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Abstract—This paper describes novel video analytics technol-
ogy which allows an operator to search through large volumes of
surveillance video data to find persons that match a particular
attribute profile. Since the proposed technique is geared for
surveillance of large areas, this profile consists of attributes that
are observable at a distance (including clothing information,
hair color, gender, etc) rather than identifying information at
the face level. The purpose of this tool is to allow security
staff or investigators to quickly locate a person-of-interest in
real time (e.g., based on witness descriptions) or to speed up
the process of video-based forensic investigations. The proposed
algorithm consists of two main components: a technique for
detecting individual moving persons in large and potentially
crowded scenes, and an algorithm for scoring how well each
detection matches a given attribute profile based on a generative
probabilistic model. The system described in this paper has
been implemented as a proof-of-concept interactive software
tool and has been applied to different test video datasets,
including collections in an airport terminal and collections in an
outdoor environment for law enforcement monitoring. This paper
discusses performance statistics measured on these datasets, as
well as key algorithmic challenges and useful extensions of this
work based on end-user feedback.'

I. INTRODUCTION

Driven by recent advances in digital video camera design,
video management systems, and efficient archiving, security at
large publicly accessible facilities and urban sites increasingly
deploy comprehensive video surveillance systems [1]. Such
systems support both the ability to monitor wide areas in
real time and the ability to conduct forensic reviews after
an incident or a tip. Most analysis of surveillance video for
security purposes requires the operators or investigators to
search for particular types of video content (e.g., specific
actions or behaviors, or vehicles, objects, or persons fitting
a given description). While the fully attentive human visual
system is very adept at interpreting video content, it is also
typically limited in capacity to reviewing one camera view
at a time at speeds near real-time, depending on the level
of activity in the scene; as a result, searching over large
amounts of surveillance video can be a slow and cumbersome
process. In addition, the human attention span does not persist
at full capacity over long time periods. This is the motivation
for automatic video search technology, which can direct the
attention of security personnel or investigators to potentially
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useful video content [2]. This paper considers a specific type of
automated search that addresses a common operational need:
the search for persons-of-interest across large surveilled areas.

Most research into video-based search for persons focuses
on biometric recognition, using signatures that can be captured
at a distance, such as gait [3] or especially face [4][5].
However, face recognition systems can only be employed
when surveillance cameras capture face images at sufficient
resolution and illumination. In fact, experimental studies in-
dicate that face recognition performance begins to degrade at
(compressed) image resolutions as high as 90 pixels between
the eyes [6]; this is much greater resolution than typically
provided by surveillance video, unless cameras are setup with
narrow fields of view (e.g., monitoring specific doorways at
close range). In addition, biometric recognition requires a
database of prior enrollment records against which to perform
identification. This does not apply when security personnel
or investigators are working with an eyewitness description
of a person of interest. An alternative approach is to perform
automatic search for persons who match a basic appearance
profile, including clothing, physical attributes (gender, hair
color), and carried objects such as bags or backpacks. Note
that many of these attributes are temporary in nature and taken
together do not necessarily describe a unique individual in the
area under surveillance, but they are observable through video
at a distance. The ability to perform automatic searches based
on these attributes has the potential to make many monitoring
and forensic search tasks much more efficient.

There have been several recent attempts to incorporate ap-
pearance descriptions of persons into video search techniques,
including so-called “soft biometrics.” Both Vaquero et al. [7]
and Demirkus et al. [8] localize persons and frontal faces
in video using standard Haar feature cascade classifiers, and
focus primarily on the characterization of facial attributes for
images captured at relatively close range to the camera. For
instance, the authors in [7] show promising performance on
the detection of facial hair and glasses, while the authors in
[8] demonstrate some ability to classify gender and ethnicity
based on facial features. It is unclear how well these techniques
would extend to longer ranges (on the order of tens of meters),
where detailed face images are no longer available. In addition,
both papers describe simple techniques for recognizing cloth-
ing color, based on the extraction of dominant colors in pre-set
regions within the bounding box surrounding each person. We
propose an extension of this sort of analysis, incorporating
characteristics observable at a distance, based on a generative
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probabilistic model that describes the expected variation in
appearance given a particular attribute profile. The main ad-
vantages of this model are its ability to successfully recognize
many different combinations of attributes (including multi-
colored clothing and hand-carried objects) and its flexibility
across different poses and body types.

