
Penetration Testing == POMDP Solving?

Carlos Sarraute
Core Security Technologies & ITBA

Buenos Aires, Argentina
carlos@coresecurity.com

Olivier Buffet and Jörg Hoffmann
INRIA

Nancy, France
{olivier.buffet,joerg.hoffmann}@loria.fr

Abstract

Penetration Testing is a methodology for assessing network
security, by generating and executing possible attacks. Do-
ing so automatically allows for regular and systematic testing
without a prohibitive amount of human labor. A key ques-
tion then is how to generate the attacks. This is naturally
formulated as a planning problem. Previous work (Lucangeli
et al. 2010) used classical planning and hence ignores all the
incomplete knowledge that characterizes hacking. More re-
cent work (Sarraute et al. 2011) makes strong independence
assumptions for the sake of scaling, and lacks a clear for-
mal concept of what the attack planning problem actually
is. Herein, we model that problem in terms of partially ob-
servable Markov decision processes (POMDP). This grounds
penetration testing in a well-researched formalism, highlight-
ing important aspects of this problem’s nature. POMDPs al-
low to model information gathering as an integral part of the
problem, thus providing for the first time a means to intelli-
gently mix scanning actions with actual exploits.

Introduction
Penetration Testing (short pentesting) is a methodology for
assessing network security, by generating and executing pos-
sible attacks exploiting known vulnerabilities of operating
systems and applications (e.g., (Arce and McGraw 2004)).
Doing so automatically allows for regular and systematic
testing without a prohibitive amount of human labor, and
makes pentesting more accessible to non-experts. A key
question then is how to automatically generate the attacks.

A natural way to address this issue is as an attack plan-
ning problem. This is known in the AI Planning community
as the “Cyber Security” domain (Boddy et al. 2005). In-
dependently (though considerably later), the approach was
put forward also by the pentesting industry (Lucangeli et al.
2010). The two domains essentially differ only in the in-
dustrial context addressed. Herein, we are concerned exclu-
sively with the specific context of regular automatic pentest-
ing, as in Core Security’s “Core Insight Enterprise” tool. We
will use the term “attack planning” in that sense.

Lucangeli et al. (2010) encoded attack planning into
PDDL, and used off-the-shelf planners. This already is
useful,1 however it is still quite limited. In particular, the

1In fact, this technology is currently employed in Core Secu-
rity’s commercial product, using a variant of Metric-FF.

planning is classical—complete initial states and determin-
istic actions—and thus not able to handle the uncertainty in-
volved in this form of attack planning. We herein contribute
a planning model that does capture this uncertainty, and al-
lows to generate plans taking it into account. To understand
the added value of this technology, it is necessary to examine
the relevant context in some detail.

The pentesting tool has access to the details of the client
network. So why is there any uncertainty? The answer is
simple: pentesting is not Orwell’s “Big Brother”. Do your
IT guys know everything that goes on inside your computer?

It is safe to assume that the pentesting tool will be kept
up-to-date about the structure of the network, i.e., the set
of machines and their connections—these changes are infre-
quent and can easily be registered. It is, however, impossible
to be up-to-date regarding all the details of the configuration
of each machine, in the typical setting where that configura-
tion is ultimately in the hands of the individual users. Thus,
since the last series of attacks was scheduled, the configu-
rations may have changed, and the pentesting tool does not
know how exactly. Its task is to figure out whether any of
the changes open new dangerous vulnerabilities.

One might argue that the pentesting tool should first de-
termine what has changed, via scanning methods, and then
address what is now a classical planning problem involv-
ing only exploits, i.e., hacking actions modifying the system
state. There are two flaws in this reasoning: (a) scanning
doesn’t yield perfect knowledge so a residual uncertainty re-
mains; (b) scanning generates significant costs in terms of
running time and network traffic. So what we want is a tech-
nique that (like a real hacker) can deal with uncertainty by
intelligently inserting scanning actions where they are use-
ful for scheduling the best exploits. To our knowledge, ours
is the first work that indeed offers such a method.

There is hardly any related work tackling uncertainty
measures (probabilities) in network security. The few works
that exist (e.g., (Bilar 2003; Dawkins and Hale 2003)) are
concerned with the defender’s viewpoint, and tackle a very
different kind of uncertainty attempting to model what an
attacker would be likely to do. The above mentioned work
on classical planning is embedded into a pentesting tool run-
ning a large set of scans as a pre-process, and afterwards ig-
noring the residual uncertainty. This incurs both drawbacks
(a) and (b) above. The single work addressing (a) was per-

ar
X

iv
:1

30
6.

47
14

v1
 [

cs
.A

I]
 1

9
Ju

n
20

13

formed in part by one of the authors (Sarraute et al. 2011).
On the positive side, the proposed attack planner demon-
strates industrial-scale runtime performance, and in fact its
worst-case runtime is low-order polynomial. On the nega-
tive side, the planner does not offer a solution to (b)—it still
reasons only about exploits, not scanning—and of course its
efficiency is bought at the cost of strong simplifying assump-
tions. Also, the work provides no clear notion of what attack
planning under uncertainty actually is.

