
Designing Good Deceptions in Defense of Information Systems

Neil C. Rowe

Cebrowski Institute, U.S. Naval Postgraduate School

Code CS/Rp, 833 Dyer Road, Monterey CA 93943 USA

ncrowe@nps.edu

Abstract

Since attackers trust computer systems to tell
them the truth, it may be effective for those systems

to lie or mislead. This could waste the attacker's

resources while permitting time to organize a bet-
ter defense, and would provide a second line of

defense when access controls have been breached.

We propose here a probabilistic model of attacker
beliefs in each of a set of "generic excuses" (in-

cluding deception) for their inability to accomplish

their goals. We show how the model can be up-
dated by evidence presented to the attacker and

feedback from the attacker's own behavior. We

show some preliminary results with human sub-
jects supporting our theory. We show how this

analysis permits choosing appropriate times and

methods to deceive the attacker.

1. Introduction

Access controls are not currently doing a good

job of protecting computer systems as is witnessed

by the many attacks that can subvert controls. Ac-

cess controls have been studied for a long time,

and significant innovations are now rare. So it is

valuable to examine secondary "lines of defense"

for once access controls have been breached.

Intrusion-detection systems, computer foren-

sics, and honeypots [12] are secondary lines of

defense, but they are relatively passive and fo-

cused on data collection. Closing connections,

ports, and services automatically during attacks

stops them but tells the attacker we recognize the

attack and encourages a different attack. Trying to

trace connections from an attacker is very difficult

with most Internet routers and only really success-

ful within a subnetwork with specialized router

software. Counterattacks are generally illegal and

unlikely to find the right target given the difficulty

of tracing connections.

One second line of defense does avoid these

disadvantages, however: deception. Information

systems could lie, cheat, and mislead attackers to

prevent them from achieving their goals [19].

Since people expect computers to tell them the

truth, such deception can be very effective with

minimal resources. Deception is particularly im-

portant with time-critical military-style attacks

such as those by cyber-terrorists or state-sponsored

information-warfare teams, where just delaying the

attack with deceptions could be critical while find-

ing a permanent defense. Deception also can be

equally effective with attacks by insiders as well as

outsiders.

Most attacks on computer systems use some

form of deception. Classic methods include mas-

querading as someone or something (like a system

administrator, an audio file, or an IP address), con-

cealing unexpected components within something

innocuous (like Trojan horses), and asking for un-

needed resources (like denial-of-service attacks).

So it seems fair to respond to attackers with similar

methods. Deception is a common feature of hu-

man nature and it occurs frequently in animals and

plants in many visual and behavioral forms [2].

As a defensive tool for information systems,

deception has been used in honeypots [5] and

honeynets as a way to keep the attacker busy.

Honeypots are systems with no purpose except to

encourage attacks so data can be collected, and

honeynets are networks of honeypots. Deceptions

like fake files are used in some honeypots to keep

attackers interested for a while. But we want to

explore more sophisticated deceptions, and we

want deceptions on ordinary computers where they

could protect those systems – honeypots don't try

to fend off most attacks.

We have been studying the more general prob-

lem of providing deceptive behavior for the protec-

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

tion of computer systems and networks. Deception

is a way to foil attacks much like directly fighting

them off. Deception may convince an enemy to go

away without any fight. Using an intrusion-

detection system, we monitor user behavior for

suspiciousness. As suspiciousness increases, we

first provide minimum deceptive measures, and

then increase their frequency and severity. The

trick is to use deception sparingly and consistently

to keep the attacker fooled as long as possible,

tying up their resources while reducing their

chances of successful attack. To do this, we need

some planning. Deception is only useful when we

are at least moderately sure we are under attack

since otherwise we risk hurting legitimate users

(see section 2.6). But deception may be useful

even when we are very sure of an attack, as a de-

laying tactic, although on non-honeypots it may be

safer to disconnect the attacker.

Some examples of these kinds of deceptions

that we have implemented are [18, 19]:

A Web site that, when under denial-of-

service attack from too many processing requests,

delays still further in responding to those requests

to give the impression that it is more affected by

the attack than it really is.

A Web site that provides files of data

compiled at random from real files to confuse

spies into seeing nonexistent connections.

A file-transfer utility that, when it sees

a signature of a common attack, pretends to suc-

cumb by responding in the same way an affected

system would.

An operating system that, when it rec-

ognizes an attacker is downloading a rootkit to

install on it, deletes the rootkit some time after

download without telling the attacker.

Ethical problems arise in regard to initiating

deception, but most ethical theories endorse decep-

tion to protect against a serious harm [3, 15]. De-

struction of the functionality of a computer system

by an attacker can be argued to be such a serious

harm.

