

 User Guide

Open 2 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

Contents
1 Introduction 4
1.1 Revision information 4
2 What is delivered 5
3 Simulator 6
3.1 Architecture 6
3.2 Capabilities 7
3.3 Known Bugs and Limitations 9
4 System Requirements 10
5 Installation Instructions 10
5.1 Installing With the Installer 10
5.2 Installing Without the Installer 11
6 The Simulator 11
6.1 General 11
6.2 Starting the Simulator 12
6.3 The Chatboard 16
6.4 Command Line Interface 17
7 Applications 18
7.1 Call Barring 18
7.2 Web Dial 21
8 3rd Party applications 23
8.1 Introduction 23
8.2 Defining application IDs 23
8.3 Defining announcements 25
9 References 28
10 Trouble Shooting List 29

 User Guide

Open 3 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

1 AGREEMENT

This Agreement between Ericsson Radio System and any party using (‘User’) the
Ericsson OSA/Parlay Simulator and related documentation (‘Material’) shall be
effective upon the usage of the Ericsson OSA/Parlay simulator.

2 OWNERSHIP
Provider retains full ownership to the Material at all times.

3 LICENSE
Ericsson hereby grants to the User a royalty free and non-transferable license to
use the Material for educational and research purposes only. Any kind of
commercial use of the Material is strictly prohibited. The User is entitled to make
copies of the Material, irrespective of the media on which it is delivered, on the
condition that the User retains in every copy such proprietary marks and symbols
identical to those in the original Material distributed by Ericsson.

4 DISTRIBUTION
The Material may not be distributed to third parties, except when used in
education.

5 DISCLAIMER OF WARRANTY
COVERED MATERIAL IS PROVIDED UNDER THIS LICENSE ON AN ‘AS IS'
BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE
COVERED MATERIAL IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A
PARTICULAR PURPOSE OR NON-INFRINGING. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE ON THE COVERED MATERIAL IS WITH
THE USER. SHOULD ANY COVERED MATERIAL PROVE DEFECTIVE IN ANY
RESPECT, THE USER (NOT THE PROVIDER) ASSUME THE COST OF ANY
NECESSARY SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF
WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS LICENSE. NO
USE OF ANY COVERED MATERIAL IS AUTHORIZED HEREUNDER EXCEPT
UNDER THIS DISCLAIMER.

6 DEFAULT
The User, hereby, acknowledges that it is strictly forbidden to use the Material for
any commercial purpose whatsoever. The Provider will claim damages for any
breach of this agreement.

 User Guide

Open 4 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

1 INTRODUCTION
This User Guide has been written for the Ericsson OSA/Parlay Simulator,
version 0.7 Beta.
OSA/Parlay is a new type of open API (Application Programming Interface)
for todays and next generation's communication networks. It provides an
additional layer of abstraction for the application developers. It enables
telecom operators and service providers to offer the same services for all
existing underlying networks – the fixed network, all mobile networks, IP
networks – without adapting the application to network specific protocols.
With OSA/Parlay, developers do not have to worry about the operators'
network protocols anymore. The OSA/Parlay open API is an exciting
opportunity for software developers and application server providers since it
represents a huge market potential. The OSA/Parlay API has been defined
by the Parlay Group, a non-profit organisation supported by the major
telecom suppliers, the IT industry and telecom network operators. The
OSA/Parlay API is open to everybody.
In order to enable developers to test their application Ericsson developed the
Ericsson OSA/Parlay Simulator. This tool simulates the Jambala Service
Capability Server (J-SCS) and a telephony network. It is accompanied by a
number of test applications.
The purpose of the simulator is to test applications, which are developed by
service providers or other interested parties without the need for any network
specific hardware. In this way, Ericsson is helping developers by speeding up
the testing process. The simulator is also a convenient tool to be used in
demonstrations for OSA/Parlay.

1.1 REVISION INFORMATION

G 2002-03-18 Updated for Ericsson OSA/Parlay Simulator version

0.7 Beta
F 2001-12-21 Updated for Ericsson OSA/Parlay Simulator version

0.6 Beta
E 2001-11-19 Updated for Ericsson OSA/Parlay Simulator version

0.5 Beta
D 2001-09-27 Updated for Ericsson OSA/Parlay Simulator version

0.4 Beta
C 2001-08-29 Updated for Ericsson OSA/Parlay Simulator version

0.3 Beta (removed restrictions on releasing calls and
starting multiple applications)

B 2001-07-11 Updated for Ericsson OSA/Parlay Simulator version
0.2 Beta

A 2001-06-05 First version

 User Guide

Open 5 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

Further information on the different releases can be found in the help menu of
the simulator (select ‘Release Notes’).

2 WHAT IS DELIVERED

The Ericsson OSA/Parlay Simulator package includes the following items,
which are categorised by the directory names.

Root installation directory
• User Guide.
• Release Notes.
• Run scripts for the Simulator.

Applications
• Call Barring application including source code and sequence diagrams.
• Web Dial application including source code.
• Both applications have executable scripts to create javadocs.

Config
• Configuration files for the simulator.
• Configuration files with terminal settings.
• Configuration file with simulator network settings.

IDL
• The IDL for generating the Parlay API source files.
• Note: Javadocs for the Parlay API can be downloaded as a separate

package from Mobility world
(http://www.ericsson.com/mobilityworld/sub/open/solutions/parlay/index.ht
ml?PU=parlay).