Herein, we take the opposite extreme of the trade-off be-
tween accuracy and performance. We tackle the problem in
full, in particular addressing information gathering as an in-
tegral part of the attack. We achieve this by modeling the
problem in terms of partially observable Markov decision
processes (POMDP). As a side effect, this modeling activity
serves to clarify some important aspects of this problem’s
nature. A basic insight is that, whereas Sarraute et al. (2011)
model the uncertainty as non-deterministic actions—success
probabilities of exploits—this uncertainty is more naturally
modeled as an uncertainty about states. The exploits as such
are deterministic in that their outcome is fully determined by
the system configuration.2 Once this basic modeling choice
is made, all the rest falls into place naturally.

Our experiments are based on a problem generator that is
not industrial-scale realistic, but that allows to create reason-
able test instances by scaling the number of machines, the
number of possible exploits, and the time elapsed since the
last activity of the pentesting tool. Unsurprisingly, we find
that POMDP solvers do not scale to large networks. How-
ever, scaling is reasonable for individual pairs of machines.
As argued by Sarraute et al. (2011), such pairwise strategies
can serve as the basic building blocks in a framework de-
composing the overall problem into two abstraction levels.

We next provide some additional background on pentest-
ing and POMDPs. We then detail our POMDP model of
attack planning, and our experimental findings. We close
the paper with a brief discussion of future work.

Background
We fill in some background on pentesting and POMDPs.

Penetration Testing
The objective of a typical penetration testing task is to gain
control over as many computers in a network as possible,
with a preference for some machines (e.g., because of their
critical content). It starts with one controlled computer: ei-
ther outside the targeted network (so that its first targets are
machines accessible from the internet), or inside this net-
work (e.g., using a Trojan horse). As illustrated in Figure 1,
at any point in time one can distinguish between 3 types
of computers: those under control (on which an agent has
been installed, allowing to perform actions); those which are
reachable from a controlled computer because they share a

2Sometimes, non-deterministic effects are an adequate abstrac-
tion of state uncertainty, as in “crossing the street”. The situation in
pentesting is different because repeated executions will yield iden-
tical outcomes.

M2

M5

M3

M4

M1

M0

Figure 1: An example network made of two sub-networks
(cliques): (M0,M1,M2) (e.g.,M0 an outside computer,M1

a web server and M2 a firewall), and (M2,M3,M4,M5). 1
computer is under control (M0), 2 are reachable (M1 and
M2), and 3 are unreachable (M3, M4, M5).

sub-network with one of them: and those which are unreach-
able from any controlled computer.

Given currently controlled machines, one can perform
two types of actions targeting a reachable machine: tests—to
identify its configuration (OS, running applications, . . .)—,
and exploits—to install an agent by exploiting a vulnerabil-
ity. A successful exploit turns a reachable computer into a
controlled one, and all its previously unreachable neighbors
into reachable computers.

A “classic” pentest methodology consists of a series of
fixed steps, for example:

• perform a network discovery (obtain a list of all the reach-
able machines),

• port scan all the reachable machines (given a fixed list of
common ports, probe if they are open/closed/filtered),

• given the previous information, perform OS detection
module(s) on reachable machines (e.g., run nmap tests),

• once the information gathering phase is completed, the
following phase is to launch exploits against the (poten-
tially vulnerable) machines.

This could be improved—a long-term objective of this
work—as POMDP planning allows for more efficiency by
mixing actions from the different steps.

More details on pentesting will be given later when we
describe how to model it using the POMDP formalism.

POMDPs
POMDPs are usually defined (Monahan 1982; Cassandra
1998) by a tuple 〈S,A,O, T,O, r, b0〉 where, at any time
step, the system being in some state s ∈ S (the state space),
the agent performs an action a ∈ A (the action space) that
results in (1) a transition to a state s′ according to the tran-
sition function T (s, a, s′) = Pr(s′|s, a), (2) an observation
o ∈ O (the observation space) according to the observation
function O(s′, a, o) = Pr(o|s′, a) and (3) a scalar reward
r(s, a). b0 is the initial probability distribution over states.
Unless stated otherwise, the sets S, A and O are finite.

In this setting, the problem is for the agent to find a de-
cision policy π choosing, at each time step, the best action
based on its past observations and actions so as to maximize
its future gain (which can be measured for example through
the total accumulated reward). Compared to classical de-
terministic planning, the agent has to face the difficulty in
accounting for a system not only with uncertain dynamics
but also whose current state is imperfectly known.

The agent typically reasons about the hidden state of the
system using a belief state b ∈ B = Π(S) (the set of prob-
ability distributions over S) using the following Bayesian
update formula when performing action a and observing o:

ba,o(s′) =
O(s′, a, o)

Pr(o|a, b)
∑
s∈S

T (s, a, s′)b(s),

where Pr(o|a, b) =
∑
s,s′′∈S O(s′′, a, o)T (s, a, s′′)b(s).

Using belief states, a POMDP can be rewritten as an MDP
over the belief space, or belief MDP, 〈B,A, T , ρ〉, where the
new transition and reward functions are both defined over
B × A × B. With this reformulation, a number of theoret-
ical results about MDPs can be extended, such as the exis-
tence of a deterministic policy that is optimal. An issue is
that this belief MDP is defined over a continuous—and thus
infinite—belief space.

