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Abstract—Many anonymous communication (AC) networks
rely on routing traffic through proxy nodes to obfuscate the
originator of the traffic. Without an accountability mechanism,
exit proxy nodes risk sanctions by law enforcement if users
commit illegal actions through the AC network. We present
BACKREF, a generic mechanism for AC networks that provides
practical repudiation for the proxy nodes by tracing back the
selected outbound traffic to the predecessor node (but not in
the forward direction) through a cryptographically verifiable
chain. It also provides an option for full (or partial) traceability
back to the entry node or even to the corresponding user when
all intermediate nodes are cooperating. Moreover, to maintain
a good balance between anonymity and accountability, the
protocol incorporates whitelist directories at exit proxy nodes.
BACKREF offers improved deployability over the related work,
and introduces a novel concept of pseudonymous signatures
that may be of independent interest.

We exemplify the utility of BACKREF by integrating it into
the onion routing (OR) protocol, and examine its deployability
by considering several system-level aspects. We also present
the security definitions for the BACKREF system (namely,
anonymity, backward traceability, no forward traceability, and
no false accusation) and conduct a formal security analysis of
the OR protocol with BACKREF using ProVerif, an automated
cryptographic protocol verifier, establishing the aforementioned
security properties against a strong adversarial model.

I. INTRODUCTION

Anonymous communication networks are designed to
hide the originator of each message within a larger set of
users. In some systems, like DC-Nets [1] and Dissent [2],
the message emerges from aggregating all participants’
messages. In other systems, like onion routing [3], mix net-
works [4], and peer-to-peer anonymous communication net-
works [5], messages are routed through volunteer nodes that
act as privacy-preserving proxies for the users’ messages. We
call this latter class proxy-based anonymous communication
(AC) networks and concentrate on it henceforth.

Proxy-based AC networks provide a powerful service
to their users, and correspondingly they have been the
most successful AC networks so far [6], [7]. However the
nature of the properties of the technology can sometimes be
harmful for the nodes serving as proxies. If a network user’s
online communication results in a criminal investigation
or a cause of action, the last entity to forward the traffic
may become embroiled in the proceedings [8], [9], [10],
whether as the suspect/defendant or as a third party with
evidence. While repudiation in the form of a partial or full
traceability has never been a component of any widely-
deployed AC network, it may become the case that new
anonymity networks, or a changing political climate, initiate
an interest in providing a verifiable trace to users who misuse
anonymity networks according to laws or terms of service.

While several proposals [11], [12], [13], [14], [15], [16],
[17] have been made to tackle or at least to mitigate this
problem under the umbrella term of accountable anonymity,
as we discuss in the next section some of them are broken,
while others are not scalable enough for deploying in low
latency AC networks.

Contributions. In this work, we design BACKREF, a novel
practical repudiation mechanism for anonymous communi-
cation, which has advantages in terms of deployability and
efficiency over the literature. To assist in the design of
BACKREF, we propose a concept of pseudonymous signa-
tures, which employ pseudonyms (or half Diffie-Hellman
exponents) as temporary public keys (and corresponding
temporary secrets) employed or employable in almost all AC
networks for signing messages. These pseudonym signatures
are used to create a verifiable pseudonym-linkability mech-
anism where any proxy node within the route or path, when
required, can verifiably reveal its predecessor in time-bound
manner. We use this property to design a novel repudiation
mechanism, which allows each proxy node, in cooperation
with the network, to issue a cryptographic guarantee that a
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selected traffic flow can be traced back to its originator (i.e.,
predecessor node) while maintaining the eventual forward
secrecy of the system.

Unlike the related work, which largely relies on group
signatures and/or anonymous credentials, BACKREF avoids
the logistical difficulties of organizing users into groups and
arranging a shared group key, and does not require access
to a trusted party to issue credentials. While BACKREF is
applicable to all proxy-based AC networks, we illustrate its
utility by applying it to the onion routing (OR) protocol. We
observe that it introduces a small computational overhead
and does not affect the performance of the underlying OR
protocol. BACKREF also includes a whitelisting option; i.e.,
if a exit node considers traceability to one or more web-
services unnecessary, then it can include those services in a
whitelist directory such that accesses to those are not logged.

We formally define the important properties of the
BACKREF network. In particular, we formalize anonymity
and no forward traceability as observational equivalence
relations, and backward traceability and no false accusation
as trace properties. We conduct a formal security analysis
of BACKREF using ProVerif, an automated cryptographic
protocol verifier, establishing the aforementioned security
and privacy properties against a strong adversarial model.
We believe both the definitions and the security analysis are
of independent interest, since they are the first for the OR
protocol.

Organization. In Section II, we discuss the anonymous
communication networks, and consider the related work.
In Section III, we describe our threat model and system
goals, and present our key idea, while in Section IV, we
incorporate the BACKREF mechanism in the OR protocol.
We discuss important systems issues in Section V, and we
briefly analyze the security and privacy properties of the
BACKREF mechanism in Section VI.

II. BACKGROUND AND RELATED WORK

Anonymous communication (AC) networks aim at pro-
tecting personally identifiable information (PII), in particular
the network addresses of the communicating parties by
hiding correlation between input and output messages at one
or more network entities. For this purpose, the AC protocols
employ techniques such as using a series of intermediate
routers and layered encryptions to obfuscate the source of
a communication, and adding fake traffic to make the ‘real’
communication difficult to extract.

Anonymous Communication Protocols. Single-hop proxy
servers, which relay traffic flows, enable a simple form of
anonymous communication. However anonymity in this case
requires, at a minimum, that the proxy is trustworthy and

not compromised, and this approach does not protect the
anonymity of senders if the adversary inspects traffic through
the proxy [18]. Even with the use of encryption between
the sender and proxy server, timing attacks can be used to
correlate flows.

Starting with Chaum [4], several AC technologies have
been developed in the last thirty years to provide stronger
anonymity not dependent on a single entity [6], [3], [7], [19],
[2], [1], [20], [21], [22], [23], [24], [25]. Among these, mix
networks [4], [7] and onion routing [6] have arguably been
most successful. Both offer user anonymity, relationship
anonymity and unlinkability [26], but they obtain these
properties through differing assumptions and techniques.

An onion routing (OR) infrastructure involves a set of
routers (or OR nodes) that relay traffic, a directory service
providing status information for OR nodes, and users. Users
benefit from anonymous access by constructing a circuit—
a small ordered subset of OR nodes—and routing traffic
through it sequentially. The crucial property for anonymity
is that an OR node within the built circuit is not able to
identify any portion of the circuit other than its predecessor
and successor. The user sends messages (to the first OR
node in the circuit) in a form of an onion—a data structure
multiply encrypted by symmetric session keys (one encryp-
tion layer per node in the circuit). The symmetric keys are
negotiated during an initial circuit construction phase. This
is followed by a second phase of low latency communication
(opening and closing streams) through the constructed circuit
for the session duration. An OR network does not aim
at providing anonymity and unlinkability against a global
passive observer, which in theory can analyze end-to-end
traffic flow. Instead, it assumes an adversary that adaptively
compromises a small fraction of OR nodes and controls a
small fraction of the network.

