
OSCAR: Object Security Architecture for the
Internet of Things

Mališa Vučinić∗¶, Bernard Tourancheau∗, Franck Rousseau∗, Andrzej Duda∗, Laurent Damon¶, Roberto Guizzetti¶
∗Grenoble Alps University, CNRS Grenoble Informatics Laboratory UMR 5217, France

¶STMicroelectronics, Crolles, France
Email: {firstname.lastname}@imag.fr, {firstname.lastname}@st.com

Abstract—Billions of smart, but constrained objects wirelessly
connected to the global network require novel paradigms in
network design. New protocol standards, tailored to constrained
devices, have been designed taking into account requirements
such as asynchronous application traffic, need for caching, and
group communication. The existing connection-oriented security
architecture is not able to keep up—first, in terms of the
supported features, but also in terms of the scale and resulting
latency on small constrained devices. In this paper, we propose
an architecture that leverages the security concepts both from
content-centric and traditional connection-oriented approaches.
We rely on secure channels established by means of (D)TLS for
key exchange, but we get rid of the notion of the “state” among
communicating entities. We provide a mechanism to protect from
replay attacks by coupling our scheme with the CoAP application
protocol. Our object-based security architecture (OSCAR) intrin-
sically supports caching and multicast, and does not affect the
radio duty-cycling operation of constrained objects. We evaluate
OSCAR in two cases: 802.15.4 Low Power and Lossy Networks
(LLN) and Machine-to-Machine (M2M) communication for two
different hardware platforms and MAC layers on a real testbed
and using the Cooja emulator. We show significant energy savings
at constrained servers and reasonable delays. We also discuss the
applicability of OSCAR to Smart City deployments.

I. INTRODUCTION

The long awaited Internet of Things (IoT) has never been
closer. The upper layers of the IP protocol stack for con-
strained devices are being fine-shaped and the gaps between
IETF and IEEE standards are being bridged. Security remains
a concern. Well designed IP security protocol suites have
been ported to constrained devices of IoT. Their core design
assumptions, however, build upon the connection-oriented trust
model that poorly fits the IoT requirements. Nevertheless, past
experiences have shown that designing a security protocol
right is a tough and error-prone process.

Research efforts towards the secure IoT have thus mostly
concerned designing lightweight variants and porting them to
constrained devices [1], [2], [3], [4], which led to a situation
where the nearly standardized Constrained Application Pro-
tocol (CoAP) [5] fully supports the application requirements,
but security does not keep up. Smart devices, due to their
severe energy and memory constraints, heavily rely on group
communication, asynchronous traffic, and caching. Supporting
a variety of existing security protocols/mechanisms to specifi-
cally target these requirements is practically impossible due to
memory limitations. IETF has thus taken a position [5] to reuse

Datagram Transport Layer Security (DTLS), the all-round
point-to-point security protocol, to secure the communication
channel between a constrained node running a CoAP server
and a client.

Apart from the inherent incompatibility with multicast traf-
fic and caching, the plain DTLS approach has an important im-
pact on scalability. Namely, memory limitations of constrained
servers restrict the total number of handled security sessions.
In IoT scenarios, such as smart city deployments, where a
large number of clients per constrained server is expected, the
limitations lead to a considerable load on the server to handle
security associations with each client. The load translates into
increased energy consumption and a shortened lifetime of
devices.

We address this problem from a networking perspective and
follow the Representational State Transfer (REST) architecture
model [6] to remove the notion of the state between a
server and a client even in terms of security. We achieve
this by leveraging the concept of object security that protects
the information content itself. We couple the object security
principles with the capability-based access control to provide
communication confidentiality and protect from replay attacks.
Yet, we fully leverage a vast amount of work behind the
(D)TLS protocol and use secure channels for authenticated
key distribution.

The main contributions of the paper are the following:
• a new scalable security architecture for IoT that jointly

provides end-to-end security (E2E) and access control,
decouples confidentiality and authenticity trust domains,
and intrinsically supports multicast, asynchronous traffic,
and caching,

• an evaluation of the architecture in a constrained
Machine-to-Machine (M2M) scenario for two hardware
platforms and MAC layers, on a real testbed and in the
instruction level emulator of Cooja, demonstrating per-
formance benefits with an increasing number of clients.

The paper is organized as follows. We discuss the current
Internet trust model and the requirements of IoT applications
in Section II. We provide a detailed description of the proposed
architecture in Section III, discuss security considerations
in Section IV, and evaluate it in Section V. Section VI
summarizes the related work. We conclude and discuss the
future work in Section VII.

ar
X

iv
:1

40
4.

77
99

v1
 [

cs
.N

I]
 3

0
A

pr
 2

01
4

II. INTERNET TRUST MODEL AND THE IOT
REQUIREMENTS

The fact that the Internet had been designed to facilitate
host to host communication has had direct repercussions on
the security design. Namely, security followed the model by
placing the trust on end points and securing the communication
channel. As applications evolved, the Internet has become a
content distribution network leveraging the legacy client-server
architecture. This paradigm has led to substantial research
efforts on future Internet architectures [7], [8]. Our work
leverages their contributions and applies the general concepts
with the goal to provide a robust, but flexible security approach
to IoT and its traffic requirements.

As discussed by Smetters and Jacobson [9], the host ori-
ented paradigm has a direct consequence on trust—its transi-
tivity: once a logical connection between the hosts is closed,
the trust in the information is gone. The model serves very well
typical e-commerce, e-banking, or IP telephony applications,
because the trust in the information is implicitly dependent on
the trust of the communicating entities during the connection
time.

The difficulty arises once the notion of a connection dis-
appears. As stressed by Modadugu and Rescorla [10], DNS
is purposely secured with the application level extension
DNSSEC and not with a connection-oriented protocol, such
as DTLS. Electronic mail, passing multiple application level
gateways and without clear connection between end points,
is secured with S/MIME or PGP. Applications encompassing
IoT emerge as another example, because:

• Application traffic is asynchronous. Servers (event de-
tectors, monitoring sensors, smart meters) notify their
clients (subscribers) of physical state changes as they
happen. Clients send commands to actuating devices
asynchronously as the changes in the environment are
observed. DNS traffic is a good parallel as it is triggered
by asynchronous human actions.

