
Providing better confidentiality and authentication on the
Internet using Namecoin and MinimaLT

Frederic Jacobs
www.fredericjacobs.com

me@fredericjacobs.com

ABSTRACT
In this paper, we introduce a duo of improvements for the
Internet that would lead to better security. The authentica-
tion model on the Internet is broken and TLS connections
have a considerable overhead. We try to address those is-
sues with changes in both the application layer, discussing
a replacement for the DNS system, and in the transport
layer, a drop-in replacement for TCP built on top of UDP
so that it can run on today’s internet infrastructure.

1. INTRODUCTION

1.1 Defining user privacy
The solutions brought forward in this paper are attempts

to fix confidentiality and authentication on the Internet.
Anonymity is not provided. Although, an attacker could
still get a significant amount of metadata because IP head-
ers are left unchanged, MinimaLT does provide a similar
traffic analysis protection as IPSec by using tunnels.

Unfortunately, because MinimaLT runs over UDP it is not
possible to use it through the Tor network.1

1.2 Motivation
When the Internet was designed at DARPA, the primary

goal was to design a system that could provide intercon-
nection between multiple computers. The Web then came
by with the motivation to be able to freely exchange infor-
mation with anyone. But, over time, people started trust-
ing the internet more and more and started sharing more
personal information over it. The threat model implied
that you had to trust the entities running the infrastruc-
ture of the internet, but the latter was never designed to

1If MinimaLT proves to be a safer and faster alternative to
TLS, I imagine that the Tor project would look into imple-
menting it to speed up the network and make relay con-
nections safer.

be run by so many of them. Over time, attempts such as
TLS and DNSSec were introduced to secure inherently in-
secure protocols. In this paper, we will not attempt to fix
the current protocols that have a huge overhead but we
will try instead to propose better alternatives.

2. DOMAIN NAMES AND AUTHENTICITY
Today, if we want to load a page from www.facebook.com,

our computer will have to first get the Domain Name Sys-
tem record matching that domain. DNS was designed in
a hierarchical way and TLD registrations are handled by a
single organisation, the ICANN.

So what is wrong with DNS?
When the original Domain Name System was designed,

it did not include security; instead it was designed to be a
scalable distributed system. DNS requests could thus be
spoofed and fake DNS query responses could be served to
the clients. Therefore, DNSSEC, a security extension of
DNS, attempted to prevent those types of attacks by intro-
ducing DNS zone signing. DNS zone signing uses a chain
of trust to sign entries hierarchically, meaning that the
ICANN has a key that is known as the root anchor which
is the starting point of a trust chain.

The fact that even today, DNSSEC is having issues being
deployed at a larger scale has a lot to do with its compli-
cated design. Getting DNSSEC right is hard and it leads
to the centralisation of the internet Domain Name System
because few registrars are deploying DNSSEC and other
registrars are still requesting their signing keys. Hierar-
chical trust structures require us to blindly believe that
the root keys are not compromised and bring us back to
a feudal system where we need to beg some lords (here
companies) for protection to get the keys.

The ICANN has been taking worrying measures that re-
move the users’ ability to register domains anonymously[?].
Our systems shouldn’t be designed in such a way that a
change in policy would make their security obsolete.

Hence, we want to design a distributed system where
anyone can register a domain with a fast and efficient reg-
istration process.

But how can we verify authenticity? Even if our Do-
main Name System returns the right IP address, how do
we know for sure that we are establishing a connection
with the client we want ? Today, we are using yet another
hierarchical system to verify authenticity, namely SSL cer-
tificates. This means that in addition to trusting ICANN,

1

ar
X

iv
:1

40
7.

64
53

v1
 [

cs
.C

R
]

 2
4

Ju
l 2

01
4

we will have to trust hundreds of Root Certificate Authori-
ties that are shipped with our browsers.[?]

If only one of those 100s of CAs gets compromised, it
could result in the man-in-the-middling of any website with-
out any warning since a root certification authority can
generate a fake valid certificate for said website.

Certificate Authorities getting compromised has already
happened. For instance, the Dutch Certificate Authority
DigiNotar’s hack [?] enabled fake certificates to be deliv-
ered in order to target Iranian citizens.