2. Deceptive excuses

Deception planning for information systems

can benefit from the experience of professionals

who plan deliberate deceptions on a routine basis.

The best examples are stage magicians and mili-

tary planners. Both note that plausibility is the key

to the effectiveness of a deception [8, 14, 24].

Plausibility is enhanced when deceptions fit into

familiar patterns [11]. This says that the good de-

ception planner must anticipate the false theories

that the deceived could likely believe and try to

encourage them. Examples from stage magic are

"magician can read minds" and "magician can

teleport objects"; examples from military planning

are "attack will be at the pass" and "enemy has

more resources than you do". Encouraging such

false theories or "excuses" exploits the tendency of

the human mind to easily see patterns where none

exist, an idea supported by the popularity of as-

trology and psychics.

2.1 Generic deceptive excuses

False excuses are a simple and effective form

of deception [20]. Good generic excuses for an

information system to refuse to do something that

an attacker wants include:

1. "Communications breakdown": Com-

munications problems between the attacker and the

system cause systematic misinterpretation of at-

tacker commands. An example is dropping the

first character of every command line.

2. "System crash": A computer system

has stopped working.

3. "Software broken": Parts of the soft-

ware of a computer system are not working.

4. "Network down": A network connect-

ing the attacker to the target is not working.

5. "Buggy system": A system has bugs

that prevent it from working correctly. An exam-

ple would be the message "Cannot find executa-

ble" anytime the attacker attempts to execute a

system command.

6. "System testing": A system is being

tested or installed.

7. "Hacked": A system has been com-

promised and is now controlled by another at-

tacker. An example indicator would be a welcome

message to the system that mentions a hacker alias.

8. "Practical joker": A system is being

controlled by someone deliberately trying to irri-

tate the attacker. An example would be the mes-

sage "You lose, stupid!" with failure on attacker

commands.

9. "Policy enforcement": Security policy

prevents the actions from being accomplished. An

example would be refusal to download executables

in general when the real reason is that the particu-

lar executable has a known suspicious name.

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Besides these, two other hypotheses can be

held by an attacker: that deception is being prac-

ticed on them by the information system (the one

hypothesis we do not want them to have), and the

"null hypothesis" that the system is in normal op-

eration.

Each of these excuses has specific require-

ments for how they can be used:

Communications breakdown: Can

happen anytime with interactive software, espe-

cially new software. Should persist to the end of

the session, and perhaps over other sessions of the

same user.

System crash: Can happen anytime.

Should persist for a significant duration.

Software broken: Can happen after an

unusual command, to suggest the "you broke it"

hypothesis which plays on the attacker's sense of

guilt. Should persist for a long time but need not

be very consistent.

Network down: Can happen with net-

work commands, and is most convincing for the

first network command of a session or first net-

work command involving considerable data trans-

fer. Should persist a while.

Buggy system: Can happen with any

command used for the first time, and must be used

consistently from then on. Should persist a while.

System testing: Similar to "buggy sys-

tem".

Hacked: Can happen with any com-

mand involving basic facilities of the operating

system. Should persist a long time.

Practical joker: Can happen anytime it

can be manifested in verbal abuse of the attacker.

This excuse can be quixotic, appearing and disap-

pearing inconsistently.

Policy enforcement: Must happen con-

sistently from the start of a session. Should persist

a long time.

2.2 A probabilistic model of belief and

suspicion

Since it is often good to suggest generic ex-

cuses indirectly, and system events may suggest

more than one generic excuse, it helpful to esti-

mate the probability of an attacker's belief in an

excuse. We will use a Bayesian belief-update

model since Bayesian models are often the sim-

plest for many applications. This is motivated not

so much by the belief that people do classical

Bayesian reasoning as the observation that Bayes-

ian methods are flexible enough to be tailored to

many situations. This approach is influenced by

the theory of trust in [22] which postulates that

trust is a bet on future contingencies. Our ap-

proach to deception modeling can be contrasted

with the more linguistic approach of [7], the sim-

ple set-theoretic one of [16], or the three-valued

"subjective logic" of [13] which distinguishes be-

lief, disbelief, and uncertainty.

We assume the attacker or information system

formulates general hypotheses about whom with

which they interact, from the results of their com-

mands. The key hypotheses we will label as:

etc.: the hypothesis by

the attacker of each of the generic excuses;

,,, 321 eee HHH

, the hypothesis by the attacker that

deception is being practiced on it by the informa-

tion system;

dH

, the hypothesis by the attacker that

the system is behaving normally; and
nH

, the hypothesis by the information

system that its user is malicious.
mH

Then their probability of belief in the hypothe-

sis H as a function of the previous evidence E and

the current evidence can be calculated from its

odds in the odds form of

Bayes' Rule as:

nE
))E&(|(EHo n

))&(~|(/))&(|()|(EHEpEHEpEHo nn

))(1/()()(XpXpXowhere and p is

probability. Since all the hypotheses considered

here are rare occurrences on computer systems, we

can eliminate the ~H term to get:

.

