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ABSTRACT 

In an undirected social graph, a friendship link involves two users 

and the friendship is visible in both the users’ friend lists. Such a 

dual visibility of the friendship may raise privacy threats. This is 

because both users can separately control the visibility of a 

friendship link to other users and their privacy policies for the link 

may not be consistent. Even if one of them conceals the link from 

a third user, the third user may find such a friendship link from 

another user’s friend list. In addition, as most users allow their 

friends to see their friend lists in most social network systems, an 

adversary can exploit the inconsistent policies to launch privacy 

attacks to identify and infer many of a targeted user’s friends. In 

this paper, we propose, analyze and evaluate such an attack which 

is called Friendship Identification and Inference (FII) attack. In a 

FII attack scenario, we assume that an adversary can only see his 

friend list and the friend lists of his friends who do not hide the 

friend lists from him. Then, a FII attack contains two attack steps: 

1) friend identification and 2) friend inference. In the friend 

identification step, the adversary tries to identify a target’s friends 

based on his friend list and those of his friends. In the friend 

inference step, the adversary attempts to infer the target’s friends 

by using the proposed random walk with restart approach. We 

present experimental results using three real social network 

datasets and show that FII attacks are generally efficient and 

effective when adversaries and targets are friends or 2-distant 

neighbors. We also comprehensively analyze the attack results in 

order to find what values of parameters and network features 

could promote FII attacks. Currently, most popular social network 

systems with an undirected friendship graph, such as Facebook, 

LinkedIn and Foursquare, are susceptible to FII attacks. 
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1. INTRODUCTION 
In online social network systems (SNSs), such as Facebook and 

LinkedIn, friendship links are usually undirected. A friendship 

link involves two users and the relationship is visible in both users’ 

friend lists. Both users can separately control its visibility to other 

users, and hence, a conflict between privacy policies may arise. 

Such inconsistency of the policies could cause the violation of a 

user’s privacy settings. In a SNS, such as Facebook, a friendship 

between user A and C is not visible to another user B only when 

both A and C do not allow B to view it. When only A (C) forbids 

B to see the link, B can find that A(C) is in C’s (A’s) friend list if 

C (A) allows B to view his friend list. Since the friendship graph is 

an undirected network, B can get the conclusion that A and C are 

friends. In this case, A’s (C’s) privacy policy for B is violated. 

 

Figure 1. An example of the FII attack 

Most users in Facebook, LinkedIn and Foursquare allow their 

friends to see their friend lists since it is the default policy and 

users tend not to change the default privacy policies [34, 35]. 

Then, an adversary can exploit the inconsistent policies for the 

visibility of the friend lists to identify and infer many of a targeted 

user’s friends. For example, as shown in Figure 1, let user B be 

the adversary and user T be his target whose privacy settings do 

not allow B to see his friend list. User A, D and E are B’s friends 

and they allow B to view their friend lists. A, C and D are actually 

T’s friends but initially B is not supposed to know that. However, 

by checking A’s and D’s friend lists, A can directly identify that A 

and D are T’s friends. In addition, using the random walk based 

approach (introduced in Section 3.3.2) on this social graph, A can 

infer that C has a high probability of being a friend of T. Now, all 

of T’s friends are identified and inferred by B. 

A user’s friend list in a social network is usually valuable and 

sensitive information for the user [1- 4]. For instance, Facebook’s 

move to suspend Google’s Friend Connect program’s access to 

Facebook’s social graph in 2008 was motivated by the perceived 

importance of ensuring the privacy of friendship links [1]. In 

LinkedIn, when a user connects with several well-known 

professionals, it may help in his search for jobs. At the same time, 

exposure of a user’s friend list may also play against his 

opportunities, for instance, if it includes an individual with a bad 

reputation. In addition, if an adversary finds a user’s friend list, he 

may leverage it to launch further, more dangerous privacy attacks. 

For example, the adversary may infer the user’s private attributes 

in his profile based on the public information of his friends [2, 5, 

6]; the adversary can also successfully launch a profile cloning or 

identity clone attack on a target user whose friend list is exposed[7, 

8]. 

In this paper, we propose a Friendship Identification and 

Inference (FII) attack that is to identify and infer a target’s friends 

in undirected social networks. This attack has two attack steps: 1) 

friend identification and 2) friend inference. In the friend 



identification step, an adversary identifies a target’s friends based 

on the adversary’s friend list and the friend lists of his friends that 

are authorized to him to view. The friend inference step involves 

inferring a target’s friends using the random walk with restart 

approach based on a small segment of the social graph an 

adversary knows. We demonstrate the effectiveness of the FII 

attack on three different real social network datasets using various 

measurements. We also comprehensively analyze the attack 

results based on the social network features, such as the degree 

and the clustering coefficient of a user. We notice that most 

popular SNSs with an undirected friendship graph, such as 

Facebook, LinkedIn and Foursquare, are currently susceptible to 

FII attacks. The contributions of this paper can be summarized as 

follows:  

• We discuss the issues of inconsistency in users’ privacy 

policies for a friendship link between them. Based on such 

vulnerability, we propose a FII attack that aims to identify and 

infer a target’s friends in undirected social networks. Our 

experimental results show that FII attacks are efficient and 

effective when adversaries and targets are friends or 2-distant 

neighbors.  