Jars
• Jar file with the Parlay API classes (Generated with the IDL file)
• Jar file with the Simulator classes

Images
• Images for the simulator and the terminals.

Sounds
• Announcements
• Ringtones and busytones for the terminals

Tools

http://www.ericsson.com/mobilityworld/sub/open/solutions/parlay/index.html?PU=parlay
http://www.ericsson.com/mobilityworld/sub/open/solutions/parlay/index.html?PU=parlay

 User Guide

Open 6 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

• To make the Simulator running without a network connection in case of
start-up problems.

• Windows 98 patch that will be installed automatically.

3 SIMULATOR

3.1 ARCHITECTURE
The diagram below in figure 3.1-1 depicts the architecture of the Ericsson
OSA/Parlay Simulator

Appl. 1 Appl. 2 Appl. 3 Application Server Level

J-SCS lite LevelFrame
work

Call
Control

User
Interaction

Simulated Network (NetworkSim)
(including soft-phones)

Network Level

Parlay

Internal Protocol

Simulator

N
am

eserver

C
orba

Figure 3.1-1

The simulator package consists of the following components:

1. Name server
The name server enables communication between the NetworkSim, the
simulated Jambala service capability server (J-SCS) and the
application(s).

2. J-SCS lite
The J-SCS lite is a simulated version of the real J-SCS. The J-SCS lite
contains the following capabilities:
• Framework (FW),

Used for authentication and discovery of services as defined by the
OSA/Parlay specification.

• Generic Call Control (CC),
Enables the generic Call Control services, such as handling call
events, routing etc.

• Generic User Interaction (UI).
Enables the generic User Interaction services, such as digit reception,
announcement handling etc.

3. NetworkSim
The NetworkSim simulates a basic telecommunications network, in which
mobile terminals can be defined in a graphic user interface (GUI).

 User Guide

Open 7 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

4. Application(s)
Applications as such are not part of the simulator, but test-applications
are included in the simulator package in order to test and demonstrate the
use of the simulator. It is possible to test your own applications on the
simulator (see also Chapter 7).

3.2 CAPABILITIES
The J-SCS component implements a subset of both the Generic Call Control
Service Interface and the Generic User Interaction service as defined by
OSA/Parlay (see Reference [1]). This subset excludes for example Multi-
Party Call Control, Multi-Media Call Control and Conference Call Control.

The main features of the Framework service (based on API towards
applications) that are implemented are:

• IpInitial

• initiateAuthentication

• IpAuthentication

• requestAccess

• IpAPILevelAuthentication

• selectAuthenticationMethod

• authenticate

• abortAuthentication

• IpAppAPILevelAuthentication

• authenticate

• abortAuthentication

• signServiceAgreement

• terminateServiceAgreement

• terminateAccess

• IpAccess

• obtainInterface

• obtainInterfaceWithCallback

• selectService

• signServiceAgreement

• terminateServiceAgreement

• endAccess

• IpServiceDiscovery

• listServiceTypes

• describeServiceType

• discoverService

 User Guide

Open 8 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

• listSubscribedServices

The main features of the Generic Call Control service that are implemented
are:

• IpCallControllManager

• createCall

• enableCallNotification

• changeCallNotification

• disableCallNotification

• getCriteria

• IpService

• setCallback

• setCallbackWithSessionID

• IpAppCallControllManager

• callAborted

• callEventNotify

• IpCall

• routeReq

• release

• deassign

• getCallInfoReq

• setCallChargePlan

• IpAppCall

• routeReq

• getCallInfoRes (sent at call disconnection when an intermediate report
was requested via getCallInfoReq. The report does not contain a
realistic TpCallReleaseCause and no resource connection time)

• getCallInfoErr (sent immediately when a final report was requested via
getCallInfoReq)

• callEnded (the resulting TpCallEndedReport does not contain a
realistic TpCallReleaseCause)

• callFaultDetected
The following features of the Generic Call Control service are not supported:

• Load control

• Advice of charge (setAdviceOfCharge)

• Collecting further digits (getMoreDialledDigitsReq)

 User Guide

Open 9 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

• Call supervision (superviseCallReq)

The main features of the Generic User Interaction service that are
implemented are:

• IpUIManager

• createUICall

• IpService

• setCallback

• setCallbackWithSessionID

• IpUICall

• sendInfoReq

• sendInfoAndCollectReq1

• release

• abortActionReq

• IpAppUICall

• sendInfoRes

• sendInfoErr

• sendInfoAndCollectRes

• sendInfoAndCollectErr)

• abortActionRes

• abortActionErr (does not occur with the simulator)
The following features of the Generic User Interaction service are not
supported:

• Non call-related user interaction (createUI)

• User Interaction notifications (enableUINotification, disableUINotification,
userInteractionEventNotify)

• Recording of a message (recordMessageReq)

3.3 KNOWN BUGS AND LIMITATIONS
The following bugs are known at the time of release:

• The Simulator might give errors in case two applications are having
triggers on the same phone numbers and events.

1 Input is submitted by pressing the Yes-button (on the softphone keypad) or by appending a hash (#) to the input.

 User Guide

Open 10 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

• When an application is started for the second time after a
terminateServiceAgreement it might happen that the simulator