When E is not associated with the hypothesis, such

as the action of opening a local file normally and

the hypothesis "network is down",

)|(/))&(|()|(EEpEHEpEHo nn

)|())&(|(EEpEHEp nn and the odds of

H are not changed by the evidence.

For example, consider the attacker's hypothesis

that the network is experiencing problems. If the

attacker requests something requiring the network

and it fails to happen, it could be that they did it

incorrectly or the report of failure is incorrect. So

let us suppose the attacker believes with a priori

probability 0.1 that the network is down, they try

to download a file, and it fails to appear in the des-

tination directory although no error messages ap-

pear. Assume that the probability that the file

failed to appear and no error message appeared

when the network is down is 0.5, and the probabil-

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

ity of those two things when the network is not

down is 0.1. Then the odds of network being

down is (0.1/(1-0.1)*0.5/0.1 = 0.56, which corre-

sponds to a probability of 0.36, so the probability

increased significantly.

2.3 Estimating the attacker's hypothesis

probabilities

To use this model we need to calculate prob-

abilities for three rather different things, each of

which needs different methods.

First consider the excuse hypotheses. The evi-

dence we show an attacker for each of them should

be strong; for instance, the message "The network

is down" is strong support for the hypothesis that

the network is down. However, everyone familiar

with software knows that messages can be wrong,

as the software issuing the message may have bugs

or faulty information. In reverse, the excuse can

usually be constructed so that it always occurs in a

real system having that associated problem; for

instance, the same "network down" message can

be used that occurs when the network is actually

down. Then we have 1))&(|(EHEp ekn

for all uses of the excuse, and

for the first manifestation of

the excuse and 1 for uses of the excuse thereafter.

This gives

)()|(nn EpEEp

)(/)|())&(|(neknek EpEHoEEHo .

But in general,

))&(|(EEHo nek

(|()|(HEpEHo nek)|(/))& EEpE nek is

needed to cover cases such as those where "net-

work down" can be manifested by several different

error messages. The probability that the system is

behaving normally can be found as one minus the

sum of the all generic-excuse probabilities and the

deception probability.

For the probabilities that the system has for the

user being malicious , we can also use Bayes'

Rule. However, better estimates can be obtained

from an intrusion-detection system [17] if we have

one. We can use reports from a network-based

system for outsiders and a host-based system for

insiders. Anomalies can be mapped to a probabil-

ity of being malicious through expert-systems

methodology; misuse signatures can be mapped to

large but not certain probabilities. However, if we

have detailed knowledge of the plan of particular

attacks, we can do better in recognizing when they

are being used from observing sequences of user

actions.

mH

For the probability that the attacker perceives

that he or she is being deceived, this will depend

somewhat on the personality of the attacker and

their experience. Nonetheless, much of the esti-

mate of the probability can be based on what the

attacker sees at the time of their attack, since rarely

do attackers have reason to be suspicious, and ex-

periments have shown that people are poor detec-

tors of deliberate deception [9]. We postulate that

the attacker will be suspicious proportional to the

suspiciousness of the systems' responses to them,

which is a function of the appropriateness and fre-

quency of the response in the circumstances. So

for instance, an attacker trying to download a sus-

picious file will be more suspicious after a "router

error" message than a "network down" message

because router errors are rarely announced. We

also expect an attacker to be suspicious propor-

tional to the likelihood that a defender will use

deception. For instance, if it is known that the

defender uses honeypots, the attacker will be more

suspicious of an inability to export attacks than

otherwise. Finally, we postulate that the attacker

will be suspicious of the system proportional to the

attacker's self-perception of their own suspicious-

ness, since the more obvious the attacker's attack,

the more they expect some retaliation. For exam-

ple, we expect an attacker to be more suspicious of

an error message after an attempt to copy the sys-

tem password file than after an attempt to copy one

of their own text files. In part this is what psychia-

trists call "projection" of the attacker's own self-

assessment onto other people, and in part this is a

pragmatic assessment that dishonesty usually is

found out.

