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Abstract

We prove that for d > 1 the best information ratio of the perfect secret

sharing scheme based on the edge set of the d-dimensional cube is exactly

d/2. Using the technique developed, we also prove that the information

ratio of the infinite d-dimensional lattice is d.
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1 Introduction

In a (perfect) secret sharing scheme, a secret value is distributed in the form of
shares among the set of participants in such a way that only qualified sets of
participants can recover the secret value, while no information about the secret
is revealed by the collective share of an unqualified subset. Consult the survey
of A. Beimel [1] for a general overview, or the lecture notes of C. Padro [15] for
a gentle introduction to the topic.

The information ratio of a scheme is the ratio between the maximum size
of the shares, and the size of the secret value, while the information ratio of
the collection of qualified subsets – the access structure – is the infimum of the
information ratio of schemes realizing this access structure. (In the literature
the term complexity is also used to denote the information ratio.) One of the
main theoretical and practical problems of this area is to determine, or give
reasonable bounds for, the information ratio of different access structures.

An access structure is graph based when the minimal qualified subsets are
just the edges (two element subsets) of a (connected) graph with participants as
vertices. The access structure determined by the complete graph on n vertices
is the 2-out-of-n threshold structure: any two element subset is qualified, and
any single element subset is unqualified.

Determining the exact value of the information ratio of arbitrary graphs
is a very difficult problem. It has been determined for most of the graphs
with at most six vertices [6, 3, 12, 14], and for the majority of graphs with
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seven vertices [17]. The exact ratio is also known for a couple of infinite graph
families. For example, complete graphs have information ratio 1; paths on four
or more vertices as well as cycles of length at least 5 have information ratio 3/2
[15]. Trees have information ratio 2 − 1/k for some easily computable integer
k [10]; and graphs with girth ≥ 6 and no neighboring ≥ 3 degree vertices also
have ratio 2− 1/k for some integer k [9].

Brickell and Davenport in [5] proved that a graph has information ratio 1 if
and only if it is a complete multipartite graph. The information ratio is bounded
from above by (d+1)/2, where d is the maximal degree, see [16]. In [4] Blundo
et al. constructed, for each d ≥ 2, and infinite family of d-regular graphs with
exactly this ratio. As the maximal degree of a graph on n vertices is at most
n − 1, the information ratio of any graph on n vertices is at most n/2. This
upper bound was improved to c · n/ log2 n for some large explicit constant c
in [13], which is still the best general upper bound on the information ratio of
graphs on n vertices.

The smallest d-regular graph with information ratio (d + 1)/2 in [4] has
n ≈ 6d vertices which shows that for some graphs the information ratio is at
least c′ · log2 n for some small positive constant c′. In [7] a quite natural example
for a d-regular graph was considered: the edge graph of the d-dimensional cube,
giving upper and lower bounds for the information ratio. Determining the exact
value, however, remained an open problem. In this note, using a carefully crafted
induction hypothesis, we show that this information ratio is exactly d/2.
Theorem 1.1 The information ratio of the edge graph of the d ≥ 2 dimensional
cube is d/2.
As the d-dimensional cube has exactly n = 2d vertices, this theorem yields the
improved lower bound in the corollary below:
Corollary 1.2 There is an explicit positive constant c > 0 such that for in-
finitely many n the largest possible information ratio of a graph on n vertices is
between 0.5 · log2 n and c · n/ log2 n.

There is huge gap between the lower and upper bounds. It is an open problem
to narrow this gap. It is interesting to note that the lower bound comes from a
sparse graph (the maximal degree is o(n)), while the upper bound requires dense
(Ω(n) average degree), but not very dense (n− o(n) average degree) graphs, see
[2].

Using the same technique as in the proof of Theorem we can also determine
the information ratio of the whole d-dimensional lattice Ld, which was also left
open in [7].
Theorem 1.3 For d ≥ 2 the information ratio of the d-dimensional lattice Ld

is d.

This paper is organized as follows. In Section 2 we give the definitions
necessary to state and prove our theorems. Section 3 deals with the case of
the d-dimensional cube, Section 4 with the lattice. Finally Section 5 concludes
the paper, and lists some related problems. For undefined notions and for
introduction to secret sharing consult [1, 3, 15], and for basics in information
theory see [11].
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2 Definitions

In this section we recall the notions we shall use later. First we give a formal
definition of a graph based a perfect secret sharing scheme, then connect it to
submodular functions.

