
All Your Location are Belong to Us: Breaking
Mobile Social Networks for Automated User

Location Tracking
Muyuan Li∗†, Haojin Zhu∗, Zhaoyu Gao∗, Si Chen†, Kui Ren†, Le Yu∗, Shangqian Hu∗

∗Department of Computer Science and Engineering
Shanghai Jiao Tong University

{leilmyxwz, zhuhaojin, gaozy1987, lewisyu24, hu.shangq}@gmail.com
†Department of Computer Science and Engineering

University at Buffalo
{schen23, kuiren}@buffalo.edu

Abstract—Many popular location-based social networks (LB-
SNs) support built-in location-based social discovery with hun-
dreds of millions of users around the world. While user (near)
realtime geographical information is essential to enable location-
based social discovery in LBSNs, the importance of user location
privacy has also been recognized by leading real-world LBSNs.
To protect user’s exact geographical location from being exposed,
a number of location protection approaches have been adopted by
the industry so that only relative location information are publicly
disclosed. These techniques are assumed to be secure and are
exercised on the daily base. In this paper, we question the safety
of these location-obfuscation techniques used by existing LBSNs.
We show, for the first time, through real world attacks that they
can all be easily destroyed by an attacker with the capability of no
more than a regular LBSN user. In particular, by manipulating
location information fed to LBSN client app, an ill-intended
regular user can easily deduce the exact location information by
running LBSN apps as location oracle and performing a series
of attacking strategies. We develop an automated user location
tracking system and test it on the most popular LBSNs including
Wechat, Skout and Momo. We demonstrate its effectiveness
and efficiency via a 3 week real-world experiment with 30
volunteers. Our evaluation results show that we could geo-locate
a target with high accuracy and can readily recover users’ Top
5 locations. We also propose to use grid reference system and
location classification to mitigate the attacks. Our work shows
that the current industrial best practices on user location privacy
protection are completely broken, and it is critical to address this
immediate threat.

I. INTRODUCTION

Mobile social networks have gained tremendous momentum
since recent years due to both the wide proliferation of mobile
devices such as smartphones and tablets as well as the ubiqui-
tous availability of network services. Millions of users are en-
abled to access and interact with each other over online social
networks via their mobile devices. Moreover, the positioning
technologies such as GPS, and wireless localization techniques
for mobile devices have made both the generation and sharing
of real-time user location updates readily available. This, in
turn, leads to the extreme popularity of location-based social
networks (LBSNs) such as Facebook Places, Google Latitude,
PCube, Foursquare, Wechat, Momo, Badoo, Grindr, Blendr,

and Tapmee, which boost up to hundreds of millions of users.
As one of the most popular LBSNs in China, Wechat achieved
more than 300 million registered user accounts in only two
years, and is used in over 200 countries [1]. Another LBSN
app Momo has 30 million users, 2.2 million of whom use the
app on a daily base [2], [3]. Skout, a very popular dating app
in North America, draws 1.5 million new users a month who
check into the app an average of nine times a day [4].

In contrast to traditional LBSNs such as Foursquare, which
allow users to check-in at locations and share the information
with friends within vicinity, the newer ones put tremendous
focuses on location-based social discovery as the latest trend.
Location-based social discovery explicitly enables on-the-spot
connection establishments among users based on their physical
proximity. Examples of such LBSNs include Google Latitude,
PCube, Wechat, Momo and Skout. While services like Google
Latitude and PCube allow their users to control with whom
they want to share the location information, popular ones
like Wechat, Momo and Skout allow location-based social
discovery solely based on users’ physical proximity.

Along with the popularity of location-based social discovery
is the increasing danger of user privacy breaches due to
location information exposure. Recent studies have shown that
four spatiotemporal points are sufficient to uniquely identify
the individuals in an anonymized mobility data set [5], [6]
and little outside or social network information is needed to
re-identify a targeted individual or even discover real identities
of users [5], [7], [8]. Furthermore, users’ location traces can
leak much information about the individuals’ habits, interests,
activities, and relationships as pointed out in [9]. And loss of
location privacy can expose users to unwanted advertisement
and location-based spams/scams, cause social reputation or
economic damage, and make them victims of blackmail or
even physical violence.

Recognizing the danger of user location privacy leakage due
to the use of mobile device in general, various research efforts
have been devoted to location privacy. Most of them focus on
developing the general location privacy protection mechanisms

ar
X

iv
:1

31
0.

25
47

v2
 [

cs
.S

I]
 1

0
O

ct
 2

01
3

for location-based services (LBSs) that allow users to make
use of LBSs while limiting the amount of disclosed sensitive
information [10], [11], [12], [13], [14], [15], [16], [17]. Exam-
ple techniques include anonymous service uses, cloaking based
technique[15], mixzone or silent period[12], [16]. Mechanisms
are also proposed to enable proximity testing without revealing
the mobile users’ real location information [18], [19] for
privacy preserving distributed social discovery.

User location privacy in real-world LBSN apps, however,
has not received enough attention. Current industrial practices
are yet to be scrutinized for their (in)adequacy, and users
are usually kept in the dark for the potential risks they
face. Different from directly access (e.g., iAround, SayHi)
or authorized access type LBSNs (e.g., Google Latitude and
PCube), some popular apps including Wechat, Momo, and
Skout hide the exact location of mobile users by only sharing
the relative distances among the users, limiting the localization
accuracy to a certain range or restricting the display coverage
to a particular area.

These location obfuscation techniques are expected to en-
able location-based social discovery, while at the same time
protect users’ location privacy. And millions of users are
made to believe so and thus fail to be conscious about the
potential risk of leaking their location information when using
the services. This could be potentially more dangerous than
the former case of exact location exposure as in Banjo, etc.,
should these hiding techniques fail, because in the former
case users are explicitly aware of the risk and can thus either
proactively avoid it by logging off the service when necessary
or voluntarily take it.

In this paper, we ask and answer two fundamental questions
regarding user privacy in the most popular LBSNs protected by
the-state-of-art location hiding techniques. First, is it possible
to make an involuntary localization of a random LBSN user
by exploiting the public available information only? That is,
without hacking into the services and using only the client
side information that publicly available through the unmodified
app of LBSNs, could we accurately localize a random online
user of no priori knowledge? Second, could we freely track
a particular user within a reasonably short time period? By
investigating three most popular LBSN apps (Wechat, Momo
and Skout), our answers to these two questions are more than a
simple “yes”. Our research findings show that: 1) An attacker
could perform a range-free, involuntary user localization with
high localization accuracy; 2) Furthermore, it can successfully
establish very accurate user location traces.

We implement FreeTrack, an automated user location track-
ing system for mobile social networks, which could automat-
ically track Wechat, Skout and Momo even without users’
awareness. To demonstrate the effectiveness of FreeTrack, we
perform a three-week real-world attack towards 30 volunteers
from United States, China and Japan. By comparing the
collected users’ real trace with the inferred trace, it is found
that the mean tracking error of FreeTrack is 51m for 74 Wechat
tests, 25m for 119 Momo tests, and 130m for 156 Skout tests.
What’s more, users’ Top 5 locations could be easily identified

by the attacker. According to the existing works, more than
50% of the individuals could be uniquely identified if given
top 2 locations[5]. Hence, the newly identified attacks pose
a serious threat towards the locations privacy of hundreds of
millions of LBSN users.

The rest of paper is organized as follows: Section II is
the classification of LBSNs. Section III describes our attack
methodology, which is followed by Section IV describing the
implementation of the attack. Section V presents the evaluation
results. In Section VI, the mitigation approaches are discussed
and Section VII summarizes the related work. Finally, Section
VIII concludes the paper.

II. LBSN: THE STATE-OF-THE-ART

A. Classification of LBSNs

With the wide use of mobile devices, and the increasing
attention on mobile social networking, location-based social
networks (LBSN) focusing on the small local social net-
work derived from a user’s geographical location become
increasingly popular. In addition to the conventional location-
based user check-in apps (e.g., Foursquare), more LBSN apps
are exploiting the users’ geographical information to achieve
distance-based social discovery and location sharing. Based on
how real-world LBSNs share the location information among
their users in order to allow location-based social discovery,
they can be classified into two main categories: I) LBSNs with
Exact Location Sharing and II) LBSNs with Indirect Location
Sharing. Table I is a summary from our survey of 20 popular
real-world LBSNs.