There are also two distinct ways for attackers

to assess their own suspiciousness for the last fac-

tor above: In what just happened (a local measure),

or in the cumulative impact of everything that

happened (a global measure). Copying the pass-

word file would be a single suspicious action;

downloading 1000 documents to an external site

would be a cumulative action. Attackers will dif-

fer as to how they weight the two measures. For

instance, suppose an attacker copies the password

file, runs a cracker program on it, tries to down-

load it to another computer, and receives the error

message that "The network is down." This would

be much less suspicious to an attacker with a high

weight on the local measure than copying the

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

the password file and immediately getting the error

message. So if c is the weight on the local meas-

ure, our model of attacker suspiciousness is:

)]|())&(|([* EHpEEHpc mnm

))]&(|()[1(EEHpc nm

|(*))&(|(HpcEEHp mnm)E

The three abovementioned factors for suspi-

ciousness are generally independent, so it makes

sense to multiply them to get an overall suspi-

ciousness measure. Then our model is:

))&(|(EEHp nd

))&(|([EEHp nm *)]|(* EHpc m

)|(*)|(ndmd EHpHHp

Ewhere includes both the event of the attacker's

nth action and the system's nth response.

n

H

We use a delta in the above equation because

we believe distrust is additive. Many writers have

noted that trust and distrust are asymmetric. Both

[22], from a qualitative perspective, and [13], from

a quantitative perspective, model trust as easily

increasing and decreasing with circumstances, but

distrust as something that generally only increases

since incidents creating distrust are remembered

for a long time as traumatic. So we should use the

preceding formula as a positive amount by which

to increase the probability of deception. To pre-

vent it exceeding 1.0, we can use the formula for

disjunctive combination of independent probabili-

ties:

))&(|(EEHp nd

1(*))|(1(1 EHp d))&(|(EEHp nd

We can compare this value to the probabilities

estimated for the other hypotheses by the attacker.

If the "normal behavior" hypothesis is strongest,

the attacker should stay logged in. If the total

strength of the generic excuses is stronger than

either the "normal behavior" or "deception" hy-

potheses, the attacker should give up and go else-

where, since they mean that attacker goals will

never be achieved. But if the deception hypothesis

is the strongest, that is bad: The attacker will likely

stay logged in and cause new kinds of mischief.

We must design our deceptions to prevent this.

2.4 Estimating the parameters

The parameters necessary to apply the above

formulae can be obtained from human subjects by

giving them scenarios and asking them to estimate

the probability of a given hypothesis. This is es-

pecially useful for our special model of the decep-

tion hypothesis. We can ask subjects to estimate

probabilities in the same situation but with differ-

ent responses by the system, or different situations

with the same responses, to approximate key pa-

rameters easily. The probabilities for come

from an intrusion-detection system, and the a pri-

ori suspiciousness of an action comes from statis-

tics of typical user behavior on the system.

m

We administered a questionnaire to 11 subjects

to do this estimation, 7 students and 4 faculty

knowledgeable about information security (see the

Appendix for the questionnaire and results). We

gave them six scenarios involving an attacker on a

computer system, each three or four steps long,

and asked them to estimate the probability the at-

tacker was being deceived by the system at each

step. There were clear individual differences in

the responses, ranging from an average of 0.10 for

a tolerant subject to 0.77 for a suspicious one.

Nonetheless, the average response to each question

over the subjects was a consistent indicator, and

was consistent with our theory presented above. In

particular, an estimate of c/(1-c) can be obtained

from the ratio (2b-2a)/(3c-3b), so c was 0.51 for

our subjects. Note that the monotonically increas-

ing nature of distrust was substantially confirmed:

In all but the last two questions (for which a mis-

understanding may have been involved as to

whether the estimate was cumulative), suspicion

increased monotonically through the sequences.

2.5 An example

As an example, consider sequence 3 from the

questionnaire. An attacker logs into a computer

system, tries to copy an executable to the system

binary directory, gets a protection-violation error

message, tries to transfer the file to another site,

and gets the last character of their command de-

leted by the system. Then they try to list their

home directory and again get the last character of

their command deleted. Table 1 shows our esti-

mates of four attacker hypothesis probabilities in

this situation: the probability of a buggy system

(pb), the probability that communications defaults

are set wrong (pc), the probability that the attacker

is being deceived (pd), and the probability that

everything is normal (pn, assuming no other hy-

potheses are possible here). Probabilities are given

just after the command response.

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Table 1: Example of hypothesis probabilities. 2.6 Two theorems

Command Response pb pc pd pn

1: Log in Normal .010 .010 .000 .980

2: Copy ex-

ecutable to

bin directory

Protection

error

.015 .010 .020 .955

3: Transfer

executable

externally

Communi-

cations

error

.018 .020 .033 .929

4: List home

directory

Communi-

cations

error

.035 .091 .033 .841

The model developed above has several impli-

cations for finding the best way to deceive an at-

tacker.