A mix network achieves anonymity by relaying messages
through a path of mix nodes. The user encrypts a message to
be partially decrypted by each mix along the path. Mix nodes
accept a batch of encrypted messages, which are partially
decrypted, randomly reordered, and forwarded. Unlike onion
routing, an observer is unable to link incoming and outgoing
messages at the mix node; thus, mix networks provide
anonymity against a powerful global passive adversary. In
fact, as long as a single mix node in the user’s path remains
uncompromised, the message will maintain some anonymity.
However, batching of messages at a mix node introduces
inherent delays, making mix networks unsuitable for low-
latency, interactive applications (e.g., web browsing, instant
messaging). When used, it is for latency-tolerant applications
like anonymous email.



A. Accountable Anonymity Mechanisms

The literature has examined several approaches for
adding accountability to AC technologies, allowing: mis-
behaving users to be selectively traced [11], [12], [13],
exit nodes to deny originating traffic it forwards [14], [15],
misbehaving users to be banned [16], [17], and misbehaving
participants to be discovered [2], [27], [28]. All of these
approaches either require users to obtain credentials or do
not extend to interactive, low-latency, internet-scale AC net-
works. A number also partition users into subgroups, which
reduces anonymity and requires a group manager. BACKREF

does not require credentials, subgroups, and is compatible
with low-latency AC networks like onion routing, adding
minimal overhead.

Kopsell et al. [11] propose traceability through threshold
group signatures. A user logs into the system to join a
group, signs messages with a group signature, and a group
manager is empowered to revoke anonymity. The system
also introduces an external proxy to inspect all outbound
traffic for correct signatures and protocol compliance. The
inspector has been criticized for centralizing traffic flows,
which enables DOS, censorship, and increases observabil-
ity [29].

Von Ahn et al. [12] also use group signatures as the basis
for a general transformation for traceability in AC networks
and illustrate it with DC networks. Users are required to
register as members of a group capable of sending messages
through the network. Our solution can be viewed as a follow-
up to this paper, with a concentration on deployability: we
do not require users to be organized into groups or introduce
new entities, and we concentrate on onion routing.

Diaz and Preneel [13] propose traceability through is-
suing anonymous credentials to users and utilizing a traitor
tracing scheme to revoke anonymity. It is tailored to high-
latency mix networks and requires a trusted authority to
issue credentials—both impede deployability. Danezis and
Sassaman [29] demonstrate a bypass attack on this and
the Kopsell et al. scheme [11]. The attack is based on
the protocols’ assumption that there can be no leakage of
information from inside the channel to the world unless
it passes through the verification step. This attack is only
applicable for the family of protocols where traceability
property is ensured. In our protocol we do not claim ensured
traceability therefore this attack is out of the scope of
BACKREF.

Short of revoking to the anonymity of misbehaving users,
techniques have been proposed to at least allow exit nodes
to deny originating the traffic. Golle [14] and Clark et
al. [15] pursue this goal, with the former being specific to
high-latency mix networks and the latter requiring anony-
mous credentials. Tor offers a service called ExoneraTor

that provides a record of which nodes were online at a
given time, but it does not explicitly prove that a given
traffic flow originated from Tor. Other techniques, such
as Nymble [16] and its successors (see a survey [17]),
enable users to be banned. However these systems inherently
require some form of credential or pseudonym infrastructure
for the users, and also mandate web-servers to verify user
requests. Finally, Dissent [2] and its successors [27], [28]
presents an interesting approach for accountable anonymous
communication for DC Nets [1], however even when highly
optimized [27], DC Nets are not competitive for internet-
scale application.

III. DESIGN OVERVIEW

In this section we describe our threat model and system
goals, and present our key idea and design rationale.

A. Threat Model and System Goals

We consider the same threat model as the underlying
AC protocol in which we wish to incorporate the BACKREF

mechanism. Our active adversary A aims at breaking some
anonymity property by determining the ultimate source
and/or destination of a communication stream or breaking
unlinkability by linking two communication streams of the
same user. We assume that some, but not all, of the nodes
in the path of the communication stream are compromised
by the adversary A, who knows all their secret values,
and is able to fully control their functionalities. For high
latency AC networks like mix networks, we assume that
the adversary can also observe all traffic in the network, as
well as intercept and inject arbitrary messages, while for
low latency AC networks like onion routing, we assume the
adversary can observe, intercept, and inject traffic in some
parts of the network.

While maintaining the anonymity and unlinkability prop-
erties of the AC network, we wish to achieve the following
goals when incorporating BACKREF in an AC network:

Repudiation: For a communication stream flowing through
a node, the node operator should be able to prove that
the stream is coming from another predecessor node or
user.

Backward traceability: Starting from an exit node of a
path (or circuit), it should be possible to trace the source
of a communication stream when all nodes in the path
verifiably reveal their predecessors.

No forward traceability: For a compromised node, it
should not be possible for the adversary A to use
BACKREF to verifiably trace its successor in any com-
pleted anonymous communication session through it.

No false accusation: It should not be possible for a com-
promised node to corrupt the BACKREF mechanism to
trace a communication stream:






 









Fig. 1: Backward Traceability Verification

1) to a path different from the path employed for the
stream, and

2) to a node other than its predecessor in the path.

Non-Goals. We expect our accountability notion to be
reactive in nature. We do not aim at proactive accountability
and do not try to stop an illegal activity in an AC network
in a proactive manner, as we believe perfect white- or black-
listing of web urls and content to be an infeasible task. More-
over, some nodes may choose not to follow the BACKREF

mechanism locally (e.g., they may not maintain or share
the required evidence logs), and backward traceability to
the user cannot be ensured in those situations; nevertheless,
the cooperating nodes can still prove their innocence in a
verifiable manner.

Due to its reactive nature, our repudiation mechanism
inherently requires evidence logs containing verifiable rout-
ing information. Encrypting these logs and regularly rotating
the corresponding keys can provide us eventual forward
secrecy [30]. However, we cannot aim for immediate forward
secrecy due to the inherently eventual forward secret nature
of the encryption mechanism.

B. Design Rationale and Key idea

Fig. 1 presents a general expected architecture to achieve
the above mentioned goals. It is clear the network level logs
as well as the currently cryptographic mechanism in the AC
networks cannot be used for verifiably backward traceability
purpose as they cannot stop false accusations (or traceability)
by compromised nodes: a compromised node can tamper
with its logs to intermix two different paths as there is no
cryptographic association between different parts of an AC
path.

We observe that almost all OR circuit construction pro-
tocols [21], [31], [32], [33], [34], [30] (except TAP) and mix
network protocols [35], [22], [36], [7], [24], [37] employ (or

can employ1) an element of a cyclic group of prime order
satisfying some (version of) Diffie-Hellman assumption as
an authentication challenges or randomization element per
node in the path. In particular, it can be represented as
X = gx, where g is a generator of a cyclic group G of
prime order p with the security parameter κ and x ∈R Zp is a
random secret value known only to the user. This element is
used by each node on the path to derive a secret that is shared
with the user and is used to extract a set of (session) keys
for encryption and integrity protection. In the literature, these
authentication challenges X are known as user pseudonyms.

