : 97 68 " h" staa $0068

F505 : 39 "9" rts

----------------------------------------------

F506 : BD FE CD " " jsr $FECD

F509 : 96 6A " j" ldaa $006A

F50B : 81 04 " " cmpa #$04

F50D : 26 03 "& " bne $F512

F50F : 7F 00 6A " j" clr $006A

. . . . . . . . . . . . . . . .

F512 : 96 6A " j" ldaa $006A

F514 : 4C "L" inca

F515 : 97 6A " j" staa $006A

F517 : CE 00 52 " R" ldx #$0052

F51A : DF 63 " c" stx $0063

F51C : BD F1 AF " " jsr $F1AF convert oct to char

F51F : BD FF 65 " e" jsr $FF65

F522 : CE 00 53 " S" ldx #$0053

F525 : DF 63 " c" stx $0063

F527 : D6 67 " g" ldab $0067

F529 : 2B 05 "+ " bmi $F530

F52B : CE 00 58 " X" ldx #$0058

F52E : 20 03 " " bra $F533

----------------------------------------------

F530 : CE 00 56 " V" ldx #$0056

. . . . . . . . . . . . . . . .

F533 : DF 61 " a" stx $0061

F535 : DE 4D " M" ldx $004D

. . . . . . . . . . . . . . . .

F537 : A6 00 " " ldaa $00,x

F539 : BD F1 AF " " jsr $F1AF convert oct to char

F53C : 9C 61 " a" cpx $0061

F53E : 27 14 "’ " beq $F554

F540 : 08 " " inx

F541 : DF 63 " c" stx $0063

F543 : DE 4D " M" ldx $004D

F545 : 08 " " inx

F546 : DF 4D " M" stx $004D

F548 : 20 ED " " bra $F537

----------------------------------------------

F54A : A6 00 " " ldaa $00,x

F54C : 84 7F " " anda #$7F

F54E : A7 00 " " staa $00,x

F550 : BD F1 70 " p" jsr $F170 write buffer to display
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F553 : 39 "9" rts

----------------------------------------------

F554 : D6 67 " g" ldab $0067

F556 : C4 C0 " " andb #$C0

F558 : C1 C0 " " cmpb #$C0

F55A : 26 EE "& " bne $F54A

F55C : 86 06 " " ldaa #$06

F55E : 97 69 " i" staa $0069

F560 : D6 6A " j" ldab $006A

F562 : C1 04 " " cmpb #$04

F564 : 26 E4 "& " bne $F54A

F566 : 86 04 " " ldaa #$04

F568 : 97 69 " i" staa $0069

F56A : C6 80 " " ldab #$80

F56C : D7 55 " U" stab $0055

F56E : D7 56 " V" stab $0056

F570 : DE 4D " M" ldx $004D

F572 : 09 " " dex

F573 : 09 " " dex

F574 : DF 4D " M" stx $004D

F576 : CE 00 54 " T" ldx #$0054

F579 : 20 CF " " bra $F54A

----------------------------------------------

F57B : B6 01 C8 " " ldaa $01C8

F57E : 85 02 " " bita #$02

F580 : 27 05 "’ " beq $F587

F582 : 86 0C " " ldaa #$0C

F584 : B7 01 C8 " " staa $01C8

. . . . . . . . . . . . . . . .

F587 : B6 01 DF " " ldaa $01DF

F58A : 84 0F " " anda #$0F

F58C : 81 0F " " cmpa #$0F

F58E : 27 03 "’ " beq $F593

F590 : 7F 01 DF " " clr $01DF

. . . . . . . . . . . . . . . .

F593 : BD FE 25 " %" jsr $FE25

F596 : BD FE 46 " F" jsr $FE46

F599 : 86 37 " 7" ldaa #$37

F59B : 97 83 " " staa CRB

F59D : 39 "9" rts

----------------------------------------------

F59E : B6 01 C8 " " ldaa $01C8 !start of keyload! get key#

F5A1 : 84 08 " " anda #$08

F5A3 : 9A 6B " k" oraa $006B

F5A5 : 27 01 "’ " beq $F5A8 check for valid key

F5A7 : 39 "9" rts

----------------------------------------------

F5A8 : BD FE 51 " Q" jsr $FE51 x <- 1C0.1C7 based on key#

F5AB : A6 00 " " ldaa $00,x

F5AD : 26 01 "& " bne $F5B0 ?another valid key check?

F5AF : 39 "9" rts

----------------------------------------------

F5B0 : BD F1 D2 " " jsr $F1D2 display something

F5B3 : BD FE E7 " " jsr $FEE7 63.64 <- ram addr of 24-digit key

F5B6 : 96 67 " g" ldaa $0067

F5B8 : 2A 03 "* " bpl $F5BD another check of some sort

F5BA : 7E F9 1A "~ " jmp $F91A
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----------------------------------------------

F5BD : 7F 00 00 " " clr $0000 clear parity

F5C0 : 86 15 " " ldaa #$15

F5C2 : 97 66 " f" staa $0066 66 <- 21

F5C4 : DE 63 " c" ldx $0063 63.64 holds key address 24 oct digits

. . . . . . . . . . . . . . . .

F5C6 : BD F7 0A " " jsr $F70A get 1 digit of key & put in buffer

F5C9 : 08 " " inx

F5CA : 7A 00 66 "z f" dec $0066

F5CD : 26 F7 "& " bne $F5C6 put 1st 21 key digs (63 bits) in buffer

F5CF : C6 01 " " ldab #$01

F5D1 : BD F7 0C " " jsr $F70C put 64th key bit in 51.58 (1b)

F5D4 : BD F7 1E " " jsr $F71E put next 2 bits of 22nd dig in 65 (2b)

F5D7 : BD F7 1E " " jsr $F71E

F5DA : BD F7 1B " " jsr $F71B put 23rd oct key digit in 65 (3b)

F5DD : BD F7 1E " " jsr $F71E

F5E0 : BD F7 1E " " jsr $F71E

F5E3 : BD F7 1B " " jsr $F71B put 24th oct key digit in 65 (2b)

F5E6 : BD F7 1E " " jsr $F71E 65 now has 7 last bits of key

F5E9 : 74 00 65 "t e" lsr $0065 0 fill at msb / b has 1s count 0.7

F5EC : C1 03 " " cmpb #$03 more than 3 of 7 1s?

F5EE : 2E 03 ". " bgt $F5F3

F5F0 : 73 00 65 "s e" com $0065 fewer than 3 1s, invert all 8 bits

. . . . . . . . . . . . . . . .

F5F3 : C6 40 " @" ldab #$40 b <- 64 to clear out 59.60

. . . . . . . . . . . . . . . .

F5F5 : BD F7 3F " ?" jsr $F73F put 0 bit in 59.60 (clear parity reg)

F5F8 : 5A "Z" decb

F5F9 : 26 FA "& " bne $F5F5

F5FB : 9F 61 " a" sts $0061 save present sp

F5FD : C6 40 " @" ldab #$40 count 64 bits

. . . . . . . . . . . . . . . .

F5FF : 9E 61 " a" lds $0061 get saved sp

F601 : 96 58 " X" ldaa $0058 get oldest bit from 51.58

F603 : 46 "F" rora save as newest (rotate entire reg)

F604 : BD F7 26 " &" jsr $F726 put key bit in 51.58

F607 : 49 "I" rola key bit in lsb of a

F608 : BD F7 3F " ?" jsr $F73F put 0 in 59.60 & get oldest bit out

F60B : 89 00 " " adca #$00 we are encoding key bits here

F60D : 46 "F" rora c <- k+p

F60E : 24 11 "$ " bcc $F621 k+p was 0 so shift only

F610 : 8E F9 07 " " lds #$F907 tab:52009BF1ED40EAC2 (bit was 1)

F613 : CE 00 59 " Y" ldx #$0059

. . . . . . . . . . . . . . . .

F616 : 32 "2" pula get byte from table

F617 : A8 00 " " eora $00,x xor into 59.60

F619 : A7 00 " " staa $00,x put taps from table into parity reg

F61B : 08 " " inx next byte

F61C : 8C 00 61 " a" cpx #$0061 do 8 bytes (59.60)

F61F : 26 F5 "& " bne $F616

. . . . . . . . . . . . . . . .

F621 : 5A "Z" decb dec bit cnt

F622 : 26 DB "& " bne $F5FF encode all 64 bits of key

F624 : D6 00 " " ldab $0000 get parity bit

F626 : C4 80 " " andb #$80

F628 : DA 59 " Y" orab $0059

F62A : D7 59 " Y" stab $0059 save parity bit @ msb of 59.60
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F62C : 8E F8 E2 " " lds #$F8E2 tab:8220D745D75AE75C086D6D7242440930D5404719

F62F : CE 00 02 " " ldx #$0002 x <- 2 (start)

. . . . . . . . . . . . . . . .

F632 : 86 04 " " ldaa #$04

F634 : 97 66 " f" staa $0066 66 <- 4 dibits per byte

F636 : 32 "2" pula get table byte

. . . . . . . . . . . . . . . .