Theorem 1 (Legitimate-user penalty). Assume

that the probability of a malicious user at some

point is , the benefit of preventing a malicious

user from achieving their ends is , and the cost

of preventing a nonmalicious user from achieving

their ends is . Then prevention of the attack is

desirable at that point by even partially successful

means if

mp

mp

mc

nc

c)/(mnn cc

mp

. Proof: Then the

expected benefit of preventing an unknown user

from achieving their ends is

nc)mmcp 1(. This will be positive when

)mc/(n cnm cp

mc

. If prevention of the attack

has only a probability of success (as by a decep-

tion), that probability multiplies a positive number

and still leaves a positive number. QED.

Here we assume the a priori probability of the

first three hypotheses were 0.01, 0.01, and 0.00,

the ratios of probability of each event given a

buggy system to its a priori probability were 1.0,

1.5, 1.2, and 2.0, and the ratios given communica-

tions defaults were wrong were 1.0, 1.0, 2.0, and

5.0. That is, protection errors for the "bin" direc-

tory are a little suspicious, and this kind of com-

munications error is also suspicious (especially in

listing a home directory); but all other actions ap-

pear close to normal system behavior.

An important issue for the defender is when to

stage deceptions. The following gives a useful

criterion for delaying them, simplifying the num-

ber of places we need to consider.
The probability that the user was malicious

based on their actions was assumed to be 0.00,

0.20, 0.10, and 0.00 respectively from each action

alone. Assume the probability of maliciousness is

additive (as is often true for low probabilities).

Then the probability the user is malicious is 0.00

after step 1, 0.20 after step 2, and 0.30 after steps 3

and 4; the probability the user thinks that they ap-

pear malicious, using c=0.51, is 0.00 after step 1,

0.20 after step 2, 0.25 after step 3, and 0.15 after

step 4.

Theorem 2 (Excuse delay): Assume the model

of attacker belief in generic excuses and deception

given in section 2.3. Assume we can apply a ge-

neric excuse as justification for failure to execute a

user command at some state S after which the user

has just done something suspicious, or we could

apply it at state S2 which follows S and a subse-

quent action A by the user. It is always preferable

to apply the excuse to S2 provided A is not suspi-

cious and does not increase damage to the system.

Proof: If A is not suspicious, then

)|(*))&(|(EHpcEEHp mnm will be

less after S2 because the subtracted term will be

larger. At the same time, the term

will be unchanged because it is a characteristic of

the defender's general psychology, and the

 term will be unchanged because the

deceptive response will be the same. In addition,

the longer one can wait, the more accurate can be

one's assessment of whether a user is malicious,

and the less likelihood of penalizing an innocent

user. QED.

)|(md HHp

)|(nd EHp

Assume the probability of deception given that

the system observes malicious behavior is 0.5 (the

attacker could estimate this by recalling how many

honeypots they have visited). The probability the

system is using deception is then 0.00 after step 1,

0.02 after step 2, 0.02+0.0125=0.033 after step 3,

and 0.033+0=0.033 after step 4. So deception by

the system should not seem likely given the uncer-

tainty of maliciousness and the lack of immediate

correlation to the attacker's suspicious actions. So

normal system operation is the most likely hy-

pothesis, and we expect the user to continue with

the system for a while.

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

3. Implementation

3.1 The modeling approach

To be most effective in using deceptions

against attackers, we should anticipate what they

will do using attack models such as that of [23]. In

[18] we used a hierarchical-planning approach

where attackers had goals and subgoals, and knew

methods that could possibly achieve them. Our

approach postulates a set of actions (e.g. login,

copy file across the network, execute buffer over-

flow, decompress, erase system logs), each with a

set of preconditions and postconditions. Postcon-

ditions can be random and/or contextual. In addi-

tion, each action has goals for which they can be

recommended.

The clearest way to specify this information

about actions is in predicate calculus. Then find-

ing a plan can be done with resolution theorem

proving, or in most cases, logic programming like

Prolog. But this is computationally expensive

since finding such a plan in general is an NP-hard

problem; we need to be able to quickly foil attack-

ers. So we instead run the action specifications

and planning machinery many times to create an

approximate Markov model of attacks. This is a

large graph with nodes labeled with the states

found in the runs and the transitions representing

actions; probabilities on the branches are propor-

tional to the observed frequencies. Such a graph

simplifies tracking attackers, although they can

digress temporarily from it. Such a graph is an

approximation of the plan space since it cannot

represent variables and quantification, nor most

rare possibilities. Nonetheless, it can represent

most possible attack phenomena.

3.2 Generating an example graph for a

rootkit attack model

To test the ideas proposed, we used an example

attack model we built for the main steps of the

classic hacker strategy of installing a rootkit on a

computer system. It has 19 types of actions that

can be instantiated to 93 distinct actions. The

predicate-calculus specifications refer to 115 dis-

tinct facts (and in some cases their negations), and

permit 13 kinds of random events.

