
 

Tutorial Index

January 1, 1998 

by Alan Frank

Lesson 113: Lightweight Directory Access
Protocol

An offshoot of X.500, LDAP may be the simple, universal directory of
the future.

This lesson relates closely to "Lesson 109: Directories" (Network
Magazine, September 1997, page 25, by Alan Frank), which discusses
directories in general. This month I will focus on a specific directory
technology: the Lightweight Directory Access Protocol (LDAP).

As "LDAP" suggests, it started life as an access method, not a
directory. By establishing a protocol, LDAP standardizes how an
application can "talk" to a directory. LDAP was originally designed to be
a lightweight front end to X.500 directories. X.500 is the ISO's robust
and comprehensive directory standard. 

However, at least in its early stages, X.500 took quite a bit of computing
power to implement. Researchers at the University of Michigan
conceived LDAP as a simplified replacement for X.500's native access
protocol, known as the Directory Access Protocol. An X.500 directory
could be run on a mainframe, minicomputer, or other high-horsepower
machine, while individuals with PCs and other computationally
challenged machines could use LDAP to access the directory.

Despite LDAP's beginnings as a front end to X.500 directories, work at
the University of Michigan soon turned to developing a standalone
LDAP-based directory that could be accessed by any LDAP client.
Since then, IETF standards efforts have also been directed toward
standalone LDAP directories.

THE LDAP STANDARD(S)

Efforts to make LDAP an Internet standard resulted in RFC 1487, which
describes LDAP 1. This document has since been superseded by RFC
1777, which covers LDAP 2. The IETF working group responsible for
Access, Searching, and Indexing of Directories (ASID) has since
developed a proposal for LDAP 3 and submitted it for approval in the
fall of 1997. For all practical purposes, it has been approved, but an

1 of 6



RFC has yet to be issued (at least at the time of this writing). The draft
document for LDAP 3 can be found at
ftp://ftp.ietf.org/internet-drafts/draft-ietf-asid-ldapv3-protocol-08.txt.

In theory, any LDAP-compliant application should be able to access
any LDAP-compliant directory. The LDAP-compliant directory would
then play the role of a server, while the application would function as an
LDAP client. LDAP can be used to get information from a directory
(such as finding out a user's e-mail address), as well as to store
information (such as creating a new account). 

HOW IT WORKS

The goal of a directory is to keep track of some entity, which might be a
person, but could also be a printer or other resource, and to store
relevant and needed information about that entity. An LDAP directory is
organized into entries; there is an entry for each entity you want to keep
track of. Each entry has attributes (for example, a name or e-mail
address) that hold information about the entity. Each attribute has a
name, a type, and one or more associated values. Take, for example,
the network user John Doe. The entry for John in the directory may
have an attribute named "mail," which stores John's e-mail address.
The attribute type of the mail attribute might be String, which means
that the information is stored as an ASCII text string, and the attribute
value of the mail attribute for John Doe's entry might be jdoe@xyz.com.

Since you need to keep track of different attributes for a person than for
a printer, entries have a type associated with them. An entry's type is
known as its object class. An entry's object class defines what attributes
it will have. How do we know what an entry's type is? That's held in a
special attribute named objectClass. 

What attributes are stored for a given object type is known as an
object's schema. The schema is enforced according to an entry's object
class, but one of the major extensions contained in LDAP 3 is the
provision for an extensible schema. The LDAP 3 proposal defines a
special object class called extensibleObject. If an entry's objectClass
attribute contains the value extensibleObject, anything goes as far as
what attributes are allowed. In other words, schema enforcement is
overruled.

LDAP 3 also provides a method for clients to discover the schema,
which is a very important, much-needed capability. For example, is a
Social Security number or address information in the directory? If so,
what's the attribute name? Schema discovery gives the LDAP client a
means to find this out. In LDAP 1 and LDAP 2, a client had to know
what the schema was-a major limitation.

NAVIGATING THE DIRECTORY

2 of 6



How do you find a particular entry in an LDAP directory? LDAP
supports a hierarchical organization of the information in the directory.
It's based on concepts borrowed from X.500, so if you've worked with
X.500 or Novell Directory Services, which bases its naming scheme on
X.500, you're probably familiar with LDAP's naming convention. LDAP
entries are named according to their Distinguished Name, known as
DN. For example, the DN for the John Doe entry might be "cn=John
Doe, o=XYZ, c=US." This specifies the entry as having the common
name "John Doe" in the U.S.-based organization "XYZ." 

The complete description of LDAP's naming scheme can be found in
RFC 1779.

LDAP OPERATIONS

An LDAP client uses TCP/IP to communicate with an LDAP server. By
default, LDAP servers listen to port 389, so LDAP clients need to direct
their requests to that port. 

Communications between LDAP clients and servers are
session-oriented, and the first thing a client must do when initiating a
session is send a bind request. This establishes the session.

As part of the session setup procedure, LDAP directories require
authentication of the client. LDAP 1 and LDAP 2 provide for a simple
password-based authentication, but the password is sent in plain text.
This is one of the issues spurring LDAP 3 work. (LDAP 1 and LDAP 2
can also use Kerberos authentication.) The LDAP 3 proposal allows for
the use of something called Transport Layer Security (TLS), which is
based on Secure Sockets Layer (SSL) 3.