• We comprehensively analyze various attack results and try to 

identify what values of parameters and network features can be 

leveraged for more successful FII attacks. For example, our 

analysis suggests that an adversary with a higher node degree, 

a higher clustering coefficient value, more mutual friends 

between him and the target, etc., has a higher probability to 

conduct more successful FII attacks. 

The remainder of the paper is organized as follows. We first 

present the related work in Section 2 and then propose the FII 

attack and its associated algorithms in Section 3. In Section 4, we 

present simulations of the attacks using three real social network 

datasets. We also comprehensively analyze the attack results to 

identify what values of parameters and social network features 

can promote the attacks in this section. Finally, we conclude the 

paper with a discussion of future work in Section 5. 

2. RELATED WORK 
Many research efforts have focused on the link 

prediction/inference issues in social networks based on the users’ 

attributes. Hasan and Zaki summarize the supervised link 

prediction algorithms, including Bayesian probabilistic models, 

linear algebraic models and probabilistic relational models in [17]. 

Yin et al. introduce Social-Attribute Network (SAN), an attribute-

augmented social network, to integrate network structure and 

node attributes to perform the link recommendations using the 

random walk with restart algorithm [12, 18]. Gong et al. extend 

the SAN framework based on their observation that inferring 

attributes could help predict links [32]. However, the above 

approaches usually require users’ attribute information for link 

prediction. In a FII attack, an adversary can launch the attack 

without knowing users’ attribute information.  

Recently, some recent efforts have focused on predicting missing 

links in a global social network. Korolova et al. mention that users’ 

behavior of sharing their friends to the public could allow an 

attacker to discover the topology of a social network [1]. Effendy 

et al. extend the work by Korolova et al. and show that such an 

attack can be “magnified” substantially with the inference on user 

degrees [20]. Bonneau et al. report that the social network 

structure can be disclosed when a random sample of k edges from 

each node in the social network is exposed [21]. Leroy et al. use 

group information to build a bootstrap probabilistic graph in order 

to perform friendship link inferences [22]. Kim and Leskovec 

adopt the Expectation Maximization (EM) algorithm to infer the 

missing nodes and edges by observing part of the network [23]. 

Erdös el al. propose a heuristic approach to discover the missing 

links based on common neighbors of sub-networks [24]. Chen et 

al. construct the Markov Logic Network to infer the friendship 

links on a large scale social graph [26]. However, the FII attack 

focuses on a local network and the goal of an adversary is to 

identify and infer a target’s friends based on only his friend list 

and the friend lists from his friends that are accessible. The FII 

attack does not require as much knowledge of the global social 

network as the above approaches. 

Some existing works propose attacks using the visible local 

network to identify and/or infer users’ private information.  

Puttaswamy et al. introduce intersection attacks based on shared 

contents, such as URLs, to infer users’ attributes and preferences 

[25]. The intersection attacks require an adversary to have two 

compromised nodes in a social graph and then the adversary can 

infer the value of the resource of a common user (victim) of the 

compromised nodes.  Jin et al. propose the mutual-friend based 

attack to identify a target’s friends via various mutual friend 

queries among users. Compared to the FII attack, the adversary in 

above attacks has to know the common features between users. 

For example, in a mutual-friend based attack, the adversary can 

query mutual friends between him and any other users. However, 

mutual friend queries are not necessary for a FII attack. In 

addition, we believe that a FII attack and a mutual-friend based 

are complimentary and they can be used together for more 

successful privacy attacks. 

In a FII attack, we use the random walk with restart algorithm to 

infer friends of a target. In the literature, several approaches have 

been proposed that can be used to infer friends of a target, such as 

the approaches based on the various similarities among users [16, 

17, 29] and the EM algorithm [23]. We do not adopt these 

approaches because an adversary in a FII attack does not need to 

know any of a target’s friends initially. Hence, the similarity 

between the target and any other node is difficult to compute and 

the EM algorithm is difficult to apply. 

The algorithms proposed in our work can also be used as one of 

measurements to evaluate the risk of a user’s social graph [27] 

and the privacy risks related to friendships in social networks [28]. 

3. ATTACK MODEL AND ALGORITHMS 
In this section, we formalize the FII attack and introduce the 

attack steps and the corresponding attack algorithms.  

3.1 Basic Definitions in Social Networks 
A social network is generally modeled as a graph G(V, E), where 

V represents a set of users and E={(x, y) | x, y ∈V} represents a set 

of friendship links among users. In an undirected social graph, 

such as Facebook and LinkedIn, an edge e = (x, y) is added to E 

when a friend request from x to y or from y to x is accepted. Such 

an undirected social graph G can also be represented by an 

adjacency matrix An×n where n = |V|. For each aij ∈ A, aij = 1 if 

there is an edge e = (i, j) ∈ E; otherwise aij = 0. Let Pn×n be a 

transition matrix, where pij represents the probability of stepping 

on node j from node i and pij = aij / ∑i aij. 



For each user i ∈V, the user set F(i) ={ j | j ∈ V, aij = 1} is the 

friend list of i. Note that in an undirected social graph, when aij = 

1, aji = 1, j ∈ F(i) and i ∈ F(j). The user set D2(i) = { j | ∃k, j ∈ V, 

aij = 0, aik = 1 and  akj = 1} represents the 2-distant neighbors of i. 

The 2-distant neighborhood relationship in an undirected social 

network is also bidirectional.  

