
8

W3-Scrape - A Windows based Reconnaissance Tool for Web

Application Fingerprinting

Karthik R
a
, Raghavendra Karthik

 a
, Pramod S

 a
* and Sowmya Kamath

a

a Department of Information Technology, National Institute of Technology Karnataka,

Srinivas Nagar, Surathkal, Mangalore 575025, INDIA

Abstract

Web Application finger printing is a quintessential part of the Information Gathering phase of (ethical) hacking. It allows

narrowing down the specifics instead of looking for all clues. Also an application that has been correctly recognized can help in

quickly analyzing known weaknesses and then moving ahead with remaining aspects. This step is also essential to allow a pen

tester to customize its payload or exploitation techniques based on the identification so to increase the chances of successful

intrusion. This paper presents a new tool “W3-Scrape” for the relatively nascent field of Web Application finger printing that

helps automate web application fingerprinting when performed in the current scenarios.

Keywords: Web Application Fingerprinting; ethical hacking; exploitation technique; Security;

1. Introduction

 Finger printing, in the simplest sense, is a method used to identify objects. The term has been used to identify

TCP/IP Stack Implementation and was known as TCP/IP finger printing. This approach has been extended to

identify web application specifics. Web Application finger printing is performed to identify the application and

software stacks running on the HTTP Server. Currently, Web application finger printing is at its embryonic stage,

however interest in this field is rising steadily and large number of automated solutions are emerging in the market.

 HTTP Fingerprinting [1] is a technique that helps determine details like the web server software hosting the

website, its version and other deployment details of the web server. HTTP fingerprinting allows network

administrators to profile the web servers in their environment and monitor patches. It also allows a pen-

tester/security auditor to narrow down the list of attacks that the server must be subjected to, to expose

vulnerabilities. There are several vendors in the market today like Microsoft, Apache, Netscape and others; their

products differ in the ways in which they implement the HTTP protocol. Unfortunately, this is also the reason why

HTTP Fingerprinting becomes possible and may be used for nefarious purposes. [1]

 Every company with a web presence opens the TCP port 80 on their firewalls to the Internet for web-based

applications. Web servers can reveal very juicy information that attackers can feast up on. This helps them to refine

the attack the plan. The patch information, the application running on the web server can be easily got from this.

Blindly attacking may lead to detection by IDS as the security vulnerabilities are vendor specific. Knowing the

above gathered information can greatly improve the efficiency of the attack. Proper usage of exploits increases the

chance of successful exploitation. [2]

 In the present day, a lot of web application vulnerabilities are researched and published for various CMS’s.

Topping the list is the SQL injection and XSS (Cross site scripting). SQL injection is of two types: Blind SQL

injection and Classical SQL injection. The difference between the two is the presence of information_schema in the

* Corresponding author.

E-mail address: pramod.shrinivas@hotmail.com

Published in the Proceedings of ICECIT-2012, Elsevier, pgs: 8-13

Karthik R. et.al / W3-Scrape - A Windows based Reconnaissance Tool for Web Application Fingerprinting

9

later versions. This can give administrative access to the web application if properly executed. Hence, addressing the

SQL vulnerability of the target web application is an important aspect of our tool and has been added as an

extension. There are two types of XSS attacks - Persistent and reflected. The former is more dangerous than the

latter as it can modify server side data. But the latter can be used in one of the more popular Social engineering

attacks - Phishing. The URL redirection script embedded on the cross site script can make the victim believe that the

phished page is indeed arising from a legal vendor and hence may be lured to click on the suspicious link. To rule

out most of the suspicious links, we have also added the Phishing detection tool for this framework.

 Hence, web application fingerprinting is the most important stage in the penetration testing of Web applications.

Our tool comes in handy in the Reconnaissance phase of the Hacker cycle. Fingerprinting the target allows us to

narrow down the specifics instead of looking for all possible permutations and combinations of data. For any

successful attack to happen, it is very important that the target vulnerabilities are known and also the feature

corresponding to that particular vulnerability is found. Our tool helps in the vulnerability assessment phase as it

provides close proximity information about the who’s who of the target. This in turn helps in improving the defense

against any such future attacks. The tool also has a few other extensions like preliminary SQL injection tester and a

Phishing detection extension module as a part of this framework, which, to our knowledge, none of the tools

mentioned earlier offer.

