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Abstract

Extensive studies have been made of the public key cryptosystems based on multivariate polynomials
(Multi-variate PKC, MPKC) over F2 and F2m . However most of the proposed MPKC are proved not
secure. In this paper, we propose a new class of MPKC based on Reed-Solomon code, referred to as
K(XI)RSE(2)PKC. In Appendix, we present another class of MPKC referred to as K(X)RSE(2)PKC over
F2. Both K(X)RSE(2)PKC and K(XI)RSE(2)PKC yield the coding rate of 1.0. We show that the proposed
schemes can be sufficiently secure against various attacks, including Gröbner basis attack.
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1 Introduction

Extensive studies have been made of the Public Key Cryptosystem (PKC). The security of most PKC’s
depends on the difficulty of discrete logarithm problem or factorization problem. Thus it is desired to
investigate another classes of PKC that do not rely on the difficulty of these two problems.

So far extensive studies have been made of the Multivariate PKC (MPKC) constructed based on the
simultaneous equations of degree 2 (SE(2)PKC) [1-8]. All these proposed schemes are very interesting and
important. However unfortunately, some of these schemes have been proved not necessarily secure against
the conventional attacks such as Patarin’s attack [3], Gröbner basis attack [9], Braeken-Wolf-Preneel (BWP)
attack [10,11].

In this paper, we propose a new class of MPKC based on Reed-Solomon code, referred to as K(XI)RSE(2)PKC.
We then propose another class of MPKC referred to as K(X)RSE(2)PKC over F2. Both K(X)RSE(2)PKC
over F2 and K(XI)RSE(2)PKC over F2m yield the coding rate of 1.0. We show that the proposed schemes
can be secure against the possible attacks, including Gröbner basis attack.

Throughout this paper, when the variable vi takes on a value ṽi, we shall denote the corresponding vector
v = (v1, v2, · · · , vn) as

ṽ = (ṽ1, ṽ2, · · · , ṽn). (1)

We shall use the notation tilda ∼ when it is necessary for understanding the meaning of vi more clearly.
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The vector v = (v1, v2, · · · , vn) will be represented by the polynomial as

v(x) = v1 + v2x+ · · ·+ vnx
n−1. (2)

The ũ, ũ(x) et al. will be defined in a similar manner.

2 K(XI)RSE(2)PKC

2.1 Preliminaries

2.1.1 List of symbols

M : Message, (M1,M2, · · · ,M2gm) over F2.

G(x) : Generator polynomial of Reed-Solomon code over F2m .

g : Degree of G(x).

φR(x) : Randomly quadratic-transformed x.

φS(x) : Systematically quadratic-transformed x.

RSE(2) : Simultaneous quadratic equations randomly constructed.

SSE(2) : Simultaneous quadratic equations systematically constructed.

A : (A1, A2, · · · , Ag) over F2m .

Ai : (Ai1, Ai2, · · · , Aim).

Aij : Randomly constructed quadratic equation;A
(2)
ij (M1,M2, · · · ,M2gm) over F2.

Capital letter is used for RSE(2).

α : (α1, α2, · · · , αg) over F2m .

αi : (αi1, αi2, · · · , αim) over F2.

αij : Systematically constructed quadratic equation;α
(2)
ij (M1,M2, · · · ,M2gm) over F2.

Small letter is used for SSE(2).

2.1.2 Random quadratic equation

The set of random quadratic equations, {Aij}, is constructed as follows:
Let a linear term Ti and a quadratic term Tjk be

Ti = Mi; i = 1, 2, · · · , 2gm. (3)

Tjk = MjMk; j, k = 1, 2, · · · , 2gm; j ̸= k. (4)

The random quadratic equation Aij over F2 is

Aij =

2gm∑
i

θ
(1)
i Ti +

2gm∑
j,k

θ
(2)
jk Tjk, (5)

where θ
(1)
i and θ

(2)
j,k take on 0 or 1 with the probability 0.5.