• Caching is a must. Severe energy constraints lead to
servers being asleep more than 99% of the time. As
an already supported (without security) and intuitive
mechanism, caching at untrusted intermediaries is a way
to keep applications running independently. A similar
problem is faced with electronic mails, as they are stored
at untrusted servers until delivery.

• Group communication is frequent. Commonly, clients
instruct a subset of all devices to perform an action, for
example to turn off all lights on nth floor or to update
the firmware. To achieve this, IPv6 multicast and UDP
are exploited bearing no connection state between end
points.

Typical Web applications are built around a single logical
server and multiple clients [6]. As a consequence, access
control is often done within the server side application, once
the client has been authenticated. IoT reverses this paradigm
by having many devices serving as servers and possibly many
clients, taking part in the same application. More importantly,

servers are significantly resource constrained, which results in
the minimization of the server side functionality. Subsequently,
access control becomes a distributed problem, especially when
taking into account the recent efforts of decoupling the sensor
network infrastructure from applications [11], [12]. Further-
more, applications have emerged that use local databases to
store parts of collected data [13].

Recognizing these requirements, it is clear that the
connection-oriented trust model is not the best fit for the actual
needs of IoT. It is true that with different sorts of connection
time tweaking and keep-alive messages we could squeeze in
connection-oriented security protocols and work around the
asynchronous traffic requirement. Aside the overhead, this
would still provide us only with the communication channel
security. To support caching, we would need to trust the
intermediate nodes/proxies to store the data. Note that we
deal with devices physically accessible to anyone. To support
group communications, we would need to open separate secure
connections among group members and/or add additional
protocols on top of them, which effectively provides redundant
security services necessary for use cases. Such a solution is
not a long term approach.

Nevertheless, we do not argue that we should ditch well
studied connection-oriented security protocols from the IoT
picture. In fact, OSCAR relies on secure and authenticated
channels established by means of DTLS for key distribution:
our approach brings together the concepts of connection-
oriented security with those of content-centric networking [7].

III. OSCAR

We argue that we can meet the discussed requirements by
leveraging the benefits of the “object security” concept. At
the same time, we can provide much greater flexibility to the
system as a whole.

A. Technological Trends and Design Goals

Future trends are hard to predict, but a decade of research
on Wireless Sensor Networks has given us a lot of insights.
Accordingly, we draw the following conclusions that guide our
design:

• Constraints on energy are almost constant. Without a
breakthrough in chemical engineering, the available en-
ergy is expected to remain the main constraint for IoT
devices.

• Available memory for embedded devices slowly in-
creases. However, due to the economical and energy cost
caused by leakage in SoC, we expect that memory will
remain limited and a determining factor for the unit price.

• Processing capabilities constantly increase even for ultra
low power micro controllers. Thus, we do not see the
processing power as a limiting constraint in the future.

Apart of sleep mode leakages, the energy consumption is
mainly caused by radio communications. Thus, our primary
design goal is to minimize the number of extra frames/packets
that need to be transmitted or received for pure security
purposes. We achieve this goal by leveraging the benefits of

public key cryptography, sparse traffic patterns within local
constrained networks, and messages of a limited size—we
trade the radio usage for a higher computation load.

B. Producer-Consumer Model

We can abstract IoT, its sensors and actuators, as an interface
to the physical world. Decision takers (human users, intelli-
gence centers, or constrained actuating devices themselves)
base their reasoning on input data coming from the sensed
physical phenomena. The relation between enforced decisions
and sensed phenomena is many to many—a single measure-
ment often affects multiple decisions and a single decision may
be based on many different phenomena. Consider for instance
a traffic control application in a Smart City. A traffic light
management subsystem may use the current traffic intensity
and pollution readings from all over the city as input data
for control decisions. At the same time, local readings may
influence decisions made on luminosity of nearby street lights.

We believe that the producer-consumer model represents
well our problem also in terms of security. Producers (smart
meters, traditional sensors, motion detectors, etc.) feed con-
sumers with the required information. Consumers (actuating
devices, collection centers, human users) gather up the infor-
mation and may further generate actions. Actually, the inspi-
ration for the use of the model comes from Cloud Computing
and a recent work by Jung et al. on data access control [14].
An important difference, however, is that producers in the IoT
case are not access control decision makers for the content they
generate, which is rather a policy of the network operator.

Producers should, thus, care about generating and securing
the content or in the REST terminology, the resource represen-
tations, and not about consumers. Consumers with appropriate
access privileges should make sure they can make use of the
fetched content by decrypting and authenticating its validity.

Following the discussion, we believe that the extent of
security tasks performed by producers should be minimized—
producers should not waste precious resources on exchanging
security handshake messages with each consumer. From the
producer perspective, there are two main reasons for this
situation:

• Resource representations are minimal in size. The gen-
erated content, i.e., the resource representations are typi-
cally the measurements of physical quantities or different
states of a device with possibly additional information
such as location and a timestamp, which very often makes
them smaller in size than individual messages exchanged
during a security handshake. As a consequence, respond-
ing with an access-protected resource representation is
cheaper than performing multiple RTT handshakes.

• Due to the physical constraints, the number of supported
cryptographic ciphers is limited. Indeed, constrained de-
vices often have a single supported cipher suite (selected
at the compile time). This fact reverses the paradigm
encountered in the Internet where one of the security con-
cerns during the handshake is the downgrade attack (the
attacker forces two parties to use the weakest common

cipher by altering the set supported by the client). The
motivation behind the attack is the assumption that the
client cipher set is just a subset of those supported by a
resource rich server. With the reversed paradigm, as in
the IoT case, the motivation for the attack fades away.

One of our goals is to offload the burden of authentication
from constrained servers and to place it on more powerful
devices. Such semi-trusted third parties could be physically
secured nodes in the network and/or hosts in the Cloud.
Their role would be to authenticate individual consumers and
share with them appropriate access secrets and necessary
certificates. We define an “access secret” as an access token
from which symmetric encryption keys are derived. Later, con-
sumers can fetch the protected content either from intermediate
proxies or directly from producers.

Request Resource
Return Signed and Access Protected Resource Representation

Access Secret

Secret UpdatesRequest Authorization

Secure Channel Secure Channel

Resource Access Secret
Secret Updates

Subscribe Resources

Update Signed and
Access Protected

Resource Representation

Post State Update

Request
 Resource

Return Cached
 Copy

. . .