 This paper is organized as follows – Section 2 presents a discussion in this area based on existing literature;

Section 3 provides details about our experimental setup, methodology and implementation specifics highlighting the

working of our tool and the results. Section 4 provides a comparison of W3-Scrape with existing tools. Section 5

presents identified future work followed by conclusion in Section 6 and a list of references.

2. Literature Survey

 Developing applications that run in the distributed operating environment of today's Internet requires an

efficient, easy-to-use method for retrieving data from resources of all types. Pluggable protocols help in developing

applications that use a single interface to retrieve data from multiple Internet protocols. [2] Methods that are already

in use for this purpose include HTML Data Inspection, File and Folder Presence (HTTP response codes) and

Checksum Based identification. [3] Various tools available currently that are based on these assumptions are

WhatWeb, Wapplyzer, BlindElephant, Plecost and W3af Wordpress finger printer. Below is brief discussion on the

technical aspects of these tools.

2.1. Tools on the market

 WhatWeb is a Ruby based application allowing a pluggable architecture with virtually any application detection.

It performs tasks like Google dork check, Regex pattern matching, File existence checker, File Content checker

based on file name and MD5 based matching. All this effectively allows WhatWeb to report the application‘s status

more accurately. The fact that it is pluggable in nature allows it to be customized for any application encountered.

 Wapplyzer is a Firefox/Chrome Plugin, and works on only regular expression matching and doesn’t need

anything other than the page to be loaded on the browser. It works completely at the browser level and gives results

in the form of icons.

 BlindElephant is a new entrant in the market and works on the principle of static file checksum based version

difference. This allows this software to work for both open-source software and closed source platforms, the only

condition being - the person running BlindElephant needs to have access to source code to map all static file

fingerprinting. The technique basically works by - create checksum local file and store in DB, download static file

from remote server, create checksum and ompare with checksum stored in DB and identify it.

 Plecost works on a simple principle of finding right files. It derives the version of Wordpress from readme.html

of the website. Basically it tries to fetch the readme.txt for each plugin and then based on that deduces the version of

appliance installed on this server. Since Wordpress makes it mandatory for every plugin author to have a correctly

formed readme.txt file so that chances of finding these files are very high.

 W3af is attracting quite a lot of attention nowadays. This plugin takes a retro approach, looking for exact file

names /paths and moving on to look for specific data inside the file and if existing, then deduce that the application

is Wordpress. This highlight is to stress on the fact about paths and flaws.

Karthik R. et.al / W3-Scrape - A Windows based Reconnaissance Tool for Web Application Fingerprinting

10

2.2. Motivation

The inherent flaws in the design of current automation tools are that these tools work on the basis of assumptions.

For example they assume that - Filename X means Z plugin; or Folder Q in site means software is used irrespective

of the actual usage of the product or not and they proclaim the website to be dynamic however it remains largely

static. They claim to be dynamic however remain static at large parts. (dynamic only in replacing the front domain

name). The results are based on presence of Static paths and dependency on static filenames. Even the checksum

based approach suffers with these limitations, which turns out to be a fundamental flow in this approach. [7] For a

security analyst, it’s a key requirement to perform phase 1 of penetration testing in a great detail. Similarly, here,

foot printing of web applications is a necessary starting point in any of the web application security analysis.

3. Methodology and Implementation

 W3-Scrape is a reconnaissance based reporting tool that focuses on generating reports for web application

fingerprinting - identifying the server and corresponding operating systems along with the Content management

system running on a particular web application. The following section describes the functionality of each module

and the implementation specifics. We considered the requirements of a Web application tester and tried to integrate

the functionalities in one single composite tool.

 W3-Scrape has the following components - HTML Source view, Harvesting IP address, Rendering the HTML

Source, Website Scraping, CMS identification, SQL vulnerability identification, Phishing Detection and Full Report

Generation. The System.Net namespace provides HttpWebRequest and HttpWebResponse classes. Sytem.IO

namespace provides classes to send request and receive response in streams. This is the base class, which provides

methods to request data, parse any redirection URL, receive response and convert response (since it's coming in

streams) into meaningful data.

