
1

Cover Story Management

Frederic Cuppens Alban Gabillon
ONERA/CERT Université de Toulon et du Var

2 Avenue E. Belin SIMM
31055, Toulouse Cedex B.P.132, 83 957, La Garde cedex.

France France
email: cuppens@cert.fr email : gabillon@univ-tln.fr

Abstract

In a multilevel database, cover stories are usually managed using the ambiguous technique of
polyinstantiation. In this paper, we define a new technique to manage cover stories and propose a
formal representation of a multilevel database containing cover stories. Our model aims to be a
generic model, that is, it can be interpreted for any kind of database (e.g. relational, object-
oriented etc). We then consider the problem of updating a multilevel database containing cover
stories managed with our technique.

Keywords: Database Security, Security Model, Multilevel Security Policy, Cover Story
Management, Mathematical Logic.

2

1. Introduction

The work presented in this paper applies to the context of multilevel security policies. In a
multilevel security policy every piece of information is associated with a classification level, and
every agent is associated with a clearance level. Classification and clearance levels are taken
from a set of security levels. This set is partially ordered and forms a lattice. The partial ordering
relation is called the dominance relation and is denoted by ≥. The confidentiality property in the
multilevel security policy states that an agent can only know a given piece of information if the
clearance level of this agent dominates (that is, is higher than or equal to) the classification level
associated with the piece of information.

Currently, database security is an active field of research. Several theoretical models have been
suggested for multilevel databases (see, for instance, [DLSSH88,KTT89,HOST90,JK90,
Lun90,SW92,ML92,QL96, SC98,JVPJ99]). Most of these models offer the possibility to insert
cover stories in the multilevel database. Cover stories are lies introduced in the multilevel
database in order to protect some existing higher classified data. In most of these models, cover
stories are associated with the concept of polyinstantiation. Polyinstantiation occurs when
different tuples with the same key, each at a different classification level, are allowed. Low level
tuples are then interpreted as cover stories. Unfortunately, the concept of polyinstantiation is not
satisfactory since it is not free of semantic ambiguities.

This is why we propose in [CG99] a formal model for multilevel databases which do not use
polyinstantiation. This model can be interpreted for any type of database (e.g. object-oriented
database, relational database etc). Our model offers the possibility to insert cover stories into the
multilevel database. In our model, we explicitly state which data are the cover stories. We claim
that this approach is free of ambiguity and is therefore better than using polyinstantiation. In
[CG99], we define a secure multilevel database as being a multilevel database free of illegal
inference channels, that is, we say that a multilevel database is secure if low level users cannot
deduce some high classified data using the low classified data represented in the database.
However, in [CG99] we make some restrictive assumptions on the form of the data which can be
contained in the database. For instance, we assume that the database cannot contain some
disjunctive integrity constraints. Moreover, in [CG99], we do not address the difficult problem of
updating a multilevel database containing cover stories. This problem can be summarized as
follows: how to guarantee that after an update the multilevel database is still consistent and
secure?

The contribution of this paper is the following:

- We give a more general definition of what a secure multilevel database is. With this new
definition we do not need to make any restrictive assumption on the form of the data which can
be contained in the database

- We propose an algorithm which aims to restore the consistency and the security property of the
multilevel database after an update has been performed. This algorithm is automatically
initiated by the DBMS after each committed transaction.

Note however that in [CG99], we deal with the use of the special “Restricted” value (first
suggested by Sandhu and Jajodia [SJ92]) as an alternative for cover stories. In this paper, we have

3

decided to focus on cover stories, therefore we have not mentioned this possibility (see [CG99]
for the semantics of this special “Restricted” value).

The remainder of this paper is organized as follows. Section 2 introduces, in an informal way, the
concept of cover story and outlines the problems related to polyinstantiation. Section 3 proposes a
model for a multilevel database containing cover stories. Section 4 describes how cover stories
can be practically managed and how the consistency and the security property of the database can
be maintained after an update has occurred. Section 5 concludes this paper.

2. Cover Stories and Polyinstantiation

We shall use the following two lattices throughout the paper:

U_S: {(U)nclassified,(S)ecret} with S > U

U_C1_C2_S: {(U)nclassified,(C1)onfidential1,(C2)onfidential2,(S)ecret} with S>C1, S>C2,
C1>U, C2>U and C1<>C2 (which means C1 and C2 are not comparable)

Intuitively, a cover story is a lie inserted in a multilevel database in order to hide the existence of
a sensitive data.

Let us use U_S and let us consider a multilevel database containing the following fact:

Salary(Dupont,2000) which reads “Dupont’s salary is 2000”

Let us assume this fact is classified at the Secret level:

[Salary(Dupont,2000)]S which reads “the fact that Dupont’s salary is 2000 is Secret”

Let us assume an Unclassified user u queries the database and asks “What is Dupont’s salary?”.
Obviously, the database cannot answer “Dupont’s salary is 2000” since this is a Secret fact. Let us
assume that the database answers “You are not allowed to know this data”. From this answer, u
deduces that the salary of Dupont is Secret1. In other words, u deduces the following sentence:

∃x,[Salary(Dupont,x)]S which reads “there exists a Secret salary for Dupont”

However, the Security Administrator (SA) might consider this sentence to be itself Secret that is:

[∃x,[Salary(Dupont,x)]S] S which reads “the fact that there exists a Secret salary for Dupont, is
itself Secret”

In this case, the database cannot answer “You are not allowed to know this data”2. As a solution
the SA may insert a salary at the Unclassified level in the multilevel database.

[Salary(Dupont,1500)]U

1 U_S contains only two security levels {Unclassified, Secret}. If we consider more than two security levels then u would only learn

that Dupont’salary is not Unclassified.

2 Note that, if the SA had considered that the sentence "there exists a Secret salary for Dupont" was Unclassified (that is
[∃x,[Salary(Dupont,x)]S] U) then the answer “You are not allowed to know this data” would have been acceptable.

4

Now, there are two salaries for Dupont in our multilevel database: one Unclassified, 1500 and one
Secret, 2000. In the literature, the salary of Dupont is referred to as a polyinstantiated set of two
classified values.

Polyinstantiation was first used in the SeaView project [DLSSH88]. With this technique different
tuples may have the same primary key provided each of them has a different classification level.
Low-classified tuples are implicitly interpreted as cover stories.