F637 : C6 60 " ‘" ldab #$60 fill 02.50 with 18/58/98/D8

F639 : 46 "F" rora this probably sets up cti

F63A : 56 "V" rorb call these data bytes

F63B : 46 "F" rora we fill 79 bytes here

F63C : 56 "V" rorb solely from lookup table

F63D : E7 00 " " stab $00,x 1st 80 bits cti is in bit 6 (40)

F63F : 08 " " inx next 56 bits cti is in bit 7 (80)

F640 : 8C 00 51 " Q" cpx #$0051 (end)

F643 : 27 07 "’ " beq $F64C

F645 : 7A 00 66 "z f" dec $0066

F648 : 26 ED "& " bne $F637

F64A : 20 E6 " " bra $F632

----------------------------------------------

F64C : 9E 61 " a" lds $0061 get saved sp

F64E : 86 01 " " ldaa #$01

F650 : 97 73 " s" staa $0073 73 <- 01 (mask)

F652 : CE 00 51 " Q" ldx #$0051

F655 : DF 00 " " stx $0000 0 <- 0051 (end+1)

F657 : CE F8 F6 " " ldx #$F8F6 tab:7F9FD76197518306

F65A : DF 63 " c" stx $0063 63 <- table

F65C : CE 00 16 " " ldx #$0016 x <- 0016 (start) save to 16.50

F65F : BD F7 58 " X" jsr $F758 encode key/par into 59 data bytes

F662 : 86 02 " " ldaa #$02 1st 59 bytes k/p is in bit 0 (01)

F664 : 97 73 " s" staa $0073 73 <- 02 (mask)

F666 : CE 00 47 " G" ldx #$0047

F669 : DF 00 " " stx $0000 0 <- 0047 (end+1) save to 02.46

F66B : CE F8 FE " " ldx #$F8FE tab:E3362921A745CC2A00

F66E : DF 63 " c" stx $0063 63 <- table

F670 : CE 00 02 " " ldx #$0002 x <- 0002 (start)

F673 : BD F7 58 " X" jsr $F758 encode key/par into 69 data bytes

F676 : 08 " " inx x <- 0048 (start) {we did 128b so far}

F677 : C6 08 " " ldab #$08 encode 8 leftover key bits from 65

. . . . . . . . . . . . . . . . next 69 bytes k/p is in bit 1 (02)

F679 : 08 " " inx save to 49.50 in bit 1 (02)

F67A : 76 00 65 "v e" ror $0065 get key bit

F67D : 24 06 "$ " bcc $F685 note: we created 2 null bits above (inx)

F67F : A6 00 " " ldaa $00,x get existing data byte

F681 : 8A 02 " " oraa #$02 or in key bit

F683 : A7 00 " " staa $00,x save new data byte

. . . . . . . . . . . . . . . .

F685 : 5A "Z" decb

F686 : 26 F1 "& " bne $F679

F688 : CE 00 02 " " ldx #$0002 x <- 0002 (start)

. . . . . . . . . . . . . . . .

F68B : A6 00 " " ldaa $00,x move & rotate 22 data bytes

F68D : 46 "F" rora 02.17 -> 51.66

F68E : A7 4F " O" staa $4F,x

F690 : 08 " " inx

F691 : 8C 00 18 " " cpx #$0018 (end)

F694 : 26 F5 "& " bne $F68B
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F696 : 86 E2 " " ldaa #$E2

F698 : 97 80 " " staa PA

F69A : 86 01 " " ldaa #$01

F69C : 97 73 " s" staa $0073 73 <- 01 (key)

F69E : 86 40 " @" ldaa #$40

F6A0 : 97 75 " u" staa $0075 75 <- 40 (cti)

F6A2 : CE 00 51 " Q" ldx #$0051

F6A5 : DF 00 " " stx $0000 0 <- 0051 (end+1)

F6A7 : CE 00 00 " " ldx #$0000 x <- 0000 (start)

F6AA : BD F7 8B " " jsr $F78B send key & cti to hybrid (81 bits)

F6AD : 86 02 " " ldaa #$02 we sent 00.50cti/16.66key

F6AF : 97 73 " s" staa $0073 73 <- 02 (key)

F6B1 : 86 80 " " ldaa #$80

F6B3 : 97 75 " u" staa $0075 75 <- 80 (cti)

F6B5 : CE 00 3A " :" ldx #$003A

F6B8 : DF 00 " " stx $0000 0 <- 003A (end+1)

F6BA : CE 00 02 " " ldx #$0002 x <- 0002 (start)

F6BD : BD F7 8B " " jsr $F78B send key & cti to hybrid (56 bits)

F6C0 : A6 00 " " ldaa $00,x (003A) we sent 02.39cti/18.4Fkey

F6C2 : 84 80 " " anda #$80

F6C4 : 27 02 "’ " beq $F6C8

F6C6 : 86 40 " @" ldaa #$40 cti

. . . . . . . . . . . . . . . .

F6C8 : E6 16 " " ldab $16,x (0050)

F6CA : C4 02 " " andb #$02

F6CC : 27 02 "’ " beq $F6D0

F6CE : 8A 20 " " oraa #$20 key

. . . . . . . . . . . . . . . .

F6D0 : 8A 08 " " oraa #$08 we-

F6D2 : 97 82 " " staa PB send key & cti to hybrid (1 bit)

F6D4 : 01 " " nop we have now sent 138 bits total (1st 2 were dummy)

F6D5 : 01 " " nop

F6D6 : 88 04 " " eora #$04 toggle clk

F6D8 : 97 82 " " staa PB

F6DA : 86 F0 " " ldaa #$F0

F6DC : 97 80 " " staa PA

F6DE : CE 03 E8 " " ldx #$03E8 x <- 1000

F6E1 : BD FB F0 " " jsr $FBF0

F6E4 : 86 08 " " ldaa #$08 we-

F6E6 : 97 82 " " staa PB

F6E8 : BD F7 A7 " " jsr $F7A7

F6EB : 88 04 " " eora #$04

F6ED : 97 82 " " staa PB

F6EF : C6 F1 " " ldab #$F1

F6F1 : D7 80 " " stab PA

F6F3 : 08 " " inx

F6F4 : 09 " " dex

F6F5 : 01 " " nop

F6F6 : D6 74 " t" ldab $0074

F6F8 : 27 03 "’ " beq $F6FD

F6FA : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

F6FD : 88 04 " " eora #$04

F6FF : 97 82 " " staa PB

F701 : 01 " " nop

F702 : D6 74 " t" ldab $0074

F704 : BD FC D2 " " jsr $FCD2
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F707 : 7E F9 10 "~ " jmp $F910 display "beep?"

----------------------------------------------

F70A : C6 03 " " ldab #$03 get 1 digit of key & put in buffer

. . . . . . . . . . . . . . . .

F70C : A6 00 " " ldaa $00,x get oct key digit

. . . . . . . . . . . . . . . .

F70E : 46 "F" rora we shift digit right (lsb 1st)

F70F : 24 03 "$ " bcc $F714

F711 : 73 00 00 "s " com $0000 toggle parity if bit is 1

. . . . . . . . . . . . . . . .

F714 : BD F7 26 " &" jsr $F726 put key bit into 51.58

F717 : 5A "Z" decb

F718 : 26 F4 "& " bne $F70E

F71A : 39 "9" rts

----------------------------------------------

F71B : 08 " " inx get leftover oct key digits

F71C : A6 00 " " ldaa $00,x

. . . . . . . . . . . . . . . .

F71E : 46 "F" rora

F71F : 24 01 "$ " bcc $F722

F721 : 5C "\" incb count 1s in b for parity

. . . . . . . . . . . . . . . .

F722 : 76 00 65 "v e" ror $0065 put them in 65

F725 : 39 "9" rts

----------------------------------------------

F726 : 76 00 51 "v Q" ror $0051 >> bit into 64-bit fifo 51.58

F729 : 76 00 52 "v R" ror $0052

F72C : 76 00 53 "v S" ror $0053

F72F : 76 00 54 "v T" ror $0054

F732 : 76 00 55 "v U" ror $0055

F735 : 76 00 56 "v V" ror $0056

F738 : 76 00 57 "v W" ror $0057

F73B : 76 00 58 "v X" ror $0058

F73E : 39 "9" rts oldest bit in c

----------------------------------------------

F73F : 74 00 59 "t Y" lsr $0059 >> 0 into 64-bit fifo 59.60

F742 : 76 00 5A "v Z" ror $005A

F745 : 76 00 5B "v [" ror $005B

F748 : 76 00 5C "v \" ror $005C

F74B : 76 00 5D "v ]" ror $005D

F74E : 76 00 5E "v ^" ror $005E

F751 : 76 00 5F "v _" ror $005F

F754 : 76 00 60 "v ‘" ror $0060

F757 : 39 "9" rts oldest bit in c

----------------------------------------------

F758 : 9F 61 " a" sts $0061 interleave key/par into data bytes

F75A : 9E 63 " c" lds $0063 load table addr

. . . . . . . . . . . . . . . .

F75C : 86 08 " " ldaa #$08 bit count

F75E : 97 66 " f" staa $0066 66 <- 8

F760 : 32 "2" pula get table byte

F761 : 9F 63 " c" sts $0063 save table ptr sp

F763 : 9E 61 " a" lds $0061 restore original sp

. . . . . . . . . . . . . . . .

F765 : 46 "F" rora ror table byte

F766 : 25 05 "% " bcs $F76D determines where we get bits

F768 : BD F7 26 " &" jsr $F726 if bit 0, get from 51.58 (key)
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F76B : 20 03 " " bra $F770

----------------------------------------------

F76D : BD F7 3F " ?" jsr $F73F if bit 1, get from 59.60 (par)

. . . . . . . . . . . . . . . .

