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Abstract 

New telecommunication services and mo- 
bility networks have introduced databases 
in telecommunication networks. Compared 
with traditional use of databases, telecom 
databases must fulfill very tough requirements 
on response time, throughput, and availabil- 
ity. ClustRa is a telecom database prototype 
developed to run on standard workstations in- 
terconnected by an ATM switch. To meet the 
throughput and real-time response require- 
ments, ClustRa is a main memory database 
with neighbor main, memory logging. Trans- 
actions are executed in parallel. To meet the 
availability requirements, we use a 2-safe repli- 
cation scheme over two sites with independent 
failure modes, a novel declustering strategy, 
early detection of failures with fast takeover, 
and by on-line self-repair and maintenance. 
This paper gives an overview of ClustRa and 
includes a set of performance measurements. 

1 Introduction 

Digital switches are monolithic units supporting plain 
old telephony service (POTS). They have over time 
been stuffed with increasing amounts of functionality, 
e.g., for management of routing, terminals, subscribers 
and charging. A digital switch typically contains mil- 

lions lines of software. It is not allowed to be out of 
service for more than two to three minutes per year, 
corresponding to availability class five [GR92]. The 
large amount of software combined with the required 
high availability results in long lead time for introduc- 
tion of new services and a dominance of switch suppli- 
ers over service providers. 

Intelligent networks (IN) were introduced in the 80’s 
to support new types of telecom services, e.g., termi- 
nal mobility (UPT), virtual private nets, and credit 
card calling. Most IN services are required to have the 
same service availability as POTS. IN are designed for 
rapid development and deployment of new services and 
to give service operators control over service develop- 
ment. To obtain this goal, services are built by service 
programs using basic functions supported by special- 
ized servers (SCPs) in the network. The effect is that 
functionality that was buried invisibly inside digital 
switches becomes open, modularized, and allocated as 
servers on multiple platforms. One entity that appears 
in this architecture is the telecom database. 

The classical use of telecom databases is in vari- 
ous types of call routing, where transactions read one 
record, demand 5 to 50 milliseconds response time, 
availability class five, and 10,to 10.000 TPS. Exam- 
ples are mapping from phone number to terminal in a 
digital switch, and,from a universal phone number to a 
physical phone number in UPT. Update transactions 
are less than 10% of the transaction volume, and de- 
mand from 50 milliseconds to a few seconds response 
time, with availability class five. Mobile telephony im- 
plies update transactions with 10 to 20 millisecond re- 
sponse time because a user should experience no longer 
glitches than 100 milliseconds when a mobile termi- 
nal is handed over from one switch (MSC) to another. 
Durable connections which imply crash atomic call sta- 
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tus, demand update transactions with similar response 
time as mobile telephony. 

ClustRa is a telecom DBMS kernel designed to meet 
the total combination of requirements from IN and mo- 
bility networks. As a consequence, all performance re- 
quirements refer to TPC-B-like transactions, i.e. trans- 
actions with the same semantics as TPC-B [CragI] 
transactions, but with a data volume adapted to the 
application. The following are the main project goals: 
1) Response time for TPC-B-like or lighter transac- 
tions of maximum 15 milliseconds for at least 95% of 
the transactions; 2) Scalable throughput with an up- 
per limit of at least 1000 TPC-B-like TPS; 3) Class 
five availability. 

This unique set of requirements are approached by 
a combination of old and well known techniques, to- 
gether with new techniques developed primarily to 
meet the availability goal. To meet the response time, 
ClustRa employs a main memory database for real- 
time data, main memory logging, and parallel intra- 
transaction execution. A parallel database design is 
used to achieve scalable transaction throughput. To 
meet class five availability we use a ‘L-safe replication 
synchronization over two sites, and on-line self-repair. 
ClustRa uses the relational model, but can also sup- 
port object oriented models. The system is also de- 
signed to support traditional on-line and decision sup- 
port transaction types through the use of traditional 
database buffering and a flexible record structure. 

The organization of the paper is as follows: The 
state of the art is briefly surveyed in Section 2. Sec- 
tion 3 presents the ClustRa architecture and how it 
executes distributed transactions. The ClustRa avail- 
ability management is presented in Section 4. The de- 
tection and masking of node failures are emphasized. 
Section 5 gives an overview of the ClustRa log and re- 
covery method. Measurements of transaction response 
and throughput together with take-over time are pre- 
sented in Section 6. Section 7 concludes the paper. 

