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Abstract

When a computer hard drive is confiscated in the conduct of a
police investigation the information contained is commonly encrypted
at such a level that brute force thechniques have to be used. This is too
time consuming if the hard drive is large, thus demanding methods to
make a smart distinction between likely encrypted and non-encrypted
code in order to use the cracking resources efficiently. The methods are
stopping rules according to the cutting edge of on-line change-point
detection. The performance of the methods is evaluated in terms of
conditional expected delay and predictive value having calibrated the
methods so that they all have the same expected time till false alarm.

1 Introduction

In modern IT forensics there is a challenge to crack an encrypted hard drive
that has been confiscated in the conduct of a police investigation. The
strength of the contemporary tools for such protection (e.g. True crypt) is at
such a level that password guessing (so-called brute force techniques) have to
be used. This may not be a problem if there is only one or a few blocks of
code are cracked within reasonable time.

However, the problem of cracking the encryption of computer code may
be further complicated if the contents of the hard drive have been deleted by
removing the pointers of the file allocation tables (so-called quick deletion).
Then the knowledge of what the formats of the contents are is not present.
The hard drive contents is merely a (possibly immense) sequence of blocks of
code that have to be attempted for cracking. Then it may well be completely
impossible to apply brute force technique on each block simply because there
are so many blocks and each password guessing procedure takes too much
time.
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To this end a sieve discriminating between the blocks of most likely not
encrypted computer code and the blocks of suspiciously encrypted (and there-
fore more likely harmful) computer code is desired. After having picked out
the encrypted blocks one may proceed with brute force cracking in an effi-
cient manner according to some standard. A property of a crypto which is
commonly regarded as an indicator of quality is how evenly all characters
of the encryption alphabet is used. Thus, a measure for telling encryption
likelihood apart, is to quantify how uniformly the encryption characters are
distributed; in encrypted code the characters are more likely to be evenly
distributed than in text files, images, programs etc. One way of measuring
how evenly the characters are distributed is by considering the character fre-
quencies and expressing them by using the Pearson chi square statistic (see
e.g. Cox and Hinkley [1]). But of course one may also consider other aspects
of even distribution of the characters, such that they should not occur more
clustered or regularly than what would have been the case in a completely
random pattern.

This paper is all about development of such a procedure for distinguishing
between the code blocks which are less likely and those which are more likely
encrypted.

Previous work...
In Section 2...

2 Model

Observations of blocks of code c1, c2, c3, . . ., are made consecutively at time-
points t = 1, 2, 3, . . .. Some of these clusters may be subject to encryption.
Depending on the degree of fragmentation of the hard drive they may be
more likely to occur consecutively or not. In order to avoid tedious brute
force cracking all of the clusters, a method for separating the clusters that
are more likely encrypted from the clusters which are less likely encrypted is
desired.

Under the assumption that the characters constituting encrypted code
are more evenly distributed than the characters constituting clear text code,
the Barkman crypto indicator Ut (which is nothing but the well-known Pear-
son chi-squared statistic, see e.g. Cox and Hinkley [1], in the special case
with uniform distribution under the alternative hypothesis), may be used
to distinguish code which is more likely encrypted. Simply calculating this
statistic for all the clusters of the hard drive, and then brute force cracking
those with an alarming score of the Barkman crypto indicator is a possibility
if the hard drive is not too large.
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If the hard drive is very large (it may of course not be only one physical
unit but rather a composition of many units and thus, possibly, very large) it
can be a practically impossible task to evaluate the Barkman crypto indicator
for all clusters. However, if the contents is likely to be little fragmented,
and accordingly clusters of the same files are more likely to be occurring
consecutively, then a monitoring algorithm, applied to the on-line calculation
of Barkman crypto indicator, can facilitate the search for a larger sequence
of consecutive clusters that are more likely encrypted. Then the situation is
more formally described as follows. Cluster observations, C1, C2, C3, . . ., are
to be made on-line, i.e. one by one. Now, assuming that the code up to some
random time-point t = τ − 1 is not encrypted and that the code from time
t = τ and on wards is, the distribution of the characters constituting C1, C2,
. . ., Cτ−1 are distributed in some other way than the characters of Cτ , Cτ+1,
. . . The problem is then to determine that the change from not encrypted
to encrypted code has occurred, as quickly after it has really happened and
as accurately (i.e. with as little delay) as possible.