Category I has two subtypes. The Subtype I is Open Access
Location Sharing. These LBSNs present the exact locations of
their users without any restriction. Take Banjo as an example.
By clicking “Places” tab, the users are allowed to see people
of the same city, the exact location of which are explicitly
displayed on a map. Similar applications include SayHi, I-
Am, iAround. The Subtype II is User Authorized Location
Sharing. For this type of LBSNs, users can have the control to
choose with whom they share their exact location information.
For example, in Google Latitude or PCube, a user can define
the set of other users (or friends) who are allowed to see his
position on the map. In general, when the users choose this
kind of apps, they should have a clear idea about the potential
location privacy risk and be willing to share their location
information with other LBSN users or only share their location
with their trusted friends.

In Category II, the exact geographic information is hidden
or obfuscated by a series of location privacy protection tech-
niques. Different from Category I which reveals users’ exact
locations, in Category II LBSNs, users are assured that their
exact location information are never shared for the purpose
of privacy protection. To achieve this goal, LBSN service
providers adopt the following location obfuscating techniques.
I. Relative Distance Only: This has been a very common
location hiding technique adopted by many popular LBSNs,
including Wechat, Skout, and Momo. Users in this case can

Distance Accuracy Limit Coverage Limit Number of Users Platform SDK Category
(millions) or region

Wechat Y 100m 1km (shanghai) 300 millions iOS/Android/WP Google II
Skout Y 0.5mile N/A 5 millions iOS/Android/WP Google II
Momo Y 10m N/A 30 millions iOS/Android/WP Baidu II
Whoshere Y 100m N/A 5 millions in 2012 iOS/Android Google II
MiTalk Y 100m 0.6km (shanghai) 20 millions iOS/Android Baidu II
Weibo Y 100m 1600m 500 millions iOS/Android/WP Google II
SayHi Y 10m 1000km 500 thousands iOS/Android Google I/II
iAround Y 10m N/A 10 millions iOS/Android Baidu I/II
Duimian Y 100m N/A 500 thousands iOS/Android Google II
Doudou Friend Y 10m N/A 1 million iOS/Android Amap II
U+ Y 10m N/A 10 millions iOS/Android Baidu II
Topface Y 100m N/A 50 million iOS/Android Google II
Niupai Y 10m N/A 61 thousands iOS/Android Google II
LOVOO Y 100m 27.8km (shanghai) iOS/Android Google II
KKtalk Y 10m N/A 320 thousands iOS/Android Google II
Meet24 Y 0.5mile N/A iOS/Android Google II
Anywhered Y 10m N/A 750 thousands Android Baidu II
I Part Y 10m 1000m 8 millions iOS/Android Google II
Path N N/A N/A 10 millions iOS/Android Google I
TweetCaster N N/A N/A 10 millions iOS/Android/WP Google I
Google Latitude N N/A N/A 10 millions iOS/Android/WP Google I
eHarmony N N/A N/A 5 millions iOS/Android Google I
SinglesAroundMe N N/A N/A 1 million iOS/Android Google I

TABLE I: Location based friend discovery apps

only see others’ geographic distances instead of location
coordinates. From the user’s point of view, revealing the
distances rather than coordinates could hide the exact location
but still allow the potential near strangers (or potential friends)
to discover the presence of this user.
II. Setting the Minimum Accuracy Limit: Setting a safe
localization accuracy limit is a traditional location obfuscation
technique [20]. Most of the LBSN apps predefine a certain
minimum accuracy limit for geo-localization to further protect
the users’ exact location. For example, Skout defines local-
ization accuracy to 1 mile, which means that the users will
be located with an accuracy no better than 1 mile. Similarly,
Wechat and Momo set 100m and 10m as their localization
accuracy limits.
III. Setting the Localization Coverage Limits: To prevent
malicious users from abusing the geo-localization, an addi-
tional functionality, Localization Coverage limit is provided to
restrict the users’ localization capability to a specific region or
under the maximum number of displayed users. For example,
Wechat only displays the relative distance of users, the number
of which is less than a predefined threshold (e.g., 800m in
wechat for a high user density region).

In addition to above mentioned location hiding techniques,
there are other factors which contribute to the localization
errors, which will be presented as follows.

B. Location Update in LBSNs

In general, the localization accuracy of smartphone relies on
which kind of location data sources it used. The location data
sources (also called as location providers) include: GPS, WiFi,
and Cell ID (cell tower), which could achieve the localization
accuracy of 10m, 80m and 600m, respectively, as shown in

the existing works [21]. However, the location accuracy of
location providers will not be immediately translated into the
location accuracy of LBSN apps, which is caused by different
location updating strategies of LBSN apps. In practice, it’s
up to the app developers themselves to decide which location
source to trust and it is always a trade-off between waiting
time, precision and energy consumption[22], [23]. To have a
better understanding on the updating strategy of LBSN apps,
we perform the following accuracy testing experiments.

In our experiments, we choose GPS localization in which
it could achieve the highest localization accuracy. We mainly
perform the accuracy testing on three apps: Wechat, Skout and
Momo. To perform the experiments, we pre-define a reference
point both in the physical world and the virtual machine. In the
apps, this reference point will be a virtual user located in this
position. Then, we enlarge the physical distance between our
mobile device and the reference point and record the relative
distance displayed on apps. We compare the physical distance
and the distance shown in apps and obtain the accuracy testing
results, which are depicted in Fig 1.

Since Momo’s localization accuracy limit is set to 10m,
we choose a test point for every 2m. From Fig 1a, we could
confirm 10m as the localization accuracy limit. Such a distance
will be rounded for every 5m. For example, the distance in
momo will display 0 if the physical locations of two users
are less than 5m away. In Skout, the localization accuracy
bound is 800m or 0.5mile. In the experiment, we evaluate
the localization accuracy for every 50m. From Fig 1b, it is
observed that Skout’s minimum coverage is around 800m,
which is 0.5 mile. Also, the distance will be rounded for half
a mile and the distance will be increased for every 1.6km or
1mile. In Wechat, the coverage bound could be xm, where x

 0

 200

 400

 600

 800

 1000

 0

 1
0

0

 2
0

0

 3
0

0

 4
0

0

 5
0

0

 6
0

0

 7
0

0

 8
0

0

 9
0

0

 1
0

0
0

D
is

p
la

y
e

d
 D

is
ta

n
c
e

(m
)

Real Distance(m)

Momo Precision Test

(a) Momo precision test

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

D
is

p
la

y
e

d
 D

is
ta

n
c
e

(m
)

Real Distance(m)

Skout Precision Test

(b) Skout precision test

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800

D
is

p
la

y
e

d
 D

is
ta

n
c
e

(m
)

Real Distance(m)

Weixin Precision Test

(c) Wechat precision test

Fig. 1: Updating Strategy Evaluation Results

can be up to 10km in sparsely populated area and generally
1000m in densely populated places. In the experiment, we set
the reference point for every 20 meters. From Fig 1c, it is
observed that Wechat has no round-offs in its distance and the
boundary is quite clear between every 100m.

C. User Location Privacy in LBSNs

From above discussions, we could conclude that, in general,
the locations reported in LBSN apps honestly reflect mobile
users’ real locations, though users’ exact locations are hidden
or obfuscated by various location hiding techniques. For ex-
ample, Momo only adopts the strategy of showing the relative
distances (strategy I). Skout only shows the distance and, at the
same time, enforces the minimum localization limit (strategy
I & II). As a comparison, Wechat adopt all of location hiding
strategies I, II, III.

In this paper, we argue that, relying on the above mentioned
location privacy hiding techniques may introduce a more
dangerous location privacy leaking issues. Due to trust on
these location hiding/obfuscating techniques, LBSN users are
more willing to share the PROTECTED location information
with the potential adversary, which could recover users’ exact
location or even traces by using the methodology proposed
in this paper. Without full knowledge of its potential risk,
LBSN users may face the serious location privacy leaking
issue, while the adversary could gain a significant advantage
during the attack process since the victim even has no idea
about its risks. From the attacker’s point of view, he aims to
make an involuntary geo-localization or even tracking towards
a specific victim. In the next section, we will present our attack
methodology in details.