For a finite horizon3 T > 0 the objective is to find a policy
verifying π∗ = arg maxπ∈AB Jπ(b0) with

Jπ(b0) = E

[
T−1∑
t=0

γtrt

∣∣∣∣∣b0, π
]
,

where b0 is the initial belief state, rt the reward obtained
at time step t, and γ ∈ (0, 1) a discount factor. Bellman’s
principle of optimality (Bellman 1954) lets us compute this
function recursively through the value function

Vn(b) = max
a∈A

[
ρ(b, a) + β

∑
b′∈B

φ(b, a, b′)Vn−1(b′)

]
,

where, for all b ∈ B, V0(b) = 0, and Jπ(b) = Vn=T (b).
For our experiments we use SARSOP (Kurniawati et al.

2008), a state of the art point-based algorithm, i.e., an algo-
rithm approximating the value function as the upper enve-
lope of a set of hyperplanes, these hyperplanes correspond-
ing to a selection of particular belief points.

Modeling Penetration Testing with POMDPs
As penetration testing is about acting under partial observ-
ability, POMDPs are a natural candidate to model this par-
ticular problem. They allow to model the problem of knowl-
edge acquisition and to account for probabilistic informa-
tion, e.g., the fact that certain configurations or vulnerabil-
ities are more frequent than others. In comparison, classi-
cal planning approaches (Lucangeli et al. 2010) assume that
the whole network configuration is known, so that no explo-
ration is required. The present section discusses how to for-
malize penetration testing using POMDPs. As we shall see,
the uncertainty is located essentially in the initial belief state.
This is different from modeling the uncertainty in pentest-
ing using probabilistic action outcomes as in (Sarraute et al.
2011), which does not account for the real dynamics of the
system. Also, as indicated previously, unlike our POMDPs,
the approach of Sarraute et al. (2011) only chooses exploits,
assuming a naive a priori knowledge acquisition and thus
ignoring the interaction between these two.

3In practice we consider an infinite horizon.

states :

terminal

M0-win2000

M0-win2000-p445

M0-win2000-p445-SMB

M0-win2000-p445-SMB-vuln

M0-win2000-p445-SMB-agent

M0-win2003

M0-win2003-p445

M0-win2003-p445-SMB

M0-win2003-p445-SMB-vuln

M0-win2003-p445-SMB-agent

M0-winXPsp2

M0-winXPsp2-p445

M0-winXPsp2-p445-SMB

M0-winXPsp2-p445-SMB-vuln

M0-winXPsp2-p445-SMB-agent

M0-winXPsp3

M0-winXPsp3-p445

M0-winXPsp3-p445-SMB

Figure 2: A list of states in a setting with a single com-
puter (M0) which can be a Windows 2000, 2003, XPsp2 or
XPsp3, may have port 445 open and, if so, may be running a
SAMBA server which may be vulnerable (except for XPsp3)
and whose vulnerability may have been exploited.

States
First, any sensible penetration test will have a finite execu-
tion. There is nothing to be gained here by infinitely exe-
cuting a looping behavior. Every pentest terminates either
when some event (e.g., an attack detection) stops it, or when
the additional access rights that could yet be gained (from
the finite number of access rights) do not outweigh the as-
sociated costs. This implies that there exists an absorbing
terminal state and that we are solving a Stochastic Shortest
Path problem (SSP).

Then, in the context of pentesting, we do not need the full
state of the system to describe the current situation. We will
thus focus on aspects that are relevant for the task at hand.
This state for example does not need to comprise the net-
work topology as it is assumed here to be static and known.
But it will have to account for the configuration and status
of each computer on the network.

A computer’s configuration needs to describe the applica-
tions present on the computer and that may (i) be vulnerable
or (ii) reveal information about potentially vulnerable appli-
cations. This comprises its operating system (OS) as well as
server applications for the web, databases, email, ... The de-
scription of an application does not need to give precise ver-
sion numbers, but should give enough details to know which
(known) vulnerabilities are present, or what information can
be obtained about the system. For example, the open ports
on a given computer are aspects of the OS that may reveal
not only the OS but also which applications it is running.

The computers’ configurations (and the network topol-
ogy) give a static picture of the system independently of
the progress of the pentest. To account for the current sit-
uation one needs to specify, for each computer, whether a
given agent has been installed on it, whether some applica-
tions have crashed (e.g., due to the failure of an exploit), and
which computers are accessible. Which computers are ac-
cessible depends only on the network topology and on where
agents have been installed, so that there is no need to explic-
itly add this information in the state. Fig. 2 gives a states
section from an actual POMDP file (using the file format
of Cassandra’s toolbox) in a setting with a single machine
M0, which is always accessible (not mentioning the com-
puter from which the pentest is started).

Note that a computer’s configuration should also provide

actions :

Terminate

Probe-M0-p445

OSDetect-M0

Exploit-M0-win2000-SMB

Exploit-M0-win2003-SMB

Exploit-M0-winXPsp2-SMB

Figure 3: A list of actions in the same setting as Fig. 2, with
1 Terminate action, 2 tests, and 3 possible exploits.

information on whether having access to it is valuable in
itself, e.g., if there is valuable data on its hard drive. This
will be used when defining the reward function.