2 State of the Art 

Telecom databases have mainly been developed by 
switch manufacturers. These systems have barely been 
documented in the research literature. They were 
tailored to the needs of routing applications in dig- 
ital switches. As a consequence, they support very 
fast reading of a few records, and most provide dirty 
read. Some systems are pure main-memory databases, 
others have background disk support. Update trans- 
actions involve write-ahead logging to disk, and the 
response time is therefore longer than a disk access. 
The throughput rate for update transactions is rather 
low. Some systems are centralized, some are parallel. 
The parallel systems seem to give scalable through- 

put growth. They differ on availability attention and 
implementation. Some rely entirely on fault-tolerant 
hardware, others have implemented this in software us- 
ing multiple loosely synchronized main memory repli- 
cas of tables. A hot stand-by replica becomes primary 
in case the primary fails. Automatic repair is realised 
by producing a new replica for one that has been lost. 
On-line software upgrade is not supported. The rela- 
tional model is used by most systems. 

New telecom databases have appeared over the last 
years [Ahn94]. 0 ne of these is the Dali system from 
AT&T Bell Labs [JLRS94]. This is a single node site 
main-memory system with background disk support 
that is tailored to routing applications. It supports 
more flexible record structures than most older prod- 
ucts. It uses a l-safe hot spare system with a system 
as the atomic failure unit. By utilizing hot spares, 
Dali indicates ability to support schema and software 
changes without bringing the entire system down. Dali 
does not have throughput scalability given its current 
centralized architecture, nor does it support on-line 
automatic repair, which is imperative to achieve class 
five availability. 

Smallbase is a telecom database developed by 
Hewlett-Packard Laboratories [HLNW94]. The sys- 
tem is designed for the throughput and response time 
characteristics of IN transactions. A main goal is to 
achieve transaction scale-up using commodity hard- 
ware and Unix. Like Dali, Smallbase uses a l-safe hot 
spare system. 

TDMS is developed by Nokia for use in switching 
and mobile systems [Tik92, Tik93]. The system runs 
on dedicated hardware and basic software. The focus 
is on response time and throughput of read transac- 
tions. Throughput scale-up and high availability have 
not been catered for beyond the use of fault-tolerant 
hardware. 

Commercial SQL databases are used within IN and 
some mobile applications. Some SQL systems meet 
throughput and response time requirements for read- 
only transactions, but their applicability to mobile and 
switch applications are limited by their longer response 
time for update transactions caused by disk logging. 
Availability has been achieved through system pairs 
and manual repair. Limited attention has been given 
to aspects like on-line schema upgrades. 

3 Database Architecture 

3.1 Platform 

For fault-tolerance, the ClustRa database manage- 
ment system uses a shared-nothing hardware model. 
Each node of the database system is a standard Unix 
workstation with a 64.0 (Sun Sparcstation 5/85) or 
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50.2 (Sun Sparcstation 10/40) SPECint92 CPU and 
256 MBytes of RAM. UNIX (SunOS 4.1.3) is the oper- 
ating system at each node. Inter-node communication 
is via an ATM (FORE Systems ASX-200) switch with 
a capacity of 100 Mbits/set per connection through the 
switch. The purpose of the project is partly to show 
that it is possible to meet the requirements of a tele- 
corn database using standard, off the shelf hardware 
and operating system. 

Each node is an atomic failure unit. Nodes are 
grouped into sites, which are collections of nodes with 
correlated probability of failure. Sites are failure inde- 
pendent with respect to environment and operational 
maintenance. Logically, the database system consists 
of a collection of interconnected nodes that are func- 
tionally identical and act as peers, without any node 
being singled out for a particular task. This improves 
the robustness of the system and facilitates the main- 
tenance and replacement of nodes. Figure 1 shows an 
architecture with two sites, each having four nodes. 
Each site has a replica of the database. Each node at 
a site is connected to an ATM switch, which again is 
connected to the switch at the other site. The switches 
have external connections. 

SW A : SiteB 

Figure 1: An architecture with two sites. 

3.2 Traditional and Main Memory-Based 
Server 

ClustRa is a traditional database server, in the sense 
that it manages a buffer of data with a disk-based 
layout in blocks; it has a B-Tree access method, a se- 
mantically rich two-phase record locking protocol, and 
it has a two-level logging approach. However, it is 
main memory-based in the sense that tables may be 
declared to reside in main memory. Unlike pure main 
memory databases [HLNW94, JLRS94], this allows for 
many classes of queries and transactions, not limited 
to those requiring real-time response. This is impor- 
tant in a telecom database, due to multiple services 

having diverse characteristics with respect to response 
time and data volume. 