Therefore, according to polyinstantiation, 1500 is interpreted as a cover story that is, a lie which
is used to hide from Unclassified users the existence of a more sensitive salary for Dupont. 2000 is
interpreted as the Dupont’s real salary. If u asks “What is Dupont’s salary?” then the database
answers “Dupont’s salary is 1500”. Therefore, u cannot deduce the existence of a more sensitive
salary. If a Secret user expresses the same query then the database answers “Dupont’s salary is
2000” and possibly informs the Secret user about the existence of a cover story at the Unclassified
level.

Despite the broad use of polyinstantiation by the community working on multilevel databases, we
claim that this technique is not appropriate to cover story management. Our aim, now, is to
describe some of the problems which are related to the use of polyinstantiation.

1. Ambiguous interpretation of data

Let us consider our previous multilevel database containing the following two classified facts:

[Salary(Dupont,1500)]U

[Salary(Dupont,2000)]S

With the polyinstantiation technique, 1500 is interpreted as a cover story whereas 2000 is
interpreted as the Dupont’s real salary. This interpretation implicitly suggests that there exists an
integrity constraint stating that the salary of Dupont is unique. However, if the database does not
contain such an integrity constraint then this database could also represent the fact that Dupont has
two salaries: one Unclassified, 1500, and one Secret, 2000. In this latter case a Secret user
querying the database and asking “What is Dupont’s salary?” should be answered as “2000 and
1500” and not as “2000” only.

2. Poor expressive power of the security policy

Polyinstantiation allows us to introduce cover stories which are “attribute values” only (e.g. the
salary attribute of the entity Dupont). It does not provide us with any means to introduce an “entity”
cover story. For example, we cannot introduce a lie saying that another person, Durand, is an
employee.

3. Polyinstantiation does not work in case of a partial order on the set of security levels

Let us use U_C1_C2_S and let us consider a multilevel database containing the following two
classified facts:

1
)]1500,Dupont([CSalary

2
)]1500,Dupont([CSalary

5

Let us assume we have an integrity constraint saying that Dupont’s salary is unique. At least, one of
these two salaries is then a lie. However, polyinstantiation does not provide us with any means to
know which of these two salaries is a cover story.

In the remaining of this paper, our objective is to define a new technique for managing cover
stories. We show that our technique is free of semantic ambiguities and it offers a security policy
with a great expressive power.

3. Multilevel database

3.1 Classified facts and integrity constraints

Mathematical logic has often been used to formalize databases. In [CG99] we define a complete
logical theory which represents a multilevel database. In this paper, in order not to repeat what
was written in [CG99] and to highlight our new cover story management technique, we shall only
mention the relevant characteristics of our model without going into formal details.

We consider that a multilevel database DB contains a set F of classified atomic facts and a set IC
of classified integrity constraints.

For the sake of simplicity we also assume that integrity constraints are all classified at the lowest
level U.

Example:

Let us use U_S.

F = { [Employee(Dupont)]U which reads “ Dupont is an employee”. This fact is U.

[Salary(Dupont,2000)]S } which reads “Dupont’salary is 2000”. This fact is S.

IC = { [∀x∀y,Salary(x, y) → Employee(x)]U (1)

which reads “Anybody who has a salary is an employee”. This constraint is U.

[∀x, Employee(x) → ∃y,Salary(x, y)]U (2)

which reads “each employee has a salary”. This constraint is U.

Formulae of ICF ∪ are axioms of our logical theory.

We also extend our theory with the following axiom schema (p denotes an atomic fact or an
integrity constraint. l denotes a security level):

[] [] llllppll ll ′=→′≤∧∧′∀∀ ′, (3)

This axiom schema says that a fact or an integrity constraint cannot be associated with two distinct
comparable security levels. This means that if p is classified with two levels l and l’ and if l’
dominates l then l and l’ are the same. This axiom implicitly suggests that p may be associated with
more than one security level provided these security levels cannot be compared between each
other:

6

Example :

Let us use U_C1_C2_S.

According to axiom schema (3), [] []
1

)Dupont(Dupont)(CU EmployeeEmployee ∧ is not possible

since C1>U whereas [] []
21

)Dupont()Dupont(CC EmployeeEmployee ∧ is possible since 21 CC <> .

3.2 Cover Stories

A multilevel database may contain lies, which are cover stories. We have seen in section 2 that
polyinstantiation is often suggested as a solution to manage cover stories. However, we have also
seen in section 2 that there are several problems related to the use of polyinstantiation. Therefore,
the aim of this section is to propose a new technique to manage cover stories.

The central idea of our technique is to explicitly declare a cover story in either a set CSF (if the
cover story is a fact) or in a set CSIC (if the cover story is an integrity constraint).

More precisely, if p is a cover story of the multilevel database then we introduce in the multilevel
database (in either CSF or CSIC) a classified data saying that p is a cover story.

Let us have an overview of our technique through the following three examples:

Example 1:

Let us use U_S.

F = { [Employee(Dupont)]U

[Salary(Dupont,1500)]U

[Salary(Dupont,2000)]S }

IC = { [∀x∀y,Salary(x, y) → Employee(x)]U

[∀x, Employee(x) → ∃y,Salary(x, y)]U }

CSF = { []CS
SSalary)1500,Dupont(}

(which reads “the fact that the salary of Dupont, 1500, is a cover story, is Secret”)

CSIC = {}

With our new cover story management technique, 1500 is interpreted as a cover story without any
ambiguity. If CSF were empty then 1500 would be interpreted as a second salary for Dupont
without any ambiguity. Since cover stories are explicitly declared, there is no ambiguity in the
interpretation of the data.

Example 2:

Let us use U_S.

CSF ={ []CS
SEmployee)Durand(}

F = { [Employee(Durand)]U

7

[Salary(Durand,1000)]U }

In this example the fact that Durand is an employee is a lie. On the contrary, the fact that Durand
receives a salary of 1000 is not a lie ! One can reasonably guess that the information “Durand is an
employee” has been introduced at the Unclassified level in order to justify the fact that Durand
receives a salary. This example shows that we can create “entity” cover stories.

Note that this database is not consistent with integrity constraint (1). Indeed, Secret users see a
salary for Durand but Durand is not an employee. This contradicts integrity constraint (1).