ProducersConsumers

. . .

Cloud or In-Network
Proxy Servers

. . .
Authorization Servers

Fig. 1. OSCAR, a producer-consumer security model for IoT based on object
security.

We thus consider separately in terms of trust two commonly
interleaved security services:

• Confidentiality is used as a means to provide capability-
based access control and a protection against eaves-
dropping. As a consequence, third parties in charge of
authorization need to be trusted.

• Authenticity and integrity of content is tied to the host.
Consumers independently decide if they will trust the
source for the provided content. For example, temperature
readings would need to be signed by a server that is
certified to have a temperature sensor and to be deployed
in the wanted physical location.

This approach could be interpreted as we disclose true
E2E confidentiality to third parties. However, even in the
classical TLS scenario, the authorization authority running on
a server has potential access to all the information flowing
on the secured channel. Note that authenticity and integrity of
information are not affected and the traditional E2E properties
are preserved.

Fig. 1 illustrates the abstract model and the logical inter-
actions. Notice that from the perspective of a producer, a
direct request-response interaction with a consumer is handled

equally as in the case of asynchronous updates. More precisely,
producers locally keep cached and secured resource represen-
tations, i.e. signed objects, and use them to feed different types
of consumers. In essence, we remove any notion of a logical
association between a producer and a consumer.

In the following, we assume that producers and consumers
already possess necessary certificates. During the resource sub-
scription phase, producers publish their certificates to Autho-
rization Servers. If a certain certificate is required for signature
verification purposes, consumers can fetch it from them. In this
way, we remove the burden of certificate transmission from
constrained servers to their multiple clients.

C. Fitting the Concept with the REST Architecture and CoAP

While object security is traditionally used by applications
themselves, we discuss here the coupling with CoAP, the
RESTful application protocol. By doing so, we aim to make a
bound between secured objects and the underlying communi-
cation protocol, in order to protect against network adversaries
in a stateless manner. Note that in the rest of the paper, we
use the REST terminology and refer to producers as REST
servers and consumers as REST clients. In IoT deployments,
however, the same physical device often plays both roles.

We abstract the access secrets as REST resources, which
allows using the idempotent PUT method to create or update
them. Servers, then, allow the change only if the enclosed
object, i.e. a new access secret, has been signed by the trusted
authority. The relation between jth access secret Sj and ith

resource Ri is dependent on authorization policies and the
desired level of confidentiality. It is a part of resource Ri itself
allowing for different confidentiality and access right resource
groups (cf. Figure 2).

Client 3. "{ Ri }Sj
"

1. PUT /Sj

"{ Sj }KX
"

Authorization
Server

1.
 P

U
T

/S
j

"{
 S

j } K
X"

2. GET /Ri

Rk kth resource representation pre-signed
with P's private key

. . .

Ri-1

Ri

. . .

RN-1

RN

Sj

Sj+1

SM

Constrained Server P

Ri+1

Fig. 2. Coupling OSCAR with the RESTful architecture of CoAP. Note that
server-side digital signing operations are performed offline. {X}K denotes the
online symmetric encryption of X with the key derived from K. Encryption
key KX of a new access secret may depend on the key management scheme.

In the following, we discuss two important aspects from the
communication point of view.

1) Replay protection: Protecting against replay attacks
requires a state between end-points, which contradicts our
goal to provide a stateless approach to application security.
However, we exploit the fact that CoAP has been designed
to run over UDP and so, detect duplicates using a 16-bit

MAC IPv6 UDP CoAP

FC
SSigned

Object
Encrypted

Object

Fig. 3. Secured objects within the IoT network stack. The arrow represents
the binding of the object encryption key with the underlying CoAP header. In
this configuration, signed object is regarded as the payload of the encrypted
object, and is therefore encrypted.

MessageID in the protocol header. We use this variable as salt
to derive the content encryption key, when responding to the
current request. Furthermore, in order to avoid derivation of
an identical content encryption key among different senders in
a possible group, we bind the key to the identity of the sender,
as discussed by Keoh et al. [15]. We use the unique identifier
in the sender certificate known to all communicating parties.

More precisely, symmetric content encryption key kj is de-
rived from access secret Sj , current MessageID, and sender’s
unique identifier as:

kj = f(Sj ,MessageID, senderID), (1)

where f() is a generic pseudo-random function. Note that we
keep the authenticity of the content intact and use symmetric
encryption as a means to fight the replay and provide access
control. We illustrate this in Fig. 3. The replayed content will
be detected as the derived decryption key will be different
from the original key.

However, this approach is vulnerable to replay attacks with
substantially delayed content, i.e. once the CoAP client/server
looses the MessageID context with communicating parties. To
fight this, we rely on updates of the access secret, provided
by the key management scheme.

2) Cipher negotiation: As discussed in Section III-B, there
is no motivation in traditional downgrade attacks. The problem
of cipher negotiation then becomes trivial and is equivalent to
content type negotiation in a client-server interaction. Recall
that a client in a REST like application transfer protocol such
as HTTP or CoAP, expresses its interest in content with a GET
request. The request contains an optional “Accept” header
carrying preferred content types. If capable, server responds
with the content supported by the client. Therefore, to solve the
interoperability issues, we require an additional accept option
carrying supported ciphers.

D. Cryptographic Overhead

OSCAR ensures authenticity and integrity of the content
by leveraging digital signatures, which may seem surprising
as we target constrained devices with limited CPU resources.
However, the use of public key operations at the level of the
content allows us to decouple the server-side cryptographic
overhead from network communication: constrained servers
are able to update their resource representations whenever
it suits their schedule (take for example energy harvested
devices) and more importantly, while the radio transceiver is
turned off. The burden of digital signature verification is then

put on clients, as they should not consume the information
before verifying its authenticity.

The approach may seem surprising, but the evaluation
results in Section V suggest that Elliptic curve cryptography
(ECC) public key operations are actually less expensive than
performing the pre-shared key DTLS handshake with every
client, even in M2M scenarios, where both servers and clients
are constrained.