Let G = 〈V,E〉 be a graph with vertex set V and edge set E. A subset A
of V is independent if there is no edge between vertices in A. A covering of the
graph G is a collection of subgraphs of G such that every edge is contained in
one of the (not necessarily spanned) subgraphs in the collection. The collection
is k-covering if every edge of G is covered at least k times. For subsets of vertices
we usually omit the ∪ sign, and write AB for A ∪B. Also, if v ∈ V is a vertex
then Av denotes A ∪ {v}.

A perfect secret sharing scheme S for a graph G is a collection of random
variables ξv for each v ∈ V and the random variable ξ (the secret) with a joint
distribution of 〈ξv〉 and ξ so that

• if vw is an edge in G, then ξv and ξw together determine ξ,

• if A is an independent set, then ξ and the collection {ξv : v ∈ A} are
statistically independent.

The size of the random variable ξ is measured by its entropy, or information
content, and is denoted by H(ξ), see [11]. The information ratio for a vertex
v (participant) of the graph G is H(ξv)/H(ξ). This value tells how many bits
of information v must remember for each bit in the secret. The worst case and
average information ratio of S are the highest and average information ratio
among all participants, respectively.

The worst case (average) information ratio of a graph G is the infimum of
the worst case (average) information ratio of all perfect secret sharing schemes
S defined on G.

Let S be a perfect secret sharing scheme based on the graph G with the
random variable ξ as secret, and ξv for v ∈ V as shares. For each subset A of
the vertices let us define

f(A)
def
=

H({ξv : v ∈ A})

H(ξ)
.

Clearly, the average information ratio of S is the average of {f(v) : v ∈ V },
and the worst case information ratio is the maximal value in this set. Using
standard properties of the entropy function, cf. [11], we have

(a) f(∅) = 0, and in general f(A) ≥ 0 (positivity);

(b) if A ⊆ B ⊆ V then f(A) ≤ f(B) (monotonicity);

(c) f(A) + f(B) ≥ f(A ∩B) + f(A ∪B) (submodularity).

For two random variables η and ξ, the value of η determines the value of ξ
iff H(ηξ) = H(η), and η and ξ are (statistically) independent iff H(ηξ) =
H(η) +H(ξ). Using these facts and the definition of the perfect secret sharing
scheme, we also have

(d) if A ⊆ B, A is an independent set and B is not, then f(A) + 1 ≤ f(B)
(strong monotonicity);
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(e) if neither A nor B is independent but A ∩ B is so, then f(A) + f(B) ≥
1 + f(A ∩B) + f(A ∪B) (strong submodularity).

The so-called entropy method can be rephrased as follows. Prove that for any
real-valued function f satisfying properties (a)–(e) the average (or largest) value
of f on the vertices is at least ρ. Then, as functions coming from secret sharing
schemes also satisfy these properties, conclude, that the average (or worst case)
information ratio of G is also at least ρ. We note that this method is not
universal, as properties (a)–(c) are too weak to capture exactly the functions
coming from entropy.

We frequently use the submodular (c) and the strong submodular (e) proper-
ties in the following rearranged form whenever A, X , and Y are disjoint subsets
of the vertex set V :

(c′) f(AX)− f(A) ≥ f(AXY )− f(AY );

moreover, if A is independent (i.e. empty), AX and AY are not, then

(e′) f(AX)− f(A) ≥ f(AXY )− f(AY ) + 1.

In particular, if both X and Y contain an edge (and they are disjoint), then
f(X) ≥ f(XY )− f(Y ) + 1.

The proof of the following easy fact is omitted:

Fact 2.1 Suppose G2 is a spanned subgraph of G1. The worst case (average) in-
formation ratio of G1 is at least as large as the worst case (average) information
ratio of G2.

3 The case of the cube

The d-dimensional cube, denoted here by Cd, is the following graph. Its vertices
are 0–1 sequences of length d. Two vertices are connected by an edge if the
sequences differ in exactly one place. This cube can be embedded into the d-
dimensional Euclidean space. Points with all coordinates in the set {0, 1} are
the vertices, and two vertices are connected if their distance is 1.