The key idea of our BACKREF mechanism is to use
these pseudonyms X = gx and the corresponding secret
keys x as signing key pairs to sign pseudonym’s for suc-
cessor nodes at entry and middle nodes, and to sign the
communication stream headers at the exit nodes. Signatures
that use (x, gx) as the signing key pair are referred to
as pseudonym signatures. As pseudonyms are generated
independently for every single node, and the corresponding
secret exponents are random elements of Zp, they do not
reveal the user’s identity. Moreover, it also is not possible to
link two or more pseudonyms to a single identity. Therefore,
pseudonym signatures become particularly useful in our
BACKREF mechanism, where users utilize them to sign
messages without being identified by the verifier.

We can employ a CMA-secure [38] signature scheme
against a computationally bounded adversary (with the se-
curity parameter κ) such that, along with the usual existential
unforgeability, the resultant pseudonym signature scheme
satisfies the following property:

Unconditional signer anonymity: The adversary cannot
determine a signer’s identity, even if it is allowed to
obtain signatures on an unbounded number of messages
of its choice.

We use such temporary signing key pairs (or pseudonym

1Although some these have been defined using RSA encryptions, as
discussed in [22] they can be modified to work in the discrete logarithm
(DL) setting.



signatures) to sign consecutively employed pseudonyms in
an AC path and the web communication requests leaving the
AC path. Pseudonym signatures provide linkability between
the employed pseudonyms and the communicated message
on an AC path. However, these pseudonyms are not sufficient
to link the node employed in the AC path: for a pseudonym
received by a node, its predecessor node can always deny
sending the pseudonym in the first place. We solve this
problem by introducing endorsement signatures: We assume
that every node signs the pseudonym while sending it to the
successor so that it cannot plausibly deny this transfer during
backward tracing.

C. Scope of Solution

To understand the scope of BACKREF, first consider
traceability in the context of the simplest AC network:
a single-hop proxy. Any traceability mechanism from the
literature implicitly assumes a solution to the problem of
how users can be traced through a simple proxy. We dub
this the ‘last mile’ problem. The proxy can keep logs, but
this requires a trusted proxy. Alternatively the ISP could
observe and log relevant details about traffic to the proxy,
requiring trust in the ISP. The solution more typically used
in the literature is to assume individual users have digital
credentials or signing keys—essentially some form of PKI
is in place to certify the keys of individual users. [11], [12],
[13], [14], [15]

None of these last mile solutions are particularly attrac-
tive. The assumption of a PKI provides the best distribution
of trust but short-term deployment appears infeasible. We be-
lieve the involvement of ISPs is the most readily deployable.
Such a solution involves an ISP with a packet attestation
mechanism [39] which acts as a trusted party capable of
proving the existence of a particular communication. We dis-
cuss the packet attestation mechanism further in Section V.

For selected traffic flows, BACKREF provides traceabil-
ity to the entrance node. This is effectively equivalent to
reducing the strong anonymity of a distributed cryptographic
AC network to the weak anonymity of a single hop proxy.
For full traceability, we then must address the ’last mile’
problem: tracing the flow back to the individual sender. Thus
BACKREF is not a full traceability mechanism, but rather an
essential component that can be composed with any solution
to the last mile problem. While we later discuss a solution
that involves ISPs, we emphasize that BACKREF itself is
concentrated on, arguably, the more difficulty problem of
offering ensured traceability within the AC network.

IV. REPUDIATION (OR TRACEABILITY)

In this section, we present our BACKREF repudiation
scheme. For ease of exposition, we include our scheme in
an OR protocol instead of including it in the generic AC

protocol. Nevertheless, our scheme is applicable to almost
all AC protocols mentioned in Section III-B. We start our
discussion with a brief overview of the OR protocol in
the Tor notions [40]. We then discuss the protocol flow
for BACKREF, describe our cryptographic components, and
present a formal pseudocode.

A. The OR Protocol: Overview

The OR protocol is defined in two phases: circuit con-
struction and streams relay.

OR Circuit Construction. The circuit construction phase
involves the user onion proxy (OP) randomly selecting a
short circuit of (e.g., 3) OR nodes, and negotiating a session
key with each selected OR node using one-way authenticated
key exchange (1W-AKE) [34] such as the ntor protocol. (We
refer the readers to Appendix C for more details.) When a
user wants to create a circuit with an OR node N1, she
runs the Initiate procedure of the ntor protocol to generate
and send an authentication challenge to N1. Node N1 then
runs the respond procedure and returns the authentication
response. Finally, the user uses the ComputeKey procedure
of ntor along with the response to authenticate N1 and
to compute a session key with it. To extend the circuit
further, the user sends an extend request to N1 specifying the
address of the next node N2 and a new ntor authentication
challenge for N2. The process continues to until the user
exchanges the key with the exit node N3.

Relaying Streams. Once a circuit (denoted as
〈U ↔ N1 ↔ N2 ↔ N3〉) has been constructed through N1,
N2 and N3, the user-client U routes traffic through the
circuit using onion-wrapping WrOn and onion-unwrapping
UnwrOn procedures. WrOn creates a layered encryption
of a payload (plaintext or onion) given an ordered list of
(three) session keys. UnwrOn removes one or more layers
of encryptions from an onion to output a plaintext or an
onion given an input onion and a ordered list of one or
more session keys. To reduce latency, many of the user’s
communication streams employ the same circuit [6].

The structure and components of communication streams
may vary with the network protocol. For ease of exposition,
we assume the OR network uses TCP-based communication
in the same way as Tor, but our schemes can easily be
adapted for other types of communication streams.

In Tor, the communication between the user’s TCP-based
application and her Tor proxy takes place via SOCKS. To
open a communication stream (i.e., to start a TCP connection
to some web server and port), the user proxy sends a relay
begin cell (or packet) over the circuit to the exit node N3.
When N3 receives the TCP request, it makes a standard
TCP handshake with the web server. Once the connection is



established, N3 responds to the user with a relay connected
cell. The user then forwards all TCP stream requests for the
server as relay data cells to the circuit. (See [6], [40] for a
detailed explanation.)

B. The BackRef Protocol Flow

Consider a user U who wishes to construct an OR circuit
〈U ↔ N1 ↔ N2 ↔ N3〉, and use it to send communication
stream m. BACKREF adds the repudiation mechanism as a
layer on the top of the existing OR protocol. We assume
that every OR node possesses a signing (private) key for
which the corresponding verification (public) key is publicly
available through the OR directory service.

The corresponding OR protocol with the BACKREF

scheme works according to the following five steps:

1. Circuit construction with an entry node: The user
U creates a circuit with the entry node N1 using the ntor
protocol. If the user is an OR node, then it endorses its
pseudonym X1 by signing it with its public key and sending
the signature along with X1.

However, if the user U is not an OR node, it cannot
endorse the pseudonym X1 as no public-key infrastructure
(PKI) or credential system is available to him. We solve this
endorsement problem by entrusting the ISP with a packet
attestation mechanism [39] such that the ISP can prove that
a pseudonym was sent by U to N1. We discuss the packet
attestation mechanism in Section V.

2. Circuit extension: To extend a circuit to N2, U
generates a new pseudonym X2 of an ntor instance, signs
X2 and the current timestamp with the secret value x1
associated with X1, and sends an extend request to N1 along
with the identifier for N2, {X2||tsx2}σX1

and a timestamp
tsx2

. Notice that the extension request is encrypted by a
symmetric session key negotiated between U and N1.