Confidentiality of the content is ensured with symmetric
encryption performed on a per-response basis by servers.
For replay protection, OSCAR requires an additional per-
response key derivation with typically lightweight crypto-
graphic pseudo-random functions.

IV. SECURITY CONSIDERATIONS

Denial of Service: OSCAR takes a non-traditional ap-
proach to fight Denial of Service. It builds upon the assump-
tion that typical IoT resource representations are small in
size (individual measurements of physical quantities, actuator
state changes) and directly responds to requests with access-
protected resource representations. Moreover, it does not keep
any state between communicating entities, which we find
particularly important to fight memory exhaustion attacks.
Note also that since server-side digital signing operations are
done offline, the intensity of incoming traffic is not correlated
with asymmetric cryptographic overhead.

Confidentiality: As content encryption keys are derived
from access secrets, OSCAR provides confidentiality within
the resource access right group. Actual security properties
are dependent on the encryption algorithm used. Note that
an adversary able to compromise the Authorization Servers,
may only obtain eavesdropping capabilities—E2E integrity
and authenticity properties are preserved.

If the mutual trust among clients in terms of confidentiality
is not desired, OSCAR puts the burden on the key management
scheme running on Authorization Servers. One such example
would be the use of a recently proposed batch-based group
key management protocol [16], where clients would be given
cryptographic material corresponding to descendants in the
binary tree of the actual access secret on a server. However,
this would require additional signaling of the supported access
secret in the GET request.

Replay Protection: OSCAR protects from replay at the
level of the content by using an encryption key that is a
function of the MessageID from the underlying CoAP header.
The detection of replay attacks performed at lower network
layers depends on the CoAP duplicate detection mechanism.
However, it is important to stress that the current CoAP
draft, as is, would not provide robust protection in security
terms. Therefore, successful coupling of OSCAR with CoAP
would require additional clarifications and specifications to the
duplicate detection mechanism.

Another concern with respect to the replay attack is a
malicious adversary within the resource access right group
in case of asynchronous traffic. Such an adversary is able
to asynchronously inject old resource representations making

other members of the group believe they are fresh (if within
the content itself, there is no means allowing the detection
of an old reading/command, i.e. a timestamp). Protection
against such adversary would require the use of a key man-
agement scheme that would provide different access secret
cryptographic material on the constrained server and individual
clients, as discussed above.

V. PERFORMANCE EVALUATION

We have implemented an object security software library
tailored for constrained devices and the Contiki operating
system that builds upon the open source implementation of
ECC cryptographic primitives—TinyECC (ContikiECC). We
use AES-CCM* as the symmetric encryption algorithm. The
library supports creation, parsing, and verification of “en-
crypted” and “signed” object types. A certificate is then just a
particular type of a “signed object” with a pre-defined format.
Objects can be nested within each other to support the use
case illustrated in Fig. 3. We have coupled the object security
library with Erbium CoAP, a default CoAP implementation for
Contiki (version 07) to add cipher suite negotiation capabilities
(cf. Section III-C).

Fig. 4. Testbench with 18 energy-harvested ST GreenNet nodes in Crolles,
France. 16 nodes are CoAP clients and one node is the CoAP server. The
node on the far left is the PAN coordinator in the 802.15.4 beacon-enabled
network. Nodes are connected to USB for the collection of experiment traces.

Note that potential nesting of signed objects enables many
additional features that may be very useful for IoT use cases.
For instance, a network gateway could add a global timestamp
or location information to a signed object coming from a
constrained node (constrained devices often do not have this
information locally).

We evaluate two important aspects of OSCAR: 1) Ellip-
tic Curve Digital Signature Algorithm (ECDSA) computa-
tion overhead on constrained devices, 2) scalability in M2M
communication scenarios. Evaluations are performed for two
hardware platforms that catch peculiarities of two generations
of IoT devices:

• WiSMote platform based on 16-bit MSP430 (series 5)
MCU with 16 KB of RAM and 802.15.4-compatible
CC2520 radio transceiver. WiSMote related results are

obtained using the instruction level MSP430 emulator
MSPSim and the Contiki simulator Cooja, as we did not
have enough real platforms needed for our experiments.
However, we have confronted emulated measurements of
ECDSA overhead in Cooja with those obtained on real
WiSMote hardware and we have measured a maximum
error of 2.67%.

• ST GreenNet tag, an energy-harvested prototype platform
from STMicroelectronics (ST) based on an ultra low
power 32-bit ARM Cortex-M3 MCU (STM32L) with
32 KB of RAM and an 802.15.4 radio transceiver. ST
GreenNet results are obtained from real hardware.

To eliminate the effect of a variable CPU frequency on
results, we have configured both platforms at 21.3 MHz.
MSP430 series 5 may be configured up to 24 MHz, while the
STM32L can go up to 32 MHz. Both computation time (in-
versely proportional) and CPU energy consumption (directly
proportional) are linearly dependent on frequency.

We estimate energy consumption using Energest, a Contiki
per-component profiling tool. Energest effectively measures
the time spent by different components on a platform in a
given state (for instance, the time CPU spent in active or low
power mode; radio transceiver in RX or TX). These values are
converted to energy by multiplying with the constant operating
voltage (we used 2.8 V) and the current draw values from
appropriate data sheets.

A. ECDSA Computation Overhead

Figs. 5(a) and 5(b) present computation and energy bench-
marks of the ECDSA primitives (secp160r1 and secp192r1
elliptic curves) on WiSMote and ST GreenNet platforms. We
can see that the use of a 32-bit MCU reduces the computation
time by a factor of 4, which translates into a reduction in the
consumed energy by a factor of 3.084 (as the 32-bit STM32L
consumes 29.7% more than 16-bit MSP430 in active mode).

0

0.5

1

1.5

2

2.5

3

3.5

4

Sign Verify Sign Verify

secp160r1 secp192r1

Ti
m

e
(s

)

WiSMote

ST GreenNet

(a) Computation time.

0

5

10

15

20

25

30

35

40

Sign Verify Sign Verify

secp160r1 secp192r1

En
er

gy
 (m

J)

WiSMote

ST GreenNet

(b) Energy consumption at 2.8V.

Fig. 5. ECDSA computation and energy benchmarks at 21.3 MHz for
16-bit (WiSMote) and 32-bit (ST GreenNet) hardware platforms. We use
TinyECC (ContikiECC) open source library. Message size is of 25 bytes.

