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Abstract

Since attackers trust computer systems to tell
them the truth, it may be effective for those systems
to lie or mislead. This could waste the attacker's
resources while permitting time to organize a bet-
ter defense, and would provide a second line of
defense when access controls have been breached.
We propose here a probabilistic model of attacker
beliefs in each of a set of "generic excuses" (in-
cluding deception) for their inability to accomplish
their goals. We show how the model can be up-
dated by evidence presented to the attacker and
feedback from the attacker's own behavior. We
show some preliminary results with human sub-
Jects supporting our theory. We show how this
analysis permits choosing appropriate times and
methods to deceive the attacker.

1. Introduction

Access controls are not currently doing a good
job of protecting computer systems as is witnessed
by the many attacks that can subvert controls. Ac-
cess controls have been studied for a long time,
and significant innovations are now rare. So it is
valuable to examine secondary "lines of defense"
for once access controls have been breached.

Intrusion-detection systems, computer foren-
sics, and honeypots [12] are secondary lines of
defense, but they are relatively passive and fo-
cused on data collection. Closing connections,
ports, and services automatically during attacks
stops them but tells the attacker we recognize the
attack and encourages a different attack. Trying to
trace connections from an attacker is very difficult
with most Internet routers and only really success-
ful within a subnetwork with specialized router
software. Counterattacks are generally illegal and
unlikely to find the right target given the difficulty
of tracing connections.

One second line of defense does avoid these
disadvantages, however: deception. Information
systems could lie, cheat, and mislead attackers to
prevent them from achieving their goals [19].
Since people expect computers to tell them the
truth, such deception can be very effective with
minimal resources. Deception is particularly im-
portant with time-critical military-style attacks
such as those by cyber-terrorists or state-sponsored
information-warfare teams, where just delaying the
attack with deceptions could be critical while find-
ing a permanent defense. Deception also can be
equally effective with attacks by insiders as well as
outsiders.

Most attacks on computer systems use some
form of deception. Classic methods include mas-
querading as someone or something (like a system
administrator, an audio file, or an IP address), con-
cealing unexpected components within something
innocuous (like Trojan horses), and asking for un-
needed resources (like denial-of-service attacks).
So it seems fair to respond to attackers with similar
methods. Deception is a common feature of hu-
man nature and it occurs frequently in animals and
plants in many visual and behavioral forms [2].

As a defensive tool for information systems,
deception has been used in honeypots [5] and
honeynets as a way to keep the attacker busy.
Honeypots are systems with no purpose except to
encourage attacks so data can be collected, and
honeynets are networks of honeypots. Deceptions
like fake files are used in some honeypots to keep
attackers interested for a while. But we want to
explore more sophisticated deceptions, and we
want deceptions on ordinary computers where they
could protect those systems — honeypots don't try
to fend off most attacks.

We have been studying the more general prob-
lem of providing deceptive behavior for the protec-
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tion of computer systems and networks. Deception
is a way to foil attacks much like directly fighting
them off. Deception may convince an enemy to go
away without any fight. Using an intrusion-
detection system, we monitor user behavior for
suspiciousness. As suspiciousness increases, we
first provide minimum deceptive measures, and
then increase their frequency and severity. The
trick is to use deception sparingly and consistently
to keep the attacker fooled as long as possible,
tying up their resources while reducing their
chances of successful attack. To do this, we need
some planning. Deception is only useful when we
are at least moderately sure we are under attack
since otherwise we risk hurting legitimate users
(see section 2.6). But deception may be useful
even when we are very sure of an attack, as a de-
laying tactic, although on non-honeypots it may be
safer to disconnect the attacker.

Some examples of these kinds of deceptions
that we have implemented are [18, 19]:

. A Web site that, when under denial-of-
service attack from too many processing requests,
delays still further in responding to those requests
to give the impression that it is more affected by
the attack than it really is.

. A Web site that provides files of data
compiled at random from real files to confuse
spies into seeing nonexistent connections.

. A file-transfer utility that, when it sees
a signature of a common attack, pretends to suc-
cumb by responding in the same way an affected
system would.