In a SNS, such as Facebook, a user usually can see his friend list 

and friend lists of his friends if he is authorized. However, a user 

usually cannot see the friend list of another user who is not his 

friend. In this paper, we assume that a user can only see his friend 

list and friend lists of his friends who authorize the user to view 

them. The user cannot see friends of another user who are not 

friend of the user. Hence, we define an edge set K(i) as the initial 

knowledge of a user i. K(i) includes i’s friendship links and the 

friendship links of  i’s friends who allow i to view their friend lists. 

For example, in Figure 2, user A has two friends B and C. B 

allows A to see his friend list while C hides his friend list from A. 

In this case, K(A) = {(A, B), (A, C), (B, D), (B, E)}. A does not 

know the edge (E, F) as A is not E’s friend. In addition, A does not 

know the edge (C, D) since C conceals his friend list from A. Note 

that A can identify the edge (A, C) = (C, A) from his friend list. 

Assume there are m distinct nodes in K(i). We also use the 

adjacency matrix Aim×m to represent K(i) and adopt Pim×m to 

represent the transition matrix for Ai. 

 

Figure 2. Initial knowledge of user A 

3.2 Definition of the FII Attack 
We present the definition of FII attack as follows:  

Definition of the FII Attack: Given an undirected social network 

G (V, E), an adversary b ∈V and a target t ∈V, 

Privacy Requirement of the Target: 

• t defines a policy that does not allow b to see F(t); 

Adversary’s Knowledge before Launching the Attack: 

• When b and t are friends, we assume that b only knows his 

friend list and the friend lists of b’s friends except t.  K(b) = 

{(b, x) | x ∈ F(b)} ∪ {(x, y) | x ∈ F(b), x ≠ t, y ∈ V} 

• When b and t are not friends, we assume that b only knows his 

friend list and all friend lists belonging to his friends. K(b) = 

{(b, x) | x ∈ F(b)} ∪ {(x, y) | x ∈ F(b), y ∈ V} 

Privacy Attack: 

We say that t is a victim (compromised1 node) of a FII attack 

by b if b obtains Fb(t) ≠ ∅ based on calculations on K(b).  Here 

Fb(t) represents the friends of t identified and inferred by b 

through the FII attack.  

Note that in a FII attack, we assume that additional actions, such 

as the search of public available friend lists and mutual friend 

based queries, are not available to extend K(b) defined above. As 

we mentioned in the related work, we notice that b may have a 

more successful attack using some additional actions but such 

attack scenarios are not considered in this paper. 

Next, we present theorems that characterize the key properties of 

a FII attack. Theorem 1 characterizes the necessary precondition 

for a FII attack to be successful and the victim set an adversary 

can compromise; Theorem 2 characterizes the size of the 

identified and inferred friends of t by b. 

Theorem 1: b can compromise t in a FII attack if and only if t is 

either a friend or a 2-distant neighbor of b. Let PV(b) be a set of 

potential victims that b can compromise through FII attacks in a 

social graph; then PV(b) = F(b) ∪ D2(b). 

Theorem 2: When b can compromise t, Fb(t) ⊆ ISb(t), where ISb(t) 

represents the ideal exposed friends in a FII attack. ISb(t) = 

{b}+{(F(b) ∪ D2(b)) ∩ F(t)} when b and t are friends. ISb(t) = 

(F(b) ∪ D2(b)) ∩ F(t) when b and t are 2-distant neighbors.  

For example, as shown in Figure 3, user B is the adversary and 

user T is his target. Users A, C, D are the potential identified 

and/or inferred friends of T. As shown, all of them are included in 

ISB(T) = (F(B) ∪ D2(B)) ∩ F(T).  

 

Figure 3. F(T) and the user set by F(B) and D2(B) 

In a FII attack, there are two attack steps: 1) friend identification 

and 2) friend inference. In the friend identification step, the 

adversary b aims to identify t’s friends by checking whether t 

exists in the edges in K(b). In the friend inference step, b tries to 

infer a t’s friends using the random walk with restart approach 

based on the results from the friend identification step and the 

knowledge b has as per the definition above. We describe these 

two attack steps in detail in Section 3.3.  

                                                                 

1 In this paper, when we say b compromises t in a FII attack, it 

means that b can successfully identify and/or infer t’s friends 

during the attack.  



3.3 Attack Steps and Algorithms 

3.3.1 Friend Identification 
The purpose of the friend identification step is to identify a 

target’s friends based on the initial knowledge that an adversary 

has. In this step, an adversary b is able to check whether a target t 

exists in the edges in K(b). When (b, t) ∈ K(b), b is t’s friend. 

When ∃ x ∈ F(b) and (x, t)∈ K(b), x is one of t’s friends. The 

algorithm of the friend identification is shown as follows. 

Algorithm 1   Friend Identification 

Input: an adversary b, a target t, F(b), D2(b), K(b) 

Output: the identified friend set FIDb(t), AdjacencyMatrix Ab 

1. Fb(t) = ∅ 

2. if t ∈ F(b) or t ∈ D2(b) 

3.     Ab = convertToAdjacencyMatrix(K(b)) 

4.     m = ncol(Ab) // number of distinct nodes in Ab 

5.     // find the row which represents the link relations between t 

6.     // and other nodes in Ab 

7.     i = indexOf(Ab, t) 

8.     for j=1 to m do 

9.         if aij=1 then 

10.            // get the vertex from the index of the matrix 

11.            f = getNodeFromIndex(Ab, j)  

12.            add f to FIDb(t). 