Actions (& Observations)
First, we need a Terminate action that can be used to
reach the terminal state voluntarily. Note that specific
outcomes of certain actions could also lead to that state.

Because we assume that the network topology is known
a priori, there is no need for actions to discover reachable
machines. We are thus left with two types of actions: tests,
which allow to acquire information about a computer’s con-
figuration, and exploits, which attempt to install an agent on
a computer by exploiting a vulnerability. Fig. 3 lists actions
in our running example started in Fig. 2.

Tests Tests are typically performed using programs such
as nmap (Lyon 1998), which scans a specific computer for
open ports and, by analyzing the response behavior of ports,
allows to make guesses about which OS and services are
running. Note that such observation actions have a cost ei-
ther in terms of time spent performing analyses, or because
of the probability of being detected due to the generated
network activity. This is the reason why one has to decide
which tests to perform rather than perform them all.

In our setting, we only consider two types of tests:

OS detection: A typical OS detection will return a list of
possible OSes, the ones likely to explain the observations
of the analysis tool. As a result, one can prune from the
belief state (=set to zero probability) all the states corre-
sponding with non-matching OSes, and then re-normalize
the remaining non-zero probabilities.
Keeping with the same running example, Fig. 4 presents
the transition and observation models associated with
action OSDetect-M0, which can distinguish winXP
configurations from win2000/2003; and following is an
example of the evolution of the belief state:

initial (0,0,0,0,0,0, 18 , 18 , 18 , 18 ,0, 18 , 18 , 18 , 18 ,0,0,0,0)
winXP (0,0,0,0,0,0, 0 , 0 , 0 , 0 ,0, 14 , 14 , 14 , 14 ,0,0,0,0)

win2000/2003 (0,0,0,0,0,0, 14 , 14 , 14 , 14 ,0, 0 , 0 , 0 , 0 ,0,0,0,0)

Port scan: Scanning port X simply tells if it is open or
closed; by pruning from the belief state the states that
match the open/closed state of port X , one implicitely re-
fines which OS and applications may be running.
Action Probe-M0-p445, for example, is modeled as
depicted on Fig. 5 and could give the following evolution:

initial (0,0,0,0,0,0, 18 , 18 , 18 , 18 ,0, 18 , 18 , 18 , 18 ,0,0,0,0)
open-port (0,0,0,0,0,0, 0 , 16 , 16 , 16 ,0, 0 , 16 , 16 , 16 ,0,0,0,0)
closed-port (0,0,0,0,0,0, 12 , 0 , 0 , 0 ,0, 12 , 0 , 0 , 0 ,0,0,0,0)

Note that a test has no state outcome (the state remains the
same), and that its observation outcome is considered as de-
terministic: given the—real, but hidden—configuration of a
computer, a given test always returns the same observation.

T: OSDetect-M0 identity

O: OSDetect-M0: * : * 0

O: OSDetect-M0: * : undetected 1

O: OSDetect-M0: M0-win2000 : win 1

O: OSDetect-M0: M0-win2000-p445 : win 1

O: OSDetect-M0: M0-win2000-p445-SMB : win 1

O: OSDetect-M0: M0-win2000-p445-SMB-vuln : win 1

O: OSDetect-M0: M0-win2000-p445-SMB-agent: win 1

O: OSDetect-M0: M0-win2003 : win 1

O: OSDetect-M0: M0-win2003-p445 : win 1

O: OSDetect-M0: M0-win2003-p445-SMB : win 1

O: OSDetect-M0: M0-win2003-p445-SMB-vuln : win 1

O: OSDetect-M0: M0-win2003-p445-SMB-agent: win 1

O: OSDetect-M0: M0-winXPsp2 : winxp 1

O: OSDetect-M0: M0-winXPsp2-p445 : winxp 1

O: OSDetect-M0: M0-winXPsp2-p445-SMB : winxp 1

O: OSDetect-M0: M0-winXPsp2-p445-SMB-vuln : winxp 1

O: OSDetect-M0: M0-winXPsp2-p445-SMB-agent: winxp 1

O: OSDetect-M0: M0-winXPsp3 : winxp 1

O: OSDetect-M0: M0-winXPsp3-p445 : winxp 1

O: OSDetect-M0: M0-winXPsp3-p445-SMB : winxp 1

Figure 4: Transition and observation models for action
OSDetect-M0. The first line specifies that this action’s
transition matrix is the identity matrix. The remaining lines
describe this action’s observation function by giving the
probability (here 0 or 1) of each possible state-observation
pair, defaulting to the undetected observation for all
states.

