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Abstract.  
 

Two autonomous robots were developed as platforms for crop/soil scouting and future 

robotic field operations. The robots have differing technological philosophies. AgBo is a flexible 

industrial style robot with a sophisticated steering, sensing and communication arrangement. It 

has independent four-wheel steering, four steering modes (including crabbing and spinning) and 

inclination control. A SICK laser range finder, combined with an electronic compass, was used 

for crop guidance. The main communication among sensors, actuators and controllers was 

implemented using a Controller Area Network (CAN). 

AgTracker, in contrast, was built with ruggedness, simplicity and low cost in mind. It 

features simple skid steering and an arrangement of eight low-cost infrared sensors, two 

ultrasonic sensors and an electronic compass were used for crop guidance. All of these 

functions, including Remote Control were implemented using a single microcontroller and no 

communication network was applied. AgTracker’s simplicity and ruggedness make it a strong 

candidate for a generic platform for scientists to develop autonomous crop scouts and field 

operation machines. This could refocus the research emphasis from the robots themselves to the 
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truly important development of small, reliable, no-calibration, real-time sensors for the detection 

of stresses, diseases, weeds, pests and soil parameters. 
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Introduction 

The human urge to automate our world seems unstoppable. Kasler (2001) claims that the 

transfer of human intelligence into computer-controlled machines such as robots is an analogy to 

the fundamental scientific aim to devise theories in a form that makes them reproducible. In 

essence, we transfer factual data and procedural theories into a computer such that the machine 

can carry out humanlike tasks. Agricultural operations will inevitably be automated to the extent 

of economical feasibility. Driving factors are the need for more precise application of materials 

to prevent environmental damage and increase profitability. 

Autonomous full-scale vehicle guidance research in agriculture is well represented in the 

literature. Excellent references to automated vehicle guidance research in Canada, Japan, Europe 

and the USA can be found in Wilson, (2000), Torii, (2000), Keicher and Seufert, (2000) and 

Reid, et al., (2000). Much agricultural robotics research has been performed in controlled 

environments such as robotic picking of cherry tomatoes (Kondo, et al., 1996a), cucumbers (Van 

Henten, et al., 2002), mushrooms (Reed, et al., 2001) and other fruits (Kondo, et al.,1996b). In 

horticulture, robots have been applied to citrus (Hannan, 2004) and apples (Bulanon, et al., 

2001). Also, milking robots have had much attention particularly in the Netherlands (Rossing, 

1997). 

Few journal articles are available regarding the development of Autonomous Robots for 

Field Applications. A weed control robot was developed by Baerveldt and Astrand (1998), and 
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Bak and Jakobsen (2004) proposed a small field robot capable of traveling between crop rows to 

register the locations of crops and weeds using a camera and GPS receiver. If the robot is to be 

used solely for scouting, it can be as small as planet rovers (Biesiadecki et al., 2000, Kuroda, 

2003). Gomide et al. (2003) used a radio-controlled robotic helicopter to cover a smaller area to 

improve the resolution, but it required a professionally skilled operator. To obtain detailed local 

crop state information, Field Robots are needed that can travel between crop rows and collect  

data in an autonomous fashion. There is much interest in the development of Field Robots in 

Europe as evidenced by Wageningen University in the Netherlands which organized a Field 

Robot competition in 2003 and 2004 where students, faculty and research institutions were 

represented (Van Straten, 2004). AgBo, as described in this paper, competed in the 2004 

competition.  

The emphasis in the development of autonomous Field Robots is currently on speed, 

energy efficiency, sensors for guidance, guidance accuracy and enabling technologies such as 

wireless communication and GPS. Although these activities are of scientific interest, the public 

acceptance of Robotic Farming will be greatly accelerated by focusing on ‘bare bones’ field 

robots that autonomously negotiate crop rows for under $500 in material costs as described in 

this paper. The bare-bones robot could also serve as a standard research platform to develop 

robotic scouts and the focus could be directed to the development of small, precise and reliable 

sensors that give information about the status of the crop and the soil.  