Figs. 5(a) and 5(b) strongly support our initial design
assumption on processing capabilities (cf. Section III-A).
Whatsoever, we expect that further advancements in nano-
technology will additionally reduce the energy computation
cost for low power MCUs.

Still, computation overheads ranging from 0.3 to 0.9 sec-
onds for the 32-bit platform and from 1.18 to 3.63 seconds for
the 16-bit platform, at the first sight seem like a huge price
to pay. In fact, Hummen et al. argue that for this reason, the
number of public key operations should be minimized during
the security handshake [17]. OSCAR, however, compensates
for this overhead by removing the radio energy cost of the
security handshake with every client.

In the following section, our goal is to determine if OSCAR
and the heavy use of ECC public key primitives outperform
a connection-oriented approach with DTLS that uses only
lightweight symmetric key operations during the handshake.

B. Scalability

We study scalability as a function of the ratio between the
total number of clients and a maximum number of open DTLS
sessions at a constrained server (due to memory limitations,
constrained servers have a limited number of DTLS session
“slots”). We have followed the guideline on practical issues
with DTLS (Section 2.1 [18]) and extended the TinyDTLS
implementation with the Least Recently Used (LRU) session
closure algorithm. The server immediately releases memory
and sends a closing alert to the LRU session as soon as a
new client has demonstrated good intentions by retransmitting
the stateless cookie in the ClientHello message (recall the
DTLS handshake). Therefore, the handshake with the new
client proceeds immediately. Clients keep their sessions open
as long as possible, i.e. until they receive the closing alert from
the server.

The maximum number of DTLS session slots is depen-
dent on platform memory capabilities and actual application
memory requirements. With the full IPv6 networking stack
of Contiki and a simple application for evaluation purposes,
we were able to have a maximum of 3 session slots on
WiSMote (TinyDTLS implementation). However, as stressed
out, this number should not be generalized as it depends
on the implementation specifics of an application and the
operating system. We have used the same number of slots on
the ST GreenNet platform as well to have comparable results.
Although a higher number of slots would be available due to
a larger memory, the results in terms of the ratio do not loose
generality.

Table I shows the configuration of the two platforms.
Note that we use two different Radio Duty Cycling (RDC)
protocols. Thus, we demonstrate the performance of OSCAR
and DTLS running on top of asynchronous (X-MAC) and
synchronous (beacon-enabled IEEE 802.15.4) RDC protocols,
which covers the vast majority of IoT use cases. We set the
Beacon Interval of beacon-enabled 802.15.4 to 122.88 ms to
have comparable delays with X-MAC (default channel check
rate of 8 Hz). Simulations in Cooja were performed for a star

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1
3

2
3

4
3

8
3

16
3

Se
rv

er
T
ot

al
E

ne
rg

y
C

on
su

m
pt

io
n

(×
1
04

m
J)

Clients/Session Slots

DTLS-Lithe
OSCAR β = 30s
OSCAR β = 60s

OSCAR β = 120s

(a) WiSMote

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

1
3

2
3

4
3

8
3

16
3

Se
rv

er
T
ot

al
E

ne
rg

y
C

on
su

m
pt

io
n

(×
1
04

m
J)

Clients/Session Slots

DTLS-Lithe
OSCAR β = 30s
OSCAR β = 60s

OSCAR β = 120s

(b) ST GreenNet

Fig. 6. Constrained server total energy consumption over 3 hours.

network topology with the CoAP server being the central node
(radio neighbor for each client and preferred parent in the RPL
DODAG). Note that due to the specifics of beacon-enabled
802.15.4, one node in the network has a mere role of being
the PAN coordinator and transmitting periodic beacons. Other
nodes in the network associate with it (L2 operation), which
effectively introduces an extra hop between CoAP clients and
the CoAP server, in respect to the network evaluated in Cooja
(cf. Fig. 4).

In both scenarios, nodes run a typical IPv6 networking
stack over 802.15.4 (CoAP, UDP, IPv6, 6LoWPAN). We use
a recent 6LoWPAN compression scheme of DTLS named
Lithe [2] to maximize its performance. In the case of ST
GreenNet platform, we use the proprietary implementation
of beacon-enabled 802.15.4, as in our previous work [19],
[20]. CoAP clients send a single GET request for a resource
on the server according to the exponential distribution with
a mean of 0.5 requests per minute. If the DTLS session is
found open, the request is sent directly without waiting for
the handshake to complete. If not, the client first performs
a DTLS handshake with the server. Responses contain an
abstract resource representation with 25 byte length. In case of
OSCAR, this representation is transferred as the appropriate
encrypted and signed object type.

An important aspect for performance evaluation of OSCAR
is the server-side resource signing load. We define parameter
β as the mean resigning interval such that β = t/N , where
N is the total number of secured resources on the server and
t is the average resource update time (for instance, updates of
temperature, pressure, CO2, etc.). We evaluate OSCAR for β
values of 30, 60, and 120 seconds, to account for use cases
where high, medium, or low signing load is needed.

In the case of OSCAR, we use pre-shared access secrets
and certificates to decrypt and verify encrypted and signed

objects. Similarly to the work of Hummen et al. [17], we use
the secp160r1 elliptic curve. Objects are encrypted using the
AES-CCM* algorithm. Similar assumptions apply to DTLS
as well: it uses the TLS PSK WITH AES 128 CCM 8 pre-
shared key based cipher suite. As a consequence, DTLS only
uses symmetric key operations during the handshake.

We have run experiments/emulations over 3 hours and
plotted 5 run averages with 95% confidence intervals.

TABLE I
EXPERIMENT SETUP.

(a) WiSMote

Radio Duty Cycling X-MAC
Channel Check Rate (Hz) 8

Channel Model Unit Disk Graph

(b) ST GreenNet

Radio Duty Cycling beacon-enabled 802.15.4
Beacon Interval (ms) 122.88

Superframe Duration (ms) 15.36

Figs. 6(a) and 6(b) show the effect of the reduced radio
traffic generated by OSCAR on energy consumption. For
medium intensity signing load (β = 60s), in case of WiSMote,
OSCAR crosses the energy performance of compressed DTLS
when the client/session slot ratio is approximately 1.3. In
case of the ST GreenNet platform, the crossing is increased
to approximately 2.15 due to the use of a new generation
(prototype) radio with lower consumption. It is important to
stress that the exact crossings depend on the consumption
characteristics of the MCU and the radio transceiver, and our
results are therefore particular for the two evaluated platforms.
However, the MCU/radio transceiver combinations on the
evaluated platforms are very representative—16-bit CPU and
an old generation radio (WiSMote) and a powerful 32-bit

CPU with prototype low consumption radio transceiver (ST
GreenNet) allowing us to generalize the crossings between
the two.