III. ATTACK METHODOLOGY

In this section, we will introduce our attacker model, as well
as the attack methodology in details.

A. Attacker Model

In this study, we consider a capability-restricted attacker
aiming at geo-locating an LBSN user, who does not need
to have a priori social association with him, i.e., an in-app
friend. The attacker’s capability is restricted in sense that I)
It only has the access right no more than a normal user of

a given LBSN service, which means that he can only access
the publicly available information provided by the LBSN app.
II) It is not allowed to hack the LBSN service by interfering
its internal operations, that is, we do not consider an attacker
that can compromise the LBSN servers and thus can directly
access the user location information as a consequence. In
summary, our attacker is a very weak one which can’t gain
any additional information from the LBSN services other than
what is entitled to a regular service user. Specifically, the
attacker will try to infer a user’s location information based
only on the relative distance information displayed by the
LBSN apps. Note that, to obtain the relative distance, it is
even not necessary for the attacker to be friend of the victim.
Instead, it will automatically display the relative distance of
nearby users in most of considered Category II apps. For
Momo, the attacker can obtain the distance by searching the
victim via Momo ID and in Skout, the distance between the
victim user and the attacker can always be displayed as long as
the attacker has sent a regular message (a greeting for instance)
to the victim before. We are concerned that if the LBSN under
examination can’t resist even such a weak attacker, the user’s
location privacy is obviously in a great danger as any user can
be an attacker.

We further distinguish two different types of attackers, i.e.,
a Casual Localization Attacker and a Determined Tracking
Attacker. A Casual Localization Attacker reviews the profiles
of nearby users when logging in to a LBSN app as a regular
user, randomly picking up a tracking target and then try to
geo-localize the target. A Determined Tracking Attacker may
start with a known User ID (ID) and/or User Number as its
chosen attacking target and perform the tracking towards a
specific victim for a certain duration. The goal of the tracking
attacker is revealing users’ Top N locations (e.g., his home or
office)[8]. Note that, a tracking attacker may start with a target
person in mind and exploit certain side-channel information
of the target to help obtain the corresponding UID or user
number. For example, user photos shared among various social
network sites can be used to establish the linkage for the same
user, which in turn can lead to the acquisition of UID/ User
number information in a particular LBSN. Social engineering
approaches like this have been widely studied in the literature
and is not a focus of this paper[24]. We assume that a

determined tracking attacker will be able to start with a chosen
UID or user number he wants to locate.

����������	����	�����������	����	�

�����������	������������������	�������

��������

�����������	������������	�

���������	���������������������	�������������������������	��������������	�

�

�

�

�

������

�	�	

��	��

Fig. 2: The Attack Flow

B. Methodology Overview

The security of the state-of-the-art privacy protection tech-
niques are based on the assumption that the location cannot be
faked. Under this assumption, the exact location of the mobile
users could be hidden/obfuscated by the above mentioned three
strategies. Therefore, the intuition behind our attack is that, if
the attacker could freely generate the fake anchor points with
new locations, LBSN apps will be a distance oracle, which will
always return the relative distance with these anchor points
to the attacker. By exploiting the returned information, the
attacker could launch different localization algorithms to geo-
locate the victim and even break the accuracy limit.

As shown in Fig 2, the attacking procedure could be illus-
trated as follows. When the attacker determines a particular
victim, it could generate three fake anchor locations and obtain
the relative distance to the victim. With 3 anchor locations
and their corresponding distances, it could trigger the Iterative
Trilateration based Localization Algorithm and obtain the first
inferred location, which will be set to the new anchor point.
With this inferred location as well as two other anchor points,
the attacker could launch a new round of attack. This process
will be repeated until the distance between the new inferred
location and the victim reaches the localization accuracy limit.
After that, the attacker could trigger space partition attack,
which further improves the accuracy until the distance reaches
the predefined accuracy threshold. For those apps with the
coverage limit, the attacker could scan the possible locations
until the victim is shown in the “nearby list” of the attacker.
Then, it could take advantage of space partition attack to make
an accurate localization. In the following sub-sections, we will
introduce each basic algorithm one by one.

C. Iterative Trilateration based Localization Algorithm: Skout
and Momo

Our localization approach is based on the traditional Tri-
lateration Position Problem. In our long distance tracking,
we start from 3 randomly generated positions, which serve
as the first three anchor points. In Section IV-A, we will
introduce how to generate the fake locations on Android.
The triggered Trilateration algorithm will return back the first

localization results. To minimize its distance from the target,
the least squares solution could be used to solve this problem
as suggested in [25]. We iteratively perform the trilateration
localization and generate the next reference point from the
previous round localization results. We denote P as the List
of reference points sorted by the relative distance to the target
point from smaller to larger. Without loss of the generality,
the first three items of P are represented by p1, p2 and p3.
We further define function dist(a, b) to measure the distance
between the point a and b, as well as function Lsp(a, b, c)
to return the least square estimation of the localization target
based on three reference points (a, b, c). We summarize our
iterative trilateration localization algorithm in Algorithm 1. In
FreeTrack, the least square solution is implemented by calling
GNU Octave’s “bfgsmin” method inside the “optim” package.
The connection of Octave and the attacking kit is established
by the open source project Java Octave.

Algorithm 1: The Iterative Trilateration based Localiza-
tion Algorithm

Data: List P = ∅, in which the elements are sorted by
their distance to targeted node

Result: p0 = (x0, y0, z0) the location of the target

Generate 3 random reference points and put them into P ;
while |dist(p1, p3)| > threshold do

p1, p2, p3 ← first 3 elements of P ;
t ← Lsp(p1, p2, p3);
Insert t into P ;

end
Output p1;

A Real-world Attack Example: Due to no display distance
boundary, Momo and Skout users could always obtain their
distances with their friends even in the global scale. Fig
3 shows a real-world attack example launched from China
towards a user in Bufflo, NY. Our initial 3 anchor points are
randomly set at Beijing, Shanghai and Chengdu. The numbers
in the graph represent the positions inferred in the order.
Postions 2 – 5 are intermediate results and each one is closer
to the target. It takes 5 rounds to finish this attack.

��������

��

��

��

��

��

��

��

��

��

	�����

Fig. 3: Trilateration on Global Scale

D. Breaking Minimum Distance Limit via Space Partition
Attack: Skout and Wechat

Another best practice measure to provide location privacy
protection for users is to limit the relative distance to a certain
accuracy, (e.g., 800 m in Skout or 100 m for Wechat). In
this section, we propose a space partition attack algorithm to
further enhance the localization accuracy and thus breaking
the minimum distance limit. The basic idea of space partition
attack is similar to space partition algorithm, which is defined
as the process of dividing a space (usually a Euclidean space)
into two or more non-overlapping regions and thus locating
any point in the space to exactly one of the regions. The basic
idea of space partition attack is illustrated in Fig 4.

��������	��

���������	���	�������

���������	��������

Fig. 4: Illustration of Space Partition Attack

For the simplicity of problem presentation, we consider the
minimum distance limit as the box rather than the circle. Given
the minimum distance limit R, the edge length of the box is
set to 2R. The space partition attack could be illustrated as
follows. For each round checking, the potential area of length
r is partitioned into two regions. Then, we will check if it
is within one region. If yes, it is derived that the user is
in this half. Otherwise, the user is located in another half.
We could repeat this partition for multiple rounds until the
expected detecting accuracy is achieved. The whole algorithm
is summarized in Algorithm 2.

E. Breaking Localization Coverage Bound with Scan and
Space Partition: Wechat

Some apps such as Wechat set a certain coverage limit.
For such kind of apps, the first step of launching an attack is
to enable the FreeTrack to see the attacking target shown in
the “Nearby” list of this app. To achieve this, if knowing the
possible visiting areas of the target, we could SCAN the areas
to discover the presence of the users. After that, FreeTrack
could launch the Space Partition attack similar to the second
stages of other apps.