. An operating system that, when it rec-
ognizes an attacker is downloading a rootkit to
install on it, deletes the rootkit some time after
download without telling the attacker.

Ethical problems arise in regard to initiating
deception, but most ethical theories endorse decep-
tion to protect against a serious harm [3, 15]. De-
struction of the functionality of a computer system
by an attacker can be argued to be such a serious
harm.

2. Deceptive excuses

Deception planning for information systems
can benefit from the experience of professionals
who plan deliberate deceptions on a routine basis.
The best examples are stage magicians and mili-
tary planners. Both note that plausibility is the key

to the effectiveness of a deception [8, 14, 24].
Plausibility is enhanced when deceptions fit into
familiar patterns [11]. This says that the good de-
ception planner must anticipate the false theories
that the deceived could likely believe and try to
encourage them. Examples from stage magic are
"magician can read minds" and "magician can
teleport objects"; examples from military planning
are "attack will be at the pass" and "enemy has
more resources than you do". Encouraging such
false theories or "excuses" exploits the tendency of
the human mind to easily see patterns where none
exist, an idea supported by the popularity of as-
trology and psychics.

2.1 Generic deceptive excuses

False excuses are a simple and effective form
of deception [20]. Good generic excuses for an
information system to refuse to do something that
an attacker wants include:

1. "Communications breakdown": Com-
munications problems between the attacker and the
system cause systematic misinterpretation of at-
tacker commands. An example is dropping the
first character of every command line.

2. "System crash": A computer system
has stopped working.

3. "Software broken": Parts of the soft-
ware of a computer system are not working.

4. "Network down": A network connect-
ing the attacker to the target is not working.

5. "Buggy system": A system has bugs

that prevent it from working correctly. An exam-
ple would be the message "Cannot find executa-
ble" anytime the attacker attempts to execute a
system command.

6. "System testing": A system is being
tested or installed.
7. "Hacked": A system has been com-

promised and is now controlled by another at-
tacker. An example indicator would be a welcome
message to the system that mentions a hacker alias.

8. "Practical joker": A system is being
controlled by someone deliberately trying to irri-
tate the attacker. An example would be the mes-
sage "You lose, stupid!" with failure on attacker
commands.

9. "Policy enforcement": Security policy
prevents the actions from being accomplished. An
example would be refusal to download executables
in general when the real reason is that the particu-
lar executable has a known suspicious name.
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Besides these, two other hypotheses can be
held by an attacker: that deception is being prac-
ticed on them by the information system (the one
hypothesis we do not want them to have), and the
"null hypothesis" that the system is in normal op-
eration.

Each of these excuses has specific require-
ments for how they can be used:

. Communications  breakdown: Can
happen anytime with interactive software, espe-
cially new software. Should persist to the end of
the session, and perhaps over other sessions of the
same user.

. System crash: Can happen anytime.
Should persist for a significant duration.
. Software broken: Can happen after an

unusual command, to suggest the "you broke it"
hypothesis which plays on the attacker's sense of
guilt. Should persist for a long time but need not
be very consistent.

. Network down: Can happen with net-
work commands, and is most convincing for the
first network command of a session or first net-
work command involving considerable data trans-
fer. Should persist a while.

. Buggy system: Can happen with any
command used for the first time, and must be used
consistently from then on. Should persist a while.

. System testing: Similar to "buggy sys-
tem".

. Hacked: Can happen with any com-
mand involving basic facilities of the operating
system. Should persist a long time.

. Practical joker: Can happen anytime it
can be manifested in verbal abuse of the attacker.
This excuse can be quixotic, appearing and disap-
pearing inconsistently.

. Policy enforcement: Must happen con-
sistently from the start of a session. Should persist
a long time.