The d-dimensional cube has 2d vertices, d · 2d−1 edges (they correspond to
one-dimensional affine subspaces in the embedding), and each vertex has degree
d. The two-dimensional subspaces are squares, i.e. cycles of length four, we call
them 2-faces. Each vertex v is adjacent to

(

d
2

)

such 2-face, as any pair of edges

starting from v spans a 2-face. Consequently the number of 2-faces is 2d−2
(

d
2

)

.
For any edge there are exactly (d − 1) many 2-faces adjacent to that edge. It
means that 2-faces, as subgraphs, constitute a (d− 1)-cover of Cd.

Theorem 3.1 The information ratio of the d ≥ 2 dimensional cube is d/2.

We note that this statement is not true for d = 1. The 1-dimensional “cube” is
the graph with two vertices and an edge between them. In this graph both the
worst case and average information ratio is equal to 1, and not to 1/2. The 2-di-
mensional “cube” is the square, i.e. a cycle on four vertices, which is a complete
bipartite graph. Thus both worst case and average information ratio of C2 is 1,
in full agreement with the statement.
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Proof First we prove that this ratio is at most d/2. To this end we construct
a perfect secret sharing scheme witnessing this value. The construction uses
Stinson’s decomposition theorem from [16].

Let F be a sufficiently large finite field, and X be the (d − 1)-dimensional
vector space over F . For every 2-face of the cube choose a vector xi ∈ X in such
a way that any d− 1 of these vectors span the whole vector space X . (This is
the point where we use the fact that F is sufficiently large.) The vectors xi are
public information, and the secret is a random element s ∈ X . For each vector
xi take the inner product ai = s · xi. Clearly, given any (d − 1) of these inner
products, one can recover the secret s. Now suppose the i-th 2-face has vertices
v1, v2, v3, v4 in this order. Distribute ai among these vertices as follows. Choose
a random element r ∈ F and give it to v1 and v3, and give r + ai (computed
in the field F ) to v2 and v4. Any edge of this 2-face can recover ai, thus any
edge of the d-dimensional cube can recover d− 1 of the ai’s, and therefore can
recover the secret s as well. Now consider the values an independent set of the
vertices possess. All different values in this set can be chosen independently and
randomly from F , thus they are (statistically) independent of the secret s.

We have verified that this is a perfect secret sharing system. The secret is
a (d − 1)-tuple from the field F . Each vertex is given as many elements from
F as many 2-faces it is in, namely

(

d
2

)

elements. Therefore both worst case and

average information ratio for this scheme is
(

d
2

)

/(d− 1) = d/2, which proves the
upper bound.

Before handling the lower bound, observe that the worst case and the average
case information ratio for cubes must coincide. The reason is that Cd is highly
symmetrical. Let H be the automorphism group of the graph Cd, this group
has 2d · d! elements. If v1 and v2 are two (not necessarily different) vertices
of Cd, then the number of automorphisms π ∈ H with π(v1) = v2 is exactly
|H |/|Cd| = d!. Now let S be any perfect secret sharing scheme on Cd, and
apply S for πCd independently for each π ∈ H . The size of the secret in
this compound scheme increases |H |-fold, and each participant will get a share
which has size |H |/|Cd|-times the sum of all share sizes in S. Therefore in this
“symmetrized” scheme all participants have the same amount of information
to remember, consequently all have the same ratio which equals to the average
ratio of the scheme S.

Thus to prove that d/2 is also a lower bound for both the worst case and
average information ratio of Cd it is enough to show that for any real valued
function f satisfying properties (a)–(e) enlisted in section 2 we have

∑

{f(v) : v ∈ V } ≥
d

2
|V |.

This is exactly what we will do.
Split the vertex set of the d-dimensional cube Cd into two equal parts in

a “chessboard-like” fashion: Cd = Ad ∪ Bd, where Ad and Bd are disjoint,
independent, and |Ad| = |Bd| = 2d−1. Vertices in Ad only have neighbors in
Bd, and vertices in Bd only have neighbors in Ad. The (d+1)-dimensional cube
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consist of two disjoint copy of the d dimensional cube at two levels, and there
is a perfect matching between the corresponding vertices. Each edge of Cd+1

is either a vertex of one of the lower dimensional cubes, or is a member of the
perfect matching. Suppose the vertices on these two smaller cubes are split as
Ad ∪ Bd and A′

d ∪ B′

d, respectively, such that the perfect matching is between
Ad and B′

d, and between Bd and A′

d. Then the splitting of the vertices of the
(d+ 1)-dimensional cube can be done as

Ad+1 = Ad ∪A′

d and Bd+1 = Bd ∪B′

d.