Now that we are convinced that the hierarchical trust
model of the internet is broken, one might wonder what
measures have already been taken to fix authentication on
the Internet?

3. EXISTING ATTEMPTS TO ADDRESS AU-
THENTICATION

3.0.1 Certificate Pinning
The Chrome Security team led the way by implement-

ing certificate pinning. Certificate pinning is an effective
measure to counter man-in-the-middle attacks in today’s
internet. Certificate pinning works by shipping pins2 in the
browser’s binary.[?] Every time a user loads a pinned web-
site, the certificate fingerprint is compared to the one pro-
vided in the binary. If the fingerprint matches, the client
continues the SSL handshake. Otherwise, an error mes-
sage is shown to the user explaining a secured connection
couldn’t be established.

Although this is a very efficient method to verify SSL
certificates, it is difficult to deploy and maintain on a larger
scale. Furthermore, the Chrome team needs to verify the
"pin" definition manually before merging every pin request
into the code branch. Therefore only larger websites have
certificate pins.

3.0.2 TACK
TACK is a proposal by Moxie Marlinkspike and Trevor

Perrin, providing a way to ’pin’ TLS servers to the correct
public key even when a Certificate Authority is delivering
a different one. Although this is a promising proposition,
it wouldn’t protect against an attacker that might have a
long-term MITM capability since pins are set on the first
connection and only expire after some time.[?]

3.0.3 DANE
The IETF proposal called DANE is an attempt at large

scale certificate pinning but by distributing the certificate
fingerprint by DNS. This would enable website owners to
specify their certificate fingerprint as a DNS entry. Visitors
would then be able to verify the authenticity of the server.

Even if we consider that DNSSEC does provide good se-
curity, this system still relies on trusting the Domain Name
System and its hierarchical structure.

3.0.4 Tor Hidden Services
Tor Hidden Services are reachable by hashes of public

keys. This is of course the ideal case when it comes to

2A pin is a (domain name, certificate fingerprint) pair

security because the address itself contains information
about the key. Unfortunately, humans are not good at re-
membering pseudorandom 16-character strings.

3.1 Zooko’s triangle
In this section, we are covering Zooko’s triangle conjec-

ture.

Zooko’s triangle says that out of these three properties
[?], a naming system can only have two.

• Secure3: The quality that there is one, unique and
specific entity to which the name maps.

• Global : The lack of a centralized authority for deter-
mining the meaning of a name. Instead, measures
such as a Web of trust are used.

• Memorable: The quality of meaningfulness and mem-
orability to the users of the naming system.

We can thus see that the systems proposed so far only
gather two out of three of those properties. If we take
the DNSSEC system with DANE extensions, we can have
a memorable address that is "secure". Unfortunately, this
configuration does not have the global property because
the ICANN is a centralized authority. Alternatively, Tor’s
Onion addresses do have the "secure" property and are
global but a pseudorandom 16-character string is not mem-
orable.

3.2 Squaring Zooko’s Triangle
In the following section we will present a naming system

that is an attempt at squaring Zooko’s triangle.
Back in January 2011, Aaron Swartz described on his

blog[?] how the Bitcoin blockchain could be of service in
squaring Zooko’s triangle. A few months later, a first im-
plementation of that idea came into existence: Namecoin.

3.2.1 The Bitcoin Blockchain
The blockchain is Bitcoin’s main innovation. Blockchains

are mainly linear data-structures that were invented specif-
ically for the Bitcoin project to store the history of all past
transactions but they can be applied anywhere a distributed
consensus needs to be established in the presence of mali-
cious or untrustworthy actors.

3We cannot agree with the naming of this property given
the threat model we described previously in this paper.

2

To understand how they work we will cover the basics
of how Bitcoin itself works. Let’s take an example and
see what happens when Alice tries to transfer money to
Bob. Every user on the network has one address. Bitcoin
addresses[?] are generated based on a public key.

Key-Hash = RIPEMD-160(SHA-256(public key))
BTCAddress = Base58(Version +4 Key-Hash + Checksum)

Private-public key pairs are generated5 when creating a
new Bitcoin addresses.