2.2 A probabilistic model of belief and
suspicion

Since it is often good to suggest generic ex-
cuses indirectly, and system events may suggest
more than one generic excuse, it helpful to esti-
mate the probability of an attacker's belief in an
excuse. We will use a Bayesian belief-update
model since Bayesian models are often the sim-
plest for many applications. This is motivated not
so much by the belief that people do classical
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Bayesian reasoning as the observation that Bayes-
ian methods are flexible enough to be tailored to
many situations. This approach is influenced by
the theory of trust in [22] which postulates that
trust is a bet on future contingencies. Our ap-
proach to deception modeling can be contrasted
with the more linguistic approach of [7], the sim-
ple set-theoretic one of [16], or the three-valued
"subjective logic" of [13] which distinguishes be-
lief, disbelief, and uncertainty.

We assume the attacker or information system
formulates general hypotheses about whom with
which they interact, from the results of their com-
mands. The key hypotheses we will label as:

e H,,H,,H ;,etc.: the hypothesis by
the attacker of each of the generic excuses;

. H ,, the hypothesis by the attacker that
deception is being practiced on it by the informa-
tion system;

. H , , the hypothesis by the attacker that
the system is behaving normally; and

. H, , the hypothesis by the information
system that its user is malicious.

Then their probability of belief in the hypothe-
sis H as a function of the previous evidence E and
the current evidence £, can be calculated from its
odds o(H |(E, & E)) in the odds form of
Bayes' Rule as:
o(H|E)p(E, |(H&E))/ p(E, |(~ H&E))
where 0(X) = p(X)/(1- p(X))andpis
probability. Since all the hypotheses considered
here are rare occurrences on computer systems, we
can eliminate the ~H term to get:

o(H | E)p(E, | (H & E))/ p(E, | E).
When E is not associated with the hypothesis, such
as the action of opening a local file normally and
the hypothesis "network is down",
P(E,|(H&E))=p(E, | E) and the odds of

H are not changed by the evidence.

For example, consider the attacker's hypothesis
that the network is experiencing problems. If the
attacker requests something requiring the network
and it fails to happen, it could be that they did it
incorrectly or the report of failure is incorrect. So
let us suppose the attacker believes with a priori
probability 0.1 that the network is down, they try
to download a file, and it fails to appear in the des-
tination directory although no error messages ap-
pear. Assume that the probability that the file
failed to appear and no error message appeared
when the network is down is 0.5, and the probabil-
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ity of those two things when the network is not
down is 0.1. Then the odds of network being
down is (0.1/(1-0.1)*0.5/0.1 = 0.56, which corre-
sponds to a probability of 0.36, so the probability
increased significantly.

2.3 Estimating the attacker's hypothesis
probabilities

To use this model we need to calculate prob-
abilities for three rather different things, each of
which needs different methods.

First consider the excuse hypotheses. The evi-
dence we show an attacker for each of them should
be strong; for instance, the message "The network
is down" is strong support for the hypothesis that
the network is down. However, everyone familiar
with software knows that messages can be wrong,
as the software issuing the message may have bugs
or faulty information. In reverse, the excuse can
usually be constructed so that it always occurs in a
real system having that associated problem; for
instance, the same "network down" message can
be used that occurs when the network is actually
down. Then we have p(E, |(H, & E))=1
for all uses of the excuse, and
p(E, | E) = p(E)) for the first manifestation of
the excuse and 1 for uses of the excuse thereafter.
This gives
o(H, |(E, & E))=o(H,, | E)/ p(E,).
But in general,

o(H, |(E, & E)) =

o(H o | EYp(E, | (H , & E))/ p(E, | E) is
needed to cover cases such as those where "net-
work down" can be manifested by several different
error messages. The probability that the system is
behaving normally can be found as one minus the
sum of the all generic-excuse probabilities and the
deception probability.

For the probabilities that the system has for the
user being malicious /7, , we can also use Bayes'
Rule. However, better estimates can be obtained
from an intrusion-detection system [17] if we have
one. We can use reports from a network-based
system for outsiders and a host-based system for
insiders. Anomalies can be mapped to a probabil-
ity of being malicious through expert-systems
methodology; misuse signatures can be mapped to
large but not certain probabilities. However, if we
have detailed knowledge of the plan of particular
attacks, we can do better in recognizing when they

are being used from observing sequences of user
actions.