3 Methods

For each block ct, where t = 1, 2, 3, . . ., the number Nt of characters and the
number Kt of distinct character kinds occurring in that block is counted. For

1 2 1 1 1 0 1 0 3 3
0 3 1 1 3 2 0 2 0 3
0 2 2 0 1 0 0 0 3 0
1 0 3 0 1 2 2 2 1 1
2 1 3 3 1 0 2 1 3 3
3 0 1 1 1 0 1 3 3 2

Figure 1: Code consisting of 60 characters and 4 character kinds (i.e. 0, 1,
2 and 3). Thus if this is cluster t, then Nt = 60 and Kt = 4 in this case.

all characters, count the observed freqencies oi,1 (i.e. the number of occur-
rences of character 1), ot,2 (i.e. the number of occurrences of character 2), . . .,
ot,Kt

(i.e. the number of occurrences of character Kt). From these observed
frequencies the value of the Barkman crypto indicator (i.e. the Pearson chi-
square statistic in the special case when the distribution under the alternative
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hypothesis is uniform)

Ut =
Kt
∑

i=1

(KtOt,i −Nt)
2

KtNt

(1)

According to the Central Limit theorem, Ut is approximately χ2 dis-
tributed when Kt and Nt are large. Thus, if we consider the problem of
monitoring the degree of fit to a uniform distribution (indicating how suspi-
ciously the code is to be encrypted) based on an on-line sequence of observa-
tions of the Barkman crypto indicator U1, U2, U3, . . . would approximatively
satisfy

Ut ∈

{

ψ2(Kt − 1) om t < θ

χ2(Kt − 1) om t ≥ θ

where χ2(Kt − 1) is the chi square distribution with Kt − 1 och ψ2 is the
distribution of cX where X ∈ χ2 for some c > 1.

At each time t the Barkman crypto indicator, Ut, is calculated and fed to
a stopping rule which is an algorithm which can be defined as

T = min{t ≥ 1 : a(U1, U2, . . . , Ut) > C}.

Let us denote a(U1, U2, . . . , Ut) by at for short. Then the stopping rule T
may be described more extensively as an algorithm by the following.

Algorithm 1 For a certain threshold, C ∈ R, and alarm function, a (with
a convenient number of arguments), the stopping rule is:

1. Start: a1 = U1.

2. If a1 > C,
then we stop immediately: Goto 10.
else goto 3.

3. At time t ≥ 2: make a new observation Ut.

4. If at > C,
then we stop: Goto 10.
else increase t by 1 and goto 3.

5. Stop and return the stopping time: T = t.

Choosing the alarm function a differently renders different kinds of stopping
rules. Changing the threshold C will give the stopping rule different prop-
erties. High values of C will make the stopping rule more conservative and
less likely to stop, thus giving few false alarm, but also long expected delay
of motivated alarm, while lower values gives a more sensitive stopping rule
with shorter expected delay, but more likely to give false alarm.
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4 Sufficient statistic

5 The change-point problem

6 Results

6.1 Stopping rules

In this paper we consider the Shewhart, CUSUM, Shiryaev and Roberts
methods. The Shewhart method (Shewhart [9]) is the stopping rule

TW = min{t ≥ 1 : Ut > C}.

The CUSUM method (Page [7]) is

TC = min{t ≥ 1 : at > C}

where

at =

{

0 if t = 0
max(0, at−1) + n ln c− c−1

2c
Ut if t = 1, 2, 3, . . .

The Shiryaev method (Shiryaev [10]) is

TY = min{t ≥ 1 : at > C}

where

at =

{

0 if t = 0
(1 + at−1) exp (n ln c−

c−1

2c
Ut) if t = 1, 2, 3, . . .

6.2 Evaluation

In order to evaluate the stopping rules theoretically the threshold is chosen
so that the ARL0 = E(T | T < θ) = 100 (i.e. the expected time until there
is a false alarm is 100). Then aspects of motivated alarm are calculated and
compared. All calculations here are based on simulations. The samplesize
in the simulations of the ARL0 is 100 000 observations for each method and
size of shift c = 1.1, c = 1.2 and c = 1.3.

The first aspect of motivated alarm to be examined is the conditional
expected delay, CED(t) = E(T − θ | T ≥ θ = t). This was simulated with
a samplesize of 1 000 000 observations for each point in the plot of Figure 3.
This performance measure indicates how quickly a method signals alarm after
the change has happened.
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E(T−θ |T ≥θ= t)

c = 1.1 c = 1.2 c = 1.3
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Figure 2: Conditional expected delay for the Cusum (red lines and circles)
and Shiryaev (blue lines and squares) methods for shift size c = 1.1 (left
plot), c = 1.2 (middle plot) and c = 1.3 (right plot).
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Figure 3: Predictive value for the Cusum (red, orange and brown lines and
circles) and Shiryaev (blue, light blue and turqoise lines and squares) methods
for shift size c = 1.1 (left plot), c = 1.2 (middle plot) and c = 1.3 (right plot).
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The second aspect of motivated alarm is predictive value, PV (t, ν) =
P (θ ≤ t | T = t) where the change-point θ is assumed to be geometrically
distrubuted with parameter ν with the interpretation µ = P (θ = t | θ > t−1).
In each of the plots the sample size was 10 000 000 observations for each
method. The predictive value shows how much credibility one should assert
to a method in the case when the change-point occurs at time t.

6.3 Examples

7 Discussion
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