To generate the Markov graph, we ran the

predicate-calculus planning specifications 500

times using our planning software written in

Prolog. The goals of the plans were to install the

rootkit and a backdoor and then log out, and the

system being attacked was considered predictable

(so no errors or deceptions were considered). We

chose random starting states from a set of 3072

intuitively reasonable ones. Besides the random-

ness introduced by random events, each action's

duration was determined by an evenly distributed

random variable on a specified range. These three

kinds of randomness resulted in 21,720 states in

the 500 runs, of which 10,276 were distinct, for an

average of 42.4 steps per run. The latter were used

to build a Markov model of 10,276 nodes and

10,103 branches.

3.3 Choosing where to apply generic

excuses

Each generic excuse of section 2.1 can only be

begun or used at particular branches in the Markov

state graph because the excuse must be causally

related to the preconditions and postconditions of

the action. Much of this can be checked automati-

cally with the predicate-calculus specifications of

the actions. For instance, the generic excuse "ftp

software broken" only affects actions of initiating

and closing FTP connections and making file

transfers, since they are the only actions with a

precondition that the ftp software is working.

Other generic excuses apply to all actions but

are particular about when they are initiated. For

instance, "communications breakdown" and "net-

work down" should be used for every applicable

communications or network command once started

-- but to be convincing, they should start with suf-

ficiently complex commands that could cause their

failures, like runs of new executables. "Communi-

cations breakdown" is most likely when changing

communications defaults in login or changing ac-

counts; "network down" is most likely in transfer-

ring large files across the network.

Finally, broad generic excuses like "buggy sys-

tem" and "system testing" tend to be long-term

problems. Thus, they are not very convincing

when initiated after a session has started, and

should only be a last resort. But they can be used

effectively if a system has advance knowledge of

certain kinds of attacks by from warnings by sib-

ling sites about ports and methods of entry.

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

For our specific state graph for rootkit installa-

tion and a buffer overflow, initial suspiciousness of

the attacker's actions is low until a buffer overflow

is done. Thus Theorem 1 rules out deception be-

fore the overflow, a total of 684 branches. 2760

subsequent attacker actions are ruled out since

only defender actions can involve deception, and

116 are ruled out as occurring too late (after the

rootkit has been installed). 1506 of the remaining

branches are ruled out by Theorem 2 where they

are followed by less-suspicious attacker actions.

(The suspicious actions are overflowing the buffer,

obtaining root privileges, and installing the root-

kit.) This leaves 5210 branches as suitable starts of

a generally-applicable excuse, which then would

be offered consistently at every related attacker

command during the session. So we track users on

the attack graph and initiate deception if a user

reaches one of these 5210 branches. Some of

these commands will be better for certain excuses

than others, those whose actions are most semanti-

cally related to the excuse. It would also be a good

idea to vary the occurrence of the start of the ex-

cuse from session to session to avoid a different

kind of suspicious consistency, in an unexpected

event.

4. Related work

Deception plays an important routine role in

many important sectors of human activity, includ-

ing law, business, entertainment, and the military

[9]. It is important in military science and cyber-

attacks are a form of warfare. [8] divides military

deception into concealment, camouflage, demon-

strations, feints, ruses, disinformation, lies, dis-

plays, and exploitation of insights about the en-

emy. [19] argues that only the last three work well

for defense in cyberspace. Lies can concern sys-

tem resources and status; displays can show the

enemy things that aren't there; and insights can

figure how best to foil an attack plan. This paper

has focused on lies and insights, while other work

we have done has focused on false displays.

Stage magic provides many ideas about plan-

ning deceptions [14] and some of these provide

lessons for computer systems [24]. To perform

magical feats, at least one deception must occur in

an act, so the magician's goal is to conceal the nec-

essary deceptions as much as possible. Tactics

include creating dramatic structure, using consis-

tency in theme, manner, and characterization, con-

trolling pacing, controlling attention of the audi-

ence, using words and appearances carefully, and

using special magic devices. Nelms pays special

attention to "reducing departures", those things

necessary to the deception but which can arouse

suspicion in the audience. For instance, the magi-

cian may need a subject to choose a particular card

from a deck; having the magician supply their own

unshuffled deck would be an implausible depar-

ture, but having the subject inspect and shuffle the

deck and then substituting a different deck surrep-

titiously would be a lesser departure. Nelms'

analysis has inspired our approach of estimating

the implausibility of deceptions in planning.