For the probability that the attacker perceives
that he or she is being deceived, this will depend
somewhat on the personality of the attacker and
their experience. Nonetheless, much of the esti-
mate of the probability can be based on what the
attacker sees at the time of their attack, since rarely
do attackers have reason to be suspicious, and ex-
periments have shown that people are poor detec-
tors of deliberate deception [9]. We postulate that
the attacker will be suspicious proportional to the
suspiciousness of the systems' responses to them,
which is a function of the appropriateness and fre-
quency of the response in the circumstances. So
for instance, an attacker trying to download a sus-
picious file will be more suspicious after a "router
error" message than a "network down" message
because router errors are rarely announced. We
also expect an attacker to be suspicious propor-
tional to the likelihood that a defender will use
deception. For instance, if it is known that the
defender uses honeypots, the attacker will be more
suspicious of an inability to export attacks than
otherwise. Finally, we postulate that the attacker
will be suspicious of the system proportional to the
attacker's self-perception of their own suspicious-
ness, since the more obvious the attacker's attack,
the more they expect some retaliation. For exam-
ple, we expect an attacker to be more suspicious of
an error message after an attempt to copy the sys-
tem password file than after an attempt to copy one
of their own text files. In part this is what psychia-
trists call "projection" of the attacker's own self-
assessment onto other people, and in part this is a
pragmatic assessment that dishonesty usually is
found out.

There are also two distinct ways for attackers
to assess their own suspiciousness for the last fac-
tor above: In what just happened (a local measure),
or in the cumulative impact of everything that
happened (a global measure). Copying the pass-
word file would be a single suspicious action;
downloading 1000 documents to an external site
would be a cumulative action. Attackers will dif-
fer as to how they weight the two measures. For
instance, suppose an attacker copies the password
file, runs a cracker program on it, tries to down-
load it to another computer, and receives the error
message that "The network is down." This would
be much less suspicious to an attacker with a high
weight on the local measure than copying the
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the password file and immediately getting the error
message. So if ¢ is the weight on the local meas-
ure, our model of attacker suspiciousness is:
c*[p(H,, |(E, &E)-p(H, | E)]
+(1=9)lp(H, |(E, & E))]

=pH, |(E, &E)-c*p(H, | E)

The three abovementioned factors for suspi-
ciousness are generally independent, so it makes
sense to multiply them to get an overall suspi-
ciousness measure. Then our model is:

Ap(H, | (E, & E)) =

[p(H, |(E, &E))-c*p(H, | E)]*

p(H,|H,)*p(H,
where E includes both the event of the attacker's

nth action and the system's nth response.

We use a delta in the above equation because
we believe distrust is additive. Many writers have
noted that trust and distrust are asymmetric. Both
[22], from a qualitative perspective, and [13], from
a quantitative perspective, model trust as easily
increasing and decreasing with circumstances, but
distrust as something that generally only increases
since incidents creating distrust are remembered
for a long time as traumatic. So we should use the
preceding formula as a positive amount by which
to increase the probability of deception. To pre-
vent it exceeding 1.0, we can use the formula for
disjunctive combination of independent probabili-
ties:

(|
Xt BP0 = apan, | (B, & By

We can compare this value to the probabilities
estimated for the other hypotheses by the attacker.
If the "normal behavior" hypothesis is strongest,
the attacker should stay logged in. If the total
strength of the generic excuses is stronger than
either the "normal behavior" or "deception" hy-
potheses, the attacker should give up and go else-
where, since they mean that attacker goals will
never be achieved. But if the deception hypothesis
is the strongest, that is bad: The attacker will likely
stay logged in and cause new kinds of mischief.
We must design our deceptions to prevent this.

2.4 Estimating the parameters

The parameters necessary to apply the above
formulae can be obtained from human subjects by
giving them scenarios and asking them to estimate
the probability of a given hypothesis. This is es-

pecially useful for our special model of the decep-
tion hypothesis. We can ask subjects to estimate
probabilities in the same situation but with differ-
ent responses by the system, or different situations
with the same responses, to approximate key pa-
rameters easily. The probabilities for /1, come
from an intrusion-detection system, and the a pri-
ori suspiciousness of an action comes from statis-
tics of typical user behavior on the system.