High throughput is achieved by a distributed ar- 
chitecture. A table may be distributed onto differ- 
ent nodes by horizontal fragmentation, according to 
either a hash or a range partitioning algorithm. High 
availability is achieved by replication over several sites. 
We are using an asymmetric replication scheme, where 
there always will be one primary replica of a (horizon- 
tal) fragment of a table, but there may be several hot 
stand-by replicas. The node of the primary replica 
will always be the one executing the request for a spe- 
cific record found in that replica. The hot stand-by 
replicas will be kept consistent by redoing log records 
that are shipped from the primary node. Each node in 
the system may be primary for some fragments, and 
hot stand-by for other fragments. This facilitates load 
balancing both during normal processing and during 
node failure where takeover must take place, i.e. the 
hot stand-bys will become primary. The number of hot 
stand-by replicas are dependent on the desired avail- 
ability level. For our requirements it is enough with 
one hot stand-by replica [Tor95]. 

ClustRa provides a basis for a relational system. It 
supports variable length records identified by primary 
keys and organized in tables. Records may be accessed 
by primary keys or sequentially, and they are stored in 
fixed sized blocks according to the block size in the un- 
derlying secondary storage. Tables are stored in files, 
which currently are organized as B-Trees. This holds 
also for resident, internal administration data, like the 
free block management, the resident part of the dis- 
tributed log, and the file directory, which is a mapping 
from file identifiers to root block identifiers. By using 
B-Trees also for internal data structures, we have re- 
duced the code volume of the system. We have chosen 
to use a B-Tree access method due to its generality 
- it gives sufficient performance both with respect to 
sequential and direct record access. 

To access the database we use an internal code for- 
mat, which express a rich set of record, algebra and 
cursor operations. In addition, this code format is 
used in messages sent between the processes. Thus, 
it is also capable of expressing log records and infor- 
mation about transaction processing. 

The buffer manager holds copies of blocks residing 
on disk with three different priorities: 

l Real-time: the block always resides in main mem- 
ory. 

l Random: the block will be accessed randomly and 
is kept in the buffer according to a LRU policy. 

l Sequential: the block will be accessed sequen- 
tially. This is a hint to the buffer manager to 
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prefetch the next blocks in the same file and to 
make used blocks available for replacement. 

3.3 Runtime Architecture and Transaction 
Execution 

On each node there is a number of services: A trans- 
action controller, a database kernel, a node supervi- 
sor, and an update channel. These services may be 
built (during make) either as separate UNIX processes, 
or as our own light weight processes (threads) inside 
one UNIX process. The transaction controller receives 
requests from clients to execute certain precompiled 
procedures, or it receives user code which it compiles 
into the internal code format. It coordinates trans- 
actions through a two-phase commit protocol, The 
kernel has the main database storage manager capabil- 
ities, like locking, logging, access methods, block and 
buffer management. It receives code to be interpreted 
from a transaction controller. The update channel is 
responsible for reading the log and for shipping log 
records to hot stand-by nodes. The node supervisor is 
responsible for collecting information about the avail- 
ability of different services, and for informing about 
changes. 

Figure 2 illustrates the 2-safe [GR92] execution of a 
simple transaction by showing the processes involved. 
There are two sites with two nodes each. The trans- 
action controller (TO) receives the client request, and 
thus become the primary controller. It has a hot stand- 
by controller (T2) on another node, which is ready to 
take over as primary if TO fails. TO uses the distribu- 
tion dictionary to find the nodes holding the primary 
and the hot stand-by replicas of the records in ques- 
tion. For this particular transaction, Kl has the role 
of a primary kernel and K3 the role of a hot stand- 
by kernel. TO sends the operations to be executed 
piggybacked on the start transaction command to Kl. 
Simultaneously, it sends K3 a start transaction com- 
mand together with the number of log records to re- 
ceive from Kl. The update channel (Ul) reads the 
log of Kl and ships the log records for this trans- 
actions to K3, -where they are stored in the log and 
redone. When TO has received ready (dnd possible re- 
turn values) from both kernels and an ack from the 
hot stand-by controller, it gives an early answer to 
the client. The second phase of the commit includes 
sending commit messages to the two kernels involved. 
When both kernels have responded to TO with done, 
the transaction is removed from T2 and TO. 