2.2 Construction

Let the original message M = (M1,M2, · · · ,M2gm) over F2 be transformed to

M ·AI = m = (m1,m2, · · · ,m2gm), (6)

where AI is a non-sigular 2gm× 2gm matrix over F2.
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Let m = (m1,m2, · · · ,m2gm) over F2 be partitioned to

m = (α;β), (7)

where α and β over F2 are

α = (m1,m2, · · · ,mgm),

β = (mgm+1,mgm+2, · · · ,m2gm).
(8)

The components of α is systematically transformed to a set of quadratic equations over F2m that can be
systematically decoded:

φs(α) = σ = (σ1, σ2, · · · , σg), (9)

where σi is

σi = (σi1, σi2, · · · , σim); i = 1, 2, · · · , g. (10)

The component of σi, σij , is

σij = σ
(2)
ij (m1,m2, · · · ,mgm); i = 1, 2, · · · , g; j = 1, 2, · · · ,m, (11)

where σij ’s will be referred to as erasure errors.
Let σ(x) = σ1 + σ2x+ · · ·+ σgx

g−1 be transformed to

σ(x) 7→ τ(x) = σ1x
(1) + σ2x

(2) + · · ·+ σgx
(g), (12)

where the exponents (i) are randomly chosen on condition that they satisfy

0 ≤ (1) < (2) < · · · < (g) ≤ 2g − 1. (13)

Let us refer to (1), (2), · · · , (g) as erasure locations.
The vector α is randomly transformed to Ω over F2m :

φR(α) = Ω = (Ω1,Ω2, · · · ,Ωg), (14)

where Ωi is

Ωi = (Ωi1,Ωi2, · · · ,Ωim); i = 1, 2, · · · , g. (15)

The component of Ωi, Ωij is

Ωij = Ω
(2)
ij (m1,m2, · · · ,mgm); i = 1, 2, · · · , g; j = 1, 2, · · · ,m. (16)

The vector β is systematically transformed to ρ over F2m :

φs(β) = ρ = (ρ1, ρ2, · · · , ρg), (17)

where ρi is

ρi = (ρi1, ρi2, · · · , ρim); i = 1, 2, · · · , g. (18)

The component of ρi, ρij is

ρij = ρ
(2)
ij (mgm+1,mgm+2, · · · ,m2gm); i = 1, 2, · · · , g; j = 1, 2, · · · ,m. (19)

Let us summarize the features of the above-mentioned quadratic equations:

{σij}, {ρij} : Sets of quadratic equations that can be systematically decoded.

{Ωij} : Set of random quadratic equations that cannot be systematically decoded.

3



The sets {σij}, {ρij} and {Ωij} yield the following advantages:

(i) simple decoding process thanks to {σij} and {ρij},
(ii) high security against the various attacks including Gröbner bases attack, thanks to {Ωij}.

Let Ω(x) + ρ(x) be transformed to

xg(Ω(x) + ρ(x)) ≡ R(x) mod G(x). (20)

The code word V (x) is

V (x) = R(x) + xg(Ω(x) + ρ(x)) ≡ 0 mod G(x). (21)

The word W (x) is

W (x) = V (x) + τ(x)

= W1 +W2x+ · · ·+W2gx
2g−1.

(22)

Let Wi be

Wi = (Wi1,Wi2, · · · ,Wim); i = 1, 2, · · · , 2g. (23)

Taking account of the above Eq.(23), we regard W = (W1,W2, · · · ,W2g) over F2m as the vector W ′ over
F2:

W ′ = (W11, · · · ,W1m;W21, · · · ,W2m; · · · ;W2g1, · · · ,W2gm). (24)

The set of public key, {Ui}, is

W ′AII = U

= (U1, U2, · · · , U2gm),
(25)

where AII is a non-singular 2gm× 2gm matrix over F2.
The Ui is

Ui = U
(2)
i (M1,M2, · · · ,M2gm); i = 1, 2, · · · , 2gm. (26)

We see that Ui can be represented as

U
(2)
i (M1,M2, · · · ,M2gm) = Y

(2)
i (M1,M2, · · · ,M2gm) + y

(2)
i (M1,M2, · · · ,M2gm)

; i = 1, 2, · · · , 2gm,
(27)

where Yi’s and yi’s are the transformed versions of Vi’s and τi’s respectively, based on AII .

Let z(x) = z
(2)
i (M1,M2, · · · ,M2gm) denote the transformed version of ρ(x) based on AII .

In Fig.1, we show an example of {Ui}, only for an easy understanding of the present paper. It should be
noted that this is not an example of K(XI)RSE(2)PKC.
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Only in this example for easy understanding, 

erasure symbols are enclosed in parentheses.

1

�� = 1 + �� +�� +���� + ���	 +���


+�	�� + (����)

�� = �� + �
 +���
 + ���� +�	�

+ (�	��)

�	 = �	 + �� +�� + ���� +���� +���	

+�	�� +�
��

�
 = �
 + �� +���� +���� + �	�


+�	�� +����

�� = �� + �� +���	 + ���	 +����

+ �	�
 + �
��

�� = �
 +�� + ���� +���	 +����

+ ���
 +�	�
 + (�	��)

Figure 1: An example of {Ui}.