Secondly, there is a need to develop small-scale equivalents for current field operations 

such as robotic tillage, planting, cultivation, chemical application and potentially harvesting of 

row crops.  
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1) Robotic Crop and Soil scouting  70 
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Remote sensing has been used widely to collect overall information about the crop status 

as well as soil conditions (Dicker, 2002). While aerial photography can efficiently gather 

information from a large area, crop guided scouts, working in close proximity to the crop, can 

collect detail information about the crop and soil conditions. To date, research has been 

performed to measure crop stresses in corn, such as nitrogen stress using a tractor mounted 

imaging system (Noh, et al., 2003), water stress (Gomide, et al., 2003), weed detection (Cho, 

2002) and disease detection (West, et al., 2003). All of these sensors approaches are too large to 

be directly applied to robotic application. An important problem in the Mid-West is insect 

activity detection such as the Western Corn Rootworm (WCR). Currently there are no 

alternatives to digging up roots and human damage assessment and hence, the development of a 

real-time WCR larvae detector would be of great importance.  

Soil scouting is a similar operation where sensors can measure physical and chemical 

properties to optimize the crop growth and prevent adversary effects to the environment. To 

measure physical properties, such as density, texture, structure and compaction methods have 

been devised such as Mechanical (Adamchuk, 2001a, 2001b), Acoustic (Tekeste, 2001, Oelze, 

2003) and Pneumatic (Clement, 2000). Oelze (2003) used acoustic backscatter as a method to 

determine the surface roughness, which may be an important parameter for runoff/erosion 

prediction. Chemical properties such as pH, moisture and nitrate content can be measured using 

near-infrared spectroscopy (Ehsani et al., 1999) as well as electrical resistivity (Banton, 1997). 

2) Robotic Field Operations 

 A strong argument for replacing a large machine by a small fleet of robots is the reduced 

compaction potential. Currently primary tillage is practiced using highly powered tractors to 
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alleviate the compaction caused by the large machines themselves. By replacing the larger 

machines by a fleet of communicating autonomous robots, a major decrease in compaction and 

the need to alleviate it could be attained.   

Apart from being able to work around the clock, robotic field operations can be more 

efficient than current operations. A striking example of this is the Micro-Spraying approach 

where minute amounts of chemical are used to directly target weed plants, in contrast to the 

current practice of treating the whole field with a 1% active ingredient water solution. In 

addition, in-row mechanical weed control using robots is being researched mainly in Europe. 

Robotic tillage operations may be implemented using acoustics as well (Abu-Hamdeh, 2004).  

Assuming the total field area remains constant, a number of autonomous robots would 

have to deliver the same field capacity as a large machine. For instance, the amount of material 

being transported to and from the field in the form of seeds, fertilizers and harvested crop is not 

likely to change and quite a number of robots would be needed to transport it. Robotic 

equivalents for planters and chemical applicators can be developed but the sheer volume of 

material during harvesting might justify the conversion of current combine harvesters to be 

integrated into the robotic framework. 

3) The Automated Farm 
 

 The lights-off factory, which was envisioned during the industrial automation era, never 

made it to fruition. Similarly, full-scale farm automation is doubtful to become a reality in the 

near future. It is more likely that a high degree of automation will be combined with manual 

tasks for operations that are uneconomical to automate. Although the holy grail of farm 

automation may never become reality, it is an ideal that can give direction to research. 
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The challenge in producing a highly automated farm operation is in the development of 

machinery, fitted with sensors and data communication capability. Furthermore, the machinery 

must be rugged enough to withstand outdoor influences, energy efficient to minimize battery 

charging time, reliable, low maintenance and safe. As evidenced by the robots described in this 

paper, most of these properties can be approached by producing robots from off-the-shelf 

components, combined with relatively simply guidance algorithms. GPS guided robots will 

benefit from the European 
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deliver high positional accuracy for public use. 
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One of the most challenging problems lies in developing algorithms that optimize the 

functioning of a fleet of robots. Not only does this require intelligence in terms of object 

avoidance, cooperation and conflict resolving are important components as well. It might be 

feasible to treat the fleet of robots as a mechanical ecosystem where beneficial behaviors emerge 

automatically when the proper optimization functions are set and cooperative behavior is 

promoted.  
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AgBo 130 

131 AgBo was developed as an industrial style robot for crop row applications (Figure 1).  
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Figure 1. AgBo, a flexible, industrial style robot for row crop applications 

Mechanical layout 

The width of the robot was set to fit within a standard cornrow spacing of 75 cm and for 

simplicity of turning and cosmetic reasons, the length was chosen equal to the width. The total 

height was approx 80 cm. Although the majority of components was made out of aluminum, the 

total weight, including batteries, was approx. 100 kg. 