The illustrated transaction is simple, because when 
a transaction accesses several records, there may be 
several primary and hot stand-by kernels executing the 
transaction in parallel. 

Internally each process is organized as a set of 

c\:1> Client 

i\ \,\\ ~---~---:~ 

1 Node 1 ] ! 1 Node. 3 

Site A i Site B 

Figure 2: Processes involved in a simple transaction. 

threads, which are handled by our own scheduler. 
Threads facilitate multiple users in the system without 
any significant overhead, as well as waiting conditions 
in the communicatipn and for disk access. Threads are 
non-preemptive, which are used to ensure that access 
to shared data is synchronized. 

4 Availability Management 

High availability is based on data replication and al- 
location of primary and hot stand-by fragment repli- 
cas to nodes with independent failure modes. Addi- 
tionally, ClustRa balances the load on the nodes both 
during normal operation and failures, and it supports 
self-repair. 

To discover failed services or nodes, ClustRa applies 
an I-am-alive protocol internally inside a node and be- 
tween nodes. All processes on a node are polled repeat- 
edly by a node supervisor to detect their state. The 
I-am-alive protocol between the nodes is organized as 
a circle. Each node sends and receives I-am-alive mes- 
sages from both its neighbors in the circle. In addition 
to discovery of failed nodes and services, the I-am-alive 
protocol is used whenever a node is changing the set of 
provided services. It is also used to determine which 
unavailable nodes each available node is responsible 
for attempting to restart at regular intervals. 

The I-am-alive system is fully distributed with no 
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centralized knowledge. Hence, a virtual node set pro- 
tocol is used to maintain a consistent set of available 
nodes [ESC88]. If consecutive I-am-alive messages are 
missing from one of the neighbors in the circle, the 
protocol is activated. The node supervisor sends a 
build node set message to all known nodes. Other 
nodes should respond with their services. If a node 
has not responded within a certain number of resends, 
the node is assumed to be down, and a new node set 
is distributed. 

For high availability it is important to perform a fast 
take-over a.fter a node failure. Given the low proba- 
bility of lost messages and the short message queues 
in the ATM technology, we minimize the number of 
missing I-am-alive messages before the virtual node 
set protocol is activated. This shortens the interval 
from a failure happens to it is reacted upon. To min- 
imize the delay caused by updating the distribution 
dictionary, it is cached at each node and the current 
node set is used as a filter to it. The distribution 
dictionary itself is modified outside critical path. To 
minimize unavailability of replicas changing their role 
to primary, locks are maintained (but not effective) 
to the hot stand-by replicas. These replicas become 
available immediately after redoing the hot stand-by 
log records arriving before the new node set. In-flight 
transactions being active at a crashed node are rolled 
back, while those losing their hot stand-by controller 
continue. To minimize the window where the system 
is vulnerable to double faults, the log where only one 
replica exists, is copied to a node at the other site. 
Together with the main memory logging to two sites 
with independent failure modes, this is as reliable as 
traditional logging to disk [Tor95]. 

After a takeover, a recovery of the failed node is 
started. If it does not recover within a certain period 
of time, ClustRa starts its on-line, non-blocking self- 
repair. New replicas of its fragments, possibly sub- 
fragmented, are produced fuzzily, and they are then 
caught up with the use of distributed logs [HST+Sl]. 

One of the main goals of ClustRa is to achieve high 
availability and load balancing, both during normal 
processing and upon failures. To fulfill this goal, a 
new strategy for placement of replicated fragments, 
minimum intersecting sets deelustering, has been de- 
veloped [Tor95]. The principle of this methodology is 
that the largest cardinality of any intersection of the 
sets of’ fragments allocated to different nodes, should 
be minimized. It achieves low unavailability by fast 
takeover and self-repair. A takeover is made fast by 
tuning the system to not involve more nodes than nec- 
essary. Self-repair is made fast by exploiting spare ca- 
pacity of non-failed nodes. 

5 Logging and Recovery 

5.1 The Distributed Log 

ClustRa combines two logging methods: a distribution 
transparent method for record operations and a phys- 
iological method for node-internal operations. The 
neighbor write-ahead logging developed in [Hva92] is 
applied to record operations. This is a main-memory 
logging technique where transaction commit does not 
force log to disk. A log record must be written to 
two nodes with independent fa.ilure modes, i.e. neigh- 
bor nodes, before the effect of an update operation is 
allowed to be reflected on disk, and before,the trans- 
action commits. The log shipping serves in addition as 
the loose replication synchronization scheme [CriSO]. 