3.1. HTML Source view

 This module grabs the HTML source code of the target URL and is used for manual analysis of the HTML

Source code. The feature working is similar to “View page source” in any browser. It uses HttpWebResponse class

to capture the page source which provides an HTTP-specific implementation of the WebRequest class by creating an

object that contains all the relevant information required to generate a proxy used to communicate with a remote

object and return a response from an Internet resource. Fig. 1(a) shows the tool generating the HTML source view.

3.2. Harvesting IP address

 A harvester is a computer program that surfs the internet looking for email addresses. Harvesting email

addresses from the Internet is the primary way spammers build their lists. Harvesters must connect to the Internet

through an IP address. We use the IPHostEntry Class to find any IP address harvesting vulnerabilities. The class

IPHostEntry provides a container class for Internet host address information, gets or sets a list of IP addresses that

are associated with a host and gets or sets the DNS name of the host as shown in Fig. 1(b)

3.3. Rendering HTML source

 This uses the Web Browser Class for its working. It loads the document at the location indicated by the specified

URI into the Web Browser control, replacing the previous document and reloads the document currently displayed

in the Web Browser control by checking the server for an updated version. Fig. 2(a) shows the rendered HTML

page. This doesn’t serve any important purpose, but makes the system user friendly to browse through the target

web site well within the framework instead of viewing it in a separate browser. This enhances the UI and also the

ease of use of this framework with respect to the user.

3.4. Web Scraping

 Web Scraping feature utilizes the HttpWebResponse Class which provides an HTTP-specific implementation of

the WebResponse class and captures HTTP header information and fingerprints the following: Content- Length,

Karthik R. et.al / W3-Scrape - A Windows based Reconnaissance Tool for Web Application Fingerprinting

11

Content- Type and the server on which the host is launched. The information that we get from this module becomes

the most important aspect of the attack. This provides the attacker/tester the necessary information from which he

can narrow down his search criteria in the Vulnerability assessment phase of the cycle. He can directly probe in to

the vulnerabilities of the particular Operating system run by the system rather than scrounging for unnecessary

information.
 For example, if the tester finds the target application as Cent OS, then it saves him time from finding all the

vulnerabilities one-by-one for all other Operating systems that might probably support the CMS of the target.

Another important use is to know the server on which this particular CMS is hosted, thus he can replicate the

environment in his local area, to use it for simulating the target environment and observe the application behavior

locally. Thus, this particular module turns out to be very handy. Fig. 2(b) shows the Web scrape module.

Fig.1. (a) HTML Source view generated by W3-Scrape (b) IP Address and other details harvested from the CMS

Fig. 2. (a) Rendering the webpage within the W3-Scrape framework (b) The Web Scrape Module

3.5. CMS identification

 In our approach of CMS identification, we use the HTML data inspection method as well as URL inspection

methods. Here, regular expressions and pattern matching plays a crucial role in the success of the prediction. There

may be some non-CMS based websites where a system based error is thrown by the application. But, the above said

methodology works on majority of the sites tested by us manually. Figure 1(b) above also shows W3-Scrape

retrieving the name of the CMS and related details.

3.6. SQL injection vulnerability detection

 Our application detects the SQL injection bug, and also suggests the sanitization of the attacking point. The bug

detector module detects security bugs like SQL injection vulnerability in the URL, and also the Local File injection

Vulnerability of any site. We use regular expressions to match certain criteria of the test and verify the vulnerability

of the target. [5]

Karthik R. et.al / W3-Scrape - A Windows based Reconnaissance Tool for Web Application Fingerprinting

12

 Fig. 3(a) shows a SQL vulnerable site detected by our bug detector. We have tested around 100 sites for this

purpose, and W3-Scrape has detected every site with a SQL error without generating any false positives. The reason

may be that, any site with SQL errors will throw up an error message on appending a ‘quote’ to the URL. Thus, our

system catches the server throw to read through the error and then deliver the result.