F770 : 24 06 "$ " bcc $F778 key/par bit was 0

F772 : E6 00 " " ldab $00,x get existing data

F774 : DA 73 " s" orab $0073 or in key/par bit per 73 (mask)

F776 : E7 00 " " stab $00,x save as new data

. . . . . . . . . . . . . . . .

F778 : 08 " " inx next data byte

F779 : 9C 00 " " cpx $0000 see if done (end)

F77B : 27 0B "’ " beq $F788 done

F77D : 7A 00 66 "z f" dec $0066 bit count (was 8)

F780 : 26 E3 "& " bne $F765 get more bits

F782 : 9F 61 " a" sts $0061

F784 : 9E 63 " c" lds $0063 next table byte

F786 : 20 D4 " " bra $F75C

----------------------------------------------

F788 : 9E 61 " a" lds $0061

F78A : 39 "9" rts

----------------------------------------------

F78B : A6 00 " " ldaa $00,x clock out some key & cti

F78D : 94 75 " u" anda $0075 cti from x+0

F78F : 27 02 "’ " beq $F793

F791 : 86 40 " @" ldaa #$40 set cti6 per mask in 75 (7/6)

. . . . . . . . . . . . . . . .

F793 : E6 16 " " ldab $16,x key from x+16

F795 : D4 73 " s" andb $0073

F797 : 27 02 "’ " beq $F79B

F799 : 8A 20 " " oraa #$20 set key1 per mask in 73 (1/0)

. . . . . . . . . . . . . . . .

F79B : 97 82 " " staa PB

F79D : 08 " " inx

F79E : 88 04 " " eora #$04 toggle clk (10cyc width)

F7A0 : 97 82 " " staa PB

F7A2 : 9C 00 " " cpx $0000

F7A4 : 26 E5 "& " bne $F78B

F7A6 : 39 "9" rts

----------------------------------------------

F7A7 : CE 00 02 " " ldx #$0002

F7AA : 86 F3 " " ldaa #$F3

F7AC : D6 74 " t" ldab $0074

F7AE : 27 03 "’ " beq $F7B3

F7B0 : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

F7B3 : C6 0C " " ldab #$0C

F7B5 : D7 82 " " stab PB

F7B7 : 97 80 " " staa PA

F7B9 : D6 74 " t" ldab $0074

F7BB : 26 65 "&e" bne $F822

. . . . . . . . . . . . . . . .

F7BD : A6 00 " " ldaa $00,x

F7BF : 97 82 " " staa PB

F7C1 : 88 04 " " eora #$04

F7C3 : 66 00 "f " ror $00,x

F7C5 : 8C 00 15 " " cpx #$0015

F7C8 : 27 07 "’ " beq $F7D1
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F7CA : 97 82 " " staa PB

F7CC : 96 75 " u" ldaa $0075

F7CE : 08 " " inx

F7CF : 20 EC " " bra $F7BD

----------------------------------------------

F7D1 : 97 82 " " staa PB

F7D3 : 08 " " inx

F7D4 : C6 36 " 6" ldab #$36

F7D6 : F7 00 81 " " stab CRA

. . . . . . . . . . . . . . . .

F7D9 : A6 00 " " ldaa $00,x

F7DB : 97 82 " " staa PB

F7DD : 88 04 " " eora #$04

F7DF : 66 00 "f " ror $00,x

F7E1 : 8C 00 50 " P" cpx #$0050

F7E4 : 27 07 "’ " beq $F7ED

F7E6 : 97 82 " " staa PB

F7E8 : 96 75 " u" ldaa $0075

F7EA : 08 " " inx

F7EB : 20 EC " " bra $F7D9

----------------------------------------------

F7ED : 97 82 " " staa PB

F7EF : CE 00 02 " " ldx #$0002

F7F2 : 01 " " nop

F7F3 : 01 " " nop

F7F4 : 01 " " nop

. . . . . . . . . . . . . . . .

F7F5 : A6 00 " " ldaa $00,x

F7F7 : 84 FB " " anda #$FB

F7F9 : 97 82 " " staa PB

F7FB : 88 04 " " eora #$04

F7FD : 08 " " inx

. . . . . . . . . . . . . . . .

F7FE : D6 75 " u" ldab $0075

F800 : 8C 00 51 " Q" cpx #$0051

F803 : 27 06 "’ " beq $F80B

F805 : 97 82 " " staa PB

F807 : A6 00 " " ldaa $00,x

F809 : 20 EA " " bra $F7F5

----------------------------------------------

F80B : 97 82 " " staa PB

F80D : D6 75 " u" ldab $0075

F80F : C6 3E " >" ldab #$3E

F811 : D7 81 " " stab CRA

F813 : A6 00 " " ldaa $00,x

F815 : 84 FB " " anda #$FB

F817 : 97 82 " " staa PB

F819 : 88 04 " " eora #$04

F81B : 6D 00 "m " tst $00,x

F81D : 01 " " nop

F81E : 01 " " nop

F81F : 7E F8 E0 "~ " jmp $F8E0

----------------------------------------------

F822 : C0 02 " " subb #$02

F824 : 01 " " nop

F825 : 01 " " nop

F826 : 26 FA "& " bne $F822
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. . . . . . . . . . . . . . . .

F828 : A6 00 " " ldaa $00,x

F82A : 97 82 " " staa PB

F82C : 88 04 " " eora #$04

F82E : 66 00 "f " ror $00,x

F830 : F6 00 74 " t" ldab $0074

F833 : C0 02 " " subb #$02

F835 : 27 06 "’ " beq $F83D

. . . . . . . . . . . . . . . .

F837 : C0 02 " " subb #$02

F839 : 01 " " nop

F83A : 01 " " nop

F83B : 26 FA "& " bne $F837

. . . . . . . . . . . . . . . .

F83D : 8C 00 15 " " cpx #$0015

F840 : 27 0D "’ " beq $F84F

F842 : 97 82 " " staa PB

F844 : 08 " " inx

F845 : D6 74 " t" ldab $0074

. . . . . . . . . . . . . . . .

F847 : C0 02 " " subb #$02

F849 : 01 " " nop

F84A : 01 " " nop

F84B : 26 FA "& " bne $F847

F84D : 20 D9 " " bra $F828

----------------------------------------------

F84F : 97 82 " " staa PB

F851 : 08 " " inx

F852 : 01 " " nop

F853 : D6 74 " t" ldab $0074

F855 : C0 02 " " subb #$02

F857 : 27 06 "’ " beq $F85F

. . . . . . . . . . . . . . . .

F859 : C0 02 " " subb #$02

F85B : 01 " " nop

F85C : 01 " " nop

F85D : 26 FA "& " bne $F859

. . . . . . . . . . . . . . . .

F85F : C6 36 " 6" ldab #$36

F861 : D7 81 " " stab CRA

. . . . . . . . . . . . . . . .

F863 : A6 00 " " ldaa $00,x

F865 : 97 82 " " staa PB

F867 : 88 04 " " eora #$04

F869 : 66 00 "f " ror $00,x

F86B : F6 00 74 " t" ldab $0074

F86E : C0 02 " " subb #$02

F870 : 27 06 "’ " beq $F878

. . . . . . . . . . . . . . . .

F872 : C0 02 " " subb #$02

F874 : 01 " " nop

F875 : 01 " " nop

F876 : 26 FA "& " bne $F872

. . . . . . . . . . . . . . . .

F878 : 8C 00 50 " P" cpx #$0050

F87B : 27 0D "’ " beq $F88A

F87D : 97 82 " " staa PB
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F87F : 08 " " inx

F880 : D6 74 " t" ldab $0074

. . . . . . . . . . . . . . . .

F882 : C0 02 " " subb #$02

F884 : 01 " " nop

F885 : 01 " " nop

F886 : 26 FA "& " bne $F882

F888 : 20 D9 " " bra $F863

----------------------------------------------

F88A : 97 82 " " staa PB

F88C : D6 74 " t" ldab $0074

F88E : D6 74 " t" ldab $0074

. . . . . . . . . . . . . . . .

F890 : C0 02 " " subb #$02

F892 : 01 " " nop

F893 : 01 " " nop

F894 : 26 FA "& " bne $F890

F896 : CE 00 02 " " ldx #$0002

. . . . . . . . . . . . . . . .

F899 : A6 00 " " ldaa $00,x

F89B : 84 FB " " anda #$FB

F89D : 97 82 " " staa PB

F89F : 88 04 " " eora #$04

F8A1 : D6 74 " t" ldab $0074

F8A3 : 08 " " inx

. . . . . . . . . . . . . . . .

F8A4 : C0 02 " " subb #$02

F8A6 : 01 " " nop

F8A7 : 01 " " nop

F8A8 : 26 FA "& " bne $F8A4

F8AA : 8C 00 50 " P" cpx #$0050

F8AD : 27 0D "’ " beq $F8BC

F8AF : 97 82 " " staa PB

F8B1 : D6 74 " t" ldab $0074

. . . . . . . . . . . . . . . .

F8B3 : C0 02 " " subb #$02

F8B5 : 01 " " nop

F8B6 : 01 " " nop

F8B7 : 26 FA "& " bne $F8B3

F8B9 : 01 " " nop

F8BA : 20 DD " " bra $F899

----------------------------------------------

F8BC : 97 82 " " staa PB

F8BE : 01 " " nop

F8BF : 01 " " nop

F8C0 : D6 74 " t" ldab $0074

F8C2 : C0 02 " " subb #$02

F8C4 : 27 06 "’ " beq $F8CC

. . . . . . . . . . . . . . . .