Upon receiving a message, N1 decrypts and verifies
{X2||tsx2

}σX1
using the previously received pseudonym

X1 and timestamp. We call this verification pseudonyms
linkability verification. If the signature is valid, it creates
an evidence record as discussed in Step 4, signs X2 using
its private key to generate {X2||ts2}σsk2

and sends a circuit
create request to the node N2 with {X2||ts2}σsk2

.

Node N2, upon receiving a circuit creation request along
with {X2||ts2}σsk2

, verifies the signature. Upon a successful
verification, it replies to N1 with an ntor authentication
response for the OR key agreement and generates the OR
session key for its session with (unknown) user U . N1

sends the authentication response back to U using their OR
session, who then computes the session key with N2 and
continues to build its circuit to N3 in a similar fashion.

Notice that we carefully avoid any conceptual modifi-
cation of the OR circuit construction protocol; the above
signature generation and verification steps are the only
adjustments that BACKREF makes to this protocol.

3. Stream verification: Once a circuit
〈U ↔ N1 ↔ N2 ↔ N3〉 has been established, the user U
can utilize it to send her web stream requests. To open a
TCP connection, the user sends a relay begin cell to the
exit node N3 through the circuit. The user U includes a
pseudonym signature (or stream request signature) on the
cell contents signed with the secret exponent x3 of X3.
The user also includes a timestamp in her stream request.
When the relay cell reaches the exit node N3, the exit
node verifies the pseudonym signature with X3. Once the
verification is successful and the timestamp is current, N3

creates the evidence log (Step 4) and proceeds with the
TCP handshake to the destination server. The relay stream
request is discarded otherwise This stream verification helps
N3 to prove linkability between its handshakes with the
destination server and the pseudonym X3 it received from
N2.

When a whitelist directory exists, the exit node first
consults the directory and if the request (i.e., web stream
request) is whitelisted, the exit node just forwards it to the
destination server. In such a case, the exit node does not
require any signature verification and also does not create
an evidence log. We further discuss the server whitelisting
in Section IV-D.

4. Log generation: After every successful pseudonym
linkability or stream verification, the evidence record is cre-
ated. A pseudonym linkability verification evidence record
associates linkability between two pseudonyms Xi and Xi+1

and an endorsement signature on Xi, while a stream verifi-
cation evidence record associates a stream verification with
an endorsement signature on X3 for N3.

5. Repudiation or traceability: The verifier contacts the
exit node N3 with the request information (e.g., IP address,
port number, and timestamp) for a malicious stream coming
out of the exit node N3. The operator of N3 can determine a
record using the stream request information. This evidence
record verifiably reveals the identity of the middle node N2.
As an optional next step, using the evidence records, it
is possible for N2 to verifiably reveal the identity of the
predecessor node N1. Then, the last mile of a full traceability
is to reach from N1 to the user U in a verifiable manner
using the evidence record on N1 and the request information
on the ISP [39]. When the user U is an OR node a record
at N1 is sufficient and the last mile problem does not exist.



C. Cryptographic Details

For pseudonym and endorsement signatures, we use the
short signature scheme of Boneh, Lynn and Shacham (BLS)
[41]. We recall the BLS signature scheme in Appendix B.
We choose the BLS signature scheme due to the shorter
size of their signatures; however, if signing and verification
efficiency is more important, we can choose faster signature
schemes such as [42].

Circuit Extension. To extend the circuit 〈U ↔ N1〉 to the
next hop N2, the user U chooses x2 ∈R Zp and generates
a pseudonym X2 = gx2

2 , where g2 ∈ G2. U then signs
the pseudonym X2 with pseudonym X1 as public key.
Also we include the current timestamp value tsx2 in the
signature σX1 = H(X2||tsx2)x1 Upon receiving the signed
pseudonym {X2||tsx2

}σX1
along with the timestamp tsx2

,
the node N1 checks if the timestamp is current and verifies
it as follows:

e(H(X2||tsx2), X1)
?
= e(σX1 , g2)

Pseudonym endorsement. After successful verification, N1

creates an endorsement signature σ1 = H(X2||ts2)sk1 for
pseudonym X2 and current timestamp ts2 using its signing
key sk1 and sends it along with X2 and ts2 to N2.

The node N2 then follows the pseudonym endorsement
step. Upon receiving the signed pseudonym {X2||ts2}σ1 , the
exit node N2 verifies it as follows:

e(H(X2||ts2), pk1)
?
= e(σ1, g2).

On a successful verification, N2 continues with the OR
protocol.

Stream verification. To generate a stream request signature,
the user signs the stream request (i.e., selected contents of
the relay begin cell) using the pseudonym X3 = gx3

2 where
x3 is the secret corresponding to X3. For contents of the
relay cell m = {address‖port‖tsxm}, the stream request
signature σX3 is defined as

σX3
= H(m)x3 .

The user sends the signature along with the relay cell and
the current timestamp tsxm

to the exit node through the
already-built circuit.

Once the signed stream request reaches N3, it verifies
the signature as follows:

e(H(m), X3)
?
= e(σX3

, g2). (1)

Upon a successful verification, the exit node N3 proceeds
with the TCP handshake. A verified request allows the node
to link X3 and the request.

Log generation. After every successful pseudonym or
stream verification, an evidence record is added to the evi-
dence log. The evidence records differ with nodes’ positions
within a circuit, and we define two types of evidence logs.

Exit node log: For every successful stream verification, an
evidence record is added to the evidence log at the
exit node. A single evidence record consists of the
signature on X3 (i.e., {X3||ts3}σ2 ), and the stream
request (m = {address‖port‖tsxm}) coupled by the
pseudonym signature {m}σX3

and the timestamp tsxm .

Middle and entry node log: The middle and entry node ev-
idence record comprises two pseudonyms Xi, Xi+1,
and a timestamp value tsxi+1

coupled with the ap-
propriate signatures and the IP address of Ni−1.
The pseudonym Xi is coupled with an endorsement
signature {Xi||tsi}σi−1

from node Ni−1, and the
pseudonym Xi+1 is coupled by a pseudonym signature
{Xi+1||tsx+1}σXi

.
When the user is not an OR node and does not posse a
verifiable signature key pair, the corresponding record
at N1 consists of a signed pseudonym {X2||tsx2

}σX1
,

pseudonym X1, timestamp value tsx2 , and the IP of the
user.

Repudiation or traceability. Given the server logs of a
stream request, an evidence record corresponding to the
stream request can be obtained. In the first step, it is
checked whether the timestamp matches the stream request
under observation. In the next step, the association between
the stream request and the pseudonym of the exit node
X3 is verified using the pseudonym signature. Then, the
association of the pseudonym X3 and N2 is checked using
the pseudonym endorsement signature.

Given the pseudonym X3 and a timestamp tsxm
, the

backward traceability verification at node N2 is carried out
as follows:

1) Do a lookup in the evidence log to locate the signed
pseudonym {X3||tsx3

}σX2
and the timestamp tsx3

,
where X3 is the lookup index.