T: Probe-M0-p445 identity

O: Probe-M0-p445: * : * 0

O: Probe-M0-p445: * : closed-port 1

O: Probe-M0-p445: M0-win2000-p445 : open-port 1

O: Probe-M0-p445: M0-win2000-p445-SMB : open-port 1

O: Probe-M0-p445: M0-win2000-p445-SMB-vuln : open-port 1

O: Probe-M0-p445: M0-win2000-p445-SMB-agent : open-port 1

O: Probe-M0-p445: M0-win2003-p445 : open-port 1

O: Probe-M0-p445: M0-win2003-p445-SMB : open-port 1

O: Probe-M0-p445: M0-win2003-p445-SMB-vuln : open-port 1

O: Probe-M0-p445: M0-win2003-p445-SMB-agent : open-port 1

O: Probe-M0-p445: M0-winXPsp2-p445 : open-port 1

O: Probe-M0-p445: M0-winXPsp2-p445-SMB : open-port 1

O: Probe-M0-p445: M0-winXPsp2-p445-SMB-vuln : open-port 1

O: Probe-M0-p445: M0-winXPsp2-p445-SMB-agent: open-port 1

O: Probe-M0-p445: M0-winXPsp3-p445 : open-port 1

O: Probe-M0-p445: M0-winXPsp3-p445-SMB : open-port 1

Figure 5: Transition and observation models for action
Probe-M0-p445. The transition is again the identity,
and the observation is closed-port by default, and
open-port for all states in which port 445 is open.

Another interesting point is that (i) tests provide information
about computer configurations and (ii) computer configura-
tions are static, so that there is no use repeating a test as it
cannot provide or update any information.

Exploits Exploits make use of an application’s vulnerabil-
ity to gain (i) some control over a computer from another
computer (remote exploit), or (ii) more control over a com-
puter (local exploit / privilege escalation). Local exploits do
not differ significantly from remote exploits since it amounts
to considering each privilege level as a different (virtual)

T: Exploit-M0-win2003-SMB identity

T: Exploit-M0-win2003-SMB: M0-win2003-p445-SMB-vuln

: * 0

T: Exploit-M0-win2003-SMB: M0-win2003-p445-SMB-vuln

: M0-win2003-p445-SMB-agent 1

O: Exploit-M0-win2003-SMB: * : * 0

O: Exploit-M0-win2003-SMB: * : no-agent 1

O: Exploit-M0-win2003-SMB: M0-win2003-p445-SMB-agent

: agent-installed 1

Figure 6: Transition and observation models for action
Exploit-M0-win2003-SMB. The transition is the iden-
tity except if M0 is vulnerable, where an agent gets in-
stalled. The observation is no-agent by default and
agent-installed if the exploit is successful.

computer in a sub-network. As a consequence, for the sake
of clarity, we only consider one privilege level per computer.

More precisely, we consider that any successful exploit
will provide the same control over the target computer, what-
ever the exploit and whatever its configuration. This allows
(i) to assume that the same set of actions is available on any
controlled computer, and (ii) to avoid giving details about
which type of agent is installed on a computer.

The success of a given exploit action E depends deter-
ministically on the configuration of the target computer, so
that: (i) there is no use in attempting an exploit E if none
of the probable configurations is compatible with this ex-
ploit, and (ii) the outcome of E—either success or failure—
provides information about the configuration of the target.
In the present paper, we even assume that a computer’s con-
figuration is completely observed once it is under control.
Exploit-M0-win2003-SMB is modeled in Fig. 6,

and an example evolution of the belief under this action is:
initial (0,0,0,0,0,0, 18 , 18 , 18 , 18 ,0, 18 , 18 , 18 , 18 ,0,0,0,0)

success (0,0,0,0,0,0, 0 , 0 , 0 , 0 ,0, 0 , 0 , 0 , 0 ,1,0,0,0)
failure (0,0,0,0,0,0, 17 , 17 , 17 , 17 ,0, 17 , 17 , 17 , 0 ,0,0,0,0)

Rewards
First, no reward is received when the Terminate action is
used, or once the terminal state is reached. Otherwise, the
reward function has to account for various things:
Value of a computer (rc): The objective of a pentest is to

gain access to a number of computers. Here we thus pro-
pose to assign a fixed reward for each successful exploit
(on a previously uncontrolled machine). In a more realis-
tic setting, one could reward accessing for the first time a
given valuable data, whatever computer hosts these data.

Time is money (rt): Each action—may it be a test or an
exploit—has a duration, so that the expected duration of
the pentest may be minimized by assigning each transi-
tion a cost (negative reward) proportional to its duration.
One could also consider a maximum time for the pentest
rather than minimizing it.

Risk of detection (rd): We do not explicitely model the
event of being detected (that would lead to the terminal
state with an important cost), but simply consider transi-
tion costs that depend on the probability of being detected.

As a result, a transition s, a, s′ comes with a reward that
is the sum of these three components: r = rc + rt + rd.

Although some rewards are positive, we are still solving an
SSP since such positive rewards cannot be received multiple
times and thus cyclic behavior is not sensible.

POMDP Model Generation
Generating a POMDP model for pentesting requires knowl-
edge about possible states, actions, and observations, plus
the reward function and the initial belief state. Note first that
the POMDP model may evolve from one pentest to the next
due to new applications, exploits or tests.