F8C6 : C0 02 " " subb #$02

F8C8 : 01 " " nop

F8C9 : 01 " " nop

F8CA : 26 FA "& " bne $F8C6

. . . . . . . . . . . . . . . .

F8CC : C6 3E " >" ldab #$3E

F8CE : D7 81 " " stab CRA

F8D0 : A6 00 " " ldaa $00,x
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F8D2 : 84 FB " " anda #$FB

F8D4 : 97 82 " " staa PB

F8D6 : 88 04 " " eora #$04

F8D8 : F6 00 74 " t" ldab $0074

. . . . . . . . . . . . . . . .

F8DB : 5A "Z" decb

F8DC : 01 " " nop

F8DD : 01 " " nop

F8DE : 26 FB "& " bne $F8DB

. . . . . . . . . . . . . . . .

F8E0 : 97 82 " " staa PB

F8E2 : 39 "9" rts

==============================================

F8E3 : 82 20 D7 45 D7 5A E7 5C key -> data byte encoder table

F8EB : 08 6D 6D 72 42 44 09 30 these 20 bytes hold 80 dibits

F8F3 : D5 40 47 19 used as CTI during key load

. . . . . . . . . . . . . . . .

F8F7 : 7F 9F D7 61 97 51 83 06 key/par "interleave" table (1st)

. . . . . . . . . . . . . . . .

F8FF : E3 36 29 21 A7 45 CC 2A key/par "interleave" table (2nd)

F907 : 00

. . . . . . . . . . . . . . . .

F908 : 52 00 9B F1 ED 40 EA C2 taps for Galois parity register

==============================================

F910 : CE FF C5 " " ldx #$FFC5 Beep?

F913 : BD F1 C0 " " jsr $F1C0 put table chars in buffer

F916 : BD F1 70 " p" jsr $F170 write buffer to display

F919 : 39 "9" rts

----------------------------------------------

F91A : 86 08 " " ldaa #$08

F91C : 97 82 " " staa PB

F91E : 08 " " inx

F91F : 86 0C " " ldaa #$0C

F921 : 97 82 " " staa PB

F923 : CE 00 08 " " ldx #$0008

. . . . . . . . . . . . . . . .

F926 : 86 08 " " ldaa #$08

F928 : 97 66 " f" staa $0066

F92A : C6 10 " " ldab #$10

. . . . . . . . . . . . . . . .

F92C : 4F "O" clra

F92D : 59 "Y" rolb

F92E : 24 02 "$ " bcc $F932

F930 : 86 20 " " ldaa #$20

. . . . . . . . . . . . . . . .

F932 : 97 82 " " staa PB

F934 : 01 " " nop

F935 : 01 " " nop

F936 : 88 04 " " eora #$04

F938 : 97 82 " " staa PB

F93A : 7A 00 66 "z f" dec $0066

F93D : 26 ED "& " bne $F92C

F93F : 09 " " dex

F940 : 26 E4 "& " bne $F926

F942 : CE 00 E8 " " ldx #$00E8

. . . . . . . . . . . . . . . .

F945 : 86 28 " (" ldaa #$28
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F947 : 97 82 " " staa PB

F949 : 88 04 " " eora #$04

F94B : 08 " " inx

F94C : 09 " " dex

F94D : 08 " " inx

F94E : 09 " " dex

F94F : 97 82 " " staa PB

F951 : 08 " " inx

F952 : 09 " " dex

F953 : 09 " " dex

F954 : 26 EF "& " bne $F945

F956 : 9F 61 " a" sts $0061

F958 : CE FF CD " " ldx #$FFCD

. . . . . . . . . . . . . . . .

F95B : C6 08 " " ldab #$08

. . . . . . . . . . . . . . . .

F95D : 86 28 " (" ldaa #$28

F95F : 97 82 " " staa PB

F961 : 88 04 " " eora #$04

F963 : 97 82 " " staa PB

F965 : 96 80 " " ldaa PA

F967 : 46 "F" rora

F968 : 46 "F" rora

F969 : 46 "F" rora

F96A : 46 "F" rora

F96B : 79 00 46 "y F" rol $0046

F96E : 5A "Z" decb

F96F : 26 EC "& " bne $F95D

F971 : E6 00 " " ldab $00,x

F973 : D1 46 " F" cmpb $0046

F975 : 27 07 "’ " beq $F97E

F977 : C6 00 " " ldab #$00

F979 : D7 69 " i" stab $0069

F97B : 7E FB 87 "~ " jmp $FB87

----------------------------------------------

F97E : 08 " " inx

F97F : 8C FF D5 " " cpx #$FFD5

F982 : 26 D7 "& " bne $F95B

F984 : 9F 61 " a" sts $0061

F986 : 8E 01 CE " " lds #$01CE

F989 : CE 00 02 " " ldx #$0002

. . . . . . . . . . . . . . . .

F98C : 86 04 " " ldaa #$04

F98E : 97 65 " e" staa $0065

F990 : 32 "2" pula

. . . . . . . . . . . . . . . .

F991 : 46 "F" rora

F992 : C4 00 " " andb #$00

F994 : 24 02 "$ " bcc $F998

F996 : C6 40 " @" ldab #$40

. . . . . . . . . . . . . . . .

F998 : E7 00 " " stab $00,x

F99A : 08 " " inx

F99B : 7A 00 65 "z e" dec $0065

F99E : 26 F1 "& " bne $F991

F9A0 : 8C 00 42 " B" cpx #$0042

F9A3 : 26 E7 "& " bne $F98C
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F9A5 : 9E 63 " c" lds $0063

F9A7 : 34 "4" des

F9A8 : 7F 00 00 " " clr $0000

F9AB : 96 6F " o" ldaa $006F

F9AD : 4A "J" deca

F9AE : 97 49 " I" staa $0049

F9B0 : 86 07 " " ldaa #$07

F9B2 : 97 66 " f" staa $0066

F9B4 : CE 00 02 " " ldx #$0002

. . . . . . . . . . . . . . . .

F9B7 : 86 04 " " ldaa #$04

F9B9 : 97 65 " e" staa $0065

F9BB : 32 "2" pula

F9BC : 49 "I" rola

F9BD : 49 "I" rola

F9BE : 49 "I" rola

F9BF : 49 "I" rola

. . . . . . . . . . . . . . . .

F9C0 : 49 "I" rola

F9C1 : 24 06 "$ " bcc $F9C9

F9C3 : C6 20 " " ldab #$20

F9C5 : EA 00 " " orab $00,x

F9C7 : E7 00 " " stab $00,x

. . . . . . . . . . . . . . . .

F9C9 : 08 " " inx

F9CA : D6 67 " g" ldab $0067

F9CC : C4 40 " @" andb #$40

F9CE : 27 1D "’ " beq $F9ED

F9D0 : 25 03 "% " bcs $F9D5

F9D2 : 73 00 00 "s " com $0000

. . . . . . . . . . . . . . . .

F9D5 : 7A 00 66 "z f" dec $0066

F9D8 : 26 13 "& " bne $F9ED

F9DA : C6 07 " " ldab #$07

F9DC : D7 66 " f" stab $0066

F9DE : 76 00 00 "v " ror $0000

F9E1 : 24 09 "$ " bcc $F9EC

F9E3 : C6 20 " " ldab #$20

F9E5 : EA 00 " " orab $00,x

F9E7 : E7 00 " " stab $00,x

F9E9 : 7F 00 00 " " clr $0000

. . . . . . . . . . . . . . . .

F9EC : 08 " " inx

. . . . . . . . . . . . . . . .

F9ED : 7A 00 65 "z e" dec $0065

F9F0 : 26 CE "& " bne $F9C0

F9F2 : 7A 00 49 "z I" dec $0049

F9F5 : 26 C0 "& " bne $F9B7

F9F7 : C6 40 " @" ldab #$40

F9F9 : 8E 00 01 " " lds #$0001

. . . . . . . . . . . . . . . .

F9FC : 32 "2" pula

F9FD : 97 82 " " staa PB

F9FF : 01 " " nop

FA00 : 01 " " nop

FA01 : 88 04 " " eora #$04

FA03 : 97 82 " " staa PB
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FA05 : 5A "Z" decb

FA06 : 26 F4 "& " bne $F9FC

FA08 : C6 40 " @" ldab #$40

FA0A : 8E 00 01 " " lds #$0001

. . . . . . . . . . . . . . . .

FA0D : 32 "2" pula

FA0E : 84 20 " " anda #$20

FA10 : 27 02 "’ " beq $FA14

FA12 : 86 01 " " ldaa #$01

. . . . . . . . . . . . . . . .