For information security, defensive deception

has first been done for honeypots; [5] and [12]

provide two approaches to building them. Honey-

pots can be easy to recognize without deception,

since attackers can easily see a lack of normal file

structure and lack of temporary files indicating

activities like email, Web, and other forms of

Internet use. Most hackers today have heard about

honeypots, and will recognize these symptoms and

leave if they encounter them. This prevents de-

fenders from collecting useful data on them.

Because of this, [5] was first to propose delib-

erately deceptive activities on honeypot networks

to keep attackers busy. One way is to change the

router to recognize large numbers of fake IP ad-

dresses so the attacker will waste much time at-

tacking virtual systems. The virtual systems could

map to the same storage system, or virtual storage

could be generated according to a stochastic

grammar. Information for hackers to discover can

also be manually created, and revealed in stages, to

keep them interested [6]. How long will this fool

an attacker? Probably not long, because it is hard

to simulate an entire busy computer system, but it

helps for defending critical systems.

Other projects in information security are be-

ginning to examine deceptive tactics for defense.

[10] examines automatic methods for creating fake

documents for spies. [21] suggests delaying re-

sponses to suspicious commands to an operating

system. Planning against an adversary has been

introduced as "counterplanning" by [4] and applied

to military settings by [1]. Finally, [7] provides an

interesting alternative model of deception based on

ideas from natural-language processing that deals

more with the reasons why deception works than

our effects-based model.

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

5. Conclusions

We have provided a theory for deception plan-

ning in defense of information systems. Our ap-

proach is to try to convince the attacker of a "ge-

neric excuse" which means that his or her attack

plan cannot succeed, so they will give up and go

away. To be effective, we must carefully plan

when and how to deceive, while monitoring the

attacker's beliefs in our proffered excuses. The

methodology proposed here is more likely to con-

vince an attacker than broad and unselective de-

ception as with honeypots, and more likely to de-

fend our systems. But we need to do further work

to test reactions of people to these deceptions.

6. References

[1] Applegate, C., Elsaesser, C., & Sanborn, J., "An

Architecture for Adversarial Planning," IEEE

Transactions on Systems, Man, and Cybernetics, 20 (1),

January/February 1990, pp. 186-194.

[2] Bell, J. B., & Whaley, B., Cheating, New York:

Transaction Publishing, 1991.

[3] Bok, S., Lying: Moral Choice in Public and Private

Life, New York: Pantheon, 1978.

[4] Carbonell, J., "Counterplanning: A Strategy-Based

Model of Adversary Planning in Real-World Situations,"

Artificial Intelligence, Vol. 16, 1981, pp. 295-329.

[5] Cohen, F., "A Mathematical Structure of Simple

Defensive Network Deceptions," at http://all.net, Info-

Sec Baseline Studies, 1999.

[6] Cohen, F., & Koike, D., "Leading Attackers through

Attack Graphs with Deceptions," Computers and Secu-

rity, Vol. 22, no. 5, pp. 402-411, 2003.

[7] DeRosis, F., Castelfranchi, C., Carofiglio, V., &

Grassano, R., "Can Computers Deliberately Deceive? A

Simulation Tool and its Application to Turing's Imitation

Game," Computational Intelligence, Vol. 19, No. 3,

2003, pp. 235-263.

[8] Dunnigan, J. F., & Nofi, A. A., Victory and Deceit,

second edition: Deception and Trickery in War, San

Jose, CA: Writers Club Press, 2001.

[9] Ford, C. V., Lies! Lies!! Lies!!! The Psychology of

Deceit, Washington, DC: American Psychiatric Press,

1996.

[10] Gerwehr, S., Weissler, R., Medby, J. J., Anderson,

R. H., & Rothenberg, J., "Employing Deception in In-

formation Systems to Thwart Adversary Reconnais-

sance-Phase Activities," PM-1124-NSA, Rand National

Defense Research Institute, November 2000.

[11] Heuer, R. J., "Cognitive Factors in Deception and

Counterdeception," In Strategic Military Deception, ed.

Daniel, D. C., & Herbig, K. L., New York: Pergamon,

1982, pp. 31-69.

[12] The Honeynet Project, Know Your Enemy. Boston:

Addison-Wesley, 2002.

[13] Josang, A., "A Logic for Uncertain Probabilities,"

Int. Jnl. of Uncertainty, Fuzziness, and Knowledge-

Based Systems, Vol. 9, No. 3, June 2001, pp. 279-311.

[14] Nelms, H., Magic and showmanship: A handbook

for conjurers, Mineola, NY: Dover, 1969.

[15] Nyberg, D., The varnished truth: truth telling and

deceiving in ordinary life, Chicago: University of Chi-

cago Press, 1993.

[16] Park, H. S., & Levine, T. R., "A Probability Model

of Accuracy in Deception Detection Experiments,"

Communication Monographs, Vol. 68, No. 2 (June),

2001, 201-210.