Alice must know Bob’s address to send him money. Now
that Alice has Bob’s address, she creates a new message
saying she sends a few Bitcoins to Bob and uses her pri-
vate key to generate an ECDSA signature. Once she has
generated that message and has signed it, she starts gos-
siping about her transaction on the network, her peers
hear about the transaction, they verify if Alice has enough
money to make the transaction and verify the signature.
If the transaction looks legitimate, they start telling all
of their peers. The verification can be done thanks to
the blockchain data structure which is a decentralized and
unique record of all the transactions. Peers that are min-
ers, eventually hear about this transaction and add it to the
transactions memory pool. This pool is a queue of transac-
tions that are not yet merged in the blockchain. But now
how can we merge transactions into the blockchain?

3.2.2 Proof of work
The concept of proof of work is used to merge the blockchain.

It makes adding entries in the blockchain an expensive
process computation-wise. Let’s say Alice wants to send
Bitcoins to Bob. Alice will start gossiping on the network,
telling all her peers that she wants to send money to Bob.
Every client, has a copy of the blockchain and can thus as-
sess if Alice has the amount of money she wants to transfer
to Bob. If she does, gossip will spread.

Once the miners, the workers of the blockchain, learn
about a valid transaction (Alice has enough money to make
the transaction and her signature is correct), they will add
it to their memory pool. If the transaction is valid, the min-
ers will add this transaction in the next block they will be
mining. The benefit of making it costly to validate transac-
tions is that validation can no longer be influenced by the
number of network identities someone controls, but only
by the total computational power they can bring to bear
on validation.

So what is mining technically?
The hard challenge that is used in Bitcoin that needs to

be solved is based on the strength of cryptographic hashes,
also known as one-way functions. We consider that it is
hard for someone to come up with the parameters of a hash
functions for a given result. The function used in Bitcoin
is SHA-256 but this hash function could be substituted by
any other. Another cryptocurrency, Litecoin, chose to use
the Scrypt function.

If we want to add some blocks (list of transactions) to
the blockchain, we will have to solve this problem

4The + sign is a string concatenation
5The curve used in Bitcoin is secp256k1 which is surpris-
ingly a NIST recommended curve.

SHA-256("TransactionsInfo" + challengeNumber) =<
target

where transactionsInfo is a parameter list of information
about the transactions in the blocks (and some extra infor-
mation like a return address for the reward). The blockchain
is vulnerable to some malleability regarding certain infor-
mations in the transaction but all the important informa-
tion (such as the amount of the transaction, the recipient
and the sender) is part of this hash. The challenge the
miner has to solve — the proof-of-work — is to find the
number such that when we append the transactions’ infos
to this number, and hash the combination, the output hash
is smaller than a given number. We notice that this cer-
tain challenge number is established by the network and
determines how hard the problem is. In Bitcoin, this num-
ber is dynamically adjusted to keep an approximate block
validation time of 10 minutes.[?]

When someone succeeds in solving this problem, they
sends their solution to the network. Nodes verify if that
answer is valid, and if it is, they broadcast it to their peers.
It progressively spreads across all nodes and is added to
the network’s blockchain.

3.2.3 Dealing with collisions
Now what happens if two nodes, from separate parts

of the blockchain do succeed in solving the challenge at
almost the same time. Both nodes and their peers will
spread different versions of the blockchain. We say that
the blockchain has forked. How do we solve this?

In this case, miners will start mining the next block based
on the version of the blockchain they have. If they hear
that another blockchain is longer than the one they were
working on before, they will switch to the longer one and
put the transactions in the orphan blocks (blocks that were
in the previous fork) back into the memory pool if they
were not merged.

We can now understand that because every node chooses
to have the longest blockchain possible, it will be very hard
for an attacker to spread a fake version of the blockchain
because this would involve solving the challenge for every
preceding block, since blocks are chained and must con-
tain the block identifier of the previous one.

Why would one mine and spend so much computational
power?