FA14 : 8A 08 " " oraa #$08

FA16 : 36 "6" psha

FA17 : 31 "1" ins

FA18 : 5A "Z" decb

FA19 : 26 F2 "& " bne $FA0D

FA1B : 9E 61 " a" lds $0061

FA1D : CE 00 FA " " ldx #$00FA

FA20 : BD FB F0 " " jsr $FBF0

FA23 : 86 F0 " " ldaa #$F0

FA25 : 97 80 " " staa PA

FA27 : CE 02 58 " X" ldx #$0258

FA2A : BD FB F0 " " jsr $FBF0

FA2D : 86 B9 " " ldaa #$B9

FA2F : 97 80 " " staa PA

FA31 : 97 82 " " staa PB

FA33 : CE 01 90 " " ldx #$0190

FA36 : D6 74 " t" ldab $0074

FA38 : 27 03 "’ " beq $FA3D

FA3A : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

FA3D : BD FB F0 " " jsr $FBF0

FA40 : 08 " " inx

FA41 : 01 " " nop

FA42 : CE 00 08 " " ldx #$0008

FA45 : 88 04 " " eora #$04

FA47 : 97 82 " " staa PB

FA49 : C6 36 " 6" ldab #$36

FA4B : D7 81 " " stab CRA

FA4D : F6 00 74 " t" ldab $0074

FA50 : 27 03 "’ " beq $FA55

FA52 : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

FA55 : 88 04 " " eora #$04

FA57 : 97 82 " " staa PB

FA59 : 01 " " nop

FA5A : 01 " " nop

FA5B : BD FC 0F " " jsr $FC0F

FA5E : 27 05 "’ " beq $FA65

FA60 : C6 01 " " ldab #$01

FA62 : 7E FB 6E "~ n" jmp $FB6E

----------------------------------------------

FA65 : C6 3E " >" ldab #$3E

FA67 : D7 81 " " stab CRA

FA69 : F6 00 74 " t" ldab $0074

FA6C : 27 03 "’ " beq $FA71

FA6E : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .
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FA71 : 88 04 " " eora #$04

FA73 : 97 82 " " staa PB

FA75 : BD FC 47 " G" jsr $FC47

FA78 : BD FC 78 " x" jsr $FC78

FA7B : 88 04 " " eora #$04

FA7D : 97 82 " " staa PB

FA7F : 6D 00 "m " tst $00,x

FA81 : 88 04 " " eora #$04

FA83 : D6 74 " t" ldab $0074

FA85 : 27 03 "’ " beq $FA8A

FA87 : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

FA8A : BD FC 1F " " jsr $FC1F

FA8D : 26 05 "& " bne $FA94

FA8F : C6 02 " " ldab #$02

FA91 : 7E FB 6E "~ n" jmp $FB6E

----------------------------------------------

FA94 : D6 74 " t" ldab $0074

FA96 : 27 03 "’ " beq $FA9B

FA98 : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

FA9B : CE 00 06 " " ldx #$0006

FA9E : 86 6C " l" ldaa #$6C

FAA0 : 08 " " inx

FAA1 : 97 82 " " staa PB

FAA3 : 09 " " dex

FAA4 : BD FC 0F " " jsr $FC0F

FAA7 : 27 05 "’ " beq $FAAE

FAA9 : C6 03 " " ldab #$03

FAAB : 7E FB 6E "~ n" jmp $FB6E

----------------------------------------------

FAAE : F6 00 74 " t" ldab $0074

FAB1 : 27 03 "’ " beq $FAB6

FAB3 : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

FAB6 : C6 3E " >" ldab #$3E

FAB8 : D7 81 " " stab CRA

FABA : 88 04 " " eora #$04

FABC : 97 82 " " staa PB

FABE : BD FC 47 " G" jsr $FC47

FAC1 : BD FC 78 " x" jsr $FC78

FAC4 : 88 04 " " eora #$04

FAC6 : 97 82 " " staa PB

FAC8 : 08 " " inx

FAC9 : D6 74 " t" ldab $0074

FACB : 27 03 "’ " beq $FAD0

FACD : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

FAD0 : CE 04 B0 " " ldx #$04B0

FAD3 : BD FC 09 " " jsr $FC09

FAD6 : 26 05 "& " bne $FADD

FAD8 : C6 04 " " ldab #$04

FADA : 7E FB 6E "~ n" jmp $FB6E

----------------------------------------------

FADD : C6 3E " >" ldab #$3E

FADF : D7 81 " " stab CRA

FAE1 : F6 00 74 " t" ldab $0074
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FAE4 : 27 03 "’ " beq $FAE9

FAE6 : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

FAE9 : 88 04 " " eora #$04

FAEB : 97 82 " " staa PB

FAED : BD FC 47 " G" jsr $FC47

FAF0 : 08 " " inx

FAF1 : CE 00 97 " " ldx #$0097

FAF4 : 88 04 " " eora #$04

FAF6 : 97 82 " " staa PB

FAF8 : D6 74 " t" ldab $0074

FAFA : 27 03 "’ " beq $FAFF

FAFC : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

FAFF : BD FC 09 " " jsr $FC09

FB02 : 27 05 "’ " beq $FB09

. . . . . . . . . . . . . . . .

FB04 : C6 05 " " ldab #$05

FB06 : 7E FB 6E "~ n" jmp $FB6E

----------------------------------------------

FB09 : CE 00 44 " D" ldx #$0044

. . . . . . . . . . . . . . . .

FB0C : 01 " " nop

FB0D : 01 " " nop

FB0E : D6 74 " t" ldab $0074

FB10 : 27 03 "’ " beq $FB15

FB12 : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

FB15 : 88 04 " " eora #$04

FB17 : 97 82 " " staa PB

FB19 : 88 04 " " eora #$04

FB1B : 97 82 " " staa PB

FB1D : D6 82 " " ldab PB

FB1F : C4 01 " " andb #$01

FB21 : 26 E1 "& " bne $FB04

FB23 : 09 " " dex

FB24 : 26 E6 "& " bne $FB0C

FB26 : CE 00 01 " " ldx #$0001

FB29 : F6 00 74 " t" ldab $0074

FB2C : 27 03 "’ " beq $FB31

FB2E : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

FB31 : 88 04 " " eora #$04

FB33 : 97 82 " " staa PB

FB35 : 01 " " nop

FB36 : 01 " " nop

FB37 : BD FC 0F " " jsr $FC0F

FB3A : 26 05 "& " bne $FB41

FB3C : C6 06 " " ldab #$06

FB3E : 7E FB 6E "~ n" jmp $FB6E

----------------------------------------------

FB41 : 6D 00 "m " tst $00,x

FB43 : D6 74 " t" ldab $0074

FB45 : 27 03 "’ " beq $FB4A

FB47 : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

FB4A : 88 04 " " eora #$04
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FB4C : 97 82 " " staa PB

FB4E : BD FC 47 " G" jsr $FC47

FB51 : BD FC D2 " " jsr $FCD2

FB54 : BD FB D0 " " jsr $FBD0

FB57 : CE FF BF " " ldx #$FFBF Pass

FB5A : BD F1 C0 " " jsr $F1C0 put table chars in buffer

FB5D : B6 01 FE " " ldaa $01FE

FB60 : 84 0F " " anda #$0F

FB62 : CE 00 52 " R" ldx #$0052

FB65 : DF 63 " c" stx $0063

FB67 : BD F1 AF " " jsr $F1AF convert oct to char

FB6A : BD F1 70 " p" jsr $F170 write buffer to display

FB6D : 39 "9" rts

----------------------------------------------

FB6E : D7 69 " i" stab $0069

FB70 : BD FC 47 " G" jsr $FC47

FB73 : 86 3E " >" ldaa #$3E

FB75 : 97 81 " " staa CRA

FB77 : C6 16 " " ldab #$16

FB79 : BD FB C6 " " jsr $FBC6

FB7C : C6 36 " 6" ldab #$36

FB7E : D7 81 " " stab CRA

FB80 : C6 64 " d" ldab #$64

FB82 : BD FB C6 " " jsr $FBC6

FB85 : 97 81 " " staa CRA

. . . . . . . . . . . . . . . .

FB87 : CE FF B9 " " ldx #$FFB9 Fail

FB8A : BD F1 C0 " " jsr $F1C0 put table chars in buffer

FB8D : B6 01 FE " " ldaa $01FE

FB90 : 84 07 " " anda #$07

FB92 : CE 00 52 " R" ldx #$0052

FB95 : DF 63 " c" stx $0063

FB97 : BD F1 AF " " jsr $F1AF convert oct to char

FB9A : BD FE 60 " ‘" jsr $FE60

FB9D : A6 00 " " ldaa $00,x

FB9F : 84 7F " " anda #$7F

FBA1 : A7 00 " " staa $00,x

FBA3 : BD F1 70 " p" jsr $F170 write buffer to display

FBA6 : BD FB AA " " jsr $FBAA

FBA9 : 39 "9" rts

----------------------------------------------

FBAA : 7F 00 65 " e" clr $0065

. . . . . . . . . . . . . . . .

FBAD : BD F1 53 " S" jsr $F153

FBB0 : CE 00 00 " " ldx #$0000

. . . . . . . . . . . . . . . .

FBB3 : 08 " " inx

FBB4 : BD FF 04 " " jsr $FF04

FBB7 : 8C 05 A0 " " cpx #$05A0

FBBA : 26 F7 "& " bne $FBB3

FBBC : 7C 00 65 "| e" inc $0065

FBBF : 96 65 " e" ldaa $0065

FBC1 : 81 0A " " cmpa #$0A

FBC3 : 26 E8 "& " bne $FBAD

FBC5 : 39 "9" rts

----------------------------------------------

FBC6 : C0 02 " " subb #$02
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FBC8 : 27 05 "’ " beq $FBCF

. . . . . . . . . . . . . . . .

FBCA : 5A "Z" decb

FBCB : 01 " " nop

FBCC : 01 " " nop

FBCD : 26 FB "& " bne $FBCA

. . . . . . . . . . . . . . . .