Although our initial design goal was to relieve constrained
servers from radio traffic and to place burden on clients, we
can notice in Fig. 7 that even for moderate (in IoT terms)
client/session slot ratio (WiSMote 3.7, ST GreenNet 4.17),
constant ECDSA verification results in better performance
than using the compressed DTLS approach. Note that in our
evaluations, we use constrained clients as well thus accounting
for the worst case. In IoT use cases, it is expected that a
significant part of clients will be more powerful devices such
as smartphones, tablets, laptops, or powerful cloud servers.

Finally, we evaluate the request-response latency in Fig. 8.
As we can see, MCU computation capabilities greatly affect
the result of OSCAR as most of the latency comes from
ECDSA verification. In the ST GreenNet deployment, we have
observed an increased number of failed DTLS handshakes
for the largest evaluated network with 16 clients due to
the stochastic nature of radio links. Note that DTLS curves
exponentially increase with the number of clients, but are
expected to saturate for denser networks. The exact saturation
point depends on the configuration of the DTLS retransmission
mechanism (we have used the default retransmission timeout
of 2 seconds).

0

5

10

15

20

25

30

35

40

1
3

2
3

4
3

8
3

16
3

R
eq

ue
st

/R
es

po
ns

e
E

ne
rg

y
(m

J)

Clients/Session Slots

DTLS-Lithe, ST GreenNet
OSCAR, ST GreenNet
DTLS-Lithe, WiSMote

OSCAR, WiSMote

Fig. 7. Client energy consumption per CoAP request-response. It includes
a possible DTLS handshake.

VI. SECURING THE INTERNET OF THINGS

Research and standardization efforts around secure IoT
follow the TCP/IP architectural model by having security
features on one (or more) of the layers in the protocol stack.
Accordingly, we survey the state of the art.

A. End-to-End Security at the Network Layer

Ever since the efforts on integrating Wireless Sensor Net-
works with the Internet have begun, the so-called blanket

0

0.5

1

1.5

2

2.5

3

1
3

2
3

4
3

8
3

16
3

R
eq

ue
st

/R
es

po
ns

e
La

te
nc

y
(s

)

Clients/Session Slots

DTLS-Lithe, ST GreenNet
OSCAR, ST GreenNet
DTLS-Lithe, WiSMote

OSCAR, WiSMote

Fig. 8. Request-response latency. It includes a possible DTLS handshake.

coverage at the network layer has been considered a potential
solution to provide end-to-end security services [21]. The
literature widely discussed the feasibility of porting the IPsec
protocol suite to smart objects [22], [23], [24], [3], [25], [26].
The authors mostly evaluated the processing overhead and
energy requirements of different cryptographic suites used by
IPsec, but also the memory footprints and system response
time [3], [25]. Even though it was initially considered too
heavy for constrained environments, these results led to the
common conclusion that a lightweight version of IPsec is a
feasible option.

In the Internet, IPsec mostly secures Virtual Private Net-
works (VPN). Being at the Network layer, it is perfectly suited
for such applications where “blanket” coverage is actually
desirable (enterprise networks for example). However, as it
resides in the Operating System kernel, it is impractical for
typical IoT applications. The requirement that an end user
needs to configure the host Operating System and IPsec for
securing communication with smart objects would probably
result in questionable security practices. Moreover, integrity
at the Network layer would prevent any protocol mappings.
Namely, as the IP payload is being authenticated, there would
be no way of performing HTTP/CoAP mapping at the network
gateway. CoAP, however, has been designed from the very
beginning to facilitate this for legacy hosts in the Internet.

B. End-to-End Security at the Transport Layer

Impracticality of IPsec has been overcome in the Internet
by introducing the security services just below the application
layer, in the form of TLS/SSL. The wide and successful use of
this model in the Web has also suggested its use in IoT. Indeed,
the first proposal on using SSL for smart objects, nicknamed
Sizzle, came in 2005 from Sun Microsystems [1]. The authors
evaluated the HTTPS stack that leverages assembly optimized
implementation of ECC as a public key algorithm. At the time
of the publication, however, there was no common agreement

on the transport protocol to use. Consequently, the authors
implemented their own reliable transport protocol. SNAIL
[27] complemented this work by introducing SSL on an all
IP architecture, leveraging the 6LoWPAN adaptation efforts
done in the meantime. Together with the introduction of IP
to the embedded world came the dilemma whether TCP is
suited or not, due to its connection establishment overhead,
poor performance in case of lossy networks and short term
connections. For this reason, latest standardization efforts [5]
assume User Datagram Protocol (UDP) at the transport layer,
leaving reliability as an option to the application.

Unreliable transport and possible out of order delivery make
TLS as is, an improper candidate for IoT. For the reason of
securing application level protocols running over UDP in the
Internet, such as Session Initiation Protocol (SIP), Real Time
Protocol (RTP), or Media Gateway Control Protocol (MGCP),
TLS has already been extended to Datagram TLS (DTLS)
[28], [10], which introduced additional 8 bytes of per datagram
overhead in the form of the sequence and epoch numbers that
were implicitly known with the reliable transport.

As a straightforward and standardized parallel to the suc-
cessful model in the Internet, DTLS has attracted attention
of the research community around the Internet of Things [4],
[29], [30], [26], [2], [17]. It is interesting to note, however,
that apart from the known advantage of using an already
standardized protocol, no argument has been given on actual
applicability of DTLS for IoT. Kothmayr et al. [30] discussed
the necessity of authenticating both the client and the server
during the DTLS handshake, but their experimental results
show significant completion delays, ranging from 2 to 6.5
seconds. Granjal et al. [26] performed a comparative study on
memory footprints, computational time, and required energy
between IPsec protocols and DTLS, using different cryp-
tographic suites. These results showed similar performance
of the two approaches, except in the case when DTLS is
additionally used to exchange keys with the Elliptic curve
Diffie-Hellman exchange.