The scan strategy is to query over a particular area at a
particular distance d until the user is presented inside the
“Nearby” list. Take Wechat as an example, in a high user
density area (e.g., Lujiazui Area of Shanghai), to cover an
area of 28km2 with the distance d = 1km, it only needs to
query 28 times at the worst case. It is noted that, the coverage
limit of Wechat varies with the user density of this region. In
an area of low user density (e.g, Buffalo), the coverage bound
could be as far as 10km. Therefore, it only takes 5 queries to

Algorithm 2: Space Partition Attack Algorithm
Data: An estimated point p0 = (cX , cY) and its range

from target point T , given in form
dist(p0, T) ≤ R.

Result: T ′, the final estimation for T

dim = X;
δX = R;
δY = R;
while δX ≥ threshold or δY ≥ threshold do

Shift p0 in dim dimension by R to p′;
if Distance reading from app ≤ R then

cdim=cdim + δdim/2;
end
else

cdim=cdim − δdim/2;
end
δdim = δdim/2;
dim = {X,Y }/dim;
p0 = (cX , cY);

end
Output p0;

cover the whole downtown area. Upon discovering a user, we
could use Space Partition attack as indicated in last section.

Performance Enhancement by Using Social Popularity
Index: To further improve the performance of the launched
attack, we could use the social popularity index to accelerate
the attack. This strategy comes from a simple observation that,
the possibility of a node staying at different locations is far
from uniform, and it is very likely that a user stays at the
location that is most popular at that time. The social popularity
is a spatial-temporal concept. Intuitively, it is more likely for
a user to be at the restaurant at 6 pm in the afternoon rather
than at office. However, this statement may not hold at 10
am in the morning. In our implementations, we measure the
social popularity of different locations by collecting their user
population information at different time slots. Then, based on
the number of users, we could assign a higher priority to those
areas with the higher user population.

In addition to the above described methodology, there are
still implementation challenges, including: how to generate
the fake locations in smartphone which allows the above
methodology to work and how to fetch the relative distance
after setting a fake location in smartphones. More importantly,
all of these should be performed in an automated way. We’ll
introduce the implementation details in the next section.

IV. IMPLEMENTATION OF FREETRACK

Besides the algorithms introduced in previous section, the
implementation of FreeTrack will require other 2 key modules:
the location spoofing module and the location reading module.
Mainly, our FreeTrack is implemented in Clojure[26] in order
to cope with MonkeyRunner[27] to control Android virtual

machines and send commands. We also implement a Loca-
tionFaker app that receives HTTP request from FreeTrack and
set the location in Android. To address problems we encounter
during location faking and result reading, we make multiple
tweaks in the Android framework as well.

A. Generating Fake Anchor Locations on Android

To launch the proposed attack, we need to allow the
FreeTrack to freely generate the anchor location points, which
are used to obtain the relative distances of the victim users.
Android SDK ships with QEMU based virtual machine that
allows setting location via Telnet, but the virtual machine is
too slow for real-world automated tracking. Thus, we set our
Android system on real Android X86 images[28] running on
VirtualBox[29]. It is important to point out that, since almost
all of the LBSN apps cover all of the platforms (please refer to
Table I for our survey), including IOS/Android/WP, spoofing
the android device’s locations could allow the attacker to
obtain the relative distances with LBSN users on IOS/WP, and
thus launch the attack towards the users on all of platforms.

There are several ways to spoof Android device’s locations,
including: using mock location, or intercepting network traffic.
We do not consider some existing apps such as Developer
Shell [30] and FakeGPS [31] because they are either unstable
due to potential bugs or cannot allow us to set the location arbi-
trarily, which motivates us to implement our location spoofing
component, LocationFaker. LocationFaker is implemented as
a system service which eliminates the possibility that Android
system may kill the activities to release resources. Also, it
has embedded Jetty[32] as a web server to provide stateless
http-based interface to set locations and act as a fake location
server when we redirect the network traffic.

In general, most of the LBSN apps on Android either use
built-in Android API (Wechat or Skout) or third-party SDKs
(e.g., Momo using Baidu Location SDK), which lead to dif-
ferent spoofing strategies. For built-in Android API, we adopt
Fake Location Provider based location spoofing. However,
according to the official document[33], Baidu Location SDK
does not function well on virtual machines. For this case, we
achieve location spoofing by using Network Redirection. In
the follows, we will introduce both of approaches in details.

1) Location Spoofing with Fake Location Provider: An-
droid apps mostly acquire locations via one or more location
providers (e.g., “gps” and “network”) retrieved from the loca-
tion system service. Android allows users to freely add loca-
tion providers under certain circumstances such as debugging
or providing locations from other devices, eg. Bluetooth. By
enabling “Allow mock location” option in developer options
and adopting the API “addTestProvider”, it is possible to add a
user-written location provider. Interestingly, we could set the
provider’s name to “gps” to make it indistinguishable from
the real gps, and thus fool the system and make it believe that
they are receiving locations from the real GPS chip. Our fake
location provider is running on its thread, feeding location
information every 700ms.

Another challenge of spoofing the location on Android is
that the provided location should satisfy a certain accuracy.
If failing to achieve, some apps may fail to accept it. For
example, in Wechat, it is observed that the system will return
error messages if FreeTrack tries to send the locations to
Developer Shell. We verified it by checking it manually on
Google Map and it is found that the accuracy is only 90,000m.
To address this issue, we decompiled the Android system
framework with ApkTool[34] and modified the constructor of
“android.location.Location” by coercing “mHasAccuracy” to
“true” and enforcing “getAccuracy” to always return 70m.
In this way, apps will always retrieve consistently accurate
value under different circumstances and the location faking
component starts to work as expected.

2) Location Spoofing with Network Redirection: For those
LBSN apps which do not adopt Android built-in APIs for
location retrieval, we introduce another approach based on
Network Redirection. In this section, we use Momo as
an example to show how it works. Basically, Momo uses
Baidu Location SDK to obtain the user location. We start
from analyzing the network traffic with Wireshark[35] and
Tcpdump[36]. It is observed that the API first posts the coor-
dinates and supplemental information, which is obtained from
the device, to http://loc.map.baidu.com/sdk.php. The server
returns a plaintext JSON object carrying location information
as follows:

{"content":{"addr":{"detail":""},
"bldg":"","floor":"",
"point":{"y":"","x":""},
"radius":""},

"result":{"error":,"time":""}}

By comparing the failed request against successful one,
it is found that the key fields are the x and y coordinates
in “point”, “radius”, the error code and the timestamp. The
error code 161 indicates a successful query and the y and x
carry the computed coordinates of the latitude and longitude.
We utilize Iptables[37] in our implementation to build a NAT
that redirects all the requests originally sent to Baidu location
server back to our embedded Jetty web server running by
LocationFaker. LocationFaker will then construct a similar
JSON object carrying fake locations to trick Baidu Location
SDK to accept the received location as the real location.

B. Fetching the Location Readings

Location fetching module is the last component of Free-
Track. The basic strategy of FreeTrack is actually running
the client and simulating the user’s inputs to retrieve distance
readings. To simulate user inputs, we adopt the MonkeyRunner
library bundled with the Android SDK. With MonkeyRunner
scripts provided in Jython, it simulates user inputs in apps
to allow us automatically to perform various tests on apps.
We integrate the API with our attacking framework to allow
user defined inputs. We simulate consecutive operations in
forms of touch, drag, scroll, input numbers, shell command
and key press to mimic a user’s behavior to the apps to trigger

http://loc.map.baidu.com/sdk.php

a location information update and scroll down the list to read
out all items.

To read the distance from the apps, we choose to modify
the framework to dump the text in stead of choosing OCR
since the former one is more reliable and accurate espe-
cially in virtual machines. To dump the text, we modified
the “android.widget.TextView” to dump text to log messages
whenever “setText” method call is made. FreeTrack then
retrieves text from the Adb logcat buffer and reads specific
app’s output by filtering log level, grepping by PID and tags
then matching particular regular expression pattern.

V. REAL-WORLD ATTACK EVALUATIONS

To evaluate the effectiveness of FreeTrack, we implement
the real-world experiments by recruiting 30 volunteers for
the 3 kinds of LBSN apps: Wechat, Skout and Momo. We
evaluate the Localization Accuracy of FreeTrack by com-
paring the distance between the user’s Real Locations and
Inferred Locations, and Localization Efficiency of FreeTrack
by measuring the latency of launching an attack for different
apps. In the experiments of real-world tracking, we evaluate
the effectiveness of FreeTrack by measuring how many top
locations could be recovered by using 3-week track.