FBCF : 39 "9" rts

----------------------------------------------

FBD0 : 9F 61 " a" sts $0061

FBD2 : 8E 00 01 " " lds #$0001

FBD5 : CE 01 CF " " ldx #$01CF

. . . . . . . . . . . . . . . .

FBD8 : C6 04 " " ldab #$04

FBDA : D7 65 " e" stab $0065

. . . . . . . . . . . . . . . .

FBDC : 32 "2" pula

FBDD : 46 "F" rora

FBDE : 46 "F" rora

FBDF : 46 "F" rora

FBE0 : 46 "F" rora

FBE1 : 69 00 "i " rol $00,x

FBE3 : 7A 00 65 "z e" dec $0065

FBE6 : 26 F4 "& " bne $FBDC

FBE8 : 08 " " inx

FBE9 : 8C 01 DF " " cpx #$01DF

FBEC : 26 EA "& " bne $FBD8

FBEE : 9E 61 " a" lds $0061

. . . . . . . . . . . . . . . .

FBF0 : 86 2C " ," ldaa #$2C

. . . . . . . . . . . . . . . .

FBF2 : 97 82 " " staa PB

FBF4 : 8D 12 " " bsr $FC08 dly 13cyc

FBF6 : D6 74 " t" ldab $0074

FBF8 : 27 03 "’ " beq $FBFD

FBFA : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

FBFD : 88 44 " D" eora #$44 toggle cti & clk

FBFF : 97 82 " " staa PB

FC01 : 88 04 " " eora #$04

FC03 : 09 " " dex

FC04 : 26 EC "& " bne $FBF2

FC06 : 97 82 " " staa PB

. . . . . . . . . . . . . . . .

FC08 : 39 "9" rts

----------------------------------------------

FC09 : 86 2C " ," ldaa #$2C

. . . . . . . . . . . . . . . .

FC0B : 97 82 " " staa PB

FC0D : 8D F9 " " bsr $FC08

. . . . . . . . . . . . . . . .

FC0F : D6 74 " t" ldab $0074

FC11 : 27 03 "’ " beq $FC16

FC13 : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

FC16 : 88 04 " " eora #$04

FC18 : 97 82 " " staa PB
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FC1A : 88 04 " " eora #$04

FC1C : 09 " " dex

FC1D : 26 EC "& " bne $FC0B

. . . . . . . . . . . . . . . .

FC1F : 97 82 " " staa PB

FC21 : 88 04 " " eora #$04

FC23 : 97 82 " " staa PB

FC25 : C6 3B " ;" ldab #$3B

FC27 : D7 83 " " stab CRB

FC29 : C6 7E " ~" ldab #$7E

FC2B : D7 82 " " stab PB

FC2D : C6 3F " ?" ldab #$3F

FC2F : D7 83 " " stab CRB

FC31 : D6 74 " t" ldab $0074

FC33 : D6 74 " t" ldab $0074

FC35 : 27 03 "’ " beq $FC3A

FC37 : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

FC3A : 88 04 " " eora #$04

FC3C : 97 82 " " staa PB

FC3E : 88 04 " " eora #$04

FC40 : 97 82 " " staa PB

FC42 : D6 82 " " ldab PB

FC44 : C4 01 " " andb #$01

FC46 : 39 "9" rts

----------------------------------------------

FC47 : E6 00 " " ldab $00,x

FC49 : 88 04 " " eora #$04

FC4B : 97 82 " " staa PB

FC4D : 6D 00 "m " tst $00,x

FC4F : D6 74 " t" ldab $0074

FC51 : 27 03 "’ " beq $FC56

FC53 : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

FC56 : 88 04 " " eora #$04

FC58 : 97 82 " " staa PB

FC5A : C6 3B " ;" ldab #$3B

FC5C : D7 83 " " stab CRB

FC5E : C6 7F " " ldab #$7F

FC60 : D7 82 " " stab PB

FC62 : C6 3F " ?" ldab #$3F

FC64 : D7 83 " " stab CRB

FC66 : 88 04 " " eora #$04

FC68 : 97 82 " " staa PB

FC6A : D6 74 " t" ldab $0074

FC6C : D6 74 " t" ldab $0074

FC6E : 27 03 "’ " beq $FC73

FC70 : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

FC73 : 88 04 " " eora #$04

FC75 : 97 82 " " staa PB

FC77 : 39 "9" rts

----------------------------------------------

FC78 : CE 00 02 " " ldx #$0002

FC7B : 86 28 " (" ldaa #$28

FC7D : 97 82 " " staa PB

FC7F : 01 " " nop
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FC80 : 01 " " nop

FC81 : D6 74 " t" ldab $0074

FC83 : 26 08 "& " bne $FC8D

FC85 : 88 04 " " eora #$04

FC87 : 97 82 " " staa PB

FC89 : 01 " " nop

FC8A : 7E FC 9D "~ " jmp $FC9D

----------------------------------------------

FC8D : BD FB C6 " " jsr $FBC6

FC90 : 88 04 " " eora #$04

FC92 : 97 82 " " staa PB

FC94 : 01 " " nop

FC95 : D6 74 " t" ldab $0074

. . . . . . . . . . . . . . . .

FC97 : C0 02 " " subb #$02

FC99 : 01 " " nop

FC9A : 01 " " nop

FC9B : 26 FA "& " bne $FC97

. . . . . . . . . . . . . . . .

FC9D : C6 36 " 6" ldab #$36

FC9F : D7 81 " " stab CRA

. . . . . . . . . . . . . . . .

FCA1 : A6 00 " " ldaa $00,x

FCA3 : 97 82 " " staa PB

FCA5 : D6 74 " t" ldab $0074

FCA7 : 27 0C "’ " beq $FCB5

FCA9 : 01 " " nop

FCAA : 01 " " nop

FCAB : C0 02 " " subb #$02

FCAD : 27 06 "’ " beq $FCB5

. . . . . . . . . . . . . . . .

FCAF : C0 02 " " subb #$02

FCB1 : 01 " " nop

FCB2 : 01 " " nop

FCB3 : 26 FA "& " bne $FCAF

. . . . . . . . . . . . . . . .

FCB5 : 88 04 " " eora #$04

FCB7 : 8C 00 41 " A" cpx #$0041

FCBA : 27 13 "’ " beq $FCCF

FCBC : 97 82 " " staa PB

FCBE : 08 " " inx

FCBF : D6 74 " t" ldab $0074

FCC1 : 27 DE "’ " beq $FCA1

FCC3 : C0 02 " " subb #$02

FCC5 : 27 06 "’ " beq $FCCD

. . . . . . . . . . . . . . . .

FCC7 : C0 02 " " subb #$02

FCC9 : 01 " " nop

FCCA : 01 " " nop

FCCB : 26 FA "& " bne $FCC7

. . . . . . . . . . . . . . . .

FCCD : 20 D2 " " bra $FCA1

----------------------------------------------

FCCF : 97 82 " " staa PB

FCD1 : 39 "9" rts

----------------------------------------------

FCD2 : CE 02 58 " X" ldx #$0258 600
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FCD5 : 7E FC DA "~ " jmp $FCDA

----------------------------------------------

FCD8 : 08 " " inx

FCD9 : 09 " " dex

. . . . . . . . . . . . . . . .

FCDA : 88 44 " D" eora #$44

FCDC : 97 82 " " staa PB

FCDE : F6 00 74 " t" ldab $0074

FCE1 : 27 03 "’ " beq $FCE6

FCE3 : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

FCE6 : 88 04 " " eora #$04

FCE8 : 97 82 " " staa PB

FCEA : 01 " " nop

FCEB : 01 " " nop

FCEC : 09 " " dex

FCED : 26 E9 "& " bne $FCD8

FCEF : 88 04 " " eora #$04

FCF1 : 97 82 " " staa PB

FCF3 : 01 " " nop

FCF4 : 01 " " nop

FCF5 : D6 74 " t" ldab $0074

FCF7 : 26 24 "&$" bne $FD1D

FCF9 : CE 5D C0 " ] " ldx #$5DC0

FCFC : C6 08 " " ldab #$08

FCFE : 86 2C " ," ldaa #$2C

. . . . . . . . . . . . . . . .

FD00 : 97 82 " " staa PB

FD02 : 5A "Z" decb

FD03 : 27 04 "’ " beq $FD09

FD05 : 88 04 " " eora #$04

FD07 : 20 05 " " bra $FD0E

----------------------------------------------

FD09 : 88 44 " D" eora #$44

FD0B : C6 08 " " ldab #$08

FD0D : 01 " " nop

. . . . . . . . . . . . . . . .

FD0E : 97 82 " " staa PB

FD10 : 88 04 " " eora #$04

FD12 : 08 " " inx

FD13 : 09 " " dex

FD14 : 01 " " nop

FD15 : 09 " " dex

FD16 : 26 E8 "& " bne $FD00

FD18 : 97 82 " " staa PB

FD1A : 7E FD 67 "~ g" jmp $FD67

----------------------------------------------

FD1D : C1 02 " " cmpb #$02

FD1F : 26 07 "& " bne $FD28

FD21 : CE 3E 80 " > " ldx #$3E80

FD24 : C6 05 " " ldab #$05

FD26 : 20 16 " " bra $FD3E

----------------------------------------------

FD28 : C1 04 " " cmpb #$04

FD2A : 26 07 "& " bne $FD33

FD2C : CE 2E E0 " . " ldx #$2EE0

FD2F : C6 04 " " ldab #$04
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FD31 : 20 08 " " bra $FD3B

----------------------------------------------

FD33 : CE 25 80 " % " ldx #$2580

FD36 : C6 03 " " ldab #$03

FD38 : BD FF 07 " " jsr $FF07

. . . . . . . . . . . . . . . .