The idea of this scheme is to save the delay in forc- 
ing log to disk at commit time. We do this by tak- 
ing advantage of modern communication technology, 
where the delay in writing to main memory on a neigh- 
bor node is much lower than the delay in writing to 
disk. Since we exploit the log shipping for replication 
as well, this comes almost for free. The distributed 
logging uses a compensation log record (CLR) policy. 
CLRs are produced by the primaries and contain com- 
plete redo information and reference to the log record 
it compensates. Only a single CLR can be produced 
per non-CLR [MHL+92]. 

To allow subfragmentation of a hot stand-by replica 
as compared with its corresponding primary, both redo 
and undo use logical, i.e. primary key-based record ac- 
cess. This allows for encapsulation of block size and 
access method in each node. Of the same reason state- 
identifiers reflecting the sequence of operations exe- 
cuted to a record are connected to records instead df 
as traditionally to blocks. State-identifiers are gen- 
erated at the primaries with unique values within a 
fragment. They are included in the log records and 
are reflected to the hot stand-bys through redo pro- 
cessing. Therefore, two replicas of a record with t,he 
same state-identifier reflect the same state indepen- 
dently of the fragment, replica, and node the record is 
located at. 

Another strong point of the replication scheme, is 
that no’concurrency control is needed on hot stand-by 
fragment replicas, because the execution order is the 
same to a hot stand-by record as to its primary. How- 
ever, fragment shield locks are used on hot standby 
fragment replicas, because during take-over, when hot 
stand-by fragment replicas do not yet reflect all pend- 
ing redo operations, new transactions should wait. 

5.2 The Node-Internal Log 

Node-internal operations for access methods, free 
block management, and file directory are implemented 
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transactionally. These operations are logged in a node- 
internal log. A physiological, single CLR policy with 
just reference to the compensated non-CLR is used 
[GR92]. The node-internal log is disk-based and is not 
shipped to any other node. To be able to undo a node- 
internal operation a node-internal log record must be 
produced in main memory before the corresponding 
operation is executed. The log record must have been 
flushed to disk before the effect of the operation is re- 
flected on disk. A sequence may be imposed on writ- 
ing blocks to disk to avoid logging records moved in 
a block split. Committing a node-internal transaction 
does not involve any block flush, because redoing the 
distributed log to the node will establish an equivalent 
node-internal state. This synchronization protocol be- 
tween the distributed and the node-internal logging 
avoids altogether introducing log-related disk flushes 
in the time-critical transaction execution. 

To support fast node crash recovery and efficient log 
garbage collection, ClustRa uses a fuzzy checkpointing 
algorithm in combination with a steal and no-force 
buffer management policy. Transactions are allowed 
to go on while the checkpoint is made, only a single 
block is read-latched at a time with copy-on-write op- 
tion while they are inspected and possibly flushed to 
disk. The checkpointing limits the redo work, by al- 
lowing the redo recovery to start at the penultimate 
checkpoint in the log. However, the undo work must 
go back in the log until the active transaction table is 
empty. 

5.3 Node Recovery 

The recovery method of ClustRa distinguishes among 
different degrees of corruption at a node. When the 
disk is corrupted, the complete database is reloaded 
from other nodes. When the contents of main mem- 
ory is garbled, a recovery based on log records and 
database from disk is done. When only parts of main 
memory are corrupted, a recovery based on main mem- 
ory is done. The decision on using disk or main mem- 
ory recovery is based on checksums on the internal 
administration data. If the checksums on the buffer 
access structure, the log access structure, and the lock 
structure are found to be in order, a main memory re- 
covery may be done. A node recovery based on main 
memory involves just undoing the eventual ongoing 
node-internal transactions and undoing the record op- 
erations that were not reflected on any other node be- 
fore the crash occurred. A disk-based recovery per- 
forms a redo followed by an undo recovery from the 
stable node-internal log, before a redo recovery is exe- 
cuted based on the distributed log shipped from nodes 
with primary fragments for those stored at the recov- 
ering node. If during a main memory-based recov- 

ery a block is found to be corrupted upon access, i.e. 
records or administration data inside a block is broken, 
a partial recovery is performed by reading the block 
from disk, redoing the node-internal log regarding this 
block, and then the distributed log. 