Section II gives an overview of the main components of
the proposed algorithm, as well as some details about its
implementation. Section III describes an interactive software
tool built to test the algorithm on several real surveillance
datasets. Section IV provides some performance metrics on
these datasets, and Section V discusses some of the challenges
and useful extensions for this work.

II. SEARCH ALGORITHM

The proposed search technique has two main components.
The first is a detection process that ingests raw video and
finds instances of moving persons within each camera view.
This process is designed to run in real-time, analyzing one
frame per camera per second and storing the detections as
time-stamped and location-stamped records in a database. The
second component matches detections to a specified attribute
profile. Given a person description, this process scores the like-
lihood that each detection in the database fits that profile, by
evaluating a probabilistic generative appearance model. Both
components must be accurate and computationally efficient in
order to support useful automatic queries.

A. Moving Person Detection

Because of the high redundancy of video content from one
frame to the next, the detection processing chain first samples
the video stream at one frame per second. The goal of this
processing is to find persons in motion, since there is no
need to store stationary subjects repeatedly to the detection
database. As is typically done, we use a sliding window
approach to evaluate candidate detection locations within each
frame, where a candidate location is specified by the position
of a bounding box (z,y) and its dimensions (w, h); since we
assume a fixed aspect ratio for the bounding box dimensions,
there are three parameter values to sweep through during
search. Broadly, each detection must satisfy three criteria:
it must exhibit a human shape, it must fit the ground plane
constraints of the scene, and it must contain a high ratio of
foreground pixels (as opposed to static background). Figure 1
depicts sample detections that meet these three criteria.

There has been significant progress over the last decade
on image processing techniques that recognize human shapes
or contours. Most notably, Dalal and Triggs [9] proposed the
use of histograms of oriented gradients (HOG) features as the
basis for a human contour detector. Histograms of oriented
gradients provide a characterization of object contours which
is somewhat invariant to lighting conditions and color contrast,
and can be used to train a support vector machine (SVM)
classifier that detects the human form with impressive accu-
racy. However, even state-of-the-art contour-based detectors
tend to produce multiple false positives per frame for the

Fig. 1.

Detections of moving persons in a sample video frame.

types of large and visually complex scenes common in video
surveillance applications. In order to reduce the frequency of
false positives, we also take advantage of prior information
about the scene and the dynamic nature of video.

Most surveillance cameras capture scenes in which the
activity of interest occurs along an approximate ground plane
that remains fixed (notable exceptions include active pan-tilt-
zoom cameras and views that depict multiple levels, stairs,
etc.). When this assumption is reasonable, we can use informa-
tion about the ground plane (learned during an offline training
step) to eliminate false positives based on the size and position
of the detection. The ground plane information is encoded in a
perspective model similar to the one used in [10]. More specif-
ically, this model learns a planar homography which maps foot
position to expected head position. If all persons in the scene
are standing upright on a planar surface, this ensures that the
foot-to-head mapping is an affine map between planes in 3D
space (specif cally, translation by the height of the person),
and therefore induces a plane homography when projected into
image coordinates. For a candidate bounding box, we measure
the normalized “perspective error” of bounding box position
P = |z,y,w,h| as:

|h — hest(ﬁ”

Eper (ﬁ) == h (1)

where hg is the estimated height for position p, computed
by mapping the foot position to a head position according
to the scene homography, then taking the difference between
projected head position and actual foot position.