Using this decomposition, we can use induction on the dimension d. In the
inductive statement we shall use the following notation:

[[A,B]]
def
=

∑

b∈B

f(bA)−
∑

a∈A

f(A – {a}).

When using this notation we implicitly assume that A and B have the same
cardinality.

Lemma 3.2 For the d-dimensional cube with the split Cd = Ad ∪Bd we have

∑

v∈Cd

f(v) ≥ [[Ad, Bd]] + (d− 1)2d−1. (1)

Proof First check this inequality for d = 1. The 1-cube has two connected
vertices a and b. Then, say, A1 = {a}, B1 = {b}, and equation (1) becomes

f(a) + f(b) ≥ f(ab)− f(∅) + 0,

which holds by the submodular property (c) of the function f .
Now suppose (1) holds for both d-dimensional subcubes of the (d + 1)-di-

mensional cube with split Ad+1 = Ad ∪ A′

d, and Bd+1 = Bd ∪ B′

d as discussed
above. Then by the inductive hypothesis,

∑

v∈Vd+1

f(v) =
∑

v∈Vd

f(v) +
∑

v′∈V ′

d

f(v′)

≥ [[Ad, Bd]] + [[A′

d, B
′

d]] + (d− 1)2d. (2)

Each b ∈ Bd is connected to a unique a′ ∈ A′

d, let (a
′, b) be such a pair. Then

f(bAd)− f(Ad) ≥ f(bAdA
′

d – {a
′})− f(AdA

′

d – {a
′}) (3)

by submodularity. Now let a ∈ Ad be any vertex which is connected to b ∈ Bd.
As b is connected to both a and a′, both bA′

d and abA′

d – {a′} are qualified
(i.e. not independent) subsets, while their intersection, bA′

d–{a
′}, is independent.

Therefore the strong submodularity yields

f(bA′

d)− f(bA′

d – {a
′}) ≥ 1 + f(baA′

d)− f(baA′

d – {a
′}).
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Using this inequality and the submodularity twice we get

f(A′

d)− f(A′

d – {a
′}) ≥ f(bA′

d)− f(bA′

d – {a
′})

≥ 1 + f(baA′

d)− f(baA′

d – {a
′})

≥ 1 + f(bAdA
′

d)− f(bAdA
′

d – {a
′}).

Adding (3) to this inequality, for each connected pair (a′, b) from a′ ∈ A′

d and
b ∈ Bd we have

f(bAd)− f(Ad) + f(A′

d)− f(A′

d – {a
′}) ≥ 1 + f(bAdA

′

d)− f(AdA
′

d – {a
′}).

By analogy we can swap (Ad, Bd) and (A′

d, B
′

d) yielding

f(b′A′

d)− f(A′

d) + f(Ad)− f(Ad – {a}) ≥ 1 + f(b′AdA
′

d)− f(AdA
′

d – {a})

for each connected pair (a, b′) from a ∈ Ad and b′ ∈ B′

d. There are 2d−1 edges
between A′

d and Bd, and also 2d−1 edges between Ad and B′

d. Thus adding up
all of these 2d inequalities, on the left hand side all f(Ad) and f(A′

d) cancel out,
and the remaining terms give

[[Ad, Bd]] + [[A′

d, B
′

d]] ≥ [[AdA
′

d, BdB
′

d]] + 2d.

Combining this with (2) we get

∑

v∈Vd+1

f(v) ≥ [[AdA
′

d, BdB
′

d]] + (d− 1)2d + 2d.

This is inequality (1) written for d+1 instead of d. This completes the induction
step.

We continue with the proof of theorem 3.1. Let Cd = Ad∪Bd be the disjoint
“chessboard” splitting of the vertices. As there are exactly 2d−1 vertices in both
Ad and Bd, we can match them. If (a, b) is such a matched pair, then by strong
monotonicity

f(bAd)− f(Ad – {a}) ≥ 1,

as Ad – {a} is independent, while bAd is not. Adding up these inequalities we
get

[[Ad, Bd]] =
∑

b∈Bd

f(bAd)−
∑

a∈Ad

f(Ad – {a}) ≥ 2d−1.