FD3B : BD FF 0C " " jsr $FF0C

. . . . . . . . . . . . . . . .

FD3E : D7 75 " u" stab $0075

FD40 : D7 65 " e" stab $0065

FD42 : 01 " " nop

FD43 : 86 2C " ," ldaa #$2C

. . . . . . . . . . . . . . . .

FD45 : 97 82 " " staa PB

FD47 : D6 65 " e" ldab $0065

FD49 : 5A "Z" decb

FD4A : 27 04 "’ " beq $FD50

FD4C : 88 04 " " eora #$04

FD4E : 20 05 " " bra $FD55

----------------------------------------------

FD50 : 88 44 " D" eora #$44

FD52 : F6 00 75 " u" ldab $0075

. . . . . . . . . . . . . . . .

FD55 : 97 82 " " staa PB

FD57 : 88 04 " " eora #$04

FD59 : D7 65 " e" stab $0065

FD5B : D6 74 " t" ldab $0074

FD5D : BD FB C6 " " jsr $FBC6

FD60 : 09 " " dex

FD61 : 26 E2 "& " bne $FD45

FD63 : 97 82 " " staa PB

FD65 : D6 75 " u" ldab $0075

. . . . . . . . . . . . . . . .

FD67 : BD FF 0C " " jsr $FF0C

FD6A : CE 00 02 " " ldx #$0002

. . . . . . . . . . . . . . . .

FD6D : 88 04 " " eora #$04

FD6F : 97 82 " " staa PB

FD71 : F6 00 74 " t" ldab $0074

FD74 : 27 03 "’ " beq $FD79

FD76 : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

FD79 : 88 04 " " eora #$04

FD7B : 97 82 " " staa PB

FD7D : D6 80 " " ldab PA

FD7F : E7 00 " " stab $00,x

FD81 : 08 " " inx

FD82 : 8C 00 42 " B" cpx #$0042

FD85 : 26 E6 "& " bne $FD6D

FD87 : 88 04 " " eora #$04

FD89 : 97 82 " " staa PB

FD8B : F6 00 74 " t" ldab $0074

FD8E : 27 03 "’ " beq $FD93

FD90 : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

FD93 : 88 04 " " eora #$04

FD95 : 97 82 " " staa PB
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FD97 : 88 04 " " eora #$04

FD99 : 97 82 " " staa PB

FD9B : CE 03 E8 " " ldx #$03E8

FD9E : C6 F0 " " ldab #$F0

FDA0 : D7 80 " " stab PA

FDA2 : D6 74 " t" ldab $0074

FDA4 : D6 74 " t" ldab $0074

FDA6 : 27 03 "’ " beq $FDAB

FDA8 : BD FB C6 " " jsr $FBC6

. . . . . . . . . . . . . . . .

FDAB : BD FB F0 " " jsr $FBF0

FDAE : 39 "9" rts

----------------------------------------------

FDAF : 96 72 " r" ldaa $0072

FDB1 : 27 09 "’ " beq $FDBC

FDB3 : 81 01 " " cmpa #$01

FDB5 : 27 17 "’ " beq $FDCE

FDB7 : 81 07 " " cmpa #$07

FDB9 : 26 32 "&2" bne $FDED

FDBB : 39 "9" rts

----------------------------------------------

FDBC : CE FF B3 " " ldx #$FFB3 Loc?

FDBF : BD F1 C0 " " jsr $F1C0 put table chars in buffer

FDC2 : BD F1 70 " p" jsr $F170 write buffer to display

FDC5 : 86 05 " " ldaa #$05

FDC7 : 97 69 " i" staa $0069

FDC9 : 7C 00 72 "| r" inc $0072

FDCC : 20 3B " ;" bra $FE09

----------------------------------------------

FDCE : CE FF AD " " ldx #$FFAD (6 spaces)

FDD1 : BD F1 C0 " " jsr $F1C0 put table chars in buffer

FDD4 : 86 8B " " ldaa #$8B

FDD6 : 97 51 " Q" staa $0051

FDD8 : 86 4B " K" ldaa #$4B

FDDA : 97 52 " R" staa $0052

FDDC : 86 02 " " ldaa #$02

FDDE : 97 69 " i" staa $0069

FDE0 : CE 00 02 " " ldx #$0002

FDE3 : DF 4D " M" stx $004D

. . . . . . . . . . . . . . . .

FDE5 : 6F 00 "o " clr $00,x

FDE7 : 08 " " inx

FDE8 : 8C 00 08 " " cpx #$0008

FDEB : 26 F8 "& " bne $FDE5

. . . . . . . . . . . . . . . .

FDED : 96 68 " h" ldaa $0068

FDEF : DE 4D " M" ldx $004D

FDF1 : A7 00 " " staa $00,x

FDF3 : BD FE 60 " ‘" jsr $FE60

FDF6 : DF 63 " c" stx $0063

FDF8 : BD F1 AF " " jsr $F1AF convert oct to char

FDFB : 7C 00 72 "| r" inc $0072

FDFE : BD FF 0D " " jsr $FF0D

FE01 : 7F 00 6E " n" clr $006E

FE04 : DE 4D " M" ldx $004D

FE06 : 08 " " inx

FE07 : DF 4D " M" stx $004D
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. . . . . . . . . . . . . . . .

FE09 : BD F1 70 " p" jsr $F170 write buffer to display

FE0C : 39 "9" rts

----------------------------------------------

FE0D : 96 68 " h" ldaa $0068

FE0F : 5F "_" clrb

. . . . . . . . . . . . . . . .

FE10 : 46 "F" rora

FE11 : 24 03 "$ " bcc $FE16

FE13 : 7C 00 00 "| " inc $0000

. . . . . . . . . . . . . . . .

FE16 : 5C "\" incb

FE17 : C1 04 " " cmpb #$04

FE19 : 26 F5 "& " bne $FE10

FE1B : 39 "9" rts

----------------------------------------------

FE1C : 58 "X" aslb

FE1D : 58 "X" aslb

FE1E : C4 3C " <" andb #$3C

FE20 : CA 01 " " orab #$01

FE22 : D7 82 " " stab PB

FE24 : 39 "9" rts

----------------------------------------------

FE25 : CE 01 00 " " ldx #$0100

FE28 : 4F "O" clra

FE29 : 0D " " sec

. . . . . . . . . . . . . . . .

FE2A : 16 " " tab

FE2B : 56 "V" rorb

FE2C : 56 "V" rorb

FE2D : 56 "V" rorb

FE2E : 56 "V" rorb

FE2F : C4 1F " " andb #$1F

FE31 : D7 75 " u" stab $0075

FE33 : 98 75 " u" eora $0075

FE35 : A8 00 " " eora $00,x

FE37 : 46 "F" rora

FE38 : 46 "F" rora

FE39 : 46 "F" rora

FE3A : 46 "F" rora

FE3B : 84 E0 " " anda #$E0

FE3D : 9A 75 " u" oraa $0075

FE3F : 08 " " inx

FE40 : 8C 01 E0 " " cpx #$01E0

FE43 : 26 E5 "& " bne $FE2A

FE45 : 39 "9" rts

----------------------------------------------

FE46 : B7 01 E1 " " staa $01E1

FE49 : 47 "G" asra

FE4A : 47 "G" asra

FE4B : 47 "G" asra

FE4C : 47 "G" asra

FE4D : B7 01 E2 " " staa $01E2

FE50 : 39 "9" rts

----------------------------------------------

FE51 : CE 01 C0 " " ldx #$01C0 x <- 1c0.1c7 based on key#

FE54 : F6 01 FE " " ldab $01FE ?b <- key#?
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FE57 : C4 07 " " andb #$07

. . . . . . . . . . . . . . . .

FE59 : 27 04 "’ " beq $FE5F

FE5B : 08 " " inx

FE5C : 5A "Z" decb

FE5D : 20 FA " " bra $FE59

----------------------------------------------

FE5F : 39 "9" rts

----------------------------------------------

FE60 : CE 00 51 " Q" ldx #$0051

FE63 : D6 69 " i" ldab $0069

. . . . . . . . . . . . . . . .

FE65 : 27 04 "’ " beq $FE6B

FE67 : 08 " " inx

FE68 : 5A "Z" decb

FE69 : 20 FA " " bra $FE65

----------------------------------------------

FE6B : 39 "9" rts

----------------------------------------------

FE6C : 5F "_" clrb

FE6D : 86 01 " " ldaa #$01

FE6F : 9B 4F " O" adda $004F

FE71 : 97 4F " O" staa $004F

FE73 : D9 50 " P" adcb $0050

FE75 : D7 50 " P" stab $0050

FE77 : 96 4F " O" ldaa $004F

FE79 : 27 01 "’ " beq $FE7C

FE7B : 39 "9" rts

----------------------------------------------

FE7C : 96 6B " k" ldaa $006B

FE7E : 26 22 "&"" bne $FEA2

FE80 : 96 72 " r" ldaa $0072

FE82 : 81 01 " " cmpa #$01

FE84 : 22 1C "" " bhi $FEA2

FE86 : C1 25 " %" cmpb #$25

FE88 : 22 01 "" " bhi $FE8B

FE8A : 39 "9" rts

----------------------------------------------

FE8B : BD F1 D2 " " jsr $F1D2

FE8E : 96 50 " P" ldaa $0050

FE90 : 81 40 " @" cmpa #$40

FE92 : 26 03 "& " bne $FE97

FE94 : BD F1 53 " S" jsr $F153

. . . . . . . . . . . . . . . .