Finally, since our objective is to detect moving persons, and
a significant ratio of human contour false positives are gener-
ated by static background patterns, we also learn a dynamic
background model of the video scene. Typical “background
subtraction” techniques learn adaptive statistical models of
static background at the pixel level, then compare new frames
of video to these models in order to estimate which pixels
depict moving foreground. We use the background subtraction
technique proposed by Stauffer and Grimson [11], which
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maintains an adaptive Gaussian mixture model in 3D color
space for every pixel. This method offers some robustness
to shadow effects because of the multimodal form of its
background model. We measure a foreground ratio for each
candidate bounding box, computed as the ratio of all pixels
within the box that are labeled as foreground by this model.

Each of the three detection criteria produces a real-valued
score that indicates the degree to which that criterion is
met for detection position p: the output of the SVM human
contour detector Sqon¢(p), the perspective error €. (p), and
the foreground ratio r o, (p). The fused detections result from
a function f(Scont(P), €per (P), rfore(P)) mapping all three
values to either 1 (detection) or 0 (no detection). For reasons
of computational efficiency, we decompose this function into
a combination of individual thresholds applied to each value.
This way, we can use a cascaded detection strategy, where
the computationally simpler criteria (foreground ratio and
perspective error) are evaluated first in order to rule out most
candidate bounding box positions. As a result, the computa-
tionally expensive HOG features must only be generated at
relatively sparse locations and scales. To achieve additional
speedup, we use Dalley’s GPU implementation of parallelized
HOG feature computation [12]. All three thresholds for this
method were selected empirically from training data.

In addition to person detection, we also attempt to classify
each detection by gender. This classifer is obtained by re-
training a SVM discriminant in HOG feature space. As a
result, classification is based on contour characteristics, which
appear to capture information about hair style, clothing style,
and body frame. Since HOG features are already computed
during detection, performing this additional classification is
computationally inexpensive.

B. Generative Appearance Model

In our search framework, the operator specifies an attribute
profile including some subset of the following characteristics:
gender, hair or hat color, clothing color, and bag descriptions
(type and color). Given a particular attribute profile, however,
there is quite a bit of variation in the way an image chip
manifests as a set of pixel values, due to changes in view
angle, lighting conditions, body type, clothing and bag style,
etc. In order to explain this expected variation, we formulate
a generative probabilistic model that gives the likelihood of
observing a set of pixel values given an attribute profile. This
model has a hierarchical structure, with key factors of the
image formation encoded as latent variables in the hierarchy.
The model, as visualized in Figure 2, has the following
structure.

Let A represent the set of attributes in the attribute profile,
comprised of a collection of flags and real-valued color
specifications. The frst level of the model hierarchy partitions
the image chip into its component parts as depicted in Figure
2: head, torso, lower body, and (optionally) one or multiple
bags. Let vectors Zeqd, Ztorsos Ziower, and Zpqq encode the 2D
positions of their respective components as rectangles within
the image chip, and let vector Zyoay = [Zhead, Ztorsos Zlower)

Color mixture Shape mixture

prior @ prior

Atﬂ’i_bUte Color Shape K
profile mixture mixture
Component
positions /" _
z
Position
prior 9‘

Fig. 2.  Left: Illustration of image chip decomposition into its component
parts. Right: Graphical representation of the hierarchical generative model.
Nodes represent variables, either directly observed (shaded), latent, or set dur-
ing training, while arrows represent dependencies. Each image chip contains
K component parts and Ny pixels within each component.