13.         end if 

14.     end for 

15.  end if 

 

Note that all identified friends are actually friends of t in this step. 

3.3.2 Friend Inference 
In the friend inference step, an adversary b adopts a random walk 

based approach to infer friends of a target t based on the 

adjacency matrix Ab composed by K(b). 

The random walk based approaches are proved to be effective for 

predicting friend and users’ trajectory in social networks [12-15]. 

In this paper, we adopt the approach of random walk with restart 

[30] to infer a target’s friends. With regards to the friend inference 

step, we note that, intuitively, if a node is closer to the target, has 

a higher degree and has more mutual friends with a target, then it 

is more likely that the node is a friend of the target. All these 

factors are counted in random walk with restart [13, 30]. In the 

random walk with restart approach, a node follows the random 

walk with the probability of a but it jumps back to the originator 

with probability 1–a. After doing the random walk for a long 

period of time, the transaction matrix of such a graph, which 

represents the probabilities of links between each pair of nodes, 

will be stationary distribution. An adversary can then infer the 

target’s friends based on such the stable transaction matrix. 

In particular, an adversary b has to complete the following steps to 

infer a target t’s friends: 

1. Get the adjacency matrix Ab and FIDb(t), which represents the 

identified friends, from the friend identification step. Compute 

the transition matrix Pb based on Ab.  

2. Define the initial vector V0 =(vi)m, where m is the number of 

distinct nodes in Ab. For each vi, when i is the index of t in Ab, 

vi = 1; otherwise, vi = 0. 

3. Set a vector R = (ri)m with all “0” for each element except the 

jth element (the index of t in Ab) for which we set “1”. 

4. Define a parameter a ∈ (0, 1). Define Vn as a distribution for t 

after n times walking. Vn = a × Pb ×Vn-1 + (1 − a) × R. Set 

second parameter ɛ which represents a very small value, e.g., 

10-6. Keep walking till |Vn – Vn-1 | < ɛ. In this case, we say Vn is 

a stationary distribution and it reflects the probabilities of the 

link between t and any other nodes in Ab. 

5. Set the third parameter β ∈ (0, 1), which is used to determine 

the total number of users inferred as t’s friends. The number of 

inferred friends for t is ⌊β × m⌋. Choose ⌊β × m⌋ distinct nodes 

from Ab based on the result of Vn. These nodes have the higher 

probabilities for t than for the remaining nodes. However, the 

selected nodes should not be already included in FIDb(t) and 

none of them should not be equal to t. These chosen nodes are 

inferred friends of t and we add them into FINb(t). 

6. Finally, Fb(t) = FIDb(t) ∪ FINb(t). 

The algorithm used for the friend inference is shown below. 

Algorithm 2   Friend Inference 

Input: an adversary b, a target t, Ab, FIDb(t) from Algorithm 1, 

parameters a, β and ɛ. 

Output: the inferred friend set FINb(t), Fb(t) 

1. if FIDb(t) ≠ ∅ 

2.     m = nrow(Ab) // get number of distinct nodes in Ab 

3.     i = indexOf(Ab, t) // the index of t in Ab 

4.     V0 = setInitialVector (i, m) 

5.     R = initR(i, m) 

6.     Pb = convertToTransitionMatrix(Ab) 

7.     n=1 

8.     Vn= a × Pb ×Vn-1 + (1– a) × R 

9.     while  |Vn – Vn-1 | ≧ ɛ 

10.            n++ 

11.            Vn= a × Pb ×Vn-1 + (1– a) × R 

12.     end while 

13.     // rank the probability from high to low 

14.     rankedProb = rank(Vn)  

15.     k = ⌊β × m⌋ 
16.     s = 0; 

17.     for j = 1 to m do 

18.          f = getNode(rankedProb[j]) 

19.          if f ≠ t and f ∉ FIDb(t) 

20.             add f to FINb(t) 

21.             s++ 

22.          end if 
23.          if s = k do 

24.             break 

25.          end if 

26.     end for 

27.     Fb(t) = FIDb(t) ∪ FINb(t) 

28.  end if 

 

Note that there could be incorrectly inferred friends in this step 

since the inferred friends actually have relatively higher 

probabilities to be friends of a target. 

In the next section, we will demonstrate the effectiveness of the 

friend identification and the friend inference steps using various 



measures. In addition, we will discuss the parameters adopted in 

the algorithms and show their sensitivity for attack results. 

4. EXPERIMENTS 
In this section, we introduce the setup of the experiments for FII 

attacks and demonstrate the results of FII attacks. We also 

investigate the attack results in order to find what values of 

parameters and social features can promote the attacks. 

4.1 Datasets 
In this paper, we adopt three real social network datasets to 

demonstrate FII attacks: 

• D1: It is a Facebook friend network dataset used in [9]. We 

remove the isolated nodes in the original dataset since they are 

useless in our experiments. 

• D2: It is another Facebook friend network dataset adopted in 

[10]. Since it is not a well-connected network, we filter the 

nodes and choose the giant component of the original dataset 

for our experiments. 

• D3: It is a Foursquare friend network dataset used in [11]. This 

network is a well-connected network.  

The basic statistical information of these datasets is shown in 

Table 1 and the users’ cumulative degree distributions are shown 

in Figure 5. We can see that users in D1 have the highest degrees 

and they are most connected with each other according to the 

average clustering coefficient and average path length. Users in 

D3 have the least degrees but they are more connected with each 

other than those in D2, although users in D2 have higher degrees 

than those in D3. 