A. Localization Accuracy and Efficiency

To well evaluate the localization accuracy, we set that
the attack is triggered as soon as the user reports his real
location obtained from location providers (e.g., GPS, wifi, or
cell ID). The attack and real location reporting is set to the
synchronous mode because we need to make sure that users’
mobility will not impact the localization accuracy. To achieve
this, we deploy a web server in which users with HTML5-
capable browsers could retrieve their locations directly from
location providers of their smart phones, and then submit their
real location, user information to the server. The server will
immediately launch an attack toward this user by using his
user information. The server will maintain a task queue and
each idle node will be assigned with a task and schedule an
attack, the results of which will be reported to the server and
compared with the exact location. Members of our groups
regularly submit their locations to the server. We’ve collected
in total of more than 350 location reports and attack results.
The testing regions include United States, China and Japan.

1) Localization Accuracy: The evaluation on localization
accuracy is shown in Fig 5. From Fig 5, it is observed that
the majority of the results achieve a very high localization
accuracy. For Momo, nearly 60% of the attacks can geo-
locate a user at the accuracy of less than 20m and only less
than 10% of the localization accuracy is more than 60m. In
general, it could achieve an average localization accuracy of
25.8233m for 119 evaluations. For Skout, though the minimum
localization limit is 800m, most of the localization could
achieve the accuracy of less than 60m while over 70% of
the localization is less than 120m. The average localization
accuracy could reach 129.3674m for 156 tests, which well

demonstrates the effectiveness of the Space Partition algo-
rithm. For Wechat, whose minimum localization limit is 100m,
FreeTrack is able to geo-locate 50% of users in less than 40m.
The average accuracy is 51.0888m for 74 tests. Note that, there
are different factors which contribute to the localization errors.
For example, localization errors may come from different way
to fetch location from HTML geo API, choosing inconsistent
location providers, various location calculation algorithm or
location cache.

2) Localization Speed: We also evaluate the efficiency of
FreeTrack by measuring the execution time of an individual
attack and the results are shown in Fig 6a and Fig 6b, which
correspond to the case of randomly setting first 3 anchor points
and social popularity enhanced attacking approach.

From the Fig 6a, it is shown that over 80% of the attacks
for all 3 apps could be finished within 1200s. It is important
to point out that most of the time is spent on waiting for
the app server’s response. Take Wechat as an example. Each
query should wait 40s to ensure that the user’s location is
fetched due to network latency and for Momo, the number
increases to 55s while for Skout, it spends on 20s on queuing
per query. In the evaluation, Momo has a faster localization
speed as the iterative trilateration converges faster than space
partition and thus requires less query time. From Fig 6b, it is
shown that, after adding some side information such as social
popularity index in Wechat or setting the initialization point
in the approximate area (e.g., Shanghai) for Momo or Skout,
the localization performance could be enhanced for 1.5 times.

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Time(s)

momo
wechat
skout

(a) Localization inference time
on different apps

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Time(s)

Momo
Wechat
Skout

(b) Improved localization infer-
ence time on different apps

Fig. 6: Localization Efficiency of the Original and Enhanced
Scheme

B. Real-world Tracking: Tracking Accuracy and Top Location
Coverage

In this section, we evaluate the effectiveness of FreeTrack
in real-world tracking. The basic goal of this experiment is
to compare the inferred mobility traces of the mobile users
with their real mobility trace to measure how much location
information the attacker could obtain by tracking the users in
a certain duration. In this phase, we recruit 30 volunteers from
China, Japan and United States to participate in our three-week
real-world experiments. Due to no display coverage limit, the
tracked Skout and Momo volunteers are scattered in these three
countries. For Wechat, due to the coverage limit, FreeTrack
covers a region of the size of 3km∗5km in Shanghai and

0 %

10 %

20 %

30 %

40 %

50 %

60 %

0-20
20-40

40-60

60-80

80-100

100-120

120-140

140-160

160-180

>180.0

Distance(m)

(a) Momo’s Localization Accuracy

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

40 %

45 %

0-60
60-120

120-180

180-240

240-300

300-360

360-420

420-480

480-540

>540

Distance(m)

(b) Skout’s Localization Accuracy

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

0-20
20-40

40-60

60-80

80-100

100-120

120-140

140-160

160-180

>180

Distance(m)

(c) Wechat’s Localization Accuracy

Fig. 5: Evaluation on Localization Accuracy

20km∗20km in Buffalo. In these three weeks, the volunteers
use the LBSN apps in the same way as other typical LBSN
users. To obtain the ground truth data (or user’s real mobility
traces), we develop an app based on Baidu Location API,
which runs as a service in the background, recording their
locations every half an hour and submits the traces to the
server. In the server side, we run 3 Momo FreeTrack instances,
7 Wechat nodes and 3 Skout nodes to track Momo, Wechat
and Skout users, respectively. We continuously track them for
3 weeks and collect 3395 inferred points in total. Fig 7 shows
the tracking results of 3 users in one day. Note that, the plotted
red, yellow, and blue lines represent users’ real mobility traces,
while the red, yellow, and blue bubbles indicate the locations
inferred by FreeTrack.

Pudong Airport

Fig. 7: Three Real-world Traces and Inferred Locations

1) Tracking Accuracy: In real-world tracking, synchroniza-
tion of user real trace reporting and our tracking is almost
infeasible due to unexpected user usage pattern as well as the
randomness of the delay between victim’s location updating
and our tracking. Therefore, we also evaluate the tracking
accuracy in the asynchronous mode. In particular, the user’s
real-world trace is periodically updated (e.g., 30 mins), and the
tracking on users is also periodically launched (40 mins). In
this case, we define the Tracking Accuracy as the distance of
the inferred location and its closest counterpart of the reported
user traces (ground truth data) in time domain. In general,
tracking accuracy provides the upper bound of the localization
error.

The evaluation of tracking accuracy is shown in Fig 8. The
experiment results demonstrate that the asynchronous tracking

can also achieve a very high level of accuracy. As shown in
Fig 8a, more than 80% of tracking results on Momo can geo-
locate the victims in 40m, more than 90% of tracking results
on Skout can break the distance limit of 800m to geo-locate
the victims to 0 − 20m and 80 − 100m, and over half of the
tracking on Wechat users can be located to the accuracy of
less than 60m.

The factors which may potentially affect the tracking ac-
curacy includes: the location providers (GPS, Wifi, or Cell
ID), which have different localization accuracy of less than
10m, tens of meters, and several hundred meters, respectively;
cache policy, which defines how long the user’s location is
buffered at the server side. We’ve investigated the cache policy
of Wechat by comparing the results from China and US, which
have different user populations and thus different cache time.
The results are indicated in Fig 9. In China, as one of the most
popular LBSN apps, Wechat has a huge population of users,
which makes the users’ locations buffered at the server side
for a shorter duration, making user tracking more difficult to
perform in China. Instead, it is much easier to track a Wechat
user in United States due to less number of users and a much
longer time of users’ location cache.

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

40 %

0-20
20-40

40-60
60-80

80-100

100-120

120-140

140-160

160-180

180-200

Distance(m)

WeChat in China
WeChat in Buffalo

WeChat Overall

Fig. 9: Wechat Accuracy Comparison

C. The Coverage Rate of Top N Location

According to [8], “Top N” locations refer to the locations
that are most correlated to users’ identities. For example, “top
2” locations likely correspond to home and work locations,
the “top 3” to home, work, and shopping/school locations. In

0 %

10 %

20 %

30 %

40 %

50 %

60 %

0-20
20-40

40-60

60-80

80-100

100-120

120-140

140-160

160-180

180-200

Distance(m)

(a) Tracking Accuracy of Momo

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

0-20
20-40

40-60

60-80

80-100

100-120

120-140

140-160

160-180

180-200

Distance(m)

(b) Tracking Accuracy of Skout

0 %

5 %

10 %

15 %

20 %

25 %

30 %

0-20
20-40

40-60

60-80

80-100

100-120

120-140

140-160

160-180

180-200

Distance(m)

(c) Tracking Accuracy of WeChat

Fig. 8: Evaluation Results on Tracking Accuracy

the section, we investigate how much location information the
attacker could gain from launching FreeTrack by introducing
the concept of Top N location Coverage Rate, which is defined
as follows. Given G as the set of reported traces (ground truth
data) and I as the set of inferred traces, we define TopN ()
as the function that returns N most visited locations from a
specific trace and thus define Top N Location Coverage rate
as

TNR =
|TopN (G) ∩ TopN (I)|

N
,

which refers to the percentage of locations that belongs to both
of Top N locations in reported mobility traces and inferred
mobility traces.