contain the first three position vectors appended together. The
generative model jointly selects the basic position values from
a multivariate Gaussian distribution:
Zbody ~ N(ﬁv E) (2)
where parameter set § = {ji, ¥} contains the mean expected
position set and the covariance matrix of position changes due
to body, clothing, and view angle variation. In addition, if
attribute set A contains bag specifications, each bag position
is drawn from one of three non-parametric distributions,
depending on the specified bag type (backpack, hand-carried
bag, or rolled luggage). Note that bag position is defined to
be relative to the position of the body components, so that the
generation of Zj,q, and Zp,4 vectors are not independent.
Once the component positions have been determined, the
attribute description governs the color and shape information
expressed by the pixel values of each sub-region. The model
employs a technique similar to latent Dirichlet allocation
(LDA) [13] to generate the mixture of observed color or
shape information. As an example, consider the generation
of color information. The model defines a discrete number
of color “topics,” which are selected to be twelve common
perceptual colors (black, white, gray, tan, brown, yellow,
orange, pink, red, green, blue, purple). Each local region k,
within a component, is characterized by a distribution over the
color topics 7 (a 12-dimensional real-valued vector that sums
to one). First, the model draws the color topic distribution from
a Dirichlet prior:

ﬁ"k ~ D’L'T(O_Zk) (3)
The Dirichlet prior distribution accounts for variation in the
color mixture due to factors such as style, material com-
position, shadow effects, or object occlusion. The Dirichlet
parameters & are set based on the attribute profile (e.g., a
“dark red torso” specif cation may have a bias toward selection
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of mixtures dominated by red and black topics).?

Once the topic distribution has been selected, each pixel
within the component region independently selects a color
topic ¢ according to the distribution given by 7. Finally, the
pixel value is drawn from the corresponding color topic density
within the three-dimensional color space. If & represents
a single three-dimensional point defined in hue-saturation-
value (HSV) color space, the probability that this point was
generated by a color density characterized by mean i, and
covariance matrix ¥, is given by the quasi-Gaussian expres-
sion:

p(f) = ¢ - exp (_0-5 : _va /_jc)Tzilcz‘(fa /zc)) 4)
where constant ¢ normalizes the distribution and d is the
difference vector between & and ji., with the first element
d; computed to account for the cyclical nature of the angular

hue axis, which spans from 0 to 1:

dl(ml,,ucl) = mod(m — Hel + 0.5, 1) — 0.5 (5)

Forming color densities in HSV space, as opposed to RGB
space, provides more tolerance to inconsistent lighting condi-
tions.

A similar generative model structure applies for shape
information within each component region. Instead of using
color topics and observed pixel values, the model replaces
these with “shape topics” (e.g., multi-scale gradients) and
edge-based primitives centered around each pixel location. In
this case, the Dirichlet distribution that drives the model is
governed by the label of the component (head, torso, etc.).

Finally, the real-valued gender score g produced during the
detection stage is assumed to be drawn independently from the
rest of the model, according to an exponential distribution:

s(g) ~ exp()) (6)

where s(-) adjusts the sign of the gender score according to the
gender label in the attribute profile (or sets it to zero if gender
is unspecified), and parameter A\ controls the importance of the
gender specification relative to all other attribute specifications.

The model structure described above has a set of observed
variables O (the pixel values, edge primitives, and attribute
profile), a set of hidden, or latent, variables H (the component
positions, topic mixtures, and topic labels), and a set of learned
model parameters © (describing various Gaussian, Dirichlet,
exponential, and non-parametric distributions). When a given
image chip is evaluated for its degree of match to a given at-
tribute profile, the match score m is computed by maximizing
the joint distribution of the model with respect to its hidden
variables:

m

()

This is equivalent to estimating the most likely hidden states to
explain the observed image; if a high-probability explanation

max P (O, H,0O)
H

>Note that in contrast to typical LDA models, the topics in this model are
pre-defined, and the parameters of the Dirichlet distribution are set according
to the attribute description, not learned in an unsupervised manner.

exists that is compatible with the attribute description and the
observed values, this will lead to a high match score. Parts of
this maximum likelihood optimization problem can be solved
in closed-form. For the variables which cannot be estimated
in closed form (i.e., the component positions), we employ
a greedy iterated conditional modes (ICM) algorithm [14],
which is initialized at the mean position vector and converges
quickly to a local optimum.