2) Compare the timestamps (tsxm
and tsx3

) under obser-
vation and prove the linkability between X2 and X3 by
verifying the signature {X3||tsx3}σX2

.
3) If verification succeeds, reveal the IP address of the

node N1 who has forwarded X2 and verify {X2||ts2}σ1

with pk1.

The above three steps can be used repeatedly to reach the
entry node. However, they cannot be used to verifiably reach
the user if we do not assume any public key and credential
infrastructure for the users. Instead, our protocol relies on
the ISP between user U and N1 to use packet attestation [39]
to prove that the pseudonym X1 was sent from U to N1.



D. Exit Node Whitelisting Policies

To provide a good balance between anonymity and ac-
countability, we include a whitelisting option for exit nodes.
This option allows a user to avoid the complete verification
and logging mechanisms if her destination is in the whitelist
directory of her exit node. In particular, we categorize the
destinations into two groups:

Whitelisted destinations: For several destinations such
as educational .edu websites, an exit node may find
traceability to be unnecessary. The exit node includes such
destinations in a whitelist directory such that, for these
destinations, the employed circuit nodes do not demand
any endorsement and pseudonym signatures. Traffic sent to
these whitelisted destinations through the circuit remains
anonymous in the current AC networks sense.

Non-listed destinations: For destinations that are not listed
in the exit-node whitelist directory, the user has to use
BACKREF while building the circuit to it; otherwise, the exit
node will drop her requests to the non-listed destinations.

We emphasize that BACKREF is not an “all-or-nothing”
design alternative: it allows an AC network to conveniently
disable the complete verification and logging mechanisms
for some pre-selected destinations. In particular, an exit node
with “Sorry, it is an anonymity network, no logs” opinion
can still whitelist the whole Internet, while others employ
BACKREF for non-whitelisted sites. The use of BackRef
is transparent, and users can choose if they wish to use a
BackRef node for their circuits.

E. Pseudocode

In this subsection, we present pseudocode for the OR
protocol with BACKREF extending the OR pseudocode
developed by Backes et al. [43] following the Tor specifica-
tion [40]. We highlight our changes to their original (ΠOR)
protocol pseudocode from [43] by underlining those. Our
pseudocode formalism demonstrates that our modification
the original OR protocol are minimal. It also forms the
basis for our applied pi calculus [44] based OR model in
Section VI. In the pseudocode, an OR node maintains a

state for every protocol execution and responds (changes
the state and/or sends a message) upon receiving a message.
There are two types of messages that the protocol employs:
the first type contains input and output actions, which carry
respectively the user inputs to the protocol, and the protocol
outputs to the user; the second message type is a network
message (a cell in the OR literature), which is to be delivered
by one protocol node to another.

In onion routing, a directory server maintains the list
of valid OR nodes and the respective public keys. A func-

upon an input (setup):
Generate an asymmetric key pair (sk , pk)← G.
send a cell (register, N, pk) to the FNREG functionality
wait for a cell (registered, 〈Nj , pk j〉nj=1) from FNREG

output (ready,N = 〈Nj〉nj=1)

upon an input (createcircuit,N = 〈N, 〈Nj〉`j=1〉):
store N and C ← 〈N〉; call ExtendCircuit(N , C)

upon an input (send, C = 〈N cid1⇐⇒ N1 ⇐⇒ · · ·N`〉,m):
look up the keys (〈kj〉`j=1) for cid1

O ←WrOn(m,σX` , ts, (kj)
`
j=1); Used(cid1)++

send a cell (cid1, relay, O) to N1 over FSCS

upon receiving a cell (cid , create, X, σi, ts) from Ni over
FSCS:

if Verify(σi , pkNi
) then

〈Y, knew〉 ← Respond(pkN , skN , X)

store C ← 〈Ni
cid,knew⇐⇒ N〉

store Log ← 〈H(X), IPNiX,σi, ts〉
send a cell (cid , created, Y, t) to Ni over FSCS

upon receiving a cell (cid , created, Y, t) from Ni over FSCS:
if prev(cid) = (N ′, cid ′, k′) then
O ←WrOn(〈extended, Y, t〉, k′)
send a cell (cid ′, relay, O) to N ′ over FSCS

else if prev(cid) = ⊥ then
knew ← ComputeKey(pk i, Y, t)
update C with knew; call ExtendCircuit(N , C)

upon receiving a cell (cid , relay, O) from Ni over FSCS:
if prev(cid) = ⊥ then

if getkey(cid) = (kj)
`′
j=1 then

(type,m) or O ← UnwrOn(O, (kj)
`′
j=1)

(N ′, cid ′) or ⊥ ← next(cid)
else if prev(cid) = (N ′, cid ′, k′) then
O ←WrOn(O, k′) /* a backward onion */

switch (type)
case extend:

get 〈Nnext , X, σXi , ts〉 from m; cidnext
$← {0, 1}κ

if Verify(σXi ,Xi) then

update C ← 〈Ni
cid,k⇐⇒ N

cidnext⇐⇒ Nnext〉
store Log ← 〈H(X), IPNiX,σXi , ts〉
send a cell (cidnext , create, X) to Nnext over FSCS

case extended:
get 〈Y, t〉 from m; get Nex from (C,N )
kex ← ComputeKey(pk ex, Y, t)
update C with (kex); call ExtendCircuit(N , C)

case data:
if (N = OP) then output (received, C,m)
else if m = (S,m′, σX , ts)

store Log ← 〈H(m), IPNi , X, σX , ts〉
generate or lookup the unique sid for cid
send (N,S, sid ,m′) to the network

case default: /*encrypted forward/backward onion*/
send a cell (cid ′, relay, O) to N ′ over FSCS

upon receiving a msg (sid ,m) from FNETq :

get C ← 〈N ′ cid,k⇐⇒ N〉 for sid ; O ←WrOn(m, k)
send a cell (cid , relay, O) to N ′ over FSCS

Without circuit destruction.

Fig. 2: ΠOR with BACKREF for Party N



ExtendCircuit(N = 〈Nj〉`j=1, C = 〈N cid1,k1⇐⇒ N1
k2⇐⇒

· · ·N`′〉):
determine the next node N`′+1 from N and C
if N`′+1 = ⊥ then

output (created, 〈N cid1⇐⇒ N1 ⇐⇒ · · ·N`′〉)
else
X ← Initiate(pkN`′+1

, N`′+1)

if N`′+1 = N1 then
cid1

$← {0, 1}κ
send a cell (cid1, create, X) to N1 over FSCS

else
O ←WrOn({extend, N`′+1, X, σX`′ , ts}, (kj)

`′
j=1)

send a cell (cid1, relay, O) to N1 over FSCS

Fig. 3: Subroutine for ΠOR with BACKREF for N

upon a verification request (m):
if LookupLog(H(m)) = ⊥ then
TraceFail(m)

else
get Log ← 〈H(m), Nprev , X, σ, ts〉 for H(m)
if ((N = N1) & V erify(σ,X)) then

output (X,Nprev )
else

get Log ← 〈H(X), NNprev , pkNprev , σ
′, ts〉 for H(X)

if (V erify(σ,X) & V erify(σ′, pkNprev )) then
output (X,Nprev )

else
TraceFail(m)

Fig. 4: Backward Traceability Verification

tionality FNREG abstracts this directory server. Each OR node
initially computes its long-term keys (sk , pk) (for both 1W-
AKE and signature schemes) and registers the public part at
FNREG.