Action and observation models for the various possible
tests and exploits can be derived from the documentation of
testing tools (see, e.g., nmap’s manpage) and databases such
as CVE (Common Vulnerabilities and Exposures)4. Infor-
mation could presumably be automatically extracted from
such databases, which are already very structured. In our
experiments, we start from a proprietary database of Core
Security Technologies. The two remaining components of
the model—the reward function and the initial belief state—
involve quantitative information which is more difficult to
acquire. In our experiments, this information is estimated
based on expert knowledge.

Regarding rewards, statistical models can be used to esti-
mate, for any particular action, the probability of being de-
tected, and the probabilistic model of its duration. But a
human decision is required to assign a value for the cost of
a detection, for gaining control over one target computer or
the other, and for spending a certain amount of time.

The definition of the initial belief state is linked to the
fact that penetration testing is a task repeated regularly, and
has access to previous pentesting reports on the same net-
work. The pentester thus has knowledge about the previ-
ous configuration of the network (topology and machines),
and which weaknesses have been reported. This informa-
tion, plus knowledge of typical update behaviors (applying
patches or not, downloading service packs...), allows an in-
formed guess on the current configuration of the network.

We propose to mimick this reasoning to compute the ini-
tial belief state. To keep things simple, we only consider
a basic software update behavior (assuming that softwares
are independent from each other): each day, an application
may probabilistically stay unchanged, or be upgraded to the
next version or to the latest version. The updating process
of a given application can then be viewed as a Markov chain
as illustrated in Fig. 7. Assuming that (i) the belief about a
given application version was, at the end of the last pentest,
some vector v0, and (ii) T days (the time unit in the Markov
chain) have passed, then this belief will have to be updated
as vT = UTv0, where U is the matrix representation of the
chain. For Fig. 7, this matrix reads:

U =

p1,1 0 0 0 0
p1,2 p2,2 0 0 0
0 p2,3 p3,3 0 0
0 0 p3,4 p4,4 0
p1,5 p2,5 p3,5 p4,5 p5,5

 .

4http://cve.mitre.org/

v1 v2 v3 v4 v5
p1,2 p2,3 p3,4 p4,5

p3,5p2,5
p1,5

p2,2p1,1 p3,3 p4,4 p5,5

Figure 7: Markov Chain modeling an application’s updat-
ing process. Vertices are marked with version numbers, and
edges with transition probabilities per time step.

This provides a factored approach to compute initial belief
states. Of course, in this form the approach is very simplis-
tic. A realistic method would involve elaborating a realistic
model of system development. This is a research direction
in its own right. We come back to this at the end of the paper.

Solving Penetration Testing with POMDPs
We now describe our experiments. We first fill in some de-
tails on the setup, then discuss different scaling scenarios,
before having a closer look at some example policies gener-
ated by the POMDP solver.

Experiments Setup
The experiments are run on a machine with an Intel Core2
Duo CPU at 2.2 GHz and 3 GB of RAM. We use the APPL
(Approximate POMDP Planning) toolkit5. This C++ imple-
mentation of the SARSOP algorithm is easy to compile and
use, and has reasonable performance. The solver is run with-
out time horizon limit, until a target precision ε = 0.001
is reached. Since we are solving a stochastic shortest path
problem, a discount factor is not required, however we use
γ = 0.95 to improve performance. We will briefly discuss
below the effect of changing ε and γ.

Our problem generator is implemented in Python. It has
3 parameters:

• number of machines M in the target network,
• number of exploits E in the pentesting tool, that are ap-

plicable in the target network,
• time delay T since the last pentest, measured in days.

For simplicity we assume that, at time T = 0, the informa-
tion about the network is perfect, i.e., there is no uncertainty.
As T grows, uncertainty increases as described in the previ-
ous section, where the parameters of the underlying model,
cf. Fig. 7, are estimated by hand. The network topology
consists of 1 outside machine and M − 1 other machines
in a fully connected network. The configuration details are
scaled along with E, i.e., details are added as relevant for
the exploits (note that irrelevant configuration details would
not serve any purpose in this application). As indicated, the
exploits are taken from a Core Security database which con-
tains the supported systems for each exploit (specific OS and
application versions that are vulnerable). The E exploits are
distributed evenly over the M machines. We require that
E ≥ M so that each machine gets at least one exploit (oth-
erwise the machine could be removed from the encoding).

5APPL 0.93 at http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/

Combined Scaling
We discuss performance—solver runtime—as a function of
M ,E, and T . To make data presentation feasible, at any one
time we scale only 2 of the parameters.

Consider first Figure 8 (a), which scales M and T . E is
fixed to the minimum value, i.e., each machine has a fixed
OS version and one target application. In this setting, there
are 3M states. For M = 8, the generated POMDP file has
6562 states and occupies 71 MB on disk; the APPL solver
runs out of memory when attempting to parse it. Thus, in
this and all experiments to follow, M ≤ 7.

Naturally, runtime grows exponentially with M—after
all, even the solver input does. As for T , interestingly this
exhibits a very pronounced easy-hard-easy pattern. Inves-
tigating the reasons for this, we found that it is due to a
low-high-low pattern of the “amount of uncertainty” as a
function of T . Intuitively, as T increases, the probability
distribution in the initial belief state first becomes “broader”
because more application updates are possible. Then, af-
ter a certain point, the probability mass accumulates more
and more “at the end”, i.e., at the latest application versions,
and the uncertainty decreases again. Formally, this can be
captured in terms of the entropy of b0, which exhibits a low-
high-low pattern reflecting that of Figure 8 (a).