Consequently, the above example is possible if, either IC does not contain integrity constraint (1)
or, CSIC contains a fact saying that integrity constraint (1) is a cover story:

IC = { [∀x, Employee(x) → ∃y,Salary(x, y)]U } (IC contains integrity constraint (2) only)

CSIC = {}

Or,

IC = { [∀x∀y,Salary(x, y) → Employee(x)]U

[∀x, Employee(x) → ∃y,Salary(x, y)]U } (IC contains both (1) and (2))

CSIC = { []CS
SxEmployeeyxSalaryyx)(),(, →∀∀ } (integrity constraint (1) is a cover story)

Example 3:

Let us use U_C1_C2_S.

CSF = { []CS
SSalary)1500,Dupont(}

F = {
1

)]Dupont([CEmployee

2
)]Dupont([CEmployee

1
)]1500,Dupont([CSalary

2
)]2000,Dupont([CSalary }

Secret users are explicitly informed that 1500 at the C1 level is a cover story. Our technique allows
us to manage cover stories even if we have a partial order on the set of security levels.

These three examples have given us an overview of the expressive power of a security policy
which would manage cover stories using our technique.

3.3 Definition of a multilevel database

We define the multilevel database DB as follows:

 ICF CSCSICFDB ∪∪∪=

Formulae belonging to DB are axioms of our logical theory.

8

Axiom schemata specifying the links between the cover stories and the other data are the following
(p is either a fact or an integrity constraints):

[] []lCS
l plllpl ′∧<′′∃→∀ ,, (4)

Axiom (4) says that if the fact that p is a cover story is classified at level l then there exists a level
l’ strictly dominated by l such that p is classified at level l’.

Note that from axioms (4) and (3) we can derive the following theorem:

[] []lCS
l ppl ¬→∀ , (5)

Theorem (5) says that if the fact that p is a cover story is classified at level l then p cannot be
classified at level l.

Proof:

Let us assume that []CS
lpl,∃

From (4) we can derive that [] llpl l <′∧′∃ ′,

Axiom (3) can be rewritten as [] []ll pllpll ¬→<′∧′∀∀ ′,

Therefore, we can derive that []lp¬
�

Derivation in the multilevel database is based on the classical Modus Ponens inference rule (that
is, if p is a theorem and if “p implies q” is a theorem then we can derive that q is also a theorem).

We write pDB − which reads p is derived from DB.

We do not use the closed world assumption since the closed world assumption generally leads to
inconsistency when it is combined with disjunctions. Negative facts can be either derived from
some of the axioms given previously (see for instance the theorem 5) or from axioms of
completion (see [Rei83]). We did not explicitly mentioned these axioms in the previous examples
but they should be considered as implicit. For instance, sets F and CSF of example 1 should be
rewritten as follows:

F = { [][]UU xxEmployeex Dupont)(, =↔∀

[][]UU yxyxSalaryyx 1500Dupont),(, =∧=↔∀∀

[][]SS yxyxSalaryyx 2000Dupont),(, =∧=↔∀∀ }

CSF = { [][]S
CS
S yxyxSalaryyx 1500Dupont),(, =∧=↔∀∀ }

3.4 Definition of a consistent multilevel database

A multilevel database represents a part of the real world. Facts and integrity constraints which
belong to the multilevel database, and which are not cover stories, exist also in the world
represented by the multilevel database. This can be expressed by the following sentence:

9

[] [] pplllpl CS
ll →∧<∃¬∧∀ ′)','(, (6)

Formula (6) says that if p is classified at level l and if p is not declared as a cover story in the
upper levels then p is not a lie, that is, p exists in the real world.

Using formula (6), we can easily derive the world represented by the multilevel database. From
FCSF ∪ , we can derive FReal, a set of facts existing in the real world, and from ICCSIC ∪ we

can derive ICReal, a set of integrity constraints existing in the real world.

Example 4:

Let us use U_S. Let us consider the following multilevel database:

CSF = { []CS
SSalary)1500,Dupont(

[]CS
SEmployee)Durand(}

F = { [Employee(Dupont)]U

[Salary(Dupont,1500)]U

[Salary(Dupont,2000)]S

[Employee(Durand)]U

[Salary(Durand,1000)]U }

CSIC = { []CS
SxEmployeeyxSalaryyx)(),(, →∀∀ }

IC = { [∀x∀y,Salary(x, y) → Employee(x)]U

[∀x, Employee(x) → ∃y,Salary(x, y)]U }

The world represented by this multilevel database is the following:

FReal = { Employee(Dupont)

Salary(Dupont,2000)

Salary(Durand,1000) }

ICReal = { ∀x, Employee(x) → ∃y,Salary(x, y) }

We say that a multilevel database ICF CSCSICFDB ∪∪∪= is consistent if and only if:

1. { }4,3−∪∪∪ ICF CSCSICF which reads “axiom schemas (3) and (4) can be derived

from DB”.

2. RealReal ICF − which reads “integrity constraints of ICReal can be derived from the set of

facts FReal ”

One can easily see that our previous example of multilevel database is consistent.

10

3.5 Definition of a secure multilevel database

A multilevel database might be consistent but not free of illegal inference channels. There is an
illegal inference channel when a low level user can deduce some sensitive information from the
low classified data.

Example 5:

Let us use U_S and let us consider the following multilevel database:

CSF = {}

F = { [Employee(Dupont)]U

[Salary(Dupont,2000)]S}

CSIC = {}

IC = { [∀x∀y,Salary(x, y) → Employee(x)]U

[∀x, Employee(x) → ∃y,Salary(x, y)]U }

The world represented by this database is the following:

FReal = { Employee(Dupont)

Salary(Dupont,2000)}

ICReal = { ∀x, Employee(x) → ∃y,Salary(x, y)

 ∀x∀y,Salary(x, y) → Employee(x)}

One can easily see that this database is consistent. However, it is not free from illegal inference
channels. Indeed, Unclassified users can see both the Unclassified fact Employee(Dupont) and the
Unclassified integrity constraint ∀x, Employee(x) → ∃y,Salary(x, y) . By assuming that the
database is consistent, these users can learn that Dupont has a salary and that his salary is Secret.

Let DBl be the view of the multilevel database at level l. DBl contains all the data (facts, integrity
constraints and cover stories) which are classified at a level lower than or equal to l.