For ease of exposition, cryptographically important Tor
cells are considered in the protocol. This includes create,
created and destroy cells among control cells, and data,
extend and extended cells among relay cells. There are two
input messages createcircuit and send, where the user uses
createcircuit to create OR circuits and uses send to send
messages m over already-created circuits.

The ExtendCircuit function defined in Figure 3 presents
the circuit construction description from Section IV-A in
a pseudocode form. Circuit IDs (cid ∈ {0, 1}κ) associate
two consecutive circuit nodes in a circuit. The terminology
C = Ni−1

cidi,ki⇐⇒ Ni
cidi+1⇐⇒ Ni+1, says that Ni−1 and

Ni+1 are respectively the predecessor and successor of Ni
in a circuit C. ki is a session key between Ni and the
OP, while the absence of ki+1 indicates that a session key

between Ni+1 and the OP is not known to Ni; analogously
the absence of a circuit id cid in that notation means
that only the first circuit id is known, as for OP, for
example. Functions prev and next on cid correspondingly
return information about the predecessor or successor of the
current node with respect to cid ; e.g., next(cid i) returns
(Ni+1, cid i+1) and next(cid i+1) returns ⊥. The OP passes
on to the user 〈N cid1⇐⇒ N1 ⇐⇒ · · ·N`〉.

Within a circuit, a user’s OP (onion proxy) and the
exit node use relay cells created using wrapping algorithm
WrOn to tunnel end-to-end commands and communication.
The exit nodes use the streams to synchronize communica-
tion between the network and a circuit C. It is represented as
sid in the pseudocode. End-to-end communication between
OP and the exit node happens with a WrOn call with
multiple session keys and a series of UnwrOn calls with
individual session keys. Cells are exchanged between OR
nodes over a secure and authenticated channels, e.g., a
TLS connection, and they are modeled a secure channel
functionality FSCS [45]. Circuit destruction remains exactly
the same in our case, and we omit it in our pseudocode and
refer the readers to [43] details.

In Figure 4, we formalize the backward traceability
verification of BACKREF. Here, function LookupLog de-
termines an entry from the log index by its input. Func-
tion V erify performs signature verification, while function
TraceFail outputs that a valid log entry does not exists at
node N .

V. SYSTEMS ASPECTS AND DISCUSSION

Communication overhead. Communication overhead for
BACKREF is minimal: every circuit creation, circuit exten-
sion, and stream request carries a 32 byte BLS signature and
additional 4 byte timestamp.

Computation overhead. In a system with BACKREF,
every node has to verify a signature and generate another.
Using the pairing-based cryptography (PBC) library, a BLS
signature generation takes less than 1ms while a verification
asks for nearly 3ms for 128-bit security on a commodity PC
with an Intel i5 quad-core processor with 3.3 GHz and 8 GB
RAM. Signing and verification time (and correspondingly
system load) can be further reduced using faster signature
schemes (e.g., [42]).

Log storage. BACKREF requires nodes to maintain logs of
cryptographic information for potential use by law enforce-
ment. These logs are not innocuous, and the implications
of publicly disclosing a record need to be considered. The
specificity of the logs should be carefully designed to bal-
ance minimal disclosure of side-information (such as specific
timings) while allowing flows to be uniquely identified. It



must also be possible to reconstruct the logged data from
the types of information available to law enforcement. The
simplest entry would contain the destination IP, source (exit
node) IP, a coarse timestamp, as well as the signature. Logs
should be maintained for a pre-defined period and then
erased.

No single party can hold the logs without entrusting the
anonymity of all users to this entity. The OR nodes can
retain the logs themselves. This, however, would require
law enforcement to acquire the logs from every such node
and consequently involve the nodes in the investigation—
a scenario that may not be desirable. Furthermore, trace-
ability exposes nodes of all types, not just exit nodes,
to investigation. We are aware of a number of entities
who deliberately run middle nodes in Tor to avoid this
exposure. An alternative is to publish encrypted logs, where
a distributed set of trustees share a decryption key and act
as a liaison to law enforcement, while holding each other
accountable by refusing to decrypt logs of users who have
not violated the traceability policy. Such an entity acts in
a similar fashion to the group manager schemes based on
group signatures [12].

Non-cooperating nodes. Given the geographic diversity of
the AC networks, it is always possible that some proxy nodes
cooperate with the BACKREF mechanism, while others do
not. The repudiation property of BACKREF ensures that a
cooperating node can always at least correctly shift liability
to a non-cooperating node. Furthermore, such a cooperating
node may also reactively decide to block any future com-
munication from the non-cooperating node as a policy.

ISP as a trusted party. In the absence of a PKI for users,
to solve the last mile problem, our protocol has to rely on
some trust mechanism to prove the linkability between the
IP address of the user and the entry node pseudonym. For
this purpose, we consider an ISP with packet attestation
mechanism [39] to be a proper solution that adds a small
overhead for the existing ISP infrastructure and at the same
time does not harm any of the properties provided by the
anonymity network. In some countries there is an obligation
for the ISPs to retain data that identify the user, in others
where the ISPs are not obligated by law, it is a common
practice. The protocol is designed in a way that the ISP
has to attest only to the ClientKeyExchange message (this
message is a part of the TLS establishing procedure, and
also is public and not encrypted message) which is used
to establish the initial TLS communication. This message
does not reveal any sensitive information related with the
identity of the user. By its design, we reuse this message as
a pseudonym for the entry OR node.

VI. SECURITY ANALYSIS

In this section we present a formal security analysis of
BACKREF. We model our protocol from the previous section
(in a restricted form) in the applied pi calculus [44] and
verify the important properties anonymity, backward trace-
ability, no forward traceability, and no false accusation with
ProVerif [46], a state-of-the-art automated theorem prover
that provides security guarantees for an unbounded number
of protocol sessions. We model backward traceability and no
false accusation as trace properties, and anonymity and no
forward traceability as observational equivalence relations.
The ProVerif scripts used in the analyses are publicly
available [47].

Basic Model. We model the OR protocol in the applied
pi calculus to use circuits of length three (i.e., one user
and three nodes); the extension to additional nodes is
straightforward. To prove different security properties we
upgrade the model to use additional processes and events.
The event contents used to decorate the various steps in the
OR protocol as well as BACKREF mechanism follow the
pseudocode from the previous section. We also involve an
ISP between the user and the entry node, which participate
in the protocol as a trusted party. The ISP is honest and can
prove the existence of a communication channel between
the user and the entry node. This channel is modeled to be
private, preventing any ISP log forgeries. The cryptographic
log collection model is designed in a decentralized way
such that nodes retain the logs themselves in a table that
is inaccessible to the adversary.

We model the flow of the pseudonyms and the onion,
together with the corresponding verification. However, we
do not model the underlying, cryptographically verified 1W-
AKE ntor protocol, and assume that the session key between
the user and the selected OR process is exchanged securely.
The attacker is a standard Dolev-Yao active adversary with
full control over the public channels: It learns everything
ever send on the network, and can create and insert messages
on the public channels. It also controls network scheduling.