[17] Proctor, P. E., Practical intrusion detection hand-

book, Upper Saddle River, NJ: Prentice-Hall PTR, 2001.

[18] Rowe, N., "Counterplanning Deceptions to Foil

Cyber-Attack Plans," Proc. IEEE-SMC Workshop on

Information Assurance, West Point, NY, June 2003, pp.

203-211.

[19] Rowe, N., & Rothstein, H., "Two Taxonomies of

Deception for Attacks on Information Systems," Journal

of Information Warfare, Vol. 3, No. 2, July 2004, pp. 27-

39.

[20] Snyder, C. R., Higgins, R. L., and Stucky, R. J.,

Excuses: masquerades in search of grace, New York:

Wiley, 1983.

[21] Somayaji, A., & Forrest, S., "Automated Response

Using System-Call Delays," Proc. 9th Usenix Security

Symposium, August 2000.

[22] Sztompka, P., Trust, London: Cambridge University

Press, 1999.

[23] Templeton, S., & Levitt, K., "A Requires/Provides

Model for Computer Attacks," Proc. of the New Security

Paradigms Workshop, Cork, Ireland, September 2000.

[24] Tognazzini, B., "Principles, Techniques, and Ethics

of Stage Magic and their Application to Human Interface

Design," Proc. Conference on Human Factors and Com-

puting Systems (INTERCHI) 1993, Amsterdam, April

1993, pp. 355-362.

[25] Whaley, B., "Towards a General Theory of Decep-

tion," Journal of Strategic Studies, Vol. 5, No. 1, March

1982, pp. 179-193.

Acknowledgement: This work was supported by the

U.S. National Science Foundation under the Cyber Trust

program. Views expressed are those of the author and

do not represent policy of the U.S. Government.

7. Appendix: Questionnaire and

average responses

Instructions: Suppose you are a hacker attacking a

computer system. At each step of the following
sequences, estimate the probability (on a scale of

0.0 to 1.0) that you have been deceived by the

computer system in some way. You can take into
account the previous steps of the sequence, but not

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

the steps of different sequences.

Sequence 1: You log into a computer system. It

says that system testing is occurring and it may not

work properly.

(1a) Deception probability: .421

You edit a text file in your own directory and it

gives a strange error message.

(1b) Deception probability: .436

You try to transfer this file to another site on the

Intranet and it says the network connection is

down.

(1c) Deception probability: .450

Sequence 2: You log into a computer system. It

says that the network connection is down.

(2a) Deception probability: .318

You try to copy an executable in your own direc-

tory to the system binary directory and the last

character of your command is ignored.

(2b) Deception probability: .546

You try to transfer this file to another site on the

intranet and the last character of your command is

ignored.

(2c) Deception probability: .580

Sequence 3: You log into a computer system.

Messages are normal.

(3a) Deception probability: .187

You try to copy an executable in your own direc-

tory to the system binary directory and it gives a

protection violation and says it cannot save it.

(3b) Deception probability: .318

You try to transfer this file to another site on the

Intranet and the last character of your command is

ignored.

(3c) Deception probability: .536

You try to list your home directory and the last

character of your command is ignored.

(3d) Deception probability: .568

Sequence 4: You log into a computer system and

copy a file from a local intranet site to your home

directory on the computer system. All messages

are normal.

(4a) Deception probability: .182

You try to copy this file to the system binary direc-

tory and you get a protection-violation message.

(4b) Deception probability: .296

You issue a command to a system utility with an

unusual long argument containing lots of nulls.

The system gives a protection-violation message.

(4c) Deception probability: .391

You try to transfer another file from the other site

on the Intranet and it says the outgoing network

connection is down.

(4d) Deception probability: .694

Sequence 5: You log into a computer system and

copy an executable file from a local intranet site to

your home directory on the computer system. All

messages are normal.

(5a) Deception probability: .276

You do a listing of the directory you copied it to

and do not see it listed.

(5b) Deception probability: .513

You try the file transfer again. You do a listing of

the directory and again do not see it listed.

(5c) Deception probability: .604

You try to copy the password file to the intranet

site. The system says the outgoing network con-

nection is down.

(5d) Deception probability: .623

Sequence 6: You use a buffer overflow to enter a

computer system via port 445 with root status.

You try to list the home directory and get a mes-

sage "System down".

(6a) Deception probability: .673

You ask what your login name is and it refuses

with the message "System down".

(6b) Deception probability: .723

You list the main binary directory with no error

message.

(6c) Deception probability: .441

You ping port 80 (HTTP) and it appears to be run-

ning normally.

(6d) Deception probability: .427

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