AgBo was fitted with Bogie suspension (parallel linkage suspension on either side), 

which guarantees that all wheels are in contact with the ground at all times. In addition, 
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inclination control was implemented which allows the robot to tilt forward and backward (used 

to control the angle of attack of the laser guidance unit). 

AgBo has four steering modes 1) Front Wheel steering (used in crop guidance), 2) All 

Wheel Steering (enables short radius turns), 3) Crabbing (moves robot laterally) and 4) Zero 

Radius Turn (spinning in place). The steering also correctly incorporates the Ackermann 

principle. Each wheel was fitted with 50W DC brushless gear motor for propulsion and a 20W 

DC gear motor for steering. 

Electronic Layout 

The electronic layout of AgBo is shown in Figure 2. 
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151 Figure 2. Diagram of AgBo’s electronic control systems 

Each wheel was controlled by a Wheel Control Unit, which contained a BasicAtom 

microcontroller (ATOM PRO24-M, Basic Micro, Farmington Hills, MI) under control of a 

dedicated MBasic program. A major advantage of the BasicAtom microcontroller is the 

hardware PWM generators, which allow for reliable motor control. The function of the Wheel 

Control Unit was to generate the appropriate PWM signal for the motors when a steering/driving 
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input is received from the main controller unit. In crop guidance mode, this steering input was 

transmitted by a laptop computer that interfaces with a SICK (LM291, SICK® AG, Duesseldorf, 

Germany) laser range finder. In Remote Control mode, these signals were generated by another 

BasicAtom microcontroller unit that interfaced with the Remote Control Receiver. An electronic 

compass  (126703CL, Jameco Electronics, Belmont CA, 
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www.jameco.com) was used for end-of-

row turning. The laptop computer was used to interface with the SICK laser range finder as well 

as the Electronic Compass and to compute the appropriate steering and speed control message 

for the Wheel Control Units. The communication between the laptop computer and the SICK 

Laser Range finder was implemented using RS232C, and the communication with the electronic 

compass was implemented using a Serial Peripheral Interface (SPI) bus. All other 

communications were implemented using a Controller Area Network (CAN) bus (Etschberger, 

2001). The programming language used for the guidance tasks was ‘C’. 
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Guidance 

 The crop guidance functionality of the robot was based on a SICK laser range finder unit. 

This unit projects a 180-degree horizontal laser sheet and calculates the distance to any object in 

the field of view with an angular resolution of 0.5 degrees. Table 1 shows the specifications of 

this sensor.  

Table 1. Specification of SICK laser scanner 

Type 
Scanning 

angle 
Resolution/Accuracy

Range 

(10% 

reflectivity) 

Data  

Interface 

Transfer rate 
Power 

consumption
Weight 

LMS291 180 º 10mm/±35mm 30m 
RS232 

RS422 

9.6/19.2/38.4/500 

kb 
20W 4.5kg 

 175 
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A simplified model of corn stalks was to regard them as perfectly cylindrical shapes, 

placed in rows at constant distances as shown in Figure 3. The laser scanner measures the 

shortest distance in 0.5-degree increments. To control the robot, information is needed regarding 

the left and right side nearest row. Data filtering was performed using the following steps: 

 

1. Collect distances and associated angles from SICK laser scanner. 

2. Convert cylindrical coordinates to Cartesian coordinates within 2 m radius. 

3. Discard lateral coordinates outside 15<|x|<80 (this window was chosen arbitrarily) 

x
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4. Discard longitudinal coordinates larger than threshold D. This value is adaptive; D is 150cm 

during between-row guidance and 80cm during headland turns. 