Miners are rewarded for their efforts. First, when mak-
ing a transaction, we can speed up the money transfer by
adding a transaction fee, that will go directly to the miners.
Mining software is thus optimised to sort the transactions,
in order to be merged in blocks by decreasing order of
transaction fee. The other reward from mining comes from
the coinbase transaction : mining does generate money. At
the creation of Bitcoin, this reward was set to be a 50 BTC.
But for every 210,000 validated blocks (once every four
years) the reward halves. This has happened just once, to
date, and so the current reward for mining a block is 25
bitcoins. This halving in the rate will continue every four
years until the year 2140 CE. At that point, the reward for
mining will drop below 10−8 bitcoins per block which is a
satoshi, the smallest unit of Bitcoin and the total amount
of bitcoins will cease to increase.

3

3.2.4 From Bitcoin to Namecoin
Now that we understand how blockchains work and why

they are safe data structures, let’s now see how we can
use them to square Zooko’s triangle.

Namecoin is a bitcoin fork that was designed as a decen-
tralized key-value store in addition to a crypto-currency.
Putting information in the blockchain does cost a certain
price.

Namecoins can be spent in many ways, here are some
other use cases of the Namecoin blockchain:

• Aliases: The blockchain can be used to store an easy
to remember alias for a GPG/SSH key, a Bitcoin ad-
dress or any other cryptographic identity.

• Timestamping: The blockchain could store informa-
tion about a specific file and from a hash of that we
could find matching author name, owner, etc.

• Messaging: The blockchain could be a decentralized
store for long-term messages vs BitMessage.

Writing data in the blockchain does have a certain price.
Registering a domain does cost the registration fee (0.01NMC
that goes to nobody) plus the transaction fee (that goes to
the miner who succeeds in adding the block that contains
this transaction).

The cost includes a network fee and a transaction fee.
The fees are denominated in Namecoins (NMC). Initially,
the network fee was 50 NMC but it decreases twice every
2 months, which means that it is already less than 1 NMC
after a year. This design was meant to make it expensive to
register domains in the first few months to avoid the issue
of domain name squatting.

Let’s see what a domain name value message looks like
to understand how it squares Zooko’s triangle.

For a key d/6 fredericjacobs, we have

1 {
2 "ip" : "209.236.123.133",
3 "tor" : "rqblqd3balaxcb57.onion",
4 "email" : "me@fredericjacobs.com",
5 "info" : "Frederic Jacobs",
6 "tls": {
7 "tcp": {
8 443: [[1, "30F38EDAABC67F0344DBE27018

552F7D575946EF", 1]]
9 }

10 },
11 "map":
12 {
13 "www" : { "ip": "209.236.123.133" },
14 }
15 }

This would make our website accessible at the frederic-
jacobs.bit, a memorable, secure (a client can verify the fin-
gerprint) and global address, the triangle has been squared!

A namecoin domain needs to be renewed every 36,000
blocks which at the current rate is around 200 days. Those
updates are free. Hence, unlike ICANN domain names,
you don’t have to pay renewal fees.
6The d/ prefix is used to register a .bit domain

3.3 DNSNMC
It might not be very convenient for users to require them

to have a full copy of the blockchain on their client, espe-
cially if it’s a mobile device. DNSNMC[?] is a proposal
for using the DNS client with Namecoin. Anyone can run
a DNSNMC server7 and configuring clients is easy since
it’s just a plug-and-play replacement for your DNS server.
An DNSNMC client configuration consists of an IP address
and a public key fingerprint to be able to verify that the
DNS request was not modified.

3.4 Known Issues with this new model
Blockchains are data-structures that are constantly grow-

ing. Given MinimaLT’s keying requirements that we will
describe later, the size of the blockchain grows substan-
tially. Merkle trees require to know the hashes of the
children nodes to verify integrity and our keying material
obviously needs to be hashed to avoid malleability. Op-
timisations that could enable the miners to clean up the
blockchain is still an open area of research.

Another issue that still needs to be addressed is domain
squatting[?]. Because registering namecoin domains (.bit)
became ridiculously cheap, a lot of domains are being squat-
ted by people hoping to resell those domains at some point
in the future. A better pricing system that prevents mas-
sive domain registration should be adopted because costs
decreased too quickly to be an effective counter-measure.