In Figure 8 (b), scaling the number E of exploits as well
as T , the number of machines is fixed to 2 (the localhost
of the pentester, and one target machine. We observe the
same easy-hard-easy pattern over T . As with M , runtime
grows exponentially withE (and must do so since the solver
input does). However, with small or large T , the exponen-
tial behavior does not kick in until the maximum number of
exploits, 10, that we consider here. This is important for
practice since small values of T (up to T = 50) are rather
realistic in regular pentesting. In the next sub-section, we
will examine this in more detail to see how far we can scale
E, in the 2-machines case, with small T .

Figure 8 (c) and (d) show the combined scaling over ma-
chines and exploits, for a favorable value of T (T = 10, (c))
and an unfavorable one (T = 80, (d)). Here the behavior is
rather regular. By all appearances, it grows exponentially in
both parameters. An interesting observation is that, in (c),
the growth in M kicks in earlier, and rather more steeply,
than in (d). Note that, in (d), the curve overE flattens around
T = 10. We discuss this behavior in the next sub-section.

To give an impression on the effect of the discount factor
on solver performance, with M = 2, E = 11, T = 40,
solver runtime goes from 17.77 s (with γ = 0.95) to 279.65
s (with γ = 0.99). APPL explicitly checks that γ < 1, so
γ = 1 could not be tried. With our choice γ = 0.95 we still
get good policies (cf. further below).

The 2-Machines Case
As hinted, the 2-machines case is relevant because it may
serve as the “atomic building block” in an industrial-scale
solution, cf. also the discussion in the outlook below. The
question then is whether or not we can scale the number of
exploits into a realistic region. We have seen above already
that this is not possible for unfavorable values of T . How-
ever, are these values to be expected in practice? As far as

(a) (b)

(c) (d)

Figure 8: POMDP solver runtime (z axis) when scaling: (a) time delay vs. the number of machines, (b) time delay vs. the
number of exploits, (c) machines vs. exploits with time delay 10, and (d) machines vs. exploits with time delay 80.

Core Security’s “Core Insight Enterprise” tool goes, the an-
swer is “no”. In security aware environments, pentesting
should be performed at regular intervals of at most 1 month.
Consequently, Figure 9 shows data for T ≤ 50.

Figure 9: POMDP solver runtime when scaling the number
of exploits, for different realistically small settings of the
time delay, in the 2-machines case.

For the larger values of T , the data shows a very steep in-
cline between E = 5 and E = 10, followed by what appears
to be linear growth. This behavior is caused by an unwanted
bias in our current generator.6 Ignoring this phenomenon,
what matters to us here is that, for the most realistic values
of T (T = 10, 20), scaling is very good indeed, showing no

6The exploits to be added are ordered in a way so that their
likelihood of succeeding decreases monotonically with |E|. After
a certain point, they are too unlikely to affect the policy quality by
more than the target precision ε. The POMDP solver appears to
determine this effectively.

sign of hitting a barrier even at E = 50. Of course, this re-
sult must be qualified against the realism of the current gen-
erator. It remains an open question whether similar scaling
will be achieved for more realistic simulations of network
development.

POMDPs make Better Hackers
As an illustration of the policies found by the POMDP
solver, consider a simple example wherein the pentester has
4 exploits: an SSH exploit (on OpenBSD, port 22), a wu-
ftpd exploit (on Linux, port 21), an IIS exploit (on Windows,
port 80), and an Apache exploit (on Linux, port 80). The
probability of the target machine being Windows is higher
than the probability of the other OSes.

Previous automated pentesting methods, e.g. Lucangeli et
al. (2010), proceed by first performing a port scan on com-
mon ports, then executing OS detection module(s), and fi-
nally launching exploits for potentially vulnerable services.

With our POMDP model, the policy obtained is to first
test whether port 80 is open, because the expected reward
is greater for the two exploits which target port 80, than for
each of the exploits for port 21 or 22. If port 80 is open,
the next action is to launch the IIS exploit for port 80, skip-
ping the OS detection because Windows is more probable
than Linux, and the additional information that OS Detect
can provide doesn’t justify its cost (additional running time).
If the exploit is successful, terminate. Otherwise, continue
with the Apache exploit (not probing port 80 since that was
already done), and if that fails then probe port 21, etc.

In summary, the policy orders exploits by promise, and
executes port probe and OS detection actions on demand
where they are cost-effective. This improves on Sarraute
et al. (2011), whose technique is capable only of ordering
exploits by promise. What’s more, practical cases typically

involve exploits whose outcome delivers information about
the success probability of other exploits, due to common rea-
sons for failure—exploitation prevention techniques. Then
the best ordering of exploits depends on previous exploits’
outcome. POMDP policies handle this naturally, however it
is well beyond the capabilities of Sarraute et al.’s approach.
We omit the details for space reasons.