This, together with the claim of Lemma 3.2 gives
∑

v∈Vd

f(v) ≥ (d− 1)2d−1 + 2d−1 = d2d−1.

There are 2d vertices in Vd, thus the average value of f on the vertices of Vd is
at least d/2. This shows that the average information ratio of the d-dimensional
cube is at least d/2. From this it follows that the worst case information ratio
is also at least d/2.
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4 The case of the lattice

The vertices of the d-dimensional lattice Ld are the integer points of the d-di-
mensional Euclidean space, i.e. points having integer coordinates only. Two
vertices are connected if their distance is exactly 1, i.e. if they differ in a single
coordinate, and the difference in that coordinate is exactly 1. Of course, Ld is
an infinite graph.

Each vertex in Ld has degree 2d, and the whole graph is edge transitive.
Namely, given any two edges v1v2 and w1w2 from Ld, there is an automorphism
of Ld which maps v1 to w1 and v2 to w2.

Defining information ratio for an infinite graph is not straightforward. A
systematic treatment of the topic can be found in [8]. We remark that using
the right definitions all intuitively true statements remain true, among others
Stinson’s decomposition theorem [16].

As L1 is the infinite path, its ratio is 3/2. For larger dimensions we have

Theorem 4.1 For d ≥ 2 the information ratio of the d dimensional lattice Ld

is d.

Proof First we show that d is an upper bound. This requires a construction
of a perfect secret sharing scheme in which every vertex should remember at
most d times as much information as there is in the secret. Let v be a vertex
of Ld whose all coordinates have the same parity – i.e. either all are odd or all
are even integers. Increase each coordinate of v either by 0 or 1. The resulting
2d points form a d-dimensional cube. Consider all of these cubes. They fill the
whole space in a chessboard-like fashion. Each vertex of Ld belongs to exactly
two such cubes: one starting form a point with even coordinates only, and one
starting from a point with odd coordinates only. Furthermore each edge of Ld

belongs to exactly one of these cubes.
Distribute the secret in each of these (infinitely many) cubes independently.

By Theorem 3.1 this can be done so that each vertex of the cube gets exactly
d/2 bits for each bit in the secret. As each vertex in Ld is in exactly two cubes,
each vertex gets two times d/2 bits. And as each vertex of Ld is a vertex in
some cube, endpoints of a vertex can recover the secret.

The distribution of the shares in each cube was made by a perfect system, and
random values were chosen independently for each cube. Therefore independent
subsets of Ld have no information on the secret. This proves that d is an upper
bound for both the average and worst case information ratio.

Proving that d is also a lower bound first we prove a generalization of Lemma
3.2. To describe the setting, suppose we have a graph with vertices split into
six disjoint sets (A ∪ A∗) ∪ (B ∪ B∗) ∪ (A′ ∪ B′). Subsets A ∪ A∗ ∪ A′ and
B ∪ B∗ ∪ B′ are independent, the cardinality of the subsets A, A′, B, and B′

are equal, furthermore |A∗| = |B∗|. There are |A| = |B′| many edges between
A and B′ which form a perfect matching, and there are |A′| = |B| many edges
between A′ and B which also form a perfect matching. All other edges of the
graph are connecting two vertices either from A ∪ A∗ and B ∪ B∗, or from A′
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and B′. This means, for example, that each a′ ∈ A′ is connected to exactly one
member of B, and there is no edge, for example, between B′ and A∗.

Lemma 4.2 With the notation above, let |A| = |B| = |A′| = |B′| = k. Suppose
moreover that each b ∈ B is connected to some a ∈ A ∪ A∗, and each b′ ∈ B′ is
connected to some a′ ∈ A′. Then

[[AA∗, BB∗]] + [[A′, B′]] ≥ 2k + [[A′AA∗, B′BB∗]].