C. Model Implementation

After experimentation with multiple versions of the model
framework described above, we selected a simplifed imple-
mentation for use in all experiments discussed in this paper.
This implementation has the following details. The compo-
nent position variables represent boundary locations along
the vertical axis only, while positions along the horizontal
axis are pre-determined and fixed. All location variables are
expressed as ratios of image chip height in order to make
their distributions invariant to resolution. In addition, this
version of the model is limited in scope to color topic mixture
representations (not shape mixture representations) in order to
improve computational efficiency.

In order to learn the model parameters, we labeled ground
truth for training purposes from several hundred images sam-
pled from multiple video datasets. The labeled ground truth
included component descriptions, positions, and perceptual
color labels. The mean vectors and covariance matrices of all
multivariate Gaussian distributions were set using maximum
likelihood estimation, while each of the three bag position
distributions was learned directly from labeled examples using
kernel density estimation. Finally, the method for setting the
Dirichlet parameters according to the attribute profile was
selected through empirical testing.

III. INTERACTIVE SEARCH TOOL

The system described in this paper processes surveillance
video in order to extract instances of moving persons and
then stores these instances (as time and location tagged
descriptors) to a database. In order to allow an operator to
quickly and easily search over these records, we constructed
an interactive search tool that operates directly on the database.
The tool works by taking in a set of search criteria through
a graphical user interface, retrieving all records from the
detection database that fall within the specified time period and
location, applying the probabilistic model described in Section
II-B to score how well each record matches the specified
attribute profile, ranking them in order of best match, and
then displaying the top set of matches back to the operator
for further investigation of the relevant video.

Figure 3 shows example screenshots of the search tool.
Launching an attribute-based person search brings up a search
criteria input menu, divided into an attribute profile section
(upper half) and a search localization section (lower half).
Within the attribute profile section, the operator may specify
any subset of attribute options represented in the menus; any
inputs not provided by the operator are left as unspecified by
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Fig. 3.

Sample screenshots of the interactive search tool. Left: Search criteria input interface, in which the operator has specified “male” gender, “yellow”

shirt color, and “black” pants. Right: Search results exploration interface, displaying top matches for this search criteria. Image chips are arranged in order
of descending match score, from left to right and top to bottom. Note that some image chips farther down the progression contain inexact but close matches,
such as females with the specified clothing, or subjects with off-white rather than yellow shirts. This search was performed over approximately 30 minutes
of data from each of three camera views, obtained from the i-LIDS dataset [15] collected at Gatwick Airport in London.

default, meaning they will not factor into the search results.
A gender menu allows for selection of male or female. A
head color menu allows for selection of color information
corresponding to either hat or hair. A torso clothing color menu
allows specification of upper body clothing color(s), which
typically correspond to shirt, coat, or blouse color descriptions.
A lower body clothing color menu takes in information about
pants, shorts, skirts, and/or prominent shoes. Finally, the bag
options allow the user to specify one or more bags in the
possession of the person-of-interest. Each bag takes a type
description (backpack, hand-carried bag, or rolled luggage)
in addition to color patterns. All color selections are made
through a palette interface that allows selection from among
a range of shades within multiple common perceptual color
categories.

In addition to the attribute profile, the operator selects a
start time and end time for conducting the search, which may
span up to multiple days of archived video. The operator may
also choose the subset of camera views over which to search,
focusing in on particular regions within individual camera
scenes (e.g., doorways or pedestrian passageways) if desired.
Once all attribute and search localization criteria has been
entered, the search process launches and the software accesses
the detection database to computes all relevant match scores.
The time required to finish this processing is typically at least
a few seconds, and scales in rough proportion to the area

and time window of the search, depending on variations in
pedestrian frequency.

The search results interface has three panels, as depicted
on the right side of Figure 3. The first panel contains a set
of image chips representing the top matches to the attribute
search criteria. These chips are filtered to avoid redundant
displays of the same person in consecutive frames of video.
The operator may scroll through these image chip results and
click on any of them to retrieve the corresponding video
content. The second panel displays the video frame from
which the match was detected, and allows the operator to
view the video using a standard set of playback controls.
The third panel displays both a timeline and a map of the
facility, containing estimated times and locations for each of
the top matches. The operator has the option to retrieve video
by selecting an individual detection directly from the map or
from the timeline, rather than from the image chip set.