Discussion
POMDPs can model pentesting more naturally and accu-
rately than previously proposed planning-based models (Lu-
cangeli et al. 2010; Sarraute et al. 2011). While, in gen-
eral, scaling is limited, we have seen that it appears rea-
sonable in the 2-machines case where we are considering
only how to get from one machine to another. An idea to
use POMDP reasoning in practice is thus to perform it for
all connected pairs of machines in the network, and there-
after use these solutions as the input for a high-level plan-
ning procedure. That procedure would consider the pair-
wise solutions to be atomic, i.e., no backtracking over these
decisions would be made. Indeed, this is one of the abstrac-
tions made—successfully, as far as runtime performance is
concerned—by Sarraute et al. (2011). Our immediate future
work will be to explore whether a POMDP-based solution
of this type is useful, the question being how large the over-
head for planning all pairs is, and how much of the solution
quality gets retained at the global level.

A line of basic research highlighted by our work is the
exploitation of special structures in POMDPs. First, in our
model, all actions are deterministic. Second, some of the
uncertain parts of the state (e.g. the operating systems) are
static, for the purpose of pentesting, in the sense that none of
the actions affect them. Third, unless one models possible
detrimental side-effects of exploits (cf. directly below), pen-
testing is “monotonic”: accessibility, and thus the set of ac-
tions applicable, can only grow. Fourth, any optimal policy
will apply each action at most once. Finally, some aspects
of the state—in particular, which computers are controlled
and reachable—are directly visible and could be separately
modeled as being such. To our knowledge, this last property
alone has been exploited in POMDP solvers (e.g., (Araya-
López et al. 2010)), and the only other property mentioned in
the literature appears to be the first one (e.g., (Bonet 2009)).

While accurate, our current model is of course not “the
final word” on modeling pentesting with POMDPs. As al-
ready mentioned, we currently do not explicitly model the
detrimental side-effects exploits may have, i.e., the cases
where they are detected (spawning a reaction of the network
defense) or where they crash a machine/application. An-
other important aspect that could be modeled in the POMDP
framework is that machines are not independent. Knowing
the configuration of some computers in the network provides
information about the configuration of other computers in
the same network. This can be modeled in terms of the
probability distribution given in the initial belief. An inter-
esting question for future research then is how to generate
these dependencies—and thus the initial belief—in a realis-
tic way. Answering this question could go hand in hand with
more realistically simulating the effect of the “time delay” in

pentesting. Both could potentially be adressed by learning
appropriate graphical models (Koller and Friedman 2009),
based on up-to-date real-world statistics.

To close the paper, it must be admitted that, in general,
“pentesting 6= POMDP solving”, by contrast to our paper
title (hence the question mark). Computer security is al-
ways evolving, so that the probability of meeting certain
computer configurations changes with time. An ideal at-
tacker should continuously learn the probability distribu-
tions describing the network and computer configurations it
can encounter. This kind of learning can be done outside the
POMDP model, but there may be better solutions doing it
more natively. Furthermore, if the administrator of a target
network reacts to an attack, running specific counter-attacks,
then the problem turns into an adversarial game.

References
Araya-López, M.; Thomas, V.; Buffet, O.; and Charpillet, F.
2010. A closer look at MOMDPs. In Proc. of ICTAI-10.
Arce, I., and McGraw, G. 2004. Why attacking systems is
a good idea. IEEE Computer Society - Security & Privacy
Magazine 2(4).
Bellman, R. 1954. The theory of dynamic programming.
Bull. Amer. Math. Soc. 60:503–516.
Bilar, D. 2003. Quantitative Risk Analysis of Computer
Networks. Ph.D. Dissertation, Dartmouth College.
Boddy, M. S.; Gohde, J.; Haigh, T.; and Harp, S. A. 2005.
Course of action generation for cyber security using classi-
cal planning. In Proc. of ICAPS’05.
Bonet, B. 2009. Deterministic POMDPs revisited. In Proc.
of UAI’09.
Cassandra, A. R. 1998. Exact and Approximate Algorithms
for Partially Observable Markov Decision Processes. Ph.D.
Dissertation, Brown University, Dept of Computer Science.
Dawkins, J., and Hale, J. 2003. A systematic approach to
multi-stage network attack analysis. In Proc. of DISCEX III.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. MIT Press.
Kurniawati, H.; Hsu, D.; and Lee, W. 2008. SARSOP: Ef-
ficient point-based POMDP planning by approximating op-
timally reachable belief spaces. In Robotics: Science and
Systems IV.
Lucangeli, J.; Sarraute, C.; and Richarte, G. 2010. Attack
planning in the real world. In Workshop on Intelligent Secu-
rity (SecArt 2010).
Lyon, G. F. 1998. Remote OS detection via TCP/IP stack
fingerprinting. Phrack Magazine 8(54).
Monahan, G. 1982. A survey of partially observable Markov
decision processes. Management Science 28:1–16.
Sarraute, C.; Richarte, G.; and Lucangeli, J. 2011. An
algorithm to find optimal attack paths in nondeterministic
scenarios. In ACM Workshop on Artificial Intelligence and
Security (AISec’11).