IC
l

F
llll CSCSICFDB ∪∪∪=

Let Real
l

Real
l ICF ∪ be the world which can be derived from DBl.

We say that a consistent database DBl is secure (or respects the confidentiality property) if and
only if for all security level l’ (with l ≥ l’), DBl’ is consistent, that is for all security level l’, we
have:

1. { }4,3−∪∪∪ ′′′′
IC

l
F

lll CSCSICF

2. Real
l

Real
l ICF ′′ −

11

Note that, saying that DB is secure is equivalent to say that DBhigh is secure since DB = DBhigh. high
is the security level dominating all the other security levels (recall that the set of security levels
forms a lattice).

Our previous multilevel database is not secure because DBU is not consistent:

F
UCS = {}

FU = { [Employee(Dupont)]U }

IC
UCS = {}

ICU = { [∀x∀y,Salary(x, y) → Employee(x)]U

[∀x, Employee(x) → ∃y,Salary(x, y)]U }

The world represented by DBU is the following:

Real
UF = { Employee(Dupont) }

Real
UIC = { ∀x, Employee(x) → ∃y,Salary(x, y)

 ∀x∀y,Salary(x, y) → Employee(x)}

We see that Real
U

Real
U ICF −/ . In particular),(,)(, yxSalaryyxEmployeexF Real

U ∃→∀−/ .

Note that in [CG99], we state two inference rules which allow us to derive some inference
control theorems from the integrity constraints. In [CG99], we say that a multilevel database is
secure if it respects these theorems. The definition used in this paper is more general. Indeed, in
[CG99] we make some assumptions on the form of integrity constraints we may insert in the
database. In particular, we assume we cannot have disjunctive integrity constraints such as:

)()()(, xWomanxManxHumanx ∨→∀

which reads “every human being is either a man or a woman”.

In this paper we do not make any restrictive assumption on the form of integrity constraints.

We could show that if a database is secure regarding the definition given in [CG99] then it is also
secure regarding the definition given in this paper.

Note also that “DB being secure” means only that the integrity constraints cannot be used to derive
protected data. Of course, a low level user might still be able to deduce some high classified data
from an external knowledge not represented in the database.

The aim of the next section is to investigate the problem of updating a multilevel database
containing cover stories which are handled with our technique.

12

4. Updating a multilevel database

4.1 Single-level Transactions

Let DB be a secure multilevel database. We assume DB can be updated through single-level
transactions only. Before starting a single-level transaction, a user must first choose a transaction
level l. This transaction level l must be dominated by the clearance level of the user. Then, the user
may read data at a level dominated by l and may insert/update/delete data at a level equal to l, this,
in accordance with the No-Read-Up and No-Write-Down principles of the Bell & LaPadula model
[BL75].

We assume there is no restriction on the data the user may access within the transaction. This
means that a user may access data from F, IC, CSF, CSIC.

We say that the commitment of a transaction of level l is accepted if DBl is secure. It is rejected
otherwise.

This principle seems reasonable. A transaction of level l being rejected means that DBl is not
secure. Since a user of level l is allowed to see the whole DBl database, rejecting the transaction
does not violate the confidentiality property.

On the other hand, if DBl is secure then the transaction must be accepted and committed, even if the
whole DB database is not secure. Indeed rejecting the transaction in case DBl is secure and DB not
secure would open a covert channel.

Example 6:

Let us use U_S and let us consider the database DB represented in the example 1 of page 6:

Let us now consider two examples of Unclassified transactions updating DB:

1. Let T be an Unclassified transaction inserting in F the new fact Employee(Durand). T is
rejected since the new DBU would not be consistent. Indeed there would be a new employee
Durand without a salary in Real

UF . This would contradict the integrity constraint

∀x, Employee(x) → ∃y,Salary(x, y) belonging to Real
UIC . Therefore DB is not updated.

2. Let T be an Unclassified transaction updating the fact [Salary(Dupont,1500)]U into the fact
[Salary(Dupont,1600)]U. T is accepted and committed since the new DBU is consistent. DB
becomes the following:

CSF = { []CS
SSalary)1500,Dupont(}

F = { [Employee(Dupont)]U

[Salary(Dupont,1600)]U

[Salary(Dupont,2000)]S}

CSIC = {}

IC = { [∀x∀y,Salary(x, y) → Employee(x)]U

13

[∀x, Employee(x) → ∃y,Salary(x, y)]U }

We can easily see that DBU is consistent. However, we also see that DB is not consistent (in
particular, we see that DB is not consistent with axiom (4). Indeed, there is a fact at level S saying
that Salary(Dupont,1500) is a cover story whereas it does no longer appear in the unclassified
database

Consequently, the main question is, what should be done in such a case to make the whole DB
secure again ?

There are several possible answers to this question. We are going to deal with them in the next
section of this paper. However, the following preliminary action must be taken in any case:

If DB is not secure after a transaction has been committed, then a mechanism alerting the Security
Administrator (SA) must be triggered.

Of course this mechanism must be triggered through a trusted path and must not be seen by low
level users.

4.2 Restoring the security property – Basic algorithm

Let us consider a secure database DB. Let us assume DB is updated by a transaction T. T is
committed. Let us assume the new DB is not secure.

According to the principle enounced in the previous section, a mechanism informing the SA has
been triggered. The SA may then take any decision that he estimates the best to restore the security
property of DB. However, the SA is a human being. He cannot react instantly. Consequently,
during a certain period of time, DB remains in an non-secure state. This may be unacceptable.

The solution to cope with this problem is to let the DBMS take a decision and restore immediately
the confidentiality property of DB. Of course, the SA might later reverse the operations performed
by the DBMS and perform other operations if necessary.

We suggest that the DBMS applies the following algorithm in order to restore the confidentiality
property of DB:

1. If DB is not consistent with axiom (3) that is, there exists a fact or a constraint p associated
with two comparable security levels l and l’ with l < l’, then [p] l’ is deleted.

[p] l’ is deleted since p is disclosed at a level strictly lower than l'.

2. If DB is not consistent with axiom (4) that is, there exists a l-classified data saying that a fact
or a constraint p is a cover story and there is no security level l’ (with l’ < l) protecting p,

then []CS
lp is deleted.

[]CS
lp is deleted since p is not contained in the database at any level strictly lower than l.