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12

G
ro

un
d

Tr
ut

h
E

nt
ro

py
A

tta
ck

R
es

ul
tE

nt
ro

py

Anonymous User ID

Fig. 10: Ground Truth vs. Attack Result in Entropy

Impact of Usage Pattern: Interestingly, our experiment
results show that the inferred Top N locations of users do not
exactly match to their real Top N locations. For example, for
some users, the inferred Top 1 location may be the Top 2, or 3
location in their real traces just as shown in Table II that Top
2 location coverage sometimes is less than Top 3 coverage.
In our experiments, it is found that only 65% volunteers’
top 1 locations exactly match with their top 1 locations in
ground truth trace. This can be explained by investigating
the difference between every user’s real traces and his usage
pattern. We adopt the definition of location entropy[16], which
is defined as:

H(x) = −
∑

x∈Loc

pxlogpx (1)

where Loc is the location set consisting of the locations that
a user visited, px is the probability that the user is at the

location x. From this definition, it is observed that the bigger
the location entropy is, the more diversified the user’s locations
are. Here, we measure both of the ground truth trace location
entropy H1 and the inferred location entropy H2. H1 indicates
how many places the users visited, while H2 shows how many
places the users use the app. Therefore, the metric H1/H2

shows the usage pattern, which is shown in Fig 10. In Fig 10,
we randomly sample 12 volunteers’ ground truth location to
tracking location rate. Fig 10 shows that the ground truth trace
location entropy H1 is not always close to the inferred location
entropy H2. For example, a user spends most of his time at
his home and office which makes the value H1 very small, but
he may always uses the LBSN app in different places which
will induce a large H2 and a small H1/H2 rate. Similarly,
if a user travels to many places which leads to a large H1,
but he mainly uses at his home so that his H2 is very small
(i.e., close to 0) and the rate will be large. Therefore, from the
attacker point of view, Top N locations should be regarded of
the same importance, which motivates us to use unordered Top
N locations in our evaluation.

Evaluation Results: Without loss of the generality, we set
N = 5 and evaluate the top location coverage rate for three
weeks, which is shown in Table II. From Table II, it is observed
that Momo shows the best coverage rate. After three weeks
tracking, we can obtain all the volunteers’ top 1 locations
and about 70% volunteers’ top 2 locations. For Wechat, we
could successfully infer 71.4% 21.4%, 28.5% of top 1, 2, 3
locations after 3 week tracking. For Skout, 60.0%, 40.0%,
80.0% volunteers’s top 1, 2, 3 locations could be successfully
recovered. Our evaluation results also show that the temporal
factor plays an important role in Top N location recovery. In
particular, the Top N location coverage rate will significantly
increase along with more tracking days. In general, FreeTack
shows a high Top 5 location coverage rate.

VI. ATTACKS MITIGATION

In this section, we aim to propose some suggestions to limit
the attacking capability of the attackers. We hope that the
following discussion would raise location privacy awareness of
the LBSN developers and would also inspire other researchers
to find more advanced protection techniques.

top location one week two weeks three weeks
Momo Wechat Skout Momo Wechat Skout Momo Wechat Skout

1 92.3% 50.0% 20.0% 100.0% 57.1% 60.0% 100.0% 71.4% 60.0%
2 46.1% 21.4% 0.0% 46.1% 21.4% 40.0% 69.2% 21.4% 40.0%
3 30.7% 21.4% 20.0% 46.1% 28.5% 60.0% 38.4% 28.5% 80.0%
4 23.0% 35.7% 20.0% 30.7% 35.7% 40.0% 38.4% 35.7% 40.0%
5 23.0% 21.4% 0.0% 15.3% 21.4% 40.0% 15.3% 14.2% 40.0%

TABLE II: Top 5 Location Coverage Result for 3 Weeks

A. Prevention of Using LBSN as Location Oracle

Firstly, the feasibility of considered attack roots in the
fact that these app servers retrieve location without requiring
effective location proofs. One potential countermeasure for
the considered attack is adding some location proof mod-
ules to ensure the authenticity of the locations. The typical
location proof techniques include using the deployed trusted
infrastructures (e.g., cell tower or Wi-Fi access points) [38] or
using environmental signals as the location tags [19], [18],
[39]. However, they either require the presence of trusted
infrastructure or are only effective in a small-scale (e.g., less
than 100m) due to the spatial diversity of wireless signals. As a
result, the existing location proof techniques are only feasible
in a small-scale region and less practical in our scenario.

To limit the attacker’s capability, the service provider could
compare users’ location changes with their mobility patterns
or behavior patterns to identify the potential anomalous users
(e.g, changing the locations too frequently or making too
many queries within a short period). For example, from our
experiment, it is observed that Wechat has put a limit on the
number of queries issued at a certain duration (depending on
the workload of the server) and the misbehaving account will
be blocked for a specific period, which significantly slows
down attacking process. Our real-world experiments show that,
though the attacker may use multiple accounts to speed up the
attack, a more stringent limit on the number of queries will
increase the difficulty of launching the attacks since the attack
should be finished between two consequent location updating
events of the target.

B. A User Controllable Privacy Enhancement Framework

In this subsection, we present a user controllable privacy
enhancement framework. Our basic idea is that we could
use a global grid reference system to generate the relative
distance, providing obfuscation functionalities to mobile users.
Even though some advanced obfuscation techniques including
enlarging the radius of cloaking region or shifting the location
by randomly generated distance and rotation angle can be
implemented at the client side [40], the major limitation for
client-based obfuscation technique is that different users may
have different privacy protection levels and acceptable utility
levels (the measurement error of relative distance). However,
the relative distance error is determined by the geo-location
error of both parties, which may exceed the acceptable utility
level of any single party.

Distance Obfuscation with Grid Reference System: In
this work, we propose a distance obfuscation based on grid

���������	�����

���������	�����

�
��
	�
��
��
��
��
��
�	
�

�
��
	�
��
��
��
��
��
�	
�

(a) Basic Grid Reference System

����������	���

����������	���

�����������	����

(b) Classified Grid Refer-
ence System

Fig. 11: The Grid Reference System

reference system, which aims to prevent the attacker from us-
ing LBSN as the location oracle to obtain the accurate location
information. As shown in Fig 11a, the server maintains a grid
reference system, where the location of a mobile user can be
expressed as the center of the grid cell that the user is located
in. Therefore, the relative distance of two users is expressed
by the distance of two grid cells defined as the minimum path
connecting these two cells. The benefit of using grid reference
system to express the relative distance of two users is that it
obfuscates the real location of mobile users with the center of
the cell and the attacker cannot obtain extra information of the
target if the generated fake anchors are located at the same
cell. Similar to other obfuscation techniques, grid reference
system will also decrease user utility. Considering the relative
distance is the main metric of LBSN, we define the metric of
privacy as:

Privacy = Dist(LocR, LocO),

where LocR and LocO refer to the real and obfuscated location
of the mobile user, respectively, and function Dist() returns
the distance of two locations in Grid reference system. By
given a specific anchor node at location LocA, we further
define the utility metric as

Utility = 1−|DDist(LocR, LocA)−DDist(LocO, LocA)|
Distmax

,

where function DDist() returns the displayed distance
in LBSN apps, Distmax represents the maximum dis-
tance that the user could tolerate. It is obvious that,
when the displayed distance between the real location
and anchor point DDist(LocR, LocA) equals displayed dis-
tance between the obfuscated location and anchor point
DDist(LocO, LocA), the utility achieves the maximum value
1. When DDist(LocO, LocA) is much larger or smaller than
DDist(LocR, LocA) (their gap should not be larger than