Table 1. Basic Statistics Information of the Datasets 

 D1 D2 D3 

Nodes 3,963 63,392 10,326 

Edges 88,156 816,886 52,974 

Ave. Degree 44.490 25.773 10.260 

Ave. Clustering 

Coefficient 
0.617 0.253 0.285 

Ave. Path Length 3.776 8.087 4.41 

Triangles 1,612,010 3,501,534 99,334 

 

 

Figure 4. Degree Distributions of the Datasets 

4.2 Setup of Experiments  

4.2.1 Initialization of Adversaries and Targets 
Based on the cumulative degree distributions in Figure 4, we first 

divide each dataset into three subsets with different ranges of 

degrees. The statistical information of these subsets is described in 

Table 2. We then randomly choose 100 adversaries from each of 

these subsets. These selected adversaries have diverse degrees and 

better represent various adversaries in these datasets. We finally 

get 300 adversaries in each dataset and 900 adversaries in total. 

These adversaries’ degrees and their numbers of 2-distant 

neighbors are shown in Figure 5. Other social network features 

about the adversaries, such as the average clustering coefficient 

and average number of triangles are summarized in Table 3. 

 

 

 

Figure 5. Degrees and the Numbers of 2-distant Neighbor of 

the Adversaries 

From Figure 5, we can see that the number of 2-distant neighbors 

of an adversary is usually much larger than his degree in all 

datasets. In D2 and D3, the adversaries in the subset 1 have less 2-

distant neighbors than those in subset 3. However, in D1, the 

adversaries’ average number of 2-distant neighbors in all the 



subsets seems to be equal. Specially, there is one adversary that 

his degree is larger than his 2-distant neighbors in D1.  

From Table 3, we can see that adversaries in D1 are usually closer 

to other nodes since they have higher clustering coefficient values 

and lower the closeness centrality and the betweenness centrality 

values. We will analyze the relationships between these network 

features and the attack results later in this section. 

Table 2. Basic Statistical Information of the Subsets2 

 

Range of the 

Node Degree 

in Subset 1 

Range of the 

Node Degree 

in Subset 2 

Range of the 

Node Degree 

in Subset 3 

D1 (10, 30] (30, 60] > 60 

D2 (8, 20] (20, 40] > 40 

D3 (5,10] (10, 20] > 20 

 

Table 3. Network Measures for the Adversaries 

 D1 D2 D3 

Ave. 

Clustering 

Coefficient 

0.552 0.223 0.236 

Ave. Number 

of Triangles 
1837.81 253.63 69.847 

Ave. 

Eccentricity 
6.553 9.6 8.333 

Ave. 

Closeness 

Centrality 

3.748 3.926 3.937 

Ave. 

Betweenness 

Centrality 

15945.516 141809.841 35086.388 

 

For each selected adversary, we first randomly choose five friends 

as his targets. Then, we also randomly select five of the 

adversary’s 2-distant neighbors as his additional targets. Hence, 

each adversary has 10 targets in total. In this paper, we call each 

pair of an adversary and a corresponding target as an attack 

instance. Thus, we have 3,000 attack instances on each dataset 

and we generate 9,000 attack instances in total. The basic 

statistical information of the chosen targets is shown in Table 4. 

Table 4. Basic Statistical Information for the Targets 

 

Number of 

Attack 

Instances 

Number of 

Targets3 

Ave. Degree 

of Targets 

D1 3,000 2020 54.282 

D2 3,000 2822 68.864 

D3 3,000 2224 21.760 

                                                                 

2 In these three datasets, we do not consider users who have very 

few degrees (e.g., less than 5 in D3) as adversaries.  

3  Different adversaries may have the same target in the attack 

instances. 

 

In Theorem 2 in Section 3.2, we introduce ISb(t) that is the ideal 

exposed friends of an attack instance. Figure 6 shows the 

differences between t’s degrees (|F(t)|) and the ideal exposed 

number of t’s friends for b (|ISb(t)|). We can obviously find that b 

is ideally able to find more friends of t when b and t are friends. 

This is because the tendency of the curve expressing ISb(t) is very 

close to that representing F(t). When b and t are 2-distant 

neighbors, b may still identify and infer many friends of t in D1 

but he may identify and infer relatively less friends of t in D2 and 

D3. The reason is that there are larger differences between F(t) 

and ISb(t) for many targets in D2 and D3. Hence, we expect that b 

has a higher probability to identify and infer more friends of t in a 

FII attack when b and t are friends. In addition, FII attacks in D1 

should be more successful than those in D2 and D3. 

 

 

 

Figure 6. Targets’ Degrees VS Ideal Numbers of Friends 

4.2.2 Initialization of Parameters 
When introducing the friend inference step in Section 3.3.2, we 

mentioned three parameters in the algorithm: a, β and ɛ. In all of 

our experiments, we set ɛ=10-6 for the equation |Vn – Vn-1 | < ɛ. a 

and β are dynamically set in our experiments to demonstrate their 

impact on attack results.  

4.3 Measurements 
In our experiments, we use the following measures to evaluate the 

FII attacks: 

• True Positive = |Fb(t) ∩ F(t)|, which represents the number of 

correctly identified and inferred friends in an attack instance. 



When it is larger, it indicates that an adversary can find more 

of a target’s friends.  