3. Let I = { p1, p2, … , pn}. Each pi is either a fact belonging to F or an integrity constraints
belonging to IC.

I is inconsistent if and only if the integrity constraints belonging to I cannot be derived from
the facts belonging to I.

14

I is minimal inconsistent if and only if I is inconsistent and every strict subset of I is
consistent.

Let us consider the following rule to restore the database consistency:

If I = { p1, p2, … , pn} is a minimal inconsistent set and

if we have [] []),,lub(11 1 nlnl lllpp
n

KK =∧∧∧ 3,

then we have:

[] []CS
ln

CS
l pp ∨∨ K1

This means, at least one of the pi is a cover story and the fact that it is a cover story is
classified at level l.

We call this rule the cs-rule.

Using this cs-rule the DBMS must attempt to derive some new cover stories.

This algorithm is a general algorithm which may be refined. Step 3 of this algorithm says that if I is
a minimal inconsistent set then one of the pi is a cover story. Recall that each pi is either a fact or an
integrity constraint. Recall also that step 3 of the algorithm is used by the DBMS to derive some
new cover stories. Knowing this, we could decide that the DBMS should trust the integrity
constraints more than the facts. Therefore, we could refine the algorithm with the following step 4:

4. If the DBMS could derive [] []CS
ln

CS
l pp ∨∨ K1 from step 3 and if p1 , p2,…, pk are facts and

pk+1 , pk+2,…, pn are integrity constraints with 1 ≤ k < n

then we have [] []CS
lk

CS
l pp ∨∨ K1 that is, one of the facts is a cover story.

This means that the DBMS should consider that integrity constraints belonging to I cannot be
cover stories.

In the remainder of this paper we shall assume that step 4 is part of the algorithm.

In many cases, our algorithm will enable the DBMS to restore the security property of DB.
However, in some cases (see example 10 below), the DBMS will only succeed in deriving a

sentence like [] []CS
lk

CS
l pp ∨∨ K1 from DB and will not be able to determine which of the pi is a

cover story. If this occurs, then a solution might be to accept that DB remains in a non-secure state
until the SA intervenes. Before the SA restores the security property of DB, the DBMS must

provide l-level or higher-level users with the sentence [] []CS
lk

CS
l pp ∨∨ K1 , that is, the DBMS

must inform these users that DB is not secure and that one of the pi is a cover story. However,
avoiding a situation where the DBMS fails in restoring the security property of DB is possible, but
it requires some complementary mechanisms or principles which are suggested in section 4.2.

Let us consider the following examples:

Example 7:

3 Lub = least upper bound

15

Let us use U_S and let us consider the database DB represented in the example 1 of page 6. The
following constraint is added to the set IC of integrity constraint:

[yyyxSalaryyxSalaryyyx ′=→′∧′∀∀∀),(),(,]U (7)

(which reads “the salary is unique”. This constraint is Unclassified)

Let T be an Unclassified transaction updating the fact [Salary(Dupont,1500)]U into the fact
[Salary(Dupont,1600)]U. T is accepted and committed since the new DBU is consistent. As a result,
the database becomes the following:

CSF = { []CS
SDupontSalary)1500,(}

F = { [Employee(Dupont)]U

[Salary(Dupont,1600)]U

[Salary(Dupont,2000)]S}

CSIC = {}

IC = { [∀x∀y,Salary(x, y) → Employee(x)]U

[∀x, Employee(x) → ∃y,Salary(x, y)]U

[yyyxSalaryyxSalaryyyx ′=→′∧′∀∀∀),(),(,]U }

DB is not consistent. The DBMS must attempt to restore the security property of DB:

• According to step 2 of our algorithm the DBMS deletes []CS
SDupontSalary)1500,(.

• According to step 3 and 4 of our algorithm the DBMS derives

[]CS
SDupontSalary)1600,(

Proof:

The set, {Salary(Dupont,1600), Salary(Dupont,2000),
yyyxSalaryyxSalaryyyx ′=→′∧′∀∀∀),(),(, } is minimal inconsistent.

From [] []US DupontSalaryDupontSalary)1600,()2000,(∧ and from the cs-rule defined in step

3 of our algorithm, we derive

[] []
[]CS

S

CS
S

CS
S

yyyxSalaryyxSalaryyyx

DupontSalaryDupontSalary

′=→′∧′∀∀∀∨

∨

),(),(,

)1600,()2000,(

[]CS
SDupontSalary)2000,(would violate the consistency. DB would not be consistent with

theorem (5). Thus, we derive:

[] []CS
S

CS
S yyyxSalaryyxSalaryyyxDupontSalary ′=→′∧′∀∀∀∨),(),(,)1600,(.

16

From step 4 of our algorithm we derive

[]CS
SDupontSalary)1600,(

Then DB becomes the following:

CSF = { []CS
SDupontSalary)1600,(}

F = { [Employee(Dupont)]U

[Salary(Dupont,1600)]U

[Salary(Dupont,2000)]S}

CSIC = {}

IC = { [∀x∀y,Salary(x, y) → Employee(x)]U

[∀x, Employee(x) → ∃y,Salary(x, y)]U

[yyyxSalaryyxSalaryyyx ′=→′∧′∀∀∀),(),(,]U }

One can easily see that DB is secure. 1600 is a new cover story. The DBMS could restore the
confidentiality property of DB.

However, recall that the SA has been informed about the update by the trigger defined in section
4.1. The SA might consider that 1600 is not a cover story and is actually the new real Dupont’s
salary. If it is the case, then the SA must update DB accordingly. In other words he must delete

both []CS
SDupontSalary)1600,(and [Salary(Dupont,2000)]S.

Example 8:

Let us use U_S and let us consider the database DB represented in the example 1 of page 6. This
database is the same as the initial database defined in the previous example. The only difference is
that constraint (7) has been removed. Let us consider the same transaction T executed at level U
which updates the fact [Salary(Dupont,1500)]U into the fact [Salary(Dupont,1600)]U. T is
accepted and committed since the new DBU is consistent. Then the database becomes the
following:

CSF = { []CS
SDupontSalary)1500,(}

F = { [Employee(Dupont)]U

[Salary(Dupont,1600)]U

[Salary(Dupont,2000)]S}

CSIC = {}

IC = { [∀x∀y,Salary(x, y) → Employee(x)]U

[∀x, Employee(x) → ∃y,Salary(x, y)]U }

DB is not consistent. The DBMS must attempt to restore the security property of DB:

17

• According to step 2 of our algorithm the DBMS deletes []CS
SDupontSalary)1500,(.