4. TRANSPORT SECURITY
Now that we have a good long-term identity key distribu-

tion strategy, we are going to discuss a new transport-layer
security protocol that provides safer and faster encrypted
connections.

4.1 MinimaLT
MinimaLT[?] is a new8 protocol that looks very promis-

ing. It presents some of the interesting features we want.
It was initially designed to secure network connections
between computers running the secure operating system
Ethos. In the following sections we are going to compare it
with TLS/TCP.9 Because MinimaLT is implemented on top
of UDP, it is compatible with the current Internet infras-
tructure.

4.2 Changes to make in Namecoin to make it
play nicely with MinimaLT

In the original MinimaLT paper, a directory service is
introduced to deal with the exchange of hosts information.
We will not cover that part but will rather explain how Min-
imaLT can be used along with the Namecoin blockchain.

The MinimaLT directories do store the following infor-
mation about the hosts: IP Address, UDP port, long-term

7DNSNMC servers are not yet running but the software
should be released in January 2014.
8Paper published in May 2013
9We will not however go over the whole specification of the
protocol.

4

identity key10 and ephemeral key. We will see later in this
paper why all these are needed, but let’s first try to change
the Namecoin domain JSON structure to add these new
fields.

Because we still want to be able to communicate over
other protocols, we’ll keep the base entry but add support
for MinimaLT.

1 {
2 "ip" : "209.236.123.133",
3 "tor" : "rqblqd3balaxcb57.onion",
4 "email" : "me@fredericjacobs.com",
5 "info" : "Frederic Jacobs",
6 "tls": {
7 "tcp": {
8 443: [[1, "30F38EDAABC67F0344DBE27018

552F7D575946EF", 1]]
9 }

10 },
11 "minimaLT": {
12 //"ip" : "209.236.123.133" // Only

required if different than the
default one

13 "port": 80, // can be any UDP port.
14 "id_key": long-term identity key,
15 "eph_key": ephemeral key used for sending

encrypted data on first RTT.
16 }
17 "map":
18 {
19 "www" : { "ip": "209.236.123.133" },
20 }
21 }

For the perfect forward secrecy features of MinimaLT,
we want new ephemeral keys to be announced regularly.
Therefore, we also define a ephemeral key update mes-
sage.

1 {
2 "minimaLT": {
3 "eph_key": ephemeral key used for sending

encrypted data on first RTT.
4 }
5 }

Because the Namecoin blockchain is a key-value store,
we do not need to specify what the address of our ser-
vice is because it’s the key of this entry. However, we do
need to sign this ephemeral key update message with our
Namecoin private key.

4.3 Why better than TLS/TCP?

4.3.1 Security is the standard
Currently, on the Internet, most HTTP connections are

unencrypted, and if they are, the Apache or Nginx con-
figuration is often badly configured, in such a way that it

10This key is not required in our use case where a client
identifies to a server but can be useful for access control
in other scenarios

could be attacked. MinimaLT was designed to prevent sys-
tem administrators from making security mistakes. Never
will you have to manually pick cipher suites or worry about
OpenSSL compatibility, MinimaLT does it all for you. Not
only does it encrypt all communications between two hosts
but it defaults on strong ciphers11.

4.3.2 Encryption & PFS
A few months ago, a previously unknown email provider

called Lavabit was under pressure from the US govern-
ment to hand over its private SSL key. The reason turned
out to be that Edward Snowden was using the email ser-
vice. If Lavabit had turned over the SSL keys, they would
have compromised the privacy of their entire user base.
This is due to poorly configured SSL where the ECDHE is
not the default. ECDHE performs an Elliptic curve Diffie-
Hellman key exchange. The last E from ECDHE stands for
Ephemeral which means that a new key, that will never be
stored, is generated at every handshake. Hence, even if
the server gets compromised or the network operator is
forced to hand over an encryption key, they won’t be able
to provide it. Unfortunately, most system administrators
don’t put the ECDHE ciphers on top of their ciphers list
resulting in the lack of Perfect Forward Secrecy.