In 2.4, we shall see that K(XI)RSE(2)PKC yields the coding rate of exactly 1.0. It is evident that the
coding rate of the ciphertext constructed based on {Ui} of Example 1 is also exactly 1.0.

The set of keys are:

Public key : {Ui}.
Secret key : {σij}, {Ωij}, {ρij}, AI , AII .

2.3 Encryption and decryption process

Encryption process:

S1 : Given the message M̃ = (M̃1, M̃2, · · · , M̃2gm) over F2, Bob calculates the ciphertext over F2:

C̃ = (Ũ1, Ũ2, · · · , Ũ2gm), where Ui is Ui = U
(2)
i (M̃i, M̃2, · · · , M̃2gm).

Decryption process:

S1 : Given the ciphertext C̃, Alice calculates C̃A−1
II = W̃

′
, yielding Ṽ + τ̃ over F2m .

S2 : Alice decodes τ̃ with erasure and error decoding algorithm [12], yielding σ̃.
S3 : Alice decodes the first message α̃ = (m̃1, m̃2, · · · , m̃gm) over F2 by solving the set of systematically

constructed quadratic equations {σ(2)
ij (m̃1, m̃2, · · · , m̃gm)}.

S4 : Alice calculates φR(α̃) = Ω̃ = (Ω̃1, Ω̃2, · · · , Ω̃g) over F2m , where Ω̃i is Ω
(2)
i (m̃1, m̃2, · · · , m̃gm),

yielding ρ̃ = (ρ̃1, ρ̃2, · · · , ρ̃g) over F2m .
S5 : Alice decodes the second message β = (m̃gm+1, m̃gm+2, · · · , m̃2gm) over F2 by solving the set of

systematically constructed quadratic equations {ρ(2)i (m̃gm+1, m̃gm+2, · · · , m̃2gm)}.
S6 : Alice calculates (m̃1, m̃2, · · · , m̃2g)A

−1
I , yielding the message :

M̃ = (M̃1, M̃2, · · · , M̃2gm) over F2.

2.4 parameters

The size of public key, SPK , is

SPK = #{Ui} × |Ui|, (28)
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where #{Ui} is the order of the set of public key, {Ui}, and |Ui|, the size of public key Ui (in bit).
For example,

SPK = 135 KB for m = 8, g = 8.

SPK = 1.05 MB for m = 8, g = 16.
(29)

The coding rate ρ is

ρ =
|M |
|C|

=
2gm

2gm
= 1.0, (30)

where M is the size of message and |C|, the size of the ciphertext.
We see that the coding rate is exactly 1.0.

2.5 Security considerations

In this subsection we let the parameters: m = 8, g = 16.
Attack 1 : Exhaustive attack on AII

The probability that AII is correctly estimated, Pc[ÂII ]

Pc[ÂII ] ∼= 2−4g2m2

= 5× 10−19662. (31)

We see that K(XI)RSE(2)PKC is secure against Attack 1.
For a moment let us assume that W ′ is tranformed to

W ′P = U ′, (32)

where P is a 2gm × 2gm random column permutaion matrix. Namely we assume that a more simple
transformation P is applied to W ′, instead of AII .
Attack 2 : Exhaustive attack on erasure locations, (1), (2), · · · , (g), under the condition that U ′

is given instead of U .
The probability that erasure locations are correctly estimated, Pc[{(̂i)}], is

Pc[{(̂i)}] =
(

2gm
gm

)−1

. (33)

For example, for m = 8, g = 16, Pc[{(̂i)}] are

Pc[{(̂i)}] =
(

256
128

)−1

= 1.74× 10−76, (34)

a sufficiently small value.
We conclude that K(XI)SE(2)PKC is secure against Attack 2 for m = 8, g >∼ 16.

Remark 1: The author feels certain that, even if the set of erasure error locations {(i)} are correctly
estimated with an exhaustive method, it would still hard to disclose the set of simultaneous equations {σij}.
The reason of the author’s certainty is due to the robustness of K(XI)RSE(2)PKC against Attack 3 mentioned
below.
Attack 3: Disclosing SSE(2) added on RSE(2)

Let us first point out a large difference between the entropies (ambiguities) of SSE(2) and RSE(2). The
entropy of SSE(2) in the gm variables m1,m2, · · · ,mgm or mg+1,mg+2, · · · ,m2gm, IS , is

IS ∼= log2
2gm − 1

gm
+ log2

(
gm
2

)
∼= gm+ log2 gm (bit).