• False Positive = |Fb(t)| – |Fb(t) ∩ F(t)|, which represents the 

incorrectly inferred friends in an attack instance. When it is 

smaller, it denotes that most of inferred friends for a target are 

accurate. 

• Precision = |Fb(t) ∩ F(t)| / |Fb(t)|, which represents the 

accuracy of an attack instance. When the precision is 1, it 

indicates that all the identified and inferred friends for t are 

correct. On the other hand, when it is 0, it represents all the 

identified and inferred friends are wrong.  

• Recall = |Fb(t) ∩ F(t)| / |(F(b) ∪ D2(b)) ∩ F(t)|, which 

represents the percentage of correctly exposed friends by the 

ideal number of the exposed friends (refer to Theorem 2) in an 

attack instance. The higher the recall the more successful is an 

attack instance. 

• Coverage = |Fb(t) ∩ F(t)| / |F(t)|, which represents the 

percentage of correctly exposed friends for the target in an 

attack instance. A higher coverage value indicates that an 

adversary can find more percentage of a target’s friends in an 

attack instance.  

• F1 = 2×Precision×Recall / (Precision + Recall), which 

evaluate attack results by counting both the precision and the 

recall. F1 reaches its best value at 1 and worst score at 0. 

Compared the recall with the coverage, the recall reflects the 

effectiveness of the attack algorithms while the coverage indicates 

the effectiveness of the FII attack.  

Note that we do not present the time cost of an attack instance in 

our experiments in this paper since almost all attack instances can 

finish in 2 seconds. The FII attacks are efficient. 

4.4 Experimental Results 

4.4.1 Comparisons of Attack Results for Different 

Datasets 
In the experiments presented in this subsection, we set a = 0.15 

[31]4 and β = 0.01 for all the attack instances conducted in D1, D2 

and D3. We compare attack results on these datasets and try to 

identify: 1) whether attacks targeting friends of adversaries are 

more successful than those targeting 2-distant neighbors of 

adversaries; 2) what social features of the overall network can 

promote the attacks. Figures 7, 8 and 9 demonstrate the true 

positive, the false positive, the recall, the coverage and the 

precision for all attack instances on these three datasets. Note that 

Figure 7 ranks attack instances based on the increasing values of 

the true positive; Figure 8 ranks attack instances based on the 

decreasing values of the false positive; Figure 9 ranks attack 

instances based on the increasing values of the recall. Also note 

that a same ID of the attack instance in x axis in different figures 

does not represent the same attack in our experiments. 

From Figure 7, we can see that adversaries launching FII attacks 

can find more friends of the corresponding targets in D1 than in 

D2 and D3. For example, when adversaries and targets are friends, 

there are around 67% of attack instances in D1 where adversaries 

                                                                 

4 a=0.15 is the empirical value for the page rank using the random 

walk with restart [31]. 

can identify and correctly infer more than 20 friends of targets. 

However, there are few attack instances in D2 and D3 where 

adversaries can achieve the same goal. In addition, we can see that 

an adversary can find much more friends of a target via FII 

attacks when they are friends. When they are 2-distant neighbors, 

the adversary can only identify or correctly infer less than 20 

friends of the target in most attack instances. 

 

Figure 7. Comparisons of the True Positive among Datasets 

Based on Figure 8, we can get that adversaries will get more 

incorrectly inferred friends for targets in D2 than in D1 and D3. 

The number of incorrectly inferred friends in D2 is more than 10 

for around half of attack instances.  Some attack instances in D2 

can even get more than 30 incorrectly friends. However, we find 

that the relationships (friends or 2-distant neighbors) between 

adversaries and targets will not have significant impact on the 

false positive in most attack instances. 

 

Figure 8. Comparisons of the False Positive among Datasets 

Figure 9 has three graphs which show the recall, the coverage and 

the precisions in D1, D2 and D3. We can see that the values of the 

recall are relatively higher in D1 than those in D2 and D3. In D1, 

values of the recall are higher when adversaries and targets are 

friends than those when they are 2-distant neighbors. However, it 

is not the case in D2 and D3. We surprisingly find that the values 

of the recall seem a bit higher when adversaries and targets are 2-

distant neighbors in many attack instances in D2 and D3. 

The values of the recall and the coverage are almost same when 

adversaries and targets are friends on all the datasets. However, 

when they are 2-distang neighbors, the values of the coverage are 

much lower in some attack instances in D1 and in many attack 

instances in D2 and D3. Such a result is reasonable (refer to the 

definitions of the recall and the coverage in Section 4.3) since 

there are larger differences between targets’ degrees and the set of 

the ideal exposed friends of the targets in many attack instance in 

D2 and D3, as shown in Figure 6. 

The values of the precision are diverse according to the increase 

of the recall. Generally, when adversaries and targets are friends, 



most values of the precision are higher than 0.8 in D1; such values 

are usually less than 0.5 in D2; and a significant number of these 

values are equal to 0.5 in D3. When adversaries and targets are 2-

distant neighbors, the values of the precision are less than 0.3 in 

D1 and D2. However, many of these values are 0.5 in D3. It 

indicates that the relationships between adversaries and targets 

have relatively less impact on the values of the precision in D3. 

We also find that the values of the precision are usually larger 

than those of the recall in all the attack instances in Figure 9. It 

infers that it may be better to increase the number of inferred 

friends (increase β) to achieve a better recall and a not 

downgraded precision. We will demonstrate such experiments in 

Section 4.4.2. 