Backward Traceability. The essential goal of our protocol
is to trace the source of the communication stream starting
from an exit node. We verify that the property of backward
traceability arrives from the correctness of the (backward)
traceability verification mechanism.

The correctness property can be formalized in ProVerif
notation as follows:
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Fig. 5: No False Accusation adversarial model

TraceUser(IP ) =⇒ (LookupISP (X1, IP ) =⇒
(RevealPredecessorU(IP )) =⇒
(RevealPredecessor(ipN1)) =⇒

(RevealPredecessor(ipN2)) ∧ CheckSignature
∧LookupN3(m)))

(2)

where the notation A =⇒ B denotes the require-
ment that the event A must be preceded by a event
B. In our protocol, the property says that the user is
traced if and only if all nodes in the circuit verifiably
trace their predecessors. The traceability protocol P starts
with the event LookupN3(m) which means that for a
given message m (stream request) the verifier consults the
log, and if such request exists, it checks the signature
CheckSignature. Finally when all these conditions are ful-
filled, the verifier reveals the identity of the predecessor node
RevialPredecessor(ipN2) (i.e., the middle node). This
completes the nested correspondence (CheckSignature ∧
LookupN3(m) ∧ RevealPredecessor(ipN2)) which ver-
ifiably traces N2. In a similar fashion, after all conditions
are fulfilled, the verifier traces N1 and the user U .

After the identity of U is revealed, the verifier lookup
into the evidence table of the ISP (LookupISP ) to prove
the connection between the identity of the user IP and the
pseudonym of the entry node X1. If such record exist into
the table, the address of the user is revealed and the event
TraceUser(IP ) is executed.

Theorem: The trace property defined in equation (2)
holds true for all possible executions of process P.

Proof: Automatically proven by ProVerif.

No false accusation. There are two aspects associated with
false accusations:

1) It should not be possible for a malicious node NA to
trace a communication stream to an OR node NC other
than to its predecessor in the corresponding circuit.
Informally, to break this property, NA has to be obtain
a signature of NC on a particular pseudonym associated
with the circuit. This requires NA to forge a signature
for NC , which is not possible due to the unforgeability
property of the signature scheme.

2) It should not be possible for a malicious node NA to
trace a communication stream to a circuit C1 other than
the circuit C2 employed for the communication stream.
Consider a scenario where two concurrent circuits (C1

and C2), established by two different users U1 and U2,
pass through a malicious node NA. Suppose that NA
collaborates with U2 who is misbehaving and have used
the OR network for a criminal activities. To help U2

by falsely accusing a different predecessor, NA must
forge two signatures: To link two pseudonyms X1i−1
and X2i from circuits C1 and C2 respectively, NA has
to forge the pseudonym signature on X2i with X1i−1
as a public key, or he has to know the temporal signing
key pair for the predecessor in C1.

Intuitively, the first case is ruled out by the unforgeability
property of the signature scheme. We model the later case
as a trace property. Here, even when NA collaborates with
U2, it cannot forge the signed pseudonym received from
its predecessor. The property remains intact as long as one



[m
2
]
N3

[m
1
]
N3

[m
2
]
N3

[m
1
]
N3

N
2

N
1ISP

U
1

U
2

[[[m
1
]
N3
]
N2
]
N1

[[[m
2
]
N3
]
N2
]
N1 N

3

Public Channel

Symmetric Encryption
for Node N

X

N
2

N
1ISP

U
1

U
2

[[[m
2
]
N3
]
N2
]
N1

[[[m
1
]
N3
]
N2
]
N1 N

3

[ ]
Nx

Compromised fraction
of the OR network

m
1 ,m

2

m 2
,m 1

Fig. 6: Anonymity Game

of nodes on C1 and the packet attesting ISP [39] remains
uncompromised. In absence of a PKI or credential system
for users, the last condition is unavoidable.

We formalize and verify the latter case of the property
in an adversarial model where the attacker has compromised
one user (U1 or U2). Figure 5 provide a graphical repre-
sentation of the protocol P . We upgrade the basic model
involving additional user U2 who sends additional message
m2. As mentioned before, to simulate the packet attesting
mechanism [39] we involve a honest ISP between the user
and the entry node. The ISP only collects data that identifies
the user (IP address of the user) and the pseudonym for the
entry node (X1) which is send in plain-text. The adversary
does not have an access to the log stored by the ISP i.e.
cannot read or write anything into the log table. We want to
verify that for all protocol execution the request mi cannot
be associated with any user Ui other than the originator.

To formalize the no false accusation property in ProVerif,
we model security-related protocol events with logical predi-
cates. The events CorrN1, CorrN2, CorrN3 in the proto-
col occur only when the OR nodes N1, N2, N3, respectively,
are corrupted. The event CorrISP defines the point of the
protocol where the ISP is corrupted. The no false accusation
property is formalize as the following policy:

Accuse(IP,m) =⇒
(CorrN1 ∧ CorrN2 ∧ CorrN3 ∧ CorrISP ).

(3)

This policy says that if a user with address IP is falsely
accused for a message m i.e. Accuse(IP,m), then indeed
all of the parties in the protocol has to be corrupted.

Theorem: The trace property defined in equation (3)
holds true for all possible executions of process P.

Proof: Automatically proven by ProVerif.

Anonymity. We model this property as an observational
equivalence relation between two processes that are repli-
cated an unbounded numbers of time and execute in parallel.
In the first process P , users U1 and U2 send two messages
m1 and m2, respectively. While in the second process Q
the two messages are swapped. If the two defined processes
are observationally equivalent (P ≈ Q), then we say that the
attacker cannot distinguish between m1 and m2 i.e. cannot
learn which message is sent by which user. In our scenario
we assume that the attacker can compromise some fraction
of the OR node, but not all. Figure 6 provide a graphical
representation of the anonymity game where the exit node
N3 is honest. The game works as follows:

1) U1 and U2 create an onion data structure O1 and O2,
respectively, intended for N3 and send via previously
built circuits C1 (U1 ↔ N1 ↔ N2 ↔ N3) and
C2(U2 ↔ N1 ↔ N2 ↔ N3). Nodes communicate
between each other through public channel.

2) Two of the intermediate nodes are corrupted and the
attacker has full control over them. The intermediate
compromised nodes (in our case N1 and N2) remove
one layer of encryption from O1 and O2 and send the
onion to the exit node N3.

3) After receiving these two onions from the users U1

and U2 and possibly other onions from compromised
users, the exit OR node N3 remove the last layer of
the encryption and publish the message on a public
channel.
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Fig. 7: No Forward Traceability

Note that the ISP does not affect the anonymity game
and only act as a proxy between the users and the outside
world. For the anonymity verification, we assume that user
U1 and user U2 are honest and they follow the protocol.
Nevertheless, the action of any compromised user and honest
users can be interleaved in any order.

Theorem: The observational equivalence relation P ≈ Q
holds true.

Proof: Automatically proven by ProVerif.

Notice that the evidence records here inherently break
anonymity: anybody with access to logs of the entry, middle,
and exit nodes of a circuit can break the user anonym-
ity. Therefore, traceability logs have to be indexed and
individually encrypted using an appropriate trust-enforcing
mechanism. In Section V, we discuss the possible solutions.