We administered a questionnaire to 11 subjects
to do this estimation, 7 students and 4 faculty
knowledgeable about information security (see the
Appendix for the questionnaire and results). We
gave them six scenarios involving an attacker on a
computer system, each three or four steps long,
and asked them to estimate the probability the at-
tacker was being deceived by the system at each
step. There were clear individual differences in
the responses, ranging from an average of 0.10 for
a tolerant subject to 0.77 for a suspicious one.
Nonetheless, the average response to each question
over the subjects was a consistent indicator, and
was consistent with our theory presented above. In
particular, an estimate of c¢/(1-c) can be obtained
from the ratio (2b-2a)/(3¢c-3b), so ¢ was 0.51 for
our subjects. Note that the monotonically increas-
ing nature of distrust was substantially confirmed:
In all but the last two questions (for which a mis-
understanding may have been involved as to
whether the estimate was cumulative), suspicion
increased monotonically through the sequences.

2.5 An example

As an example, consider sequence 3 from the
questionnaire. An attacker logs into a computer
system, tries to copy an executable to the system
binary directory, gets a protection-violation error
message, tries to transfer the file to another site,
and gets the last character of their command de-
leted by the system. Then they try to list their
home directory and again get the last character of
their command deleted. Table 1 shows our esti-
mates of four attacker hypothesis probabilities in
this situation: the probability of a buggy system
(pb), the probability that communications defaults
are set wrong (pc), the probability that the attacker
is being deceived (pd), and the probability that
everything is normal (pn, assuming no other hy-
potheses are possible here). Probabilities are given
just after the command response.
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Table 1: Example of hypothesis probabilities.

Command |Response |pb [pc [pd [pn

1: Log in Normal .010 1.010].000 |.980
2: Copy ex-|Protection [.015 |.010[.020 |.955
ecutable to|error
bin directory
3:  Transfer|Communi- |.018 |.020|.033 [.929
executable |cations
externally  |error

4: List home|Communi- |.035 |.091 (.033 |.841
directory cations
error

Here we assume the a priori probability of the
first three hypotheses were 0.01, 0.01, and 0.00,
the ratios of probability of each event given a
buggy system to its a priori probability were 1.0,
1.5, 1.2, and 2.0, and the ratios given communica-
tions defaults were wrong were 1.0, 1.0, 2.0, and
5.0. That is, protection errors for the "bin" direc-
tory are a little suspicious, and this kind of com-
munications error is also suspicious (especially in
listing a home directory); but all other actions ap-
pear close to normal system behavior.

The probability that the user was malicious
based on their actions was assumed to be 0.00,
0.20, 0.10, and 0.00 respectively from each action
alone. Assume the probability of maliciousness is
additive (as is often true for low probabilities).
Then the probability the user is malicious is 0.00
after step 1, 0.20 after step 2, and 0.30 after steps 3
and 4; the probability the user thinks that they ap-
pear malicious, using ¢=0.51, is 0.00 after step 1,
0.20 after step 2, 0.25 after step 3, and 0.15 after
step 4.

Assume the probability of deception given that
the system observes malicious behavior is 0.5 (the
attacker could estimate this by recalling how many
honeypots they have visited). The probability the
system is using deception is then 0.00 after step 1,
0.02 after step 2, 0.02+0.0125=0.033 after step 3,
and 0.033+0=0.033 after step 4. So deception by
the system should not seem likely given the uncer-
tainty of maliciousness and the lack of immediate
correlation to the attacker's suspicious actions. So
normal system operation is the most likely hy-
pothesis, and we expect the user to continue with
the system for a while.

2.6 Two theorems

The model developed above has several impli-
cations for finding the best way to deceive an at-
tacker.

Theorem 1 (Legitimate-user penalty). Assume
that the probability of a malicious user at some
point is p, , the benefit of preventing a malicious
user from achieving their ends is ¢, , and the cost
of preventing a nonmalicious user from achieving
their ends is ¢, . Then prevention of the attack is
desirable at that point by even partially successful
means if p, >c, /(c, +c, ). Proof: Then the
expected benefit of preventing an unknown user
from achieving their ends is
p.c, —(—=p, )c,. Thiswill be positive when
p,, >c,/(c, +c,). If prevention of the attack
has only a probability of success (as by a decep-
tion), that probability multiplies a positive number
¢,, and still leaves a positive number. QED.