Distmax), the utility is close to 0. By assigning different
values to the size of the cells, we could achieve different
location privacy protection level as well as different utilities.
We evaluate the effectiveness of location privacy protection
and its impact on the utility by applying grid reference system
to the data set collected from our real world experiments
(ground truth data and inferred location data). Fig 12 shows
the privacy gain and the utility under different settings of cell
size. It is observed that the increase of privacy gain will lead
to the decrease of the utility, and vice versa. We will discuss
how to achieve the tradeoff of privacy and utility next.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100 200 300 400 500 600 700 800 900 1000

 100

 200

 300

 400

 500

U
ti
lit

y

P
ri
v
a
c
y
(m

)

Privacy Level(m)

Utility and Privacy with Cell Size

Utility
Privacy

Fig. 12: Relationship of Utility/Privacy with Cell Size

Achieving Privacy and Utility Trade-off via Classifi-
cation of Users’ Locations: In the previous section, we
have shown that the obfuscation techniques will bring the
decrease of the utility. To achieve the tradeoff between the
privacy and utility, we introduce a novel user controllable
location privacy protection scheme. The proposed scheme is
motivated from the observation that the user has different
location privacy protection preference for different locations.
For example, a mobile user cares more about their Top 2
location privacy (e.g., home, work place) while care less
about the location privacy issue when he is at public regions
(e.g., cafe or bars), which makes him have different privacy
protection requirements. Therefore, in a user controllable
location privacy protection solution, the mobile users could
classify the locations into several categories, which correspond
to different privacy protection requirements as well as different
obfuscation parameters. During the subsequent LBSN usage
process, users record their location profiles that are ranked
with their visiting frequency and could be dynamically updated
along with users’ usage. With such a location profile with
different ranking, the most frequently visited locations are
given more privacy protection and thus suffer from a lower
utility while the less frequently visited locations could enjoy
more utility with less privacy protection as indicated in Fig
11b. To implement our idea, we transform the original grid
reference system of the uniform cell size to the non-uniform
grid reference system, in which top locations cover a larger
area while public regions cover a smaller area. Note that the
proposed location classification concept could also be applied
to other existing obfuscation techniques [40]. To evaluate the
proposed solution, we compare the uniform grid reference
system with non-uniform grid reference system based on the

data set collected from our real-world experiments. In the
uniform grid reference system, we tune the cell size from
200m to 1000m, which correspond to the privacy level from
50 to 400. In the non-uniform grid reference system, we fix
the cell size of top locations to 1000m to provide highest
privacy protection level while tune the cell size of normal
location from 200m to 1000m. It is observed that the non-
uniform grid reference system based on location classification
has a significant advantage in privacy/utility trade-off over the
uniform grid reference system as shown in Fig 13.

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

50 100 150 200 250 300 350 400

U
til

ity

Privacy

Trade-off between Utility and Privacy

Classified
Classified polyfit (R2 = 0.905)

Unclassified
Unclassified polyfit (R2 = 0.961)

Fig. 13: Comparison of Utility/Privacy Trade-offs

We notice that Momo and Wechat provide an option to
manually remove their locations from the public. However,
with no idea about the potential risks brought by LBSN apps,
few people do choose this option. This further signifies the
importance of making the public more aware of the potential
risk, which is one of major motivations of this paper.

VII. RELATED WORK

Location Privacy Protection in location-based services is
a long-standing topic and has received a lot of attentions
in the last decades. The most popular approach to achieve
location privacy in LBS is utilizing the obfuscation techniques
to coarse the spatial or temporal granularity of the users’
real locations [41], [42]. A different approach to hide the
users’ location is based on mix zones. Mix zones are defined
as the regions where users keep silent while changing their
pseudonyms together[12]. The third approach is to protect
location privacy by adding dummy requests, which are issued
by fake location and indistinguishable from real requests [15].
A recent work [14] proposes a game-theoretic framework that
enables a designer to find the optimal LPPM for a given
location-based service, ensuring a satisfactory service quality
for the user. As shown in the paper that, it is possible to
apply various obfuscation techniques to enhance the location
privacy of LBSN. Different from the location privacy issues
considered in previous works, providing the relative distance
is the key functionality of LBSN apps while the obfuscation
will inevitably reduce the utility of LBSNs. Therefore, how
to achieve the tradeoff between the location privacy and the
utility is of the highest priority. The proposed users’ location
classification based approach could help to reduce the impact
of obfuscation techniques on users’ utility, and thus can be a
compliment to various obfuscation techniques.

There are many other works which study how to infer the
victim’s trajectory and further re-identify his other private
information [43], [8], [7], [5]. This work is different from the
existing work in that we propose an novel attack approach,
which could be exploited by anyone to perform an involuntary
tracking towards any specific target. The collected tracking
traces could be used for user re-identification.

There are some research efforts targeting at secure friend
discovery in mobile social networks[44], [45], [46]. These
works consider testing equalility between attributes in profiles
and setting threshold on number of matching pairs, which is
different from our considered problem.

We also notice that there are some smart-phone privacy
leaking work, most of which focus on various types of
mobile malware on various platforms of iOS, Android and
Symbian[47], [48], [49]. Our work is different from existing
works in that the proposed attack is actually based on one of
system design drawbacks. To the best of our knowledge, our
work is the first one to investigate the location privacy leaking
issue from LBSN apps.

VIII. CONCLUSION

LBSN is becoming extremely popular recently. However,
most LBSN users are unaware of the location privacy leaking
issue. We target at 3 most popular LBSN apps and develop a
novel automatic tracking system, which could achieve range-
free, accurate, and involuntary tracking towards the target
by only using the public information. Our real-world attack
experiments show that the attack could achieve high localiza-
tion accuracy and the attacker could recover the users’ top 5
locations with high possibility and hence, in addition to the
malware, inappropriate location privacy protection techniques
of LBSNs pose a more serious threat in practice. We’ve
discussed various mechanisms to mitigate such threats and
analysed the privacy and utility trade-off. As the first work of
its kind, our study is expected to urge LBSN service providers
to revisit their location privacy protection techniques and call
for more attentions from the public to have the full knowledge
of the potential risks brought by LBSN apps. Our mitigation
suggestions will provide a guideline for future revisions of
these LBSN apps.

REFERENCES

[1] Manila Standard Today, “Whats APP? WeChat,” http:
//manilastandardtoday.com/2013/04/06/whats-app/.

[2] Craig Smith, “How Many People Use the Top Social Media, Apps
& Services?” http://expandedramblings.com/index.php/resource-how-
many-people-use-the-top-social-media/.

[3] Zhu Feng, “Momo Announced Number of Users Exceeded 30 Mil-
lion, Active 450 Million,” http://tech.ifeng.com/mi/detail 2013 03/13/
23047454 0.shtml.

[4] Apk Apps, “Skout 3.4.3 Apk Meet, Chat, Friend,” http://www.apk4.net/
applications/social-applications/skout-3-4-3-apk-meet-chat-friend/.

[5] Y.-A. de Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel,
“Unique in the crowd: The privacy bounds of human mobility,” Scientific
reports, vol. 3, 2013.

[6] C. Y. Ma, D. K. Yau, N. K. Yip, and N. S. Rao, “Privacy vulnerability of
published anonymous mobility traces,” in MobiCom’10. ACM, 2010.

[7] M. Srivatsa and M. Hicks, “Deanonymizing mobility traces: Using social
network as a side-channel,” in CCS’12. ACM, 2012.

[8] H. Zang and J. Bolot, “Anonymization of location data does not work:
A large-scale measurement study,” in MobiCom’11. ACM, 2011.

[9] B. Schilit, J. Hong, and M. Gruteser, “Wireless location privacy protec-
tion,” Computer, vol. 36, no. 12, pp. 135–137, 2003.

[10] L. Bindschaedler, M. Jadliwala, I. Bilogrevic, I. Aad, P. Ginzboorg,
V. Niemi, and J.-P. Hubaux, “Track me if you can: on the effectiveness
of context-based identifier changes in deployed mobile networks,” in
NDSS’12, 2012.