As it is set up, the search tool provides both a clear way for
users to enter structured search queries and a mechanism to
explore potential sightings of a person-of-interest throughout
all available surveillance video. It is important to note that if
there is a useful video detection, it will not always appear as
the first (most highly scored) image chip, due to inaccuracies
in witness descriptions, limitations in the type of attribute
inputs accepted by the software, or imperfections within the
generative appearance model. However, if the useful content
appears somewhere among the top match results, it is typically

HOMELAND SECURITY AFFAIRS, SUPPLEMENT 5, ARTICLE 1 (MAY 2012) WWW.HSAJ.ORG



a much easier and quicker process for an operator to browse
through a set of image chips and focus in on the relevant
content than it is for that operator to manually scan large
amounts of raw video.

IV. EXPERIMENTAL RESULTS

We have tried the search tool described above on several
surveillance video datasets, including the i-LIDS dataset [15]
collected at Gatwick Airport, sample video collected at a major
US airport, and sample video collected at street intersections
by outdoor law enforcement surveillance cameras. However,
our ability to measure performance quantitatively is limited
by the availability of detailed ground truth for these datasets.
In order to compute the results discussed in this section, we
selected a particular area surveilled during the US airport video
data collection and labeled ground truth for all pedestrian
activity occurring within that area over a defined period
of time. The surveillance video of this (approximately 50
square meter) region has image resolution along the height
of pedestrians ranging from about 80 pixels to 120 pixels.
We collected ground truth corresponding to the location and
attribute-based appearance of each person who passed through
this region. Analyzing sampled frames of video at a rate of 1
Hz, there was a total of approximately 1,000 instances (i.e.,
frame appearances) of 150 unique pedestrians observed during
ground truth labeling.

In addition, we also labeled the location of every pedestrian
passing through a typical outdoor street scene captured by law
enforcement surveillance video. This video contains examples
of pedestrians (at about 50 to 200 pixels of height resolution)
as well as moving vehicles. We again generated ground truth
at a rate of 1 Hz, covering approximately 2,200 instances of
100 unique pedestrians.

A. Detection

The output of the moving person detection algorithm de-
pends upon three threshold values, corresponding to the three
criteria for detection described in Section II-A. Varying these
threshold values affects both the probability of detection (PD)
and the false positive rate (FPR). Therefore, we conducted
a parameter sweeps for the indoor and outdoor surveillance
video to find threshold values that yielded the best detection
performance, using the ground truth data described above to
evaluate PD and FPR metrics. For each person passing through
the region of interest, we counted a correct detection if the
algorithm flagged that person in at least one analyzed frame
of video. On the other hand, we counted any detection that
did not correspond to an entire person as a false positive.

Table I shows PD and FPR for the selected detection thresh-
olds of each dataset. The algorithm achieved the best results on
the indoor airport video, detecting an instance of almost every
pedestrian while pulling in false positives at a relatively low
rate (so that they constitute a small percentage of records in the
detection database). The outdoor scene proved more difficult
for several reasons. Some of the missed detections were
from pedestrians who never completely enter the scene before

TABLE I
MOVING PERSON DETECTION PERFORMANCE.

Video data PD FPR
Airport indoor 97% 0.0045 per sec
Law enforcement outdoor 89% 0.26 per sec

exiting, or who appear partially occluded behind vehicles. In
addition, most of the false positives were generated by parts of
moving vehicles or by trees blowing in the wind (clutter which
is not present in the indoor scene). Overall, we found that the
detection process supports good search capability, especially
when the video captures a complete view of the subject, but
that the performance depends heavily on the characteristics of
the scene.