 

Figure 3. Simplified model of corn stalks in the field   
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Between-the-row guidance 188 
189 

190 

191 

192 

193 

194 
195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

The between-row guidance control was based on the difference between the current 

heading and an aiming point, which was calculated using the filtered data from the SICK laser 

scanner. The aiming point was simply the mean value of the Cartesian coordinates of the corn 

stalks. A low pass filtering action was applied over time to compensate for the movement of corn 

stalks under high wind conditions. 

 End-of-row turning control 
 

The turning at the end of the row was performed using a series of steps as follows: 

 

1. Detect the end of row by observing loss of data from SICK range finder. 

2. Continue moving forward using current heading for 10 seconds (chosen based on maximum 

travel speed). 

3. Perform zero radius turn through 180º using electronic compass. 

4. Fine tune robot orientation with latest row using SICK range finder. Proper alignment was 

assumed when the average of the corn stalk coordinates (aiming point) is in the center of the 

detected coordinates. 

5. Move transversely (using crab steering) and stop when the robot is in line with the adjacent 

row using SICK laser sensor. As in step 4, proper alignment was assumed when the average 

of the corn stalk coordinates (aim point) is in the center of the detected coordinates. 

6. Enter adjacent row.  

 

Figure 4 shows the end-of-row turning method of AgBo. 
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Figure 4. End-of-row turning sequence 
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AgTracker 214 
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AgTracker is a rugged, general-purpose robotic platform that was built with reliability, 

cost and simplicity in mind. The basic crop guidance functionality was implemented using a 

single BasicAtom microcontroller. This involved controlling the speed of the 2 motors (which 

subsumes skid steering), receive and process information from infrared sensors and the 

electronic compass, outputting data to a serial LCD unit as well as interfacing with a Remote 

Control Receiver in RC mode.  
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Figure 5. AgTracker, a simple, rugged, low-cost agricultural robotic platform 
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Mechanical layout Mechanical layout 

AgTracker’s drive motors are DC brushless High 

Torque types (Astroflight 940P Geared Motor). The 

motors have a continuous power output of 750 Watts 

and can be run on 12V or 24V. During operation, the 

motors heated up significantly and thus heat sinks and 

fans were added to limit this. 

AgTracker’s drive motors are DC brushless High 

Torque types (Astroflight 940P Geared Motor). The 

motors have a continuous power output of 750 Watts 

and can be run on 12V or 24V. During operation, the 

motors heated up significantly and thus heat sinks and 

fans were added to limit this. 

  

The output of the motors was geared down significantly 

using chains and gearboxes which limits the speed to 

approx 2 m/s. The complete drive train is shown in 

Figure 6. 

The output of the motors was geared down significantly 

using chains and gearboxes which limits the speed to 

approx 2 m/s. The complete drive train is shown in 

Figure 6. 

  

Electronic layout Electronic layout 

AgTracker’s electronics layout is much simpler than AgBo’s. The electronics were built 

around a single 40-pin BasicAtom module and no network was required. The advantage of the 

BasicAtom unit is its built-in hardware Pulse Width Modulation unit, which is very well suited to 

drive DC motors. To interface the microcontroller with the motors, motor controller boards were 

used (OSMC Power Unit, www.robot-power.com

AgTracker’s electronics layout is much simpler than AgBo’s. The electronics were built 

around a single 40-pin BasicAtom module and no network was required. The advantage of the 

BasicAtom unit is its built-in hardware Pulse Width Modulation unit, which is very well suited to 

drive DC motors. To interface the microcontroller with the motors, motor controller boards were 

used (OSMC Power Unit, www.robot-power.com) To interface with the 8 infrared sensors and 2 

ultrasonic sensors, a dedicated board was developed which multiplexed the sensors to the 

microcontroller unit. The ultrasonic sensors (134105CL, Jameco Electronics, Belmont CA, 

254 

255 

256 

www.jameco.com) used analog output voltages, and were connected to Analog/Digital converter 

ports on the BasicAtom. The electronic compass (126703CL, Jameco Electronics, Belmont CA, 

257 

258 
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www.jameco.com) had a Serial Peripheral Interface (SPI) and output pulses that were counted 

using a pulse counting command in MBasic.  A 20*4 serial LCD unit (LK204-25, Jameco 

Electronics, Belmont CA, 

259 

260 

www.jameco.com ) was added to display the output of the sensors in 

real time. Figure 7 shows a diagram of AgTrackers electronic units. 
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Figure 7. Diagram of AgTracker’s electronic units with 1) Remote 

Control, 2) GPS and 3) Crop guidance modes 
 

For the programming BasicAtom’s MBasic language was used. This language is a 

modern Basic variety that supports compilation and allows for simple uploading of the compiled 

code into the microcontroller using a fast serial connection.  