No forward traceability. The evidence log of the back-
ward traceability protocol in BACKREF does not store any
information (i.e., IP addresses) that can identify or verifiably
reveal the identity of a node’s successor. The log contains
only the pseudonym for the successor node which does not
reveal anything about the identity of the node.

We formalize this property as an observational equiv-
alence relation between two distinct processes and verify
that an adversary cannot distinguish them. Figure 7 pro-
vides a graphical representation of the game. To prove
the observational equivalence, we model a scenario with
concurrent circuit executions. In this game, the adversary
can corrupt parties and extract their secrets only after the
message transmission over the circuit has completed. For
this game, our model involves an additional middle node and
user U2. Two users U1 and U2 send two different messages
m1 and m2 via two circuits. We verify that it is impossible
for an attacker to deduce any meaningful information about
the successor node for a particular request. Our game works
as follows:

1) U1 and U2 start the protocol and constructs two dif-
ferent circuits C1(U ↔ N1 ↔ N2 ↔ N3) and
C2(U ↔ N1 ↔ N∗2 ↔ N3), respectively with adequate

values (x1, x2, x3) for a circuit C1 and (x′1, x
′
2, x
′
3) for

C2.
2) U1 and U2 create an onion data structure O1 and O2 and

send to the exit node N3 via previously built circuits
C1 and C2. Nodes communicate between each other
through public channels.

3) After receiving the two onions from the users and
possibly other onions from compromised users, N3

removes the last layer of the encryption and publishes
the messages on a public channel.

4) After protocol completion, the entry node N1 is com-
promised and the adversary obtains the evidence log.

In the first process P , U1 sends m1 and U2 sends m2,
while the process is reversed process Q. For the no forward
traceability verification, we assume that all other parties in
the protocol remain honest, except the compromised N1.
For example, if two neighbor nodes are compromised, the
no forward traceability can be easily broken with activating
the backward traceability mechanism.

Theorem: The observational equivalence relation P ≈ Q
holds true.

Proof: Automatically proven by ProVerif.

Finally, to the best of our knowledge, our formal analysis
is the first ProVerif-based analysis of the OR protocol; it can
be of independent interest towards formalizing and verifying
other properties of the OR protocol.

VII. CONCLUSIONS

In this paper, we presented BACKREF, an accountability
mechanism for AC networks that provides practical repu-
diation for the proxy nodes, allowing selected outbound
traffic flows to be traced back to the predecessor node. It
also provides a full traceability option when all intermediate
nodes are cooperating. While traceability mechanisms have
been proposed in the past, BACKREF is the first that is both
compatible with low-latency, interactive applications (such
as anonymous web browsing) and does not introduce new
trusted entities (like group managers or credential issuers).
BACKREF is provably secure, requires little overhead, and
can be adapted to a wide range of anonymity systems.
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APPENDIX A
BILINEAR PAIRINGS

In this section, we briefly review bilinear pairings. For
more detail see [48] and references therein.

Consider two additive cyclic groups G1 and G2 and a
multiplicative cyclic group GT , all of the same prime order
p. A bilinear map e is a map e : G1 × G2 → GT with the
following properties.

Bilinearity: For all P ∈ G1, Q ∈ G2 and a, b ∈ Zp,
e(P a, Qb) = e(P,Q)ab.

Non-degeneracy: The map does not send all pairs in G1×
G2 to unity in GT .

Computability: There is an efficient algorithm to compute
e(P,Q) for any P ∈ G1 and Q ∈ G2.

APPENDIX B
BLS SIGNATURES

In this section, we briefly review BLS signatures. For
more detail see [41] and references therein.

Consider two Gap co-Diffie-Hellman groups (or co-GDH
group) G1 and G2 and a multiplicative cyclic group GT , all
of the same prime order p, associated by a bilinear map [48]
e : G1 × G2 → GT . Let g1, g2, and gT be generators for
G1, G2, and GT respectively and let a full-domain hash
function H : {0, 1}∗ → G1. The BLS signature scheme [41]
comprises three algorithms, Key Generation, Signing and
Verification defined as follows:

Key Generation: Choose random sk ∈R Zp and compute
pk = gsk2 . The private key is sk , and the public key is
pk .

Signing: Given a private key pk ∈ Zp, and a message m ∈
{0, 1}∗, compute h = H(m) ∈ G1 and signature σ =
hsk , where σ ∈ G1.

Verification: Given a public key pk ∈ G2, message m ∈
{0, 1}∗, and signature σ ∈ G1, compute h = H(m) ∈
G1 and verify that (g2, pk , h, σ) is a valid co-Diffie-
Hellman tuple.

APPENDIX C
1W-AKE PROTOCOL

Until recently, Tor has been using an authenticated
Diffie-Hellman (DH) key agreement protocol called the Tor
authentication protocol (TAP), where users’ authentication
challenges are encrypted with RSA public keys of OR nodes.
However, this atypical use of RSA encryption is found to be
inefficient in practice, and several different interactive and
non-interactive (one-way authenticated) key agreement (1W-
AKE) protocols have been proposed in the literature [30],
[34], [33], [21], [31], [32]. TAP has recently been replaced
by the ntor protocol by Goldberg, Stebila and Ustaoglu [34].

Initiate(pkQ, Q):

1) Generate an ephemeral key pair (x,X ← gx).
2) Set session id ΨP ← Hst(X).
3) Update st(ΨP )← (ntor, Q, x,X).
4) Set mP ← (ntor, Q,X).
5) Output mP .

Respond(pkQ, skQ, X):

1) Verify that X ∈ G∗.
2) Generate an ephemeral key pair (y, Y ← gy).
3) Set session id ΨQ ← Hst(Y ).
4) Compute (k′, k)← H(Xy, XskQ , Q,X, Y, ntor).
5) Compute tQ ← Hmac(k

′, Q, Y,X, ntor, server).
6) Set mQ ← (ntor, Y, tQ).
7) Set out ← (k, ?,X, Y, pkQ), where ? is the anonymous

party symbol.
8) Delete y and output mQ.

ComputeKey(pkQ,ΨP , tQ, Y ):

1) Retrieve Q, x, X from st(ΨP ) if it exists.
2) Verify that Y ∈ G∗.
3) Compute (k′, k)← H(Y x, pkxQ, Q,X, Y, ntor).
4) Verify tQ = Hmac(k

′, Q, Y,X, ntor, server).
5) Delete st(ΨP ) and output k.

If any verification fails, the party erases all session-specific
information and aborts the session.

Fig. 8: The ntor protocol

The ntor protocol is in turn derived from a protocol by
Øverlier and Syverson [30].

The protocol ntor [34] is a 1W-AKE protocol between
two parties P (client) and Q (server), where client P
authenticates server Q. Let (pkQ, skQ) be the static key pair
for Q. We assume that P holds Q’s certificate (Q, pkQ).
P initiates an ntor session by calling the Initiate function
and sending the output message mP to Q. Upon receiving
a message m′P , server Q calls the Respond function and
sends the output message mQ to P . Party P then calls the
ComputeKey function with parameters from the received
message m′Q, and completes the ntor protocol. We assume
a unique mapping between the session ids ΨP of the cid in
ΠOR.
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