 Another bug detection method incorporated here is the Local File Injection Vulnerability. A LFI is a method for

servers/scripts to include local files on run-time, in order to make complex systems of procedure calls. LFI

vulnerabilities are most often found in URLs of the web pages, mainly because developers tend to use GET requests

when including pages. When we try to tamper with the URL, we can change the URL equations and determine if

there is a Local File Injection Vulnerability, when an attack string is appended to the URL. LFI has really

devastating consequences, few of them being Poison of Null byte, Log Poisoning, malicious image upload etc. The

ability to detect such bugs will give administrators a chance to secure the site before it is attacked.

3.7. Phishing Detection

 W3-Scrape includes a phishing detection module that is not available in any of the tools discusses in Section II.

Determining if a page is phished can be done based on different factors such as usage of IP based URLs, too many

dots in the URL, age to linked-to domain names etc. Fig. 3(b) shows a screenshot of this feature.

Fig. 3. (a)Bug Detector Module (b) Phishing Detection.

3.8. Full Report Generation

 The Generate full report module prints the entire fingerprinting report in the panel. The report consists of the

target URL, IP address, content type, and Web server type, Content Management system followed by the domain

specific information such as registrar information, IP location, domain name, creation date and Expiry date. This

report will be followed by the Vulnerability report. Fig. 4 shows the full report generated by the tool.

Fig. 4. Full Report Generation in W3-Scrape

Karthik R. et.al / W3-Scrape - A Windows based Reconnaissance Tool for Web Application Fingerprinting

13

4. Comparison with other tools currently available

 The W3-Scrape framework uses Windows APIs for all the reporting and analysis. Thus, the primary advantage

is that, it caters to the needs of people not familiar with Linux machines. Secondly, this project has a very simple to

use and easy to understand GUI, which all the other tools in the market lack. An enhanced GUI not only enhances

the user experience but also speeds up the learning of the tool. Next, the reporting functionality provides a variety of

information in one single framework. No other tool in the market provides all this information in one single place as

W3-Scrape. Table 1 presents a comparison of W3-Scrape and the other tools.

Table 1: Comparison of W3-Scrape with other tools available on the market.

Tool GUI Bug Detection

(LFI and SQLi)

Phishing Detection Reporting Abilities Who-is

Information

BlindElephant No No No Yes – Plaintext No

Wapplyzer Browser Addon No No Yes – Icons No

Plecost No No No Yes – Plaintext No

Whatweb Wordpress

Fingerprinter
No No No

Yes – Plaintext &

XML
No

W3af No No No
Yes – Plaintext &

XML
No

W3-Scrape Yes Yes Yes Yes – Plaintext Yes

6. Conclusion

 W3-Scrape can be used by both white hats as well as black hats based on the motive of their actions. There are

modules that fetch readily available public data from the Internet using various online resources. This makes the tool

handy for a penetration tester to narrow down the possibilities of the target application. Finger printing in its

simplest senses is a method used to identify objects. Same term has been used to identify TCP/IP Stack

Implementation and was known as TCP/IP finger printing. Similar usage has been extended lately to identify web

applications installed on the Http Server. With all additional modules integrated along with reconnaissance modules,

this tool has really good potential to be a well rounded framework in the future, however helping attackers as well as

“ethical” hackers equally.

References

1. AJAX Finger Printing https://www.netsecurity.org/dl/articles/Ajax_fingerprinting.pdf; September 2012

2. Introducing Pluggable Protocols http://msdn.microsoft.com/en-us/library/, September 2012

3. Http Print White Paper : http://net-square.com/httprint/httprint_paper.html, September 2012

4. RFC 3529 : XMLRPC : https://tools.ietf.org/html/rfc3529, September 2012

5. RFC 4287 : RSS : http://tools.ietf.org/html/rfc4287, September 2012

6. Web Application Fingerprinting Technicals and Detail, http://anantshri.info/articles/web_app_finger_printing.html, September 2012

https://www.netsecurity.org/dl/articles/Ajax_fingerprinting.pdf
http://msdn.microsoft.com/en-us/library/
http://net-square.com/httprint/httprint_paper.html
https://tools.ietf.org/html/rfc3529
http://tools.ietf.org/html/rfc4287
http://anantshri.info/articles/web_app_finger_printing.html