Recognizing the excessive overhead of the DTLS hand-
shake, Hummen et al. [17] proposed different techniques
to lower its impact on constrained devices—certificate pre-
validation and handshake delegation to the network gateway.
On the other hand, Raza et al. tackled the same problem by
proposing a 6LoWPAN DTLS compression scheme [4] that
reduces per datagram overhead. This work has lately been
integrated with CoAP and released in the open source form
[2].

A significant drawback of using DTLS to secure IoT is
its incompatibility with multicast traffic. As stated by its de-
signers [10], DTLS targets typical connection-oriented client-
server architectures. While some of the IoT envisioned appli-
cations could loosely undergo this assumption, the majority
cannot (cf. Section II). In fact, group communication support
is one of the main features why CoAP protocol is being
standardized at all [5].

Additional concern raised by the straightforward, point-to-
point use of DTLS is incompatibility with scenarios where

the end-host in the Internet only supports HTTP/TLS. As
stated previously, CoAP has been designed from the beginning
to provide easy mapping to HTTP. Brachmann et al. [29]
discussed a possible DTLS/TLS mapping done at the gateway
that preserves E2E security. While verifying integrity at the
transport layer, however, it is impossible to perform the
CoAP/HTTP mapping at the application layer.

C. Object Security Approaches

Although the concept of object security, i.e. placing security
within the application payload, has been discussed as an option
[5], [31] the related work in the literature leverages its benefits
to provide fine grained access control with an assertion-
based authorization framework [32]. We jointly address the
problems of E2E security and authorization for IoT and use the
capability-based access control solely as a means to provide
communication confidentiality. The work of Seitz et al. [32] is
complementary to ours and the two approaches can be merged
to cover the use cases where simply responding with an access-
protected resource representation is undesired.

D. Standardization Efforts

Recent IETF efforts are directed towards profiling DTLS
specifically for constrained devices (DICE working group).
Current proposals aim at adding multicast support to DTLS
by reusing the record layer and relying on an independent
group key management protocol [15]. In essence, the core
(D)TLS design assumption (point-to-point communication) is
being revisited to make it fit better the IoT requirements.

Authorization and authentication challenges for constrained
environments are being tackled separately within the ACE
working group. Requirements that are discussed by ACE,
however, seem to be contradictory with the initial choice of
DTLS as a security protocol, particularly when it comes to
proxies and caching. OSCAR bridges this gap and jointly
tackles the problems of E2E security and authorization, while
keeping full compatibility with the plain DTLS approach.

On the other hand, 6TiSCH working group of IETF de-
signs a security architecture to enable bootstrapping of IEEE
802.15.4 nodes. The main challenges include initial network
access and the setup of L2 keys using existing IP protocols.

Finally, it is important to note that different standards
specifying the object security format already exist or are under
standardization (Cryptographic Message Syntax—CMS, JSON
Object Signing and Encryption—JOSE), but their adaptation
for constrained devices is required.

VII. CONCLUSION

Our work explores a novel approach to the problem of E2E
security in IoT. It is based on the concept of object security
that introduces security within the application payload. We
consider separate confidentiality and authenticity trust do-
mains. Confidentiality is used as a means to provide capability-
based access control and a protection against eavesdropping
during the communication. We protect from replay attacks
by coupling the content encryption key with the duplicate

detection mechanism of CoAP. Authenticity is tied to the
host and the content encapsulated within objects is digitally
signed, which allows the trust in the information to persist
long after the actual communication has taken place. In turn,
this property enables local databases and caches to use the
intrinsically secure content. Moreover, leveraging the access
right confidentiality domain and the concept of object security,
our proposal intrinsically supports multicast. We take off
the burden of a security handshake with every client from
constrained servers. Instead, we rely on secure communication
channels with Authorization Servers that are in charge of
resource access right key management. Cryptographic burden
is then shifted to clients that need to perform signature
verifications for the content they are interested in.

We have demonstrated the feasibility of the concept by
evaluating the proposal in the M2M communication scenario
where all parties are resource constrained. We believe that
billions of smart, but constrained objects, encompassing IoT
are the best argument for a scalable solution such as OSCAR.
OSCAR is particularly useful in Smart City deployments
where energy constrained servers are expected to have a large
number of clients.

We are aware of the fact that the work in this paper may not
meet requirements for each and every use case of the vast IoT
domain. More specifically, the use cases that require streaming
are part of an on-going work.

ACKNOWLEDGMENTS

We would like to thank Shahid Raza, Hossein Shafagh and
Simon Duquennoy for releasing the implementation of Lithe in
open sourced form. Many thanks to Michel Courbon for per-
forming tests on real WiSMote nodes and to Michel Favre for
suggestions on porting the Energest benchmarking tool to ST
GreenNet platform. The work of F. Rousseau and A. Duda was
partially supported by the French National Research Agency
(ANR) project project IRIS under contract ANR-11-INFR-016
and the European Commission FP7 project CALIPSO under
contract 288879. The work reflects only the authors views;
the European Community is not liable for any use that may
be made of the information contained herein.

REFERENCES

[1] V. Gupta, M. Wurm, Y. Zhu, M. Millard, S. Fung, N. Gura, H. Eberle,
and S. Chang Shantz, “Sizzle: A standards-based end-to-end security ar-
chitecture for the embedded internet,” Pervasive and Mobile Computing,
vol. 1, no. 4, pp. 425–445, 2005.

[2] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt, “Lithe:
Lightweight Secure CoAP for the Internet of Things,” Sensors Journal,
IEEE, vol. 13, no. 10, pp. 3711–3720, 2013.

[3] S. Raza, S. Duquennoy, T. Chung, T. Voigt, U. Roedig et al., “Securing
communication in 6LoWPAN with compressed IPsec,” in DCOSS.
IEEE, 2011, pp. 1–8.

[4] S. Raza, D. Trabalza, and T. Voigt, “6LoWPAN Compressed DTLS for
CoAP,” in Distributed Computing in Sensor Systems (DCOSS), 2012
IEEE 8th International Conference on. IEEE, 2012, pp. 287–289.