Then DB becomes the following:

CSF = {}

F = { [Employee(Dupont)]U

[Salary(Dupont,1600)]U

[Salary(Dupont,2000)]S}

CSIC = {}

IC = { [∀x∀y,Salary(x, y) → Employee(x)]U

[∀x, Employee(x) → ∃y,Salary(x, y)]U }

DB is secure. 1600 is now interpreted as Dupont’s second salary. The DBMS could restore the
security property of DB.

Note that the SA has been informed about the update. Therefore, he may later update DB and insert

the fact []CS
SDupontSalary)1600,(if he estimates that 1600 is actually a cover story.

Example 9:

Let us use U_S and let us consider the database DB represented in the example 1 of page 6:

Let us consider a transaction T executed at level U which updates the fact [Salary(Dupont,1500)]U

into the fact [Salary(Dupont,2000)]U. T is accepted and committed since the new DBU is consistent.
The database becomes the following:

CSF = { []CS
SDupontSalary)1500,(}

F = { [Employee(Dupont)]U

[Salary(Dupont,2000)]U

[Salary(Dupont,2000)]S}

CSIC = {}

IC = { [∀x∀y,Salary(x, y) → Employee(x)]U

[∀x, Employee(x) → ∃y,Salary(x, y)]U }

DB is not consistent. The DBMS must attempt to restore the confidentiality property of DB:

• According to step 1 of our algorithm the DBMS deletes [Salary(Dupont,2000)]S.

• According to step 2 of our algorithm the DBMS deletes []CS
SDupontSalary)1500,(.

Then DB becomes the following:

CSF = {}

18

F = { [Employee(Dupont)]U

[Salary(Dupont,2000)]U }

CSIC = {}

IC = { [∀x∀y,Salary(x, y) → Employee(x)]U

[∀x, Employee(x) → ∃y,Salary(x, y)]U }

DB is now secure. We see that the DBMS has actually downgraded the value 2000. We claim that
this is the most appropriate response to the insertion of the value 2000 at the level U, regardless of
who initiated the transaction T:

• Let us assume that the user who initiated T is an Unclassified user. Most probably this user
updated the value 1500 into the value 2000 because he learned that the real salary of Dupont
was 2000. This disclosure means that a violation of the confidentiality property has occurred.
Therefore, there is no reason to keep the value 2000 Secret in the database. Of course, the SA
who was informed about the update must now investigate and try to discover how the
confidentiality property has been violated.

• Let us assume that the user who initiated T is a Secret user operating at the level U. Our
interpretation is that this user updated the value 1500 into the value 2000 because he wanted to
downgrade the value 2000.

Example 10:

Let us use U_C1_C2_S and let us consider the following database DB:

CSF = { []CS
SDupontSalary)1500,(}

F = {
1

)]Dupont([CEmployee

2
)]Dupont([CEmployee

1
)]1500,Dupont([CSalary

2
)]2000,Dupont([CSalary }

CSIC = {}

IC = { [∀x∀y,Salary(x, y) → Employee(x)]U

[∀x, Employee(x) → ∃y,Salary(x, y)]U

[yyyxSalaryyxSalaryyyx ′=→′∧′∀∀∀),(),(,]U }

Let us consider a transaction T executed at level C1 which updates the fact

1
)]1500,Dupont([CSalary into the fact

1
)]1600,Dupont([CSalary .

1CDB becomes the following:

F
CCS

1
= {}

19

1CF = {
1

)]Dupont([CEmployee

1
)]1600,Dupont([CSalary }

IC
CCS

1
= {}

1CIC = { [∀x∀y,Salary(x, y) → Employee(x)]U

[∀x, Employee(x) → ∃y,Salary(x, y)]U

[yyyxSalaryyxSalaryyyx ′=→′∧′∀∀∀),(),(,]U }

One can easily see that
1CDB is secure. T is then accepted and committed. DB becomes the

following:

CSF = { []CS
SDupontSalary)1500,(}

F = {
1

)]Dupont([CEmployee

2
)]Dupont([CEmployee

1
)],Dupont([CSalary 1600

2
)]2000,Dupont([CSalary }

CSIC = {}

IC = { [∀x∀y,Salary(x, y) → Employee(x)]U

[∀x, Employee(x) → ∃y,Salary(x, y)]U

[yyyxSalaryyxSalaryyyx ′=→′∧′∀∀∀),(),(,]U }

DB is not consistent. The DBMS must attempt to restore the security property of DB:

• According to step 2 of our algorithm the DBMS deletes []CS
SDupontSalary)1500,(.

• According to step 3 and 4 of our algorithm the DBMS derives

[] []CS
S

CS
S SalarySalary)1600,Dupont()2000,Dupont(∨

Proof:

The set, {Salary(Dupont,1600), Salary(Dupont,2000),
yyyxSalaryyxSalaryyyx ′=→′∧′∀∀∀),(),(, } is minimal inconsistent.

From [] []
12

)1600,Dupont()2000,Dupont(CC SalarySalary ∧ and from the cs-rule defined in

step 3 of our algorithm, we derive:

20

[] []
[]CS

S

CS
S

CS
S

yyyxSalaryyxSalaryyyx

SalarySalary

′=→′∧′∀∀∀∨

∨

),(),(,

)1600,Dupont()2000,Dupont(

From step 4 of our algorithm, we derive

[] []CS
S

CS
S SalarySalary)1600,Dupont()2000,Dupont(∨

However the DBMS cannot derive which of the two values is a cover story. The simplest
solution is to wait for the intervention of the SA.

DB becomes the following:

CSF = {}

F = {
1

)]Dupont([CEmployee

2
)]Dupont([CEmployee

1
)],Dupont([CSalary 1600

2
)]2000,Dupont([CSalary }

CSIC = {}

IC = { [∀x∀y,Salary(x, y) → Employee(x)]U

[∀x, Employee(x) → ∃y,Salary(x, y)]U

[yyyxSalaryyxSalaryyyx ′=→′∧′∀∀∀),(),(,]U }

DB is not consistent. Until the SA updates the database and restores the consistency of DB, Secret
users will be informed that either 1600 or 2000 is a cover story.