4.3.3 Tunnel oriented
MinimaLT establishes tunnels. Tunnels provide a point-

to-point encrypted channel to transmit information and have
the interesting property of being more resistant to traffic
analysis, just like IPSec. Tunnels mean that unlike TLS, all
services from the transport layer, namely authentication,
encryption, congestion control and reliability, are provided
on a per-tunnel basis and are not repeated per connection.
MinimaLT clients have one or more connections for each
of these tunnels.

4.3.4 IP Mobility
Thanks to the structure of MinimaLT packets, the tun-

nel ID is what identifies what packet belongs to what con-
nection and therefore, MinimaLT has complete IP mobil-
ity. Unlike TCP, the source IP address and UDP port can
change without affecting the connection. A specific RPC
(nextTid0) exists to announce an IP address change. A
change in IP address will cause a rekeying, a procedure
that we describe further down. The fact that we have IP
mobility is a big advantage over TCP that currently strug-
gles in the mobile world when switching from a WiFi con-
nection to a 3G/4G signal for instance. MinimaLT solves
by design many problems that plague TCP today such as
multi-path TCP!

4.3.5 Handshakes & Tunnel establishment
When establishing a single TLS connection, two hosts

must first go through a three-way TCP handshake before
they can start the TLS handshake which requires 4 more
RTT. Thankfully MinimaLT attempts to fix that, and does
perform, in most cases, a cryptographic handshake in less
time than unencrypted TCP ! It’s also important to note

11MinimaLT uses Curve25519 for the public key cryptogra-
phy

5

that handshakes with MinimaLT are way less frequent than
in TLS because of the tunnel architecture.

Usually in TLS, the client needs to get the certificate
first, before being able to send encrypted data, but with
MinimaLT+Namecoin, we already have an ephemeral key
that allows us to send encrypted data to the server. Let’s
see how this key exchange works.

Let’s say a client C wants to connect to a server S. C
uses the Namecoin blockchain to get its identity, and an
ephemeral key of S. Now C sends its first packet to S con-
taining its newly-generated ephemeral key, a new tunnel
ID and the first bits of data. This segment’s body can be en-
crypted using the ephemeral key of the server we retrieved
previously ephemeral keys will no more be used past this
point because both clients can now compute a shared se-
cret by performing a Diffie-Hellman Key exchange with the
public ephemeral keys they exchanged. In the future, this
shared secret will be used to perform symmetric encryp-
tion between both hosts.

One important thing to notice is that this approach does
provide perfect forward secrecy thanks to the Diffie-Hellman
key exchange using ephemeral keys. Of course, perfect
forward secrecy requires rekeying, ie the process of chang-
ing keys so that previously used keys can be cleared from
memory. Let’s go through this process. Rekeying can be
requested by the client or the server depending on their
rekey interval policies or change in IPs, but the client will
always be the one initiating the rekey.

When a client initiates a rekey, it generates a new tunnel
ID and sends it to the server as a call. Like the initial tun-
nel establishment procedure, the client generates a new
key pair and sends its new public key along with the new
tunnel ID to the server using the current encrypted tunnel.
The corresponding private key of the pair that was gener-
ated will never be used (it actually doesn’t even need to
be known), its only function is to make the packet look
like a regular tunnel initialisation packet. Now that the
new tunnel is ready, the client can send packets to the new
tunnel ID. But what encryption key should be used now?
MinimaLT avoids doing a DH on rekeying for performance
reasons, thus, client is hashing with a cryptographically
secure hash function the old symmetric encryption key to
generate the next one. The client will include the tem-
porarily generated public key inside the encrypted packet
sent to the server. Once the server gets a packet on the
new tunnel ID, it will perform the same hashing as the
client did to compute the decryption key. Now the server
can decrypt the packet and it has to verify that the key
is matching the previously sent one in the (nextTid0) call.
This verification is required[?] because otherwise an ac-
tive attacker could alter the key sent in the tunnel an-
nounce packet and then sent a second packet with the
matching DH computer key and notice that it would fail.
It could conclude that this would be a rekeying procedure
and not the creation of a new tunnel.