Proof As in the proof of Lemma 3.2, for b ∈ B let a′ ∈ A′ be the only vertex
connected to in A′, and let a ∈ A ∪ A∗ which b is connected to as well. Then
using submodularity and strong submodularity,

f(bAA∗)− f(AA∗) ≥ f(bAA∗A′ – {a′})− f(AA∗A′ – {a′}),

and

f(A′)− f(A′ – {a′}) ≥ f(bA′)− f(bA′ – {a′})

≥ 1 + f(baA′)− f(baA′ – {a′})

≥ 1 + f(bAA∗A′)− f(bAA∗A′ – {a′}).

On the other hand, if b′ ∈ B′ is connected to a ∈ A, and a′ ∈ A′, then

f(b′A′)− f(A′) ≥ f(b′A′A∗A – {a})− f(A′A∗A – {a}),

and

f(AA∗)− f(AA∗ – {a}) ≥ f(b′AA∗)− (b′AA∗ – {a})

≥ 1 + f(b′a′AA∗)− f(b′a′AA∗ – {a})

≥ 1 + f(b′A′AA∗)− f(b′A′AA∗ – {a}).

Summing up all of these inequalities, 2k in total, f(AA∗) and f(A′) are canceled
out, and we get

(

∑

b∈B

f(bAA∗)−
∑

a∈A

f(AA∗ – {a})
)

+
(

∑

b′∈B′

f(b′A′)−
∑

a′∈A′

f(A′ – {a′})
)

≥ 2k +
∑

b∈B∪B′

f(bAA∗A′)−
∑

a∈A∪A′

f(AA∗A′ – {a}).

The missing part, namely that
∑

b∈B∗

f(bAA∗)−
∑

a∈A∗

f(AA∗ – {a}) ≥
∑

b∈B∗

f(bAA∗A′)−
∑

a∈A∗

f(AA∗A′ – {a})

follows immediately from submodularity and from |A∗| = |B∗|.

As we will use Lemma 4.2 inductively, we need to consider the base case
first, namely when the dimension is 1. The 1-dimensional lattice is an infinite
path; we handle its finite counterparts. Thus let k ≥ 2 be an even number, and
let a1, b1, . . ., ak/2, bk/2 be the vertices, in this order, of a path of length k. Let
A be the set of odd vertices, and B be the set of even vertices.
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Lemma 4.3 For each path P of even length k ≥ 2,

∑

v∈P

f(v) ≥ [[A,B]] +
k

2
− 1. (4)

Proof By induction on the length of the path. When k = 2, i.e. the graph
consists of two connected vertices a and b only, then by submodularity

f(a) + f(b) ≥ f(ab) = [[{a}, {b}]],

which is just the statement of the lemma.
Now let the first two vertices on the path be a′ and b′ (in this order), and let

A∗ be the set of odd vertices except for a′, and B∗ be the set of even vertices
except for b′. Add two extra vertices, a′′, and b′′ to beginning of the path. The
lemma follows by induction on the length of the path if we show that

f(a′′) + f(b′′) + [[A∗a′, B∗b′]] ≥ 1 + [[A∗a′a′′, B∗b′b′′]].

Now f(a′′) + f(b′′) ≥ f(a′′b′′), and by submodularity

∑

b∈B∗

f(ba′A∗)−
∑

a∈A∗

f(a′A∗ – {a}) ≥
∑

b∈B∗

f(ba′a′′A∗)−
∑

a∈A∗

f(a′a′′A∗ – {a}),

thus it is enough to show that

f(a′′b′′)+f(b′a′A∗)−f(A∗) ≥ 1+f(b′a′a′′A∗)+f(b′′a′a′′A∗)−f(a′A∗)−f(a′′A∗).

But this is just the sum of the following three submodular inequalities:

f(a′′b′′)− f(b′′) ≥ 1 + f(b′′a′a′′A∗)− f(b′′a′A∗)

f(b′′) ≥ f(b′′a′A∗)− f(a′A∗)

f(b′a′A∗)− f(A∗) ≥ f(b′a′a′′A∗)− f(a′′A∗);

the first inequality holds as both a′′b′′ and b′′a′ are edges in the graph.