(35)
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The entropy of RSE with the same number of variables, IR, is

IR ∼=
(

gm
2

)
· gm ∼=

1

2
g3m3 (bit). (36)

For m = 8, g = 16, IS and IR are

IS = 135 bit,

IR = 1.05 M bit.
(37)

Namely in K(XI)SE(2)PKC, the following relation holds:

IR >> IS . (38)

We see that any linear transformation attack would find it hard to disclose y
(2)
i (M1,M2, · · · ,M2gm)

from U
(2)
i (M1,M2, · · · ,M2gm), due to the large difference between the entropies (ambiguities) of SSE(2) and

RSE(2).
We thus conclude that disclosing the set of SSE(2), {σij} embedded in V , is hard, because the entropy

of σij is very small compared with that of the component of V .
We see that K(XI)SE(2) PKC is secure against Attack 3.

Notes on the security:
The set of quadratic equation {Ωij} is constructed using φR(α), a random non-lineartransformation of

α = (m1,m2, · · · ,mgm) where mi is a linear equation in the variables M1,M2, · · · ,M2gm over F2.
The vector τ , randomly permuted version of φR(α) is added to the code word

V = (V1, V2, · · · , V2gm), (39)

where Vi is

Vi = (Vi1, Vi2, · · · , Vim). (40)

The component of Vi, Vij is a random quadratic equation in the variables M1,M2, · · · ,M2gm and has a
vely large entropy compared with that of σij .

Besides KM(XI)RSE(2)PKC realizes the coding rate of exactly 1.0.
We thus conclude that KM(XI)RSE(2)PKC would be suffficiently secure against the linear transformation

type of attacks such as Gröbner basis attack.

3 Conclusion

We have presented a new class of RSE(2)PKC referred to as K(XI)·RSE(2)PKC over F2m . We have shown
that letting the size of public key be almost same as that of the conventional RSE(2)PKC, the security is
much improved.

The author feels certain that K(XI)RSE(2)PKC would open up a brand new field of PKC’s as it is strongly
related to the fields of both MPKC and code-based PKC.

In Appendix, we have presented K(X)RSE(2)PKC over F2, which is simpler but less secure compared
with K(XI)RSE(2)PKC.

This work is partly supported by NICT’s project:Research and developement for public key cryptosystem
for secure communication between social systems and 21st.Century Informatic Culture Center.
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Appendix:K(X)RSE(2)PKC

In Dec.2013, in Ref. [14], the author presented an augmentation technique, K(V)Schme and applied it to
several members of PKC such as

• knapsack type PKC,

• code based PKC,

• multivariate PKC.

In this Appendix, we present K(XI)RSE(2) over F2 by applying K(V)Schme to a general RSE(2)PKC
over F2.

Let the original message M be

M = (M1,M2, · · · ,M2g) over F2. (41)
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The message M is transformed to

M ·AIII = m = (m1,m2, · · · ,m2g), (42)

where AIII is a non-singular 2g × 2g matrix over F2.
Let m be partitioned to

mI = (m1,m2, · · · ,mg) (43)

and

mII = (mg+1,mg+2, · · · ,m2g) (44)

The message mI is then transformed to

φs(mI) = a = (ai, a2, · · · , ag), (45)

where ai is

ai = a
(2)
i (m1,m2, · · · ,mg); i = 1, 2, · · · , g. (46)

Let the message mI be also transformed to

φR(mI) = A = (A1, A2, · · · , Ag), (47)

where Ai is

Ai = A
(2)
i (m1,m2, · · · ,mg); i = 1, 2, · · · , g. (48)

Let mII be transformed to

φs(mII) = b = (b1, b2, · · · , bg), (49)

where bi is

bi = b
(2)
i (mg+1,mg+2, · · · ,m2g); i = 1, 2, · · · , g. (50)

Regarding A+ b as information symbols, we construct the code word V :

(A(x) + b(x))xg ≡ R(x) mod F (x), (51)

where F (x) is a primitive polynomial of degree g over F2.

V (x) = R(x) + xg(A(x) + b(x)). (52)

We then construct W(x):

W (x) = V (x) + a(x) = a(x) +R(x) + xg(A(x) + b(x))

= W1 +W2x+ · · ·+W2gx
2g−1.

(53)

From {Wi}, we construct the set of public keys {Ui}:

WAIII = (U1, U2, · · · , U2g), (54)

where AIII is a 2g × 2g random permutation matrix.
The Ui is

Ui = U
(2)
i (M1,M2, · · · ,M2g) (55)

We see that the set of simultaneous equations {Ui} cannot be systematically decoded.
We also see that K(X)RSE(2)PKC realizes the coding rate of exactly 1.0.
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