6 Measurements 

All measurements presented here were taken on Sun 
Sparcstation 5/85’s, except the scaleup tests, where 
the first four nodes are singleprocessor 10/40’s and the 
last four are 5/85’s 

6.1 Response Time 

We have performed some response time measurements 
for TPC-B-like transactions: three updates and one 
insert in different tables. Figure 3 shows the key num- 
bers for both the single- and multi-process versions of 
the system. The statistics is gathered over a period 
of 80 seconds, running a total of 6395 transactions in 
the singleproc version and 5674 in the multiproc ver- 
sion. Figure 4 shows the response time distribution 
for the singleproc version. This test is run on a two 
node configuration, where one node acts as primary 
and the second acts as hot stand-by. Thus, the test 
involves distributed 2-safe two phase commit process- 
ing, where a hot stand-by replica is ready to take over 
in case the primary goes down. All response times 
are measured in milliseconds. From these figures we 

Version Avg Min Max % < 15ms 
Singleproc 9.77 8.81 73.6 99.5 
Multiproc 11.64 9.26 69.9 98.9 

Figure 3: Response time measurements for TPC-B-like 
transactions. 

see that the response time requirement that 95% of 
TPC-B-like transactions answer in less than 15 mil- 
liseconds, is met on this small configuration. In the 
singleproc version 73% of the transactions have a re- 
sponse time between 9 and 10 milliseconds. There is a 
small group of transactions taking around 60 millisec- 
onds. We assume these transactions to be delayed by 
some regularly scheduled UNIX daemons. 

The response times are approx. 1.87 milliseconds 
better in the singleproc version. This is due to less 
work done by the operating system. We avoid some 
process switches and overhead in node-internal inter- 
process communication. 

The communication consumes a large portion of a 
transaction’s response time. A remote message passing 
takes about 0.8 millisecond. There are four remote and 
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Version I Val. I Window 

Distribution 

8 9 1011121314151617181920 Millisec 

Figure 4: Distribution of response times for TPC-B- 
like transactions in the singleproc version. 

two node-internal message sends ‘included in the crit- 
ical path of the transaction in the singleproc version. 
These remote sends alone consume 3.2 milliseconds of 
the response time. Outside the critical path, there are 
another two remote and two node-internal messages 
sent before a transaction responds. Including the com- 
mit processing are ten messages sent remotely, and six 
node-internally during a transaction execution. 

The primary node has a CPU utilization of 70%, 
while the hot stand-by is 35% loaded. This load dis- 
tribution is explained by the primary controller hav- 
ing a higher load than the kernels and the hot stand-by 
controller, because all internal messages are within the 
primary node, and because the client communication 
hits the primary. 

6.2 Throughput 

Figure 5 shows the measurements for throughput and 
average response time when we load the server with 
several parallel transactions. The window size is the 
number of parallel transactions. These measurements 
are taken over a period of 80 seconds. The increase 
in response time is an effect of queuing. From these 
figures we can see that this configuration has a maxi- 
mum throughput of 104 2-safe TPC-B-like TPS in the 
singleproc version. With an acceptable response time, 
we can get 83 2-safe TPC-B-like TPS out of this con- 
figuration. We could have traded throughput with re- 
sponse time by coalescing many transactions into the 
same messages, and by using a grouped neighbor write- 
ahead protocol. 

1 Multiproc 1 Resp 1 11.36 1 21.3 1 49.5 ( 93.2 

Figure 5: Throughput and response time as a function 
of window size for TPC-B-like transactions. 

Nodes TPS Eff. Response time 
Avg ] Min 1 Max 

2 114 1.00 14.6 1 10.5 1 92 
3 144 
4 172 
5 211 
6 243 

Figure 6: Scaling up in the two-updates transactions 
with high load. 

To measure the scale-up of the system we imple- 
mented a transaction updating two records in two dif- 
ferent tables. The tables were fragmented to all nodes, 
both as primary and as hot stand-by. To be able to run 
with an odd number of nodes without getting skewed 
load, we allocated fragments in a circle. Node O’s pri- 
mary fragments have hot stand-bys on node 1. Node 
l’s primary fragments have hot stand-bys on node 2, 
and so on. To scale the load as well, each node has a 
separate client. Thus, when we add a node, we also 
add a client. 