4.3.6 DDoS protection
One might have legitimate concerns of how this would

play out in a threat model were attackers would like to
flood a system with the creation of tunnels because DH

are expensive computationally-wise. One of the MinimaLT
designers, Dan Bernstein, knows this problem really well
because he invented the SYN cookies. In MinimaLT, puz-
zles are used to address the cases where servers are under
load.

When a server is not experiencing any specific load, it
does accept tunnel establishments requests without any
questions asked but if the server is under load, it responds
with a puzzle.

The puzzle requires a proof of work to be completed. The
details of the proof of work that is used are not covered in
this paper.

Benchmarking shows that even with a puzzle presented
to the client, MinimaLT handshakes are faster than TL-
S/TCP and in most cases (without puzzles), they are faster
than unencrypted TCP.[?]

Another way to exhaust the server’s resources would be
to flood him with data to decrypt, but given the fact that,
past the key exchange, only symmetric key encryption is
used, which on modern system is faster than the network
links that would saturate faster.

4.3.7 Congestion control
MinimaLT’s tunnel headers do contain fields for conges-

tion control, such as sequence and acknowledgement num-
bers. MinimaLT doesn’t provide anything additional to
what exists in TCP for this task. MinimaLT replicates TCP’s
congestion control but does not provide anything beyond
it.

4.3.8 Flow control
Every MinimaLT connection has its own receiving win-

dow size, similar to TCP.

5. MINIMALT AND ANONYMITY
MinimaLT has no anonymity network similar to the Tor

Project yet. The Tor project has been investigating on us-
ing the SPEEDY protocol (basis of the HTTP2 specifica-
tion) to speed up their connections between nodes. We
can imagine that if MinimaLT gets mainstream adoption,
the support of MinimaLT will be seriously considered.

6. CONCLUSIONS
We’ve seen how MinimaLT can help us speed up our en-

crypted connections and with the help of Namecoin, make
them safer too. The model presented in this paper clearly
has flaws, mainly with the scalability of the Namecoin blockchain
and the issues it causes on mobile devices. Blockchains are
only a few years old and many optimisations are still pos-
sible. They may not be perfect but they are the first data
structure we know of that allows us to square Zooko’s tri-
angle! On the other hand, MinimaLT is a sneak peak into
what tomorrow’s transport-layer protocols will look like.

7. ACKNOWLEDGMENTS
I would like to thank everyone who provided feedback

and reviewed this paper. Particularly,

• Greg Slepak who is currently working on the DNSNMC
implementation and author of the OkTurtles[?] paper

6

for providing very valuable feedback to improve this
paper.

• All folks from Noisy Square at #30c3 for the insight-
ful discussions that influenced this paper.

• Dylan Bourgeois, a friend of mine, for spotting so
many typos.

• Romain Ruetschi, another friend, for fixing a lot of
my grammar mistakes.

8. RESSOURCES
The source of this paper is available on GitHub along

with some of the resources used to write this paper:
https://github.com/FredericJacobs/safeweb

7

https://github.com/FredericJacobs/safeweb

	1 Introduction
	1.1 Defining user privacy
	1.2 Motivation

	2 Domain names and authenticity
	3 Existing attempts to address authentication
	3.0.1 Certificate Pinning
	3.0.2 TACK
	3.0.3 DANE
	3.0.4 Tor Hidden Services

	3.1 Zooko's triangle
	3.2 Squaring Zooko's Triangle
	3.2.1 The Bitcoin Blockchain
	3.2.2 Proof of work
	3.2.3 Dealing with collisions
	3.2.4 From Bitcoin to Namecoin

	3.3 DNSNMC
	3.4 Known Issues with this new model

	4 Transport security
	4.1 MinimaLT
	4.2 Changes to make in Namecoin to make it play nicely with MinimaLT
	4.3 Why better than TLS/TCP?
	4.3.1 Security is the standard
	4.3.2 Encryption & PFS
	4.3.3 Tunnel oriented
	4.3.4 IP Mobility
	4.3.5 Handshakes & Tunnel establishment
	4.3.6 DDoS protection
	4.3.7 Congestion control
	4.3.8 Flow control

	5 MinimaLT and Anonymity
	6 Conclusions
	7 Acknowledgments
	8 Ressources