An important issue for the defender is when to
stage deceptions. The following gives a useful
criterion for delaying them, simplifying the num-
ber of places we need to consider.

Theorem 2 (Excuse delay): Assume the model
of attacker belief in generic excuses and deception
given in section 2.3. Assume we can apply a ge-
neric excuse as justification for failure to execute a
user command at some state S after which the user
has just done something suspicious, or we could
apply it at state S2 which follows S and a subse-
quent action A by the user. It is always preferable
to apply the excuse to S2 provided A is not suspi-
cious and does not increase damage to the system.
Proof: If A is not suspicious, then
p(H, |(E, & E))~c* p(H, | E) will be
less after S2 because the subtracted term will be
larger. At the same time, the p(H, | H, ) term
will be unchanged because it is a characteristic of
the defender's general psychology, and the
p(H, | E,) term will be unchanged because the
deceptive response will be the same. In addition,
the longer one can wait, the more accurate can be
one's assessment of whether a user is malicious,
and the less likelihood of penalizing an innocent
user. QED.
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3. Implementation
3.1 The modeling approach

To be most effective in using deceptions
against attackers, we should anticipate what they
will do using attack models such as that of [23]. In
[18] we used a hierarchical-planning approach
where attackers had goals and subgoals, and knew
methods that could possibly achieve them. Our
approach postulates a set of actions (e.g. login,
copy file across the network, execute buffer over-
flow, decompress, erase system logs), each with a
set of preconditions and postconditions. Postcon-
ditions can be random and/or contextual. In addi-
tion, each action has goals for which they can be
recommended.

The clearest way to specify this information
about actions is in predicate calculus. Then find-
ing a plan can be done with resolution theorem
proving, or in most cases, logic programming like
Prolog. But this is computationally expensive
since finding such a plan in general is an NP-hard
problem; we need to be able to quickly foil attack-
ers. So we instead run the action specifications
and planning machinery many times to create an
approximate Markov model of attacks. This is a
large graph with nodes labeled with the states
found in the runs and the transitions representing
actions; probabilities on the branches are propor-
tional to the observed frequencies. Such a graph
simplifies tracking attackers, although they can
digress temporarily from it. Such a graph is an
approximation of the plan space since it cannot
represent variables and quantification, nor most
rare possibilities. Nonetheless, it can represent
most possible attack phenomena.

3.2 Generating an example graph for a
rootkit attack model

To test the ideas proposed, we used an example
attack model we built for the main steps of the
classic hacker strategy of installing a rootkit on a
computer system. It has 19 types of actions that
can be instantiated to 93 distinct actions. The
predicate-calculus specifications refer to 115 dis-
tinct facts (and in some cases their negations), and
permit 13 kinds of random events.

To generate the Markov graph, we ran the
predicate-calculus planning specifications 500

times using our planning software written in
Prolog. The goals of the plans were to install the
rootkit and a backdoor and then log out, and the
system being attacked was considered predictable
(so no errors or deceptions were considered). We
chose random starting states from a set of 3072
intuitively reasonable ones. Besides the random-
ness introduced by random events, each action's
duration was determined by an evenly distributed
random variable on a specified range. These three
kinds of randomness resulted in 21,720 states in
the 500 runs, of which 10,276 were distinct, for an
average of 42.4 steps per run. The latter were used
to build a Markov model of 10,276 nodes and
10,103 branches.

3.3 Choosing where to apply generic
excuses

Each generic excuse of section 2.1 can only be
begun or used at particular branches in the Markov
state graph because the excuse must be causally
related to the preconditions and postconditions of
the action. Much of this can be checked automati-
cally with the predicate-calculus specifications of
the actions. For instance, the generic excuse "ftp
software broken" only affects actions of initiating
and closing FTP connections and making file
transfers, since they are the only actions with a
precondition that the ftp software is working.