Nodes TPS Eff. Response time 
Avg 1 Min 1 Max 

2 66 1.00 12.0 I 7.3 I 89 

1 
-I 
-I 

10.9 6.5 85 
12.1 7.3 65 
12.9 7.1 112 
13.6 6.8 129 
14.0 6.5 139 
14.0 6.5 139 

Figure 7: Scaling up in the two-updates transactions 
with medium load. 

Figure 6 shows the throughput and response time as 
a function of the number of nodes when we run trans- 
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actions back-to-back, thus loading the server heav- 
ily. Figure 7 shows the same when we let the clients 
sleep some milliseconds between each request, causing 
less load on the system. In both tables the statis- 
tics for each row is gathered over a period of 40 sec- 
onds. The efficiency columns use two nodes as refer- 
ence for throughput. Figure 8 illustrates the through- 
put graphically, where the dark plot is the heavy load 
and the lighter plot the lighter load. We can see that 
the throughput seems to scale linearly. 

TPS 
350 

I 

300. 

250. 

200. 

150: / 
100 

50' : Nodes 2 3 4 5 6 7 8 

Figure 8: Close to linear scale-up. 

The TPC-B-like transaction was not used for the 
scale measurements, because it touches too many 
records per transaction compared with the number of 
nodes in the current version of the laboratory. Due to 
the high cost of communication, there is a noticeable 
saving for the transaction when the two records are on 
the same node. When adding more nodes, we expect 
the response time and efficiency to stabilize, because 
the locality effect disappears. An indication that this 
is true, may be seen in the asymptotic behavior of the 
measured average response times and the fairly con- 
stant minimum and maximum response times. 

6.3 Takeover 

Fast takeover is necessary to ensure high availability. 
To measure the takeover time, we instrumented the 
client to register the interval the system was unavail- 
able. In our measurements we used a two node configu- 
ration. One node holds the primary kernel and the hot 
stand-by controller. The other holds the hot stand-by 
kernel and the primary controller. The former node 
was stopped by sending it a UNIX signal. 

The client sends transactions back-to-back to the 
controller and receives either committed or aborted 
status. The time is taken between the receipt of two 
committed transactions, where there was a node crash 
in between. 

Figure 9 shows the takeover time measured both 
for the singleproc and the multiproc versions of the 
system. In these measurements the I-am-alive mes- 

Figure 9: Takeover time (milliseconds) measured from 
the client. 

sages are sent between nodes every 50 millisecond. If 
a neighbor node in the I-am-alive circle has not sent 
any I-am-alive messages within 100 milliseconds, the 
virtual node set protocol is started. The node super- 
visor discovering the lacking I-am-alive message builds 
a new node set by asking all known nodes about their 
services. The nodes which have not responded within 
50 milliseconds, is questioned once more. If they have 
not answered within another period of 50 milliseconds, 
they are assumed to be down, and a new node set is 
distributed. In average, the two phases take 225 mil- 
liseconds (125 + 100). The rest of the time is used in 
the takeover itself. 

7 Conclusions and Further Work 

There are several other approaches (briefly surveyed in 
Section 2) addressing the response time and through- 
put requirements, but we do not know of any other 
approach which address all three requirements of re- 
sponse time, throughput, and high availability. The 
ClustRa project has during the first year approached 
two of its main goals for response time and throughput, 
and it has partially met the third goal for high avail- 
ability. The response time requirement is met on small 
configurations of the system. The main technique used 
to meet this goal is the main memory database with 
main memory logging. Main memory logging is pos- 

sible by writing the log to the main memory of an- 
other node with an independent failure mode. The 
current system is CPU-bound due to high communi- 
cation costs. Thus, to meet the response time goal also 
on larger configurations, we are porting the system to 
workstations with faster CPUs, and we are optimiz- 
ing the ATM drivers. The throughput seems to scale 
linearly. Thus, we assume the throughput goal to be 
met by adding more nodes. Fast take-over is achieved, 
and high availability will be achieved by having two 
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sites, minimum intersecting sets declustering, on-line 
self repair, and system maintenance. 

Currently we are addressing takeback, where a failed 
node recovers and catches up with the rest of the sys- 
tem. In the next few months we will implement fuzzy 
replica production. In 1996 we will put effort in fur- 
ther enhancements of availability. We are developing 
a protocol for on-line non-blocking upgrade of dictio- 
nary data, a set of algebra methods for incremental 
on-line modification of data as a result of schema up- 
dates, and support for upgrade of basic software and 
disk structures. 
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