LDAP defines several operations that an LDAP server can perform for a
client. These include bind (which was already mentioned), unbind
(which is issued to terminate the session), search (search for an entry),
modify (modify an entry), add (add an entry for a new entity), del (delete
an existing entry), modifyRDN (modify the RDN of an entry), compare
(which I will explain), and abandonRequest (abandon a request that's
pending).

Searches can, and typically are, limited in scope and by search criteria
(known as search filters). A search filter is a means of determining what
you're searching for. For example, you may be looking for any entries
where "cn=Elvis." Another alternative is to do a substring search. A
substring search for common names beginning with "e" might return
entries for Edward Jones, Edna Edwards, and Eloise Smith, for
example. 

The ability to set filters is a very powerful aid in searching the directory,

3 of 6



and LDAP's filtering possibilities are very flexible. You can require
either exact or approximate matches for your filter criteria, as well as
use greater-than-or-equal-to or less-than-or-equal-to comparisons. You
can also use the And, Or, and Not functions to look for matches for
various combinations of attributes and values.

When submitting a search request, the client must provide a parameter
called baseObject, which is the DN of the entry, from which point the
search will begin. For example, if you're looking for someone in
company XYZ, you might specify "o=XYZ, c=US" as the baseObject.

With baseObject as the starting point, how far should the search
extend? That's defined by the scope parameter. Scope can have one of
three values. The first is a subtree search, which means everything
"below" the baseObject will be searched (in other words, baseObject
will be the root of the search operation). 

The second possibility for scope is a one-level search. This will search
all entries for which the specified baseObject is the immediate parent.
For example, if there was an entry for the accounting department in
company XYZ, you could search for all the entries that are immediately
subordinate to the accounting department entry by setting the
base-Object to "ou=Accounting, o=XYZ, c=US," and setting the scope
to one-level. ("Ou" stands for the object type Organizational Unit.) Note
that if you wanted to find every single entry that falls under the
organizational unit "Accounting," you would need to use the subtree
scope, not one-level scope.

The third option for scope is a base-object scope, which will only return
the entry for the base object itself. This is handy when you want to look
up a certain attribute (or collection of attributes) for a specific entry, and
when you know exactly which entry you want. For example, if you just
wanted to find out John Doe's e-mail address, you might specify a
baseObject "cn=John Doe, o=XYZ, c=US," and set the scope to a
base-object search.

When an LDAP server gets a request from a client, it will execute that
request, if it can, and return a response message. The response might
be an error code (in cases where the request could not be honored) or
the results of the operation requested by the client. In the case of a
search request, for example, the LDAP server will return all entries that
meet the submitted scope and filter criteria.

When submitting a search request, you also specify how much
information should be returned. For example, you might specify that
only the first 30 entries that are found should be returned. You can also
specify how many seconds to spend on the search.

Whenever the server finds an entry that matches your search criteria, it

4 of 6



will return the entire entry (subject to whatever access permissions you
have). But you can elect to have only certain attributes returned, such
as a telephone number. Your request message must include a list of all
the attributes you wish to have returned; if no attributes are specified,
that is, if it's an empty list, you will get the entire entry.

The compare operation lets you check to see if the value of an attribute
for a specific entry matches some value that you're testing for. You
could, for example, verify that John Doe's email address is indeed
jdoe@xyz.com by issuing a compare request for the entry "cn=John
Doe, o=XYZ, c=US," and specifying the attribute/value assertion "mail=
jdoe@xyz.com." The LDAP server will look up the requested entry and
return a response code of compareTrue or compareFalse. If it can't
execute the operation, it will return an error code.

REFERRALS

In LDAP 1 and LDAP 2, no provision was made for LDAP servers
returning referrals to clients. However, in the case of failed queries
(where, for example, a search is made for an entry that does not exist in
one LDAP directory, but might exist in another), LDAP 3 provides a
method for the LDAP server that's getting the initial request to return a
referral to another LDAP server. The LDAP client can then issue the
request to the server identified in the referral.

FOR MORE INFO

A good overall description of LDAP and LDAP concepts can be found in
the book LDAP: Programming Directory-Enabled Applications with
Lightweight Directory Access Protocol, by Tim Howes and Mark Smith
(1997, Macmillan Technical Publishing). Other good sources of
information are An LDAP Roadmap & FAQ, by Jeff Hodges of Stanford
University
(www.leland.stanford.edu/group/networking/directory/x500ldapfaq.html),
and LDAP information pages maintained by Critical Angle, a developer
of LDAP servers and related technology
(critical-angle.com/ldapworld/ldapv3.html).

ENABLING DIRECTORY ACCESS

LDAP sets forth a standard for how network applications can access
directories. It's also simple and easy enough to implement that it's been
enthusiastically embraced by many vendors, so it's rapidly becoming
the lingua franca of directory operations. In a world where each
application and operating system has its own proprietary directory,
LDAP holds forth the promise of directory interoperability. But for now,
that interoperability extends for the most part only to simple browsing
operations. 

5 of 6



Copyright © 1997 Miller Freeman Inc., a United News & Media company. 

6 of 6