Other generic excuses apply to all actions but
are particular about when they are initiated. For
instance, "communications breakdown" and "net-
work down" should be used for every applicable
communications or network command once started
-- but to be convincing, they should start with suf-
ficiently complex commands that could cause their
failures, like runs of new executables. "Communi-
cations breakdown" is most likely when changing
communications defaults in login or changing ac-
counts; "network down" is most likely in transfer-
ring large files across the network.

Finally, broad generic excuses like "buggy sys-
tem" and "system testing" tend to be long-term
problems.  Thus, they are not very convincing
when initiated after a session has started, and
should only be a last resort. But they can be used
effectively if a system has advance knowledge of
certain kinds of attacks by from warnings by sib-
ling sites about ports and methods of entry.
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For our specific state graph for rootkit installa-
tion and a buffer overflow, initial suspiciousness of
the attacker's actions is low until a buffer overflow
is done. Thus Theorem 1 rules out deception be-
fore the overflow, a total of 684 branches. 2760
subsequent attacker actions are ruled out since
only defender actions can involve deception, and
116 are ruled out as occurring too late (after the
rootkit has been installed). 1506 of the remaining
branches are ruled out by Theorem 2 where they
are followed by less-suspicious attacker actions.
(The suspicious actions are overflowing the buffer,
obtaining root privileges, and installing the root-
kit.) This leaves 5210 branches as suitable starts of
a generally-applicable excuse, which then would
be offered consistently at every related attacker
command during the session. So we track users on
the attack graph and initiate deception if a user
reaches one of these 5210 branches. Some of
these commands will be better for certain excuses
than others, those whose actions are most semanti-
cally related to the excuse. It would also be a good
idea to vary the occurrence of the start of the ex-
cuse from session to session to avoid a different
kind of suspicious consistency, in an unexpected
event.

4. Related work

Deception plays an important routine role in
many important sectors of human activity, includ-
ing law, business, entertainment, and the military
[9]. It is important in military science and cyber-
attacks are a form of warfare. [8] divides military
deception into concealment, camouflage, demon-
strations, feints, ruses, disinformation, lies, dis-
plays, and exploitation of insights about the en-
emy. [19] argues that only the last three work well
for defense in cyberspace. Lies can concern sys-
tem resources and status; displays can show the
enemy things that aren't there; and insights can
figure how best to foil an attack plan. This paper
has focused on lies and insights, while other work
we have done has focused on false displays.

Stage magic provides many ideas about plan-
ning deceptions [14] and some of these provide
lessons for computer systems [24]. To perform
magical feats, at least one deception must occur in
an act, so the magician's goal is to conceal the nec-
essary deceptions as much as possible. Tactics
include creating dramatic structure, using consis-
tency in theme, manner, and characterization, con-

trolling pacing, controlling attention of the audi-
ence, using words and appearances carefully, and
using special magic devices. Nelms pays special
attention to "reducing departures", those things
necessary to the deception but which can arouse
suspicion in the audience. For instance, the magi-
cian may need a subject to choose a particular card
from a deck; having the magician supply their own
unshuffled deck would be an implausible depar-
ture, but having the subject inspect and shuffle the
deck and then substituting a different deck surrep-
titiously would be a lesser departure. Nelms'
analysis has inspired our approach of estimating
the implausibility of deceptions in planning.

For information security, defensive deception
has first been done for honeypots; [5] and [12]
provide two approaches to building them. Honey-
pots can be easy to recognize without deception,
since attackers can easily see a lack of normal file
structure and lack of temporary files indicating
activities like email, Web, and other forms of
Internet use. Most hackers today have heard about
honeypots, and will recognize these symptoms and
leave if they encounter them. This prevents de-
fenders from collecting useful data on them.

Because of this, [5] was first to propose delib-
erately deceptive activities on honeypot networks
to keep attackers busy. One way is to change the
router to recognize large numbers of fake IP ad-
dresses so the attacker will waste much time at-
tacking virtual systems. The virtual systems could
map to the same storage system, or virtual storage
could be generated according to a stochastic
grammar. Information for hackers to discover can
also be manually created, and revealed in stages, to
keep them interested [6]. How long will this fool
an attacker? Probably not long, because it is hard
to simulate an entire busy computer system, but it
helps for defending critical systems.