[5] Z. Shelby, K. Hartke, and C. Bormann, “Constrained Application
Protocol (CoAP) draft-ietf-core-coap-18,” IETF work in progress, 2013.

[6] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
2000, pp. 76-106.

[7] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.
Briggs, and R. L. Braynard, “Networking named content,” in Emerging
networking experiments and technologies. ACM, 2009, pp. 1–12.

[8] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” in Computer Communication Review, vol. 37, no. 4.
ACM, 2007, pp. 181–192.

[9] D. Smetters and V. Jacobson, “Securing network content,” Relatório
Técnico TR-2009-1, Xerox Palo Alto Research Center-PARC, 2009.

[10] N. Modadugu and E. Rescorla, “The design and implementation of
datagram TLS,” in Proceedings of ISOC NDSS, 2004.

[11] I. Leontiadis, C. Efstratiou, C. Mascolo, and J. Crowcroft, “SenShare:
transforming sensor networks into multi-application sensing infrastruc-
tures,” in Wireless Sensor Networks. Springer, 2012, pp. 65–81.

[12] T. ETSI, “102 691 V1. 1.1 Machine-to-Machine communications
(M2M),” Smart Metering Use Cases, 2011.

[13] N. Tsiftes and A. Dunkels, “A database in every sensor,” in Conference
on Embedded Networked Sensor Systems. ACM, 2011, pp. 316–332.

[14] T. Jung, X.-Y. Li, and Z. Wan, “Privacy Preserving Cloud Data Access
With Multi-Authorities,” in Infocom. IEEE, 2013.

[15] S. Keoh, S. Kumar, O. Garcia-Morchon, E. Dijk, and A. Rahman,
“DTLS-based Multicast Security for Low-Power and Lossy Networks
(LLNs) draft-keoh-dice-multicast-security-05,” IETF work in progress,
2014.

[16] L. Veltri, S. Cirani, S. Busanelli, and G. Ferrari, “A Novel Batch-based
Group Key Management Protocol Applied to the Internet of Things,”
Ad Hoc Networks, vol. 11, pp. 2724–2737, 2013.

[17] R. Hummen, J. H. Ziegeldorf, H. Shafagh, S. Raza, and K. Wehrle,
“Towards Viable Certificate-based Authentication for the Internet of
Things,” in Hot Topics on Wireless Network Security and Privacy.
ACM, 2013, pp. 37–42.

[18] K. Hartke, “Practical Issues with Datagram Transport Layer Security in
Constrained Environments draft-hartke-dice-practical-issues-00,” IETF
work in progress, 2013.

[19] M. Vučinić, B. Tourancheau, F. Rousseau, A. Duda, L. Damon, and
R. Guizzetti, “Energy Cost of Security in an Energy-Harvested IEEE
802.15.4 Wireless Sensor Network,” in MECO. IEEE, 2014.

[20] M. Vučinić, G. Romaniello, L. Guelorget, B. Tourancheau, F. Rousseau,
O. Alphand, A. Duda, and L. Damon, “Topology Construction in RPL
Networks over Beacon-Enabled 802.15.4,” in ISCC. IEEE, 2014.

[21] M. Luk, G. Mezzour, A. Perrig, and V. Gligor, “MiniSec: a secure sensor
network communication architecture,” in IPSN. IEEE, 2007, p. 479.

[22] J. Granjal, R. Silva, E. Monteiro, J. Sa Silva, and F. Boavida, “Why is
IPSec a viable option for wireless sensor networks,” in MASS. IEEE,
2008, pp. 802–807.

[23] R. Roman and J. Lopez, “Integrating wireless sensor networks and the
internet: a security analysis,” Internet Research, vol. 19, no. 2, 2009.

[24] J. Granjal, E. Monteiro, J. Silva et al., “A secure interconnection model
for IPv6 enabled wireless sensor networks,” Wireless Days, 2010.

[25] S. Raza, S. Duquennoy, J. Höglund, U. Roedig, and T. Voigt, “Secure
communication for the internet of things a comparison of link-layer
security and ipsec for 6lowpan,” Security and Com. Networks, 2012.

[26] J. Granjal, E. Monteiro, and J. S. Silva, “On the Effectiveness of
End-to-End Security for Internet-Integrated Sensing Applications,” in
GreenCom. IEEE, 2012, pp. 87–93.

[27] S. Hong, D. Kim, M. Ha, S. Bae, S. J. Park, W. Jung, and J.-E. Kim,
“SNAIL: an IP-based wireless sensor network approach to the internet
of things,” Wireless Comm. IEEE, vol. 17, no. 6, pp. 34–42, 2010.

[28] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security
Version 1.2,” IETF RFC 4944, 2012.

[29] M. Brachmann, S. L. Keoh, O. Morchon, and S. Kumar, “End-to-End
Transport Security in the IP-Based Internet of Things,” in ICCCN, 2012.

[30] T. Kothmayr, C. Schmitt, W. Hu, M. Brunig, and G. Carle, “A DTLS
based end-to-end security architecture for the Internet of Things with
two-way authentication,” in LCN. IEEE, 2012, pp. 956–963.

[31] S. Cirani, G. Ferrari, and L. Veltri, “Enforcing Security Mechanisms in
the IP-Based Internet of Things: An Algorithmic Overview,” Algorithms,
vol. 6, no. 2, pp. 197–226, 2013.

[32] L. Seitz, G. Selander, and C. Gehrmann, “Authorization framework for
the internet-of-things,” in WoWMoM. IEEE, 2013, pp. 1–6.

	I Introduction
	II Internet Trust Model and the IoT Requirements
	III OSCAR
	III-A Technological Trends and Design Goals
	III-B Producer-Consumer Model
	III-C Fitting the Concept with the REST Architecture and CoAP
	III-C1 Replay protection
	III-C2 Cipher negotiation

	III-D Cryptographic Overhead

	IV Security Considerations
	V Performance Evaluation
	V-A ECDSA Computation Overhead
	V-B Scalability

	VI Securing the Internet of Things
	VI-A End-to-End Security at the Network Layer
	VI-B End-to-End Security at the Transport Layer
	VI-C Object Security Approaches
	VI-D Standardization Efforts

	VII Conclusion
	References