 

 

 

Figure 9. Precision, Recall and Coverage in Datasets5 

Based on above analysis, FII attacks in D1 should be most 

successful since adversaries from D1 can achieve a higher true 

positive, a lower false positive, a higher recall, a higher coverage 

and a higher precision. FII attacks in D3 are the second successful 

while those in D2 are least successful. By comparing the basic 

network statistics shown in Table 1, we may get the conclusion 

that a higher average clustering coefficient and a lower average 

path length of the entire network can promote FII attacks. Other 

features for the entire social graph, such as number of nodes, 

number of edges, the average degree of nodes and the number of 

                                                                 

5 The blue cross in the figures represents the precision value of 

each attack instance. 

triangles, empirically, have insignificant impact on attack results. 

In theory, when the clustering coefficient is higher and the path 

length is smaller, it indicates that nodes in the graph tend to 

cluster together. If nodes tend to cluster in a social graph, it 

denotes that the set of ideal exposed friends will be larger and 

hence a FII attack has a higher possibility to be successful. This 

result suggests that an adversary should launch a FII attack in a 

more highly clustered network, in order to achieve a more 

successful attack. 

4.4.2 Attack Results with Different a and β 
In the experiments presented in this subsection, we conduct FII 

attacks only in D1. We try to find what values of the parameter a 

and β can promote the attack results. 

First, we show the impact of a on attack results. Remind that a is 

the parameter to determine the probability that a node follows the 

random walk. [32] shows that a = 0.15 is not always the best 

value for the random walk with restart approach. Its value should 

depend on the diameter λ of a social graph. A = 0.15 works on the 

web graph where λ = 19. In our case, assume λ in an attack 

instance is round 3. Theoretically, we can get a better value of a 

should be 0.65 from (1–0.15)19=(1–a)3.  

We design four sets of experiments with β=0.01. In each set of the 

experiments, we conduct 3,000 attack in D1 and the value of a in 

each attack instance is same. The values of a in these sets of 

experiments are 0.15, 0.65, 0.8 and 0.9, respectively. The attack 

results are shown in Table 5.  

We can see that all the measures (precision, recall, coverage and 

F1) are improved with the increase of a. For example, when a=0.9, 

the average precision, recall and F1 score of the attacks, where 

adversaries and targets are friends, can increase to 0.839, 0.558 

and 0.63, respectively. These values are a bit higher than those of 

the attack instances where a = 0.15. In addition, when adversaries 

and targets are friends, the improvement of attacks is more 

significant than those where adversaries and targets are 2-distant 

neighbors.  

Next, we show the impact of β on attack results. Remind that β is 

the parameter to determine the number of inferred friends in a FII 

attack. Intuitively, the precision may be improved with the 

increase of β in FII attacks. However, the improvement of the 

precision may cause the decline of the recall [33].  

To show β’s impact, we design five sets of experiments with 

a=0.15. In each set of the experiments, we also conduct 3,000 

attack in D1 and the value of β in each attack instance is same. 

The values of β in these sets of experiments are 0.01, 0.015, 0.02, 

0.025 and 0.03, respectively. The attack results of these 

experiments are shown in Table 6.  

As expected, with the increase of β, the precision declines while 

the recall and coverage increase in all attack instances. However, 

we can find that the decrease of the precision is a bit larger than 

the increase of the recall, when the adversary and the target are 

friends. Hence, the F1 score declines in this case. In the attack 

instance where the adversary and the target are 2-distant 

neighbors, although the precision decreases a bit, the F1 score 

increases and hence the overall performance of the attack is 

promoted. Above results related to β suggest that an adversary can 

set a smaller value of β when he conducts attacks on his friends 

and set a larger value of β when he launches attacks on his 2-

distant neighbors, in order to achieve more successful attacks. 



Table 5. Attack Results with a 

β=0.01 b and t are friends b and t are 2-distant neighbors 

 
ave. 

precision 

ave. 

recall 

ave. 

coverage 

ave.   

F1 

ave. 

precision 

ave. 

recall 

ave. 

coverage 

ave.   

F1 

a=0.15 0.826 0.551 0.551 0.62 0.366 0.171 0.165 0.198 

a=0.65 0.833 0.555 0.555 0.626 0.368 0.171 0.166 0.199 

a=0.8 0.836 0.557 0.557 0.628 0.368 0.171 0.166 0.199 

a=0.9 0.839 0.558 0.558 0.63 0.369 0.172 0.166 0.199 

 

Table 6. Attack Results with β 

a=0.15 b and t are friends b and t are 2-distant neighbors 

 
ave. 

precision 

ave. 

recall 

ave. 

coverage 

ave.   

F1 

ave. 

precision 

ave. 

recall 

ave. 

coverage 

ave.   

F1 

β =0.01 0.826 0.551 0.551 0.62 0.366 0.171 0.165 0.198 

β =0.015 0.78 0.572 0.572 0.617 0.323 0.186 0.18 0.199 

β =0.02 0.741 0.592 0.592 0.613 0.296 0.202 0.195 0.2 

β =0.025 0.71 0.61 0.61 0.609 0.277 0.216 0.209 0.201 

β =0.03 0.683 0.626 0.626 0.605 0.264 0.229 0.221 0.203 

 

4.4.3 Adversaries’ Network Features and Attack 

Results 
In theory, the result of a FII attack should depend on both an 

adversary and a target’s social features. However, we assume that 

an adversary does not know any link information about a target 

initially in the attack. Hence, the adversary does not know the 

social feature of the target but he may know some of his social 

features. In this subsection, from perspective of an adversary, we 

try to identify what values of the adversary’s social features can 

promote the attack. 