Other projects in information security are be-
ginning to examine deceptive tactics for defense.
[10] examines automatic methods for creating fake
documents for spies. [21] suggests delaying re-
sponses to suspicious commands to an operating
system. Planning against an adversary has been
introduced as "counterplanning" by [4] and applied
to military settings by [1]. Finally, [7] provides an
interesting alternative model of deception based on
ideas from natural-language processing that deals
more with the reasons why deception works than
our effects-based model.
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5. Conclusions

We have provided a theory for deception plan-
ning in defense of information systems. Our ap-
proach is to try to convince the attacker of a "ge-
neric excuse" which means that his or her attack
plan cannot succeed, so they will give up and go
away. To be effective, we must carefully plan
when and how to deceive, while monitoring the
attacker's beliefs in our proffered excuses. The
methodology proposed here is more likely to con-
vince an attacker than broad and unselective de-
ception as with honeypots, and more likely to de-
fend our systems. But we need to do further work
to test reactions of people to these deceptions.
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7. Appendix: Questionnaire and
average responses

Instructions: Suppose you are a hacker attacking a
computer system. At each step of the following
sequences, estimate the probability (on a scale of
0.0 to 1.0) that you have been deceived by the
computer system in some way. You can take into
account the previous steps of the sequence, but not
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the steps of different sequences.

Sequence 1: You log into a computer system. It
says that system testing is occurring and it may not
work properly.

(1a) Deception probability: .421

You edit a text file in your own directory and it
gives a strange error message.

(1b) Deception probability: .436

You try to transfer this file to another site on the
Intranet and it says the network connection is
down.

(1c) Deception probability: .450

Sequence 2: You log into a computer system. It
says that the network connection is down.

(2a) Deception probability: .318

You try to copy an executable in your own direc-
tory to the system binary directory and the last
character of your command is ignored.

(2b) Deception probability: .546

You try to transfer this file to another site on the
intranet and the last character of your command is
ignored.

(2c) Deception probability: .580

Sequence 3: You log into a computer system.
Messages are normal.

(3a) Deception probability: .187

You try to copy an executable in your own direc-
tory to the system binary directory and it gives a
protection violation and says it cannot save it.

(3b) Deception probability: .318

You try to transfer this file to another site on the
Intranet and the last character of your command is
ignored.

(3c) Deception probability: .536

You try to list your home directory and the last
character of your command is ignored.

(3d) Deception probability: .568

Sequence 4: You log into a computer system and
copy a file from a local intranet site to your home
directory on the computer system. All messages
are normal.

(4a) Deception probability: .182

You try to copy this file to the system binary direc-
tory and you get a protection-violation message.
(4b) Deception probability: .296

You issue a command to a system utility with an
unusual long argument containing lots of nulls.
The system gives a protection-violation message.
(4c) Deception probability: .391

You try to transfer another file from the other site

on the Intranet and it says the outgoing network
connection is down.
(4d) Deception probability: .694

Sequence 5: You log into a computer system and
copy an executable file from a local intranet site to
your home directory on the computer system. All
messages are normal.

(5a) Deception probability: .276

You do a listing of the directory you copied it to
and do not see it listed.

(5b) Deception probability: .513

You try the file transfer again. You do a listing of
the directory and again do not see it listed.

(5¢) Deception probability: .604

You try to copy the password file to the intranet
site. The system says the outgoing network con-
nection is down.

(5d) Deception probability: .623

Sequence 6: You use a buffer overflow to enter a
computer system via port 445 with root status.
You try to list the home directory and get a mes-
sage "System down".

(6a) Deception probability: .673

You ask what your login name is and it refuses
with the message "System down".

(6b) Deception probability: .723

You list the main binary directory with no error
message.

(6¢) Deception probability: .441

You ping port 80 (HTTP) and it appears to be run-
ning normally.

(6d) Deception probability: .427
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