Solutions to avoid such a situation exist. We briefly present some of them in the next section.

4.3 Restoring the security property – Toward an Extended algorithm

The algorithm given in the previous section is a basic algorithm. Example 10 of the previous
section has shown us that our algorithm should be extended in order to cope with the situation

where the algorithm derives a sentence like [] []CS
lk

CS
l pp ∨∨ K1 from the database but cannot

determine which of the pi is a cover story. Let us come back to example 10 and let us present some
possible extensions for our algorithm.

• The first possibility is to make a non-deterministic choice between the conflicting data. For
instance, in example 10, the DBMS can restore the database consistency by non-
deterministically deciding that 1600 or 2000 is a cover story. It is the simplest solution and it
can apply in every situation. The main drawback is that it is completely arbitrary.

21

• The SA (or any authorized user) may associate the initial cover story 1500 with a Secret
trigger on update. This trigger would automatically insert, through a trusted path, a fact saying
that the new updated value at the level C1 is a cover story.

The database would automatically become as follows:

CSF = { []CS
SSalary)1600,Dupont(}

F = {
1

)]Dupont([CEmployee

2
)]Dupont([CEmployee

1
)],Dupont([CSalary 1600

2
)]2000,Dupont([CSalary }

CSIC = {}

IC = { [∀x∀y,Salary(x, y) → Employee(x)]U

[∀x, Employee(x) → ∃y,Salary(x, y)]U

[yyyxSalaryyxSalaryyyx ′=→′∧′∀∀∀),(),(,]U }

DB is now secure. 1600 is a new cover story.

• Another possible solution, which was first suggested in [HOST90] for multilevel relational
database and which was further refined in [BCGY93][BCGY94][CG97] in the context of
multilevel object-oriented databases, is to use special pointer values from higher to lower
security levels. For instance, in our previous example, one may have the following initial
database:

CSF = { []CS
SDupontSalary),(pont.Salary.DuC1 }

F = {
1

)]Dupont([CEmployee

2
)]Dupont([CEmployee

1
)]1500,Dupont([CSalary

2
)]2000,Dupont([CSalary }

CSIC = {}

IC = { [∀x∀y,Salary(x, y) → Employee(x)]U

[∀x, Employee(x) → ∃y,Salary(x, y)]U

[yyyxSalaryyxSalaryyyx ′=→′∧′∀∀∀),(),(,]U }

22

Above expression C1.Salary.Dupont can be seen as a pointer to the value of Dupont’s salary

at level C1. Fact []CS
SDupontSalary),(pont.Salary.DuC1 says that Dupont’s salary at level C1

is a cover story. Updating the value 1500 into the value 1600 will not affect the consistency of
DB. Consequently, after the update, 1600 will automatically become a cover story.

• Finally, [CC95] suggests that it is often possible to restore the database consistency by making
an implicit choice between incomparable security levels. In particular, this implicit choice
may be based on need to know requirements and may depend on the type of information to be
updated. For instance, regarding the salary, the SA may specify that level C2 has priority over
level C1. Therefore, in our previous example, the conclusion would be to consider that 2000 is
Dupont’s salary and 1600 is a cover story.

However, there are situations where none of the above solutions, except the first one - namely the
non-deterministic choice - applies. The following example provides an example of such a
situation.

Let us use U_S and let us consider the following database DB:

CSF = {}

F = { [Employee(Dupont)]U

[Salary(Dupont,1500)]U

[Salary(Dupont,2000)]S}

CSIC = {}

IC = { [∀x∀y,Salary(x, y) → Employee(x)]U

[∀x, Employee(x) → ∃y,Salary(x, y)]U

U
yyyyyy

yxSalaryyxSalaryyxSalaryyyyx

′′=′∨′′=∨′=→

′′∧′∧′′∀′∀∀∀

)()()(

),(),(),(,
}

which reads “nobody can have more than two salaries”

Note that Dupont has two salaries, one Unclassified 1500, and one Secret 2000. Neither of these
salaries is a cover story.

Let us consider a transaction T executed at level U which inserts the fact [Salary(Dupont,1600)]U.
T is accepted and committed since the new DBU is consistent (There are now two salaries at the
Unclassified level. This does not violate the integrity constraint which says that nobody can have
more than two salaries). The database becomes the following:

CSF = {}

F = { [Employee(Dupont)]U

[Salary(Dupont,1500)]U

[Salary(Dupont,1600)]U

[Salary(Dupont,2000)]S}

23

CSIC = {}

IC = { [∀x∀y,Salary(x, y) → Employee(x)]U

[∀x, Employee(x) → ∃y,Salary(x, y)]U

U
yyyyyy

yxSalaryyxSalaryyxSalaryyyyx

′′=′∨′′=∨′=→

′′∧′∧′′∀′∀∀∀

)()()(

),(),(),(,
}

However, DB is not consistent. Indeed, we now have three salaries for Dupont.

In a similar way as we did before, we could show that our algorithm derives the following
sentence:

[] []CS
S

CS
S SalarySalary)1600,Dupont()1500,Dupont(∨

 that is one of the value 1500 or 1600 is a cover story.

In such a case, in order to restore the consistency of DB, the best solution seems to let the DBMS
choose in a non-deterministic way which of the two values is a cover story. For instance the
DBMS may choose that 1500 is a cover story. DB becomes then the following:

CSF = { []CS
SDupontSalary 1500,(}

F = { [Employee(Dupont)]U

[Salary(Dupont,1500)]U

[Salary(Dupont,1600)]U

[Salary(Dupont,2000)]S }

CSIC = {}

IC = { [∀x∀y,Salary(x, y) → Employee(x)]U

[∀x, Employee(x) → ∃y,Salary(x, y)]U

U
yyyyyy

yxSalaryyxSalaryyxSalaryyyyx

′′=′∨′′=∨′=→

′′∧′∧′′∀′∀∀∀

)()()(

),(),(),(,
}

DB is now secure. 1600 and 2000 are the two Dupont’salaries. 1500 is a cover story.

Examples 7 to 9 of section 4.2 have shown us how our basic algorithm may enable the DBMS to
maintain the security property of a multilevel database after an update has occurred. However, we
have seen through example 10 that this basic algorithm cannot face all situations and must be
extended with some complementary principles, some of which have just been presented in this
section.