In this subsection, we demonstrate FII attacks with a=0.9 and 

β=0.02 and conduct 3,000 attacks in D1. We will examine the 

relationships between attack results and an adversary’s degree, his 

clustering coefficient, number of his 2-distant neighbors, number 

of mutual friends between him and a target6, number of triangles 

associated with him. 

                                                                 

6  It is actually equal to the result FIDb(t) from the friend 

identification step. 

 

Figure 10. Impact of the Degree on Attack Results 

The results are demonstrated from Figure 10 to Figure 14. In these 

figures, the values of the precision, recall and F1 are the average 

results for each adversary (remind that there are 10 targets for one 

adversary). Also note that it is possible that several adversaries 

have the same value for certain social features (e.g. node degree, 

number of 2-distant neighbors and etc.). Thus, in the figures, with 

a same x-coordinate value, there may be different y-coordinate 

values. For example, with x = 50 degree in Figure 10, there are 

two different values for the precision (0.45 and 0.5), recall (0.25 

and 0.3) and F1 (0.32 and 0.38). 

From Figure 10, we can find that when the degree is lower (less 

than 50), the values of the precision, recall and F1 are diverse. 

They can be low (less than 0.3) or high (more than 0.5). With the 

increase of the degree, we can see that the values of the precision, 

recall and F1 seem increase almost linearly. It indicates that an 

adversary who has many friends may have a higher probability to 

launch FII attacks more successfully. 



 

Figure 11. Impact of the Number of 2-Distant Neighbor on 

Attack Results 

In Figure 11, it seems that the overall trends of the precision, 

recall and F1 decline with the increase of the number of 2-distant 

neighbors an adversary has. It suggests that the number of 2-

distant neighbors of an adversary should be limited in order to 

conduct FII attacks more successfully. Such a result makes sense 

since the random walk with restart algorithm may have a better 

result with a limited number of candidate nodes. 

In Figure 12, the precision does not change significantly with the 

increase of the number of triangles. However, the trends of the 

recall and F1 look like a parabola opening downwards when the 

number of triangles are larger than 500. Initially, the values of the 

recall and F1 increase to the peaks (around 11,000) with the 

growing of the triangles. Then, the values of the recall and F1 

decline with the continuous increase of the triangles. Such a result 

indicates that the increasing number of triangles cannot always 

promote the FII attacks. An adversary may have a medium 

number of triangles in order to launch a more successful FII 

attack. 

 

Figure 12. Impact of the Number of Triangles on Attack 

Results 

From Figure 13, we can see that the tendencies of the precision, 

recall and F1 seem rise with the increase of the values of the 

clustering coefficient when the values of the clustering coefficient 

are less than 0.4. After that the precision, recall and F1 do not 

change significantly. The overall tendencies of these measures 

tend to be logarithmic curves. It denotes that a higher value of the 

clustering coefficient of an adversary may promote FII attacks. 

 

Figure 13. Impact of the Clustering Coefficient on Attack 

Results 

From Figure 14, we can see that the average value of the precision 

seems to increase with the increase of the number of mutual 

friends between adversaries and targets. However, the tendencies 

of the recall and F1 may be expressed as a logarithmic curve with 

the increase of the mutual friends. These results suggest that it is 

better for an adversary to have more mutual friends with a target 

in order to conduct a FII attack more successfully. 

We also investigate the relationships between attack results and 

the values of the adversary’s eccentricity, closeness centrality, 

betweenness centrality7. However, the correlations between attack 

results and them are very inconsistent and unclear. Hence, we may 

conclude when an adversary has higher degree, less number of 2-

distant neighbors, a medium number of triangles, a higher 

clustering coefficient and more number of mutual friends between 

him and a target, he may conduct more successful FII attacks. 

 

Figure 14. Impact of the Number of Mutual Friends on Attack 

Results 

5. CONCLUSIONS 
In this paper, we identify the threat of the inconsistency policies 

for a friendship link involving two users in undirected social 

networks. We propose that such a threat can be abused by an 

adversary to launch a FII attack to identify and infer friends of a 

target who conceal his friend list from the adversary. We 

demonstrate attacks using three real social network datasets. Our 

experimental results show that the FII attack is generally efficient 

and effective when adversaries and targets are friends or 2-distant 

                                                                 

7  Based on the graph theory, an adversary’s closeness and the 

betweeness centrality, even the eccentricity, should be somehow 

related to attack results. 



neighbors. Our comprehensive analysis for attack results suggests 

that FII attacks are more successful in a more highly clustered 

network and a larger values of the parameters a and β can promote 

FII attacks. We also find that an adversary with a higher degree, a 

higher clustering coefficient value, more mutual friends between 

him and a target, etc., could has a higher probability to conduct 

more successful FII attacks.  

In the future work, we will continue to propose more advanced 

FII attacks with more complex attack scenarios. For example, 

there are a number of friends (as targets) of an adversary who hide 

their friends from him. The adversary tries to identify and infer 

many friends of all these targets. In addition, we will also work on 

the resistant approach for FII attacks by decreasing the 

performances of the results. 
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