FE97 : 96 50 " P" ldaa $0050

FE99 : 81 50 " P" cmpa #$50

FE9B : 22 01 "" " bhi $FE9E

FE9D : 39 "9" rts

----------------------------------------------

FE9E : BD F5 87 " " jsr $F587

FEA1 : 39 "9" rts

----------------------------------------------

FEA2 : BD FE 60 " ‘" jsr $FE60

FEA5 : E6 00 " " ldab $00,x

FEA7 : D7 4A " J" stab $004A

FEA9 : 96 50 " P" ldaa $0050

FEAB : 84 01 " " anda #$01
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FEAD : 27 04 "’ " beq $FEB3

FEAF : 86 80 " " ldaa #$80

FEB1 : A7 00 " " staa $00,x

. . . . . . . . . . . . . . . .

FEB3 : BD F1 70 " p" jsr $F170 write buffer to display

FEB6 : BD FE 60 " ‘" jsr $FE60

FEB9 : 96 4A " J" ldaa $004A

FEBB : A7 00 " " staa $00,x

. . . . . . . . . . . . . . . .

FEBD : 96 50 " P" ldaa $0050

FEBF : 81 E0 " " cmpa #$E0

FEC1 : 26 03 "& " bne $FEC6

FEC3 : BD F1 53 " S" jsr $F153

. . . . . . . . . . . . . . . .

FEC6 : 96 50 " P" ldaa $0050

FEC8 : 81 E9 " " cmpa #$E9

FECA : 22 D2 "" " bhi $FE9E

FECC : 39 "9" rts

----------------------------------------------

FECD : CE FF AD " " ldx #$FFAD (6 spaces)

FED0 : BD F1 C0 " " jsr $F1C0 put table chars in buffer

FED3 : B6 01 FE " " ldaa $01FE

FED6 : 84 07 " " anda #$07

FED8 : CE 00 51 " Q" ldx #$0051

FEDB : DF 63 " c" stx $0063

FEDD : BD F1 AF " " jsr $F1AF convert oct to char

FEE0 : 96 51 " Q" ldaa $0051

FEE2 : 84 7F " " anda #$7F

FEE4 : 97 51 " Q" staa $0051

FEE6 : 39 "9" rts

----------------------------------------------

FEE7 : CE 01 00 " " ldx #$0100

FEEA : DF 63 " c" stx $0063 63.64 <- start of key ram

FEEC : F6 01 FE " " ldab $01FE get key#

FEEF : C4 07 " " andb #$07

. . . . . . . . . . . . . . . .

FEF1 : 27 10 "’ " beq $FF03 quit when addr is correct

FEF3 : 5A "Z" decb

FEF4 : 96 64 " d" ldaa $0064 add 24 to 63.64 for each key#

FEF6 : 8B 18 " " adda #$18

FEF8 : 97 64 " d" staa $0064

FEFA : 96 63 " c" ldaa $0063

FEFC : 89 00 " " adca #$00

FEFE : 97 63 " c" staa $0063

FF00 : 5D "]" tstb

FF01 : 20 EE " " bra $FEF1

----------------------------------------------

FF03 : 39 "9" rts

----------------------------------------------

FF04 : 01 " " nop

FF05 : 01 " " nop

FF06 : 01 " " nop

. . . . . . . . . . . . . . . .

FF07 : 01 " " nop

FF08 : 01 " " nop

FF09 : 01 " " nop

FF0A : 01 " " nop
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FF0B : 01 " " nop

. . . . . . . . . . . . . . . .

FF0C : 39 "9" rts

----------------------------------------------

FF0D : 7C 00 6E "| n" inc $006E

FF10 : 7C 00 69 "| i" inc $0069

FF13 : 08 " " inx

FF14 : C6 81 " " ldab #$81

FF16 : E7 00 " " stab $00,x

FF18 : 39 "9" rts

----------------------------------------------

FF19 : B6 01 DF " " ldaa $01DF

FF1C : 84 0F " " anda #$0F

FF1E : 81 0F " " cmpa #$0F

FF20 : 27 11 "’ " beq $FF33

FF22 : CE 01 D0 " " ldx #$01D0

FF25 : 4D "M" tsta

. . . . . . . . . . . . . . . .

FF26 : 27 04 "’ " beq $FF2C

FF28 : 08 " " inx

FF29 : 4A "J" deca

FF2A : 20 FA " " bra $FF26

----------------------------------------------

FF2C : 96 4F " O" ldaa $004F

FF2E : A7 00 " " staa $00,x

FF30 : 7C 01 DF "| " inc $01DF

. . . . . . . . . . . . . . . .

FF33 : 39 "9" rts

----------------------------------------------

FF34 : 4F "O" clra

FF35 : 97 6B " k" staa $006B

FF37 : 97 72 " r" staa $0072

FF39 : 97 6E " n" staa $006E

FF3B : 39 "9" rts

----------------------------------------------

FF3C : 9F 63 " c" sts $0063

FF3E : 9E 61 " a" lds $0061

FF40 : 34 "4" des

. . . . . . . . . . . . . . . .

FF41 : 33 "3" pulb

FF42 : E7 00 " " stab $00,x

FF44 : 08 " " inx

FF45 : 4A "J" deca

FF46 : 26 F9 "& " bne $FF41

FF48 : 9E 63 " c" lds $0063

FF4A : 39 "9" rts

----------------------------------------------

FF4B : CE 01 00 " " ldx #$0100

. . . . . . . . . . . . . . . .

FF4E : 6F 00 "o " clr $00,x

FF50 : 08 " " inx

FF51 : 8C 02 00 " " cpx #$0200

FF54 : 26 F8 "& " bne $FF4E

FF56 : 86 0A " " ldaa #$0A

FF58 : B7 01 FD " " staa $01FD

FF5B : CE FF 8E " " ldx #$FF8E All Erased

FF5E : BD F1 C0 " " jsr $F1C0 put table chars in buffer
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FF61 : BD F1 70 " p" jsr $F170 write buffer to display

FF64 : 39 "9" rts

----------------------------------------------

FF65 : 96 6A " j" ldaa $006A

FF67 : CE 00 02 " " ldx #$0002

. . . . . . . . . . . . . . . .

FF6A : 81 01 " " cmpa #$01

FF6C : 27 0D "’ " beq $FF7B

FF6E : 08 " " inx

FF6F : 08 " " inx

FF70 : 08 " " inx

FF71 : 08 " " inx

FF72 : D6 67 " g" ldab $0067

FF74 : 2B 02 "+ " bmi $FF78

FF76 : 08 " " inx

FF77 : 08 " " inx

. . . . . . . . . . . . . . . .

FF78 : 4A "J" deca

FF79 : 20 EF " " bra $FF6A

----------------------------------------------

FF7B : DF 4D " M" stx $004D

FF7D : 39 "9" rts

==============================================

FF7E : FB B0 ED F5 B6 D7 DF F0

0 1 2 3 4 5 6 7

FF86 : FF F7 FE 9F CB BD CF CE

8 9 A b C d E F

. . . . . . . . . . . . . . . .

FF8E : FE BA CF 8C FE D7 CF BD

A ll E r A S E d

. . . . . . . . . . . . . . . .

FF96 : 80 80 8C CF FE BD B7

r E A d y

. . . . . . . . . . . . . . . .

FF9D : 80 80 8B FB FE BD 80 81

L O A d _

. . . . . . . . . . . . . . . .

FFA5 : 8B FB CB BE FE 8C DB CF

L O C H A r G E

. . . . . . . . . . . . . . . .

FFAD : 80 80 80 80 80 80

(6 spaces)

. . . . . . . . . . . . . . . .

FFB3 : 80 80 8B FB 4B EC

L O C. ?

. . . . . . . . . . . . . . . .

FFB9 : 80 80 CE FE B0 8B

F A I L

. . . . . . . . . . . . . . . .

FFBF : 80 80 EE FE D7 D7

P A S S

. . . . . . . . . . . . . . . .

FFC5 : 80 80 9F CF CF 6E EC 80

B E E P ?

. . . . . . . . . . . . . . . .

FFCD : 4F 71 48 28 31 70 7B 04

. . . . . . . . . . . . . . . .
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FFD5 : 00 00 00 00

FFD9 : 00 00

==============================================

FFDB : 0F " " sei low battery interrupt

FFDC : 96 79 " y" ldaa $0079

FFDE : 8A 10 " " oraa #$10

FFE0 : 97 79 " y" staa $0079

FFE2 : D6 67 " g" ldab $0067

FFE4 : CA 20 " " orab #$20

FFE6 : D7 67 " g" stab $0067

FFE8 : CE FF A5 " " ldx #$FFA5 LOCharge

FFEB : BD F1 C0 " " jsr $F1C0 put table chars in buffer

FFEE : BD F1 70 " p" jsr $F170 write buffer to display

FFF1 : BD FF 34 " 4" jsr $FF34

FFF4 : BD F3 68 " h" jsr $F368

FFF7 : 3B ";" rti

----------------------------------------------

FFF8 : FF DB IRQ

FFFA : F0 00 SWI

FFFC : F0 00 NMI

FFFE : F0 00 RST
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