B. Appearance Model

The probabilistic appearance model is a mechanism to score
the likelihood that each image chip depicts a person with the
specified attribute set. When the model functions correctly, all
examples of persons matching the provided description will
appear at the top of the match list, which is ranked in order
of descending likelihood scores. To test the performance of
the model, we ran multiple sample searches over the portion
of video for which we had ground truth labels. The attribute
profiles for each of eleven test searches are listed in the
legend of Figure 4; these were selected arbitrarily by taking
descriptions from the ground truth labels that matched one
or more persons who appeared within the video (excluding
gender, which was tested separately).

For each test search, we generated a performance curve
by varying the number of top search results returned by the
search. Adding to the number of results increases the chance
of finding all true matches, but it also increases the occurrence
of false positives. The y-axis in Figure 4 plots the recall, or
the percentage of all true matches returned by the search,
while the x-axis plots the number of returned false positives,
normalized by the total number of false positive individuals
in the database. Note that by these metrics, an algorithm that
assigned random match scores to image chips would have an
expected tradeoff represented by the dotted line in Figure 4.

As expected, all search results using the proposed model
perform significantly better than the random-scoring baseline.
However, there is noticeable variation in error rates depending
on the particular attribute set. Five of the eleven sample
searches (represented by the red line in Figure 4) found all
true matches before returning any false positives. Other sample
searches returned multiple false positives before recovering all
matches. The more specifc search queries (especially those
with only one true match among all pedestrians) tend to
show better results because these profiles contain the most
discriminating information. On the other hand, more generic
descriptions seem to pull in some false positives along with
all of the true positives.

Finally, we also evaluated the accuracy of the gender
classifier by testing it on multiple surveillance datasets. We
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Fig. 4. Performance curves for eleven sample attribute-based searches.

Curves plot recall (y-axis) vs. normalized false positives (x-axis). The dotted
line represents expected performance of a random selection search algorithm.
The first five searches in the legend have completely accurate search results.

measured correct classification rates ranging from 75% to
85%. While these results are far from perfect, when used in
combination with stronger attribute cues, the classifier does
tend to move more matches with the specified gender toward
the top of the match list. This indicates that it may also be
useful to include other “weak” classifiers based on contour
analysis, such as height or body frame information.

V. DISCUSSION

The search capabilities described in this paper provide
a useful way for security personnel or investigators to sift
through large quantities of video data to find a particular
person-of-interest, given a recent observation or witness report
describing that person. This capability may be applied in
two different modes: to perform real-time monitoring for any
persons that match an attribute profle (e.g., at all entryways to
a facility), or to perform forensic searches over archived video
data. In this way, the search tool provides the operator with a
number of leads to potentially valuable and easily accessible
video content.

However, the performance of the search algorithm certainly
depends on both the quality of the recorded video (especially
the resolution and look angle) and the characteristics of the
environment under surveillance. For instance, outdoor views
of street intersections seem to present more challenges than
relatively controlled indoor settings; there are more sources
of motion, such as vehicles and trees blowing in the wind,
in addition to more variation in illumination conditions due to
natural light changes and building shadows. Another important
factor is crowd density. A typical subject, in any given frame
of video evaluated in this work, has a high likelihood of at
least some type of partial occlusion from other movers or
static objects; however, the video dataset does not contain solid
masses of people, which would make successful detection and

analysis much more difficult. In addition, different locations
may exhibit sufficiently different clothing styles to degrade the
accuracy of the probabilistic appearance model. When this is
the case, the model may be re-trained directly on new (and
more representative) sample data.

We have considered several extensions to this work. Feed-
back from end users indicates that it would be useful to extend
the search capabilities to vehicle descriptions, at the level of
color and generic type (sedan, truck, SUYV, etc.). It would also
be advantageous to search over motion or action primitives,
such as a person running in a specif ed direction, or a person
entering or exiting a vehicle. Finally, we have been working
on integrating the search capabilities into a more general
situational awareness tool for security and investigation, which
will allow multiple users to access video and perform and
share content searches over a web-based interface.
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