24

5. Conclusion

There are situations where it is necessary to insert covert stories in a multilevel database. In
section 2, we showed that these situations occur when the security administrator decides to hide
the existence of high-classified information from low-classified users. We also showed the
limitations of the polyinstantiation technique and suggested a new approach to manage cover
stories.

This approach is based on explicit management of cover stories. It enables us to derive a
consistent view of the real world for each security level. Moreover, a user cleared at a given
security level l is allowed to know all the cover stories having a classification level strictly
dominated by l.

As mentioned in section 3.5, this new approach is fully compatible with the one suggested by the
authors in [CG99]. However, our approach is more general since it does not make any restriction
on the form of integrity constraints we may insert in the database.

There are other formal multilevel database security models which do not use the polyinstantiation
technique. Smith and Winslett [SW92] were the first to propose such a model. In their model, a
multilevel database is represented by a collection of belief sets associated with each security
level. This approach was analyzed and criticized in [Cup96]. In particular, it is shown that there is
no link between the belief set associated with a given security level l and the belief sets at security
levels strictly dominated by l. The conclusion of [Cup96] is that [SW92] is not really a model for
a multilevel database but rather a model for a “system-high” database.

Recently, [SC98] and [JVPJ99] suggested several improvements to [SW92]. Links can be created
between a database at a given security level l and the ones which are at a level strictly dominated
by l. As a matter of fact, a user cleared at a level higher than or equal to l can specify that a fact
classified at a level strictly dominated by l is accepted in the database at level l. This is a cautious
approach that is efficient to avoid conflicts due to the existence of cover stories at classification
levels strictly dominated by l. However, we argue that such a manual management of information
flow from low to high classification levels is impractical in real applications.

Therefore, we guess that our approach is more realistic. We suggest an explicit management of
cover stories so that any fact whose classification is strictly dominated by l is implicitly (and
automatically) accepted at level l as far as it is not declared as a cover story at level l. Moreover,
this explicit management makes it possible to eliminate the problems of information choice, for
instance in the case of partially ordered set of security levels.

Finally, we have specified rules to control database updates and deletions, especially when a
cover story is modified. From a more practical point of view, the data specifying that a given fact
is actually a cover story may be stored in specific relations distinct from the ones used to manage
the multilevel database. For instance, if R is a multilevel relation, then one can create a relation
RCS to store the cover stories associated with relation R. We guess that this overall approach is the
most suitable one for future implementations.

References:

[BCGY93] N. and F. Cuppens, A. Gabillon, K. Yazdanian. “MultiView Model for Multilevel Object-Oriented
DataBases”. Proc. of the Ninth Annual Computer Security Applications Conference (ACSAC).
Orlando, USA 1993.

25

[BCGY94] N and F. Cuppens, A. Gabillon, K. Yazdanian. Decomposition of Multilevel Objects in an Object-
Oriented DataBase. Proc. of the third European Symposium on Research In Computer Security
(ESORICS). Brighton, UK 1994.

[BL75] D. Bell and L. LaPadula. Secure Computer Systems: Unified Exposition and Multics
Interpretation. Technical Report ESD-TR-75-306, MTR 2997, MITRE, Bedford, Mass. 1975.

[CC95] F. Cuppens and L. Cholvy. Providing Consistent Views in a Polyinstantiated Database. Database
Security 8: Status and Prospect. J. Biskup and M. Morgenstern and C. Landwehr. North-Holland
1995.

[CG97] F. Cuppens, A. Gabillon. A logical Approach To Model A Multilevel Object-Oriented Database.
Database Security X: Status and Prospects. P. Samarati et R. Sandhu, editors. Chapman and Hall,
1997.

[CG99] F. Cuppens, A. Gabillon. Logical Foundations of Multilevel Databases. Data and Knowledge
Engineering., vol. 29, 1999, pp. 259-291.

[Cup96] F. Cuppens. Querying a Multilevel Database: A Logical Analysis. Proceedings of the 22nd
International Conference on Very Large Databases. Bombay, India 1996.

[DLSSH88] D. Denning, T. Lunt, R Schell, W Shockley and M. Heckman. The Sea View Security Model. Proc.
of the 1988 IEEE Symposium on Research in Security and Privacy.

[HOST90] J. Haig, R, O’Brien, P Stachour and D. Toups. The LDV approach to database security. In Database
Security III, Status and Prospect. North Holland.

[JK90] S. Jajodia and B. Kogan. Integrating an Object-Oriented Data Model with Multilevel Security. In
IEEE Symposium on Security and Privacy. Oakland 1990.

[JVPJ99] N. Jukic and S. Vrbsky and A. Parrish and B. Jukic. A belief-consistent multilevel secure relational
data model. Information Systems. Vol 24(5). July 1999.

[KTT89] T. Keefe, W. Tsai and B Thuraisingham. SODA: A Secure Object-Oriented Database System.
Computer and Security, 8(6), 1989.

[Lun90] T.F. Lunt. Multilevel Security for Object-Oriented Database Systems. In D.L. Spooner and C.
Landwehr editors. Database Security III: Status and Prospects. North-Holland 1990. Result of the
IFIP WG 11.3 Workshop on Database Security.

[ML92] J.K. Millen and T.F. Lunt. Security for Object-Oriented Database Systems. Proc. of the 1992 IEEE
Symposium on Research in Security and Privacy.

[QL96] X. Qian and T. F. Lunt. A Mac Policy Framework for Multilevel Databases. IEEE Transactions on
Knowledge and Data Engineering. Vol 8, Number 1, February 1996.

[Rei83] R. Reiter. Toward a logical reconstruction of relational database theory. In On Conceptual
Modelling: Perspectives from Artificial Intelligence, Databases and Programming Languages.
Springer Verlag, 1983.

[SC98] R. S. Sandhu and F. Chen. The MLR Data Model. Transactions on Information and System Security,
1(1):93-132 (1998).

[SJ92] R. Sandhu and S. Jajodia. Polyinstantiation for cover stories. In European Symposium on Research
in Computer Security. Toulouse, France.1992. Springer Verlag.

[SW92] K. Smith and M. Winslett. Entity Modeling in the MLS Relational Model. Proceedings of the 18th
International Conference on Very Large Data Bases. Vancouver, Canada 1992.