[11] A. R. Beresford and F. Stajano, “Location privacy in pervasive comput-
ing,” Pervasive Computing, IEEE, vol. 2, no. 1, pp. 46–55, 2003.

[12] J. Freudiger, R. Shokri, and J.-P. Hubaux, “On the optimal placement
of mix zones,” in Privacy Enhancing Technologies. Springer, 2009.

[13] J. Meyerowitz and R. Roy Choudhury, “Hiding stars with fireworks:
location privacy through camouflage,” in MobiCom’09. ACM, 2009.

[14] R. Shokri, G. Theodorakopoulos, C. Troncoso, J.-P. Hubaux, and J.-
Y. Le Boudec, “Protecting location privacy: Optimal strategy against
localization attacks,” in CCS’12. ACM, 2012.

[15] T. Xu and Y. Cai, “Feeling-based location privacy protection for
location-based services,” in CCS’09. ACM, 2009.

[16] R. Shokri, G. Theodorakopoulos, J. Le Boudec, and J. Hubaux, “Quan-
tifying location privacy,” in Security and Privacy 2011. IEEE, 2011.

[17] B. Gedik and L. Liu, “Location privacy in mobile systems: A personal-
ized anonymization model,” in ICDCS’05. IEEE, 2005.

[18] Y. Zheng, M. Li, W. Lou, and Y. T. Hou, “Sharp: Private proximity test
and secure handshake with cheat-proof location tags,” in ESORICS’12,
2012.

[19] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and D. Boneh,
“Location privacy via private proximity testing,” in NDSS’11, 2011.

[20] C. A. Ardagna, M. Cremonini, E. Damiani, S. D. C. di Vimercati,
and P. Samarati, “Location privacy protection through obfuscation-based
techniques,” in Data and Applications Security XXI. Springer, 2007,
pp. 47–60.

[21] P. A. Zandbergen, “Accuracy of iphone locations: A comparison of
assisted gps, wifi and cellular positioning,” Transactions in GIS, vol. 13,
no. s1, pp. 5–25, 2009.

[22] Google, “Location Source and Accuracy,” http://support.google.com/
gmm/bin/ans-wer.py?answer=81873.

[23] Apple, “Location Awareness Programming Guide,” http:
//developer.apple.com/library/ios/#documentation/userexperience/
conceptual/LocationAwarenessPG/CoreLocation/CoreLocation.html.

[24] M. Iasonas, F. George, A. Sotiris, and S. Zanero, “All your face are
belong to us: Breaking facebook’s social authentication,” in ACSAC’12,
2012.

[25] J. Liu, Y. Zhang, and F. Zhao, “Robust distributed node localization with
error management,” in MobiHoc’06. ACM, 2006.

[26] R. Hickey, “Clojure,” http://clojure.org.
[27] Google, “monkeyrunner,” http://developer.android.com/tools/help/

monkeyrunner concepts.html.
[28] Dan, “Androvm,” http://androvm.org.
[29] Oracle, “Oracle VM VirtualBox,” https://www.virtualbox.org/.
[30] R. Dehuysser, “Android Developer Shell,” https://play.google.com/store/

apps/details?id=be.rosoco.
[31] Lexa, “Fake GPS location,” https://play.google.com/store/apps/details?

id=com.lexa.fakegps.
[32] Eclipse Foundation, “Jetty,” http://www.eclipse.org/jetty/.
[33] Baidu, “FAQ - Geolocation,” http://developer.baidu.com/map/geosdk-

android-qa.htm.
[34] c. t. Brut alll, “android-apktool,” https://code.google.com/p/android-

apktool/.
[35] Wireshark Foundation, “Wireshark,” http://www.wireshark.org/.
[36] the tcpdump group, “TCPDUMP & LIBPCAP,” http://www.tcpdump.

org/.
[37] P. N. Ayuso, “The netfilter.org project,” http://www.netfilter.org/.
[38] S. Saroiu and A. Wolman, “Enabling new mobile applications with

location proofs,” in MobiSys’09. ACM, 2009.
[39] J. Brassil, P. Manadhata, and R. Netravali, “Traffic signature-based

mobile device location authentication,” IEEE Transactions on Mobile
Computing, 2013.

[40] C. A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, and
P. Samarati, “An obfuscation-based approach for protecting location
privacy,” Dependable and Secure Computing, IEEE Transactions on,
vol. 8, no. 1, pp. 13–27, 2011.

http://manilastandardtoday.com/2013/04/06/whats-app/
http://manilastandardtoday.com/2013/04/06/whats-app/
http://expandedramblings.com/index.php/resource-how-many-people-use-the-top-social-media/
http://expandedramblings.com/index.php/resource-how-many-people-use-the-top-social-media/
http://tech.ifeng.com/mi/detail_2013_03/13/23047454_0.shtml
http://tech.ifeng.com/mi/detail_2013_03/13/23047454_0.shtml
http://www.apk4.net/applications/social-applications/skout-3-4-3-apk-meet-chat-friend/
http://www.apk4.net/applications/social-applications/skout-3-4-3-apk-meet-chat-friend/
http://support.google.com/gmm/bin/ans-wer.py?answer=81873
http://support.google.com/gmm/bin/ans-wer.py?answer=81873
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/LocationAwarenessPG/CoreLocation/CoreLocation.html
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/LocationAwarenessPG/CoreLocation/CoreLocation.html
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/LocationAwarenessPG/CoreLocation/CoreLocation.html
http://clojure.org
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://androvm.org
https://www.virtualbox.org/‎
https://play.google.com/store/apps/details?id=be.rosoco
https://play.google.com/store/apps/details?id=be.rosoco
https://play.google.com/store/apps/details?id=com.lexa.fakegps
https://play.google.com/store/apps/details?id=com.lexa.fakegps
http://www.eclipse.org/jetty/
http://developer.baidu.com/map/geosdk-android-qa.htm
http://developer.baidu.com/map/geosdk-android-qa.htm
https://code.google.com/p/android-apktool/
https://code.google.com/p/android-apktool/
http://www.wireshark.org/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.netfilter.org/

[41] M. Gruteser and D. Grunwald, “Anonymous usage of location-based
services through spatial and temporal cloaking,” in MobiSys’03. ACM,
2003.

[42] B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady, “Preserving privacy
in gps traces via uncertainty-aware path cloaking,” in CCS’07. ACM,
2007.

[43] P. Golle and K. Partridge, “On the anonymity of home/work location
pairs,” in Pervasive Computing. Springer, 2009, pp. 390–397.

[44] W. Dong, V. Dave, L. Qiu, and Y. Zhang, “Secure friend discovery in
mobile social networks,” in INFOCOM’11. IEEE, 2011.

[45] M. Li, N. Cao, S. Yu, and W. Lou, “Findu: Privacy-preserving personal
profile matching in mobile social networks,” in INFOCOM’11. IEEE,
2011.

[46] R. Zhang, Y. Zhang, J. Sun, and G. Yan, “Fine-grained private match-
ing for proximity-based mobile social networking,” in INFOCOM’12.
IEEE, 2012.

[47] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in CCS’11. ACM, 2011.

[48] D. Reynaud, E. C. R. Shin, T. R. Magrino, E. X. Wu, and D. Song,
“Freemarket: Shopping for free in android applications,” in NDSS’12,
2012.

[49] X. J. Yajin Zhou, “Detecting passive content leaks and pollution in
android applications,” in NDSS’13, 2013.

	I Introduction
	II LBSN: The State-of-the-Art
	II-A Classification of LBSNs
	II-B Location Update in LBSNs
	II-C User Location Privacy in LBSNs

	III Attack Methodology
	III-A Attacker Model

	IV Implementation of FreeTrack
	IV-A Generating Fake Anchor Locations on Android
	IV-A1 Location Spoofing with Fake Location Provider
	IV-A2 Location Spoofing with Network Redirection

	IV-B Fetching the Location Readings

	V Real-world Attack Evaluations
	V-A Localization Accuracy and Efficiency
	V-A1 Localization Accuracy
	V-A2 Localization Speed

	V-B Real-world Tracking: Tracking Accuracy and Top Location Coverage

	VI Attacks Mitigation
	VII Related Work
	VIII Conclusion
	References