Now let k be an even number, and let Ld
k be the spanned subgraph of the

the d-dimensional lattice Ld where only vertices with all coordinates between 0
and k inclusive are considered. Thus, for example Ld

2 is just the d-dimensional
cube with two vertices along each dimension. As Ld

k is a spanned subgraph
of Ld

ℓ whenever k ≤ ℓ, the average information ratio of Ld
k (not necessarily

strictly) increases with k. Observe also that every finite spanned subgraph of
Ld is isomorphic to a spanned subgraph of Ld

k for every large enough k. Thus
the average information ratio of Ld is the limit of the average information ratio
of Ld

k as k tends to infinity. In the sequel we estimate this latter value.
As in the proof of Theorem 3.1, split the vertices of Ld

k into two disjoint sets
Ad

k and Bd
k in a “chessboard-like” fashion so that both sets are independent,

and contain just half of the vertices: |Ad
k| = |Bd

k | = kd/2.
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Lemma 4.4 With the notation as above,

∑

v∈Ld

k

f(v) ≥ [[Ad
k, B

d
k ]] + d(kd − kd−1)−

kd

2
.

Proof For d = 1 this is the claim of lemma 4.3. For larger d we use induction
on d. The (d + 1)-dimensional lattice Ld+1

k consist of just k levels of Ld
k with

a perfect matching between the levels. Thus we can apply lemma 4.2 (k − 1)
times, each application increases the constant by the number of vertices on the
new level, i.e. by kd. Thus the constant for (d + 1) is k times the constant for
d, plus (k − 1) times kd. From here an easy calculation finishes the proof.

Theorem 4.5 The average information ratio of the d dimensional lattice of
edge length k is at least d(1 − 1/k).

Proof Using the notations of lemma 4.4, observe that [[Ad
k, B

d
k ]] can be written

as the sum of kd/2 differences. Each of these differences have value ≥ 1 by the
strong monotonicity, since the first subset contains an edge, while the second
one is independent. Thus [[Ad

k, B
d
k ]] ≥ kd/2. Using this, lemma 4.4 gives

∑

v∈Ld

k

f(v) ≥ d(kd − kd−1).

As there are kd vertices in Ld
k, the claim of the theorem follows.

Setting k = 2 here, we get, as a special case, that the average information
ratio of the d-dimensional cube is at least d/2. This was the hard part of
Theorem 3.1.

Now we can finish the proof of Theorem 4.1. We have seen that d is an
upper bound for the worst case information ratio of the d-dimensional lattice
Ld. In Theorem 4.5 we gave the lower bound (d− d/k) for the graph Ld

k, which
can be embedded as a spanned subgraph into Ld. Thus the average information
ratio of Ld is larger than or equal to the supremum of (d− d/k) as k runs over
the even integers. Thus d is ≤ the average information ratio of Ld, which is ≤
the worst case information ratio of Ld, which is ≤ d. Thus all these values are
equal, which proves the theorem.

5 Conclusion

Determining the exact amount of information a participant must remember in
a perfect secret sharing scheme is an important problem both from theoretical
and practical point of view. Access structures based on graphs pose special
challenges. They are easier to define, and have a more transparent structure
compared to general access structures. Research along this line poses challenges,
see [17]. Developing a new technique, we determined the exact information ratio
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of the d-dimensional cube to be d/2. Previously this value was known to be
between d/4 and (d+ 1)/2.

We also determined the information ratio of the (infinite) d-dimensional
lattice, which turned out to be d. During the proof we estimated the information
ratio of the “finite” lattice cube Ld

k which has exactly k vertices along each
dimension. While the estimate was enough to get the information ratio of the
infinite lattice, the exact (average, or worst case) information ratio for the finite
graph Ld

k remains an open problem.
To get a better bound for the average information ratio, consider the fol-

lowing secret sharing scheme. Use the construction of Theorem 4.1 only inside
Ld
k, and for the missing edges on the surface use similar construction but with

one dimension less. In this scheme inner vertices will receive a total of d bits,
while vertices on the surface will receive 1/2 bit less. Thus the sum the size of
all shares is

dkd −
1

2

(

kd − (k − 2)d
)

≈ dkd − dkd−1,

as there are (k − 2)d inside vertices in Ld
k. Comparing this to the bound in

Theorem 4.5, the two values are approximately equal, but still remains a dis-
crepancy.

Determining the worst case information ratio of Ld
k seems to be a harder

problem. We conjecture that for d ≥ 2, k ≥ 4 this value equals to d, i.e. the
average information rate for the whole infinite lattice. This conjecture was
verified for d = 2 in [8].
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