Crop guidance 

 For crop guidance, AgTracker uses an array of sensors for in row guidance and end-of-

row turning (Figure 8). The crop guidance of the robot was performed by simply attempting to 

keep an equal distance from the corn stalks on the left and right. As a distance indicator, the 

average value of the infrared and ultrasonic sensors was used and outliers were removed using a 

median filter approach.  
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Figure 8. AgTracker’s sensor arrangenment with 2 ultrasonic sensors and 8 infrared 

sensors (6 long distance, 2 short distance) 

Between-the-row guidance 

When the average left sensor output was higher (closer to stalks) than the average right 

sensor outputs, the right motors were decelerated which steers the robot to the right and vice 

versa. The amount of deceleration was proportional to the difference between the average left 

and right sensor outputs, a classical proportional/integrating action control approach. Constants 

for the proportional and integrating action were obtained by experimentation and observing the 

amount of sway in the crop rows.  
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End-of-row turning control 288 
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 The end-of-row turning was accomplished using the following steps (Figure 9): 

1. Detect the end of row by observing loss of data from infrared sensors. 

2. Continue moving forward using current heading for 5 seconds (chosen based on maximum 

travel speed). 

3. Perform zero radius turn through 90 degrees using electronic compass. 

4. Move perpendicular to the crop rows until the rear sensors ‘see’ the previous crop row.  

5. Reverse the robot through 10 cm (time based, about 1 sec in 75 cm rows) 

6. Turn again in the same direction through 90 degrees using electronic compass. 

7. Move forward into the new row. 

 

90°

90°

Spin turn

Spin turn

 300 

301 

302 

Figure 9. End-of-row turning sequence AgTracker 
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 To investigate what type of robot is most suitable for field applications, two robots were 

built with differing philosophies. AgBo showed to be somewhat excessive in terms of 

capabilities and cost, estimated at $7,000 material costs. The flexibility of the robot was not truly 

employed, since simple front wheel steering proved sufficient for between-row guidance. The 

SICK laser unit provided more information than was used, and significant low pass filtering was 

applied over time to compensate for wind induced lateral movement of corn stalks and to 

eliminate the influence of moving leaves. Turning at the end of the row was performed using the 

Spin Turn and Crab motion. The end-of-row turning method used a compass for two 90-degree 

turns and the SICK laser was used to precisely align the robot to enter the adjacent row. The 

four- wheel layout of AgBo necessitated the use of bogie suspension, which added significant 

weight. Also, the SICK laser application required tilt control, which added an additional tilt 

sensor and linear actuator. AgBo’s wheels (10 cm diameter) proved too small for muddy 

conditions and even to overcome ruts in dry conditions. In the future, instead of wheels, small 

tracks may resolve this problem. 

 AgTracker ($500 material costs) proved to be a very robust and effective field robot. Its 

larger wheels provided sufficient traction under any condition, and the skid steering principle 

(coupled wheels left and right) did eliminate the need for suspension. The sensor layout was cost 

effective and the combination of ultrasonic and optical sensors provided sufficient information 

for between-row guidance. The end of row turning method using the electronic compass was 

reliable and reproducible. The BasicAtom microcontroller showed capable of real time 

communication with sensors, output to LCD display and motor control.  
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 In conclusion, AgTracker was found to be the most promising agricultural robot. It’s 

performance to price ratio was superior, its fewer parts proved more reliable and like AgBo it 

negotiated corn crop rows autonomously without damaging any plants. In addition, its physical 

layout made it more rugged and easier to mount sensors and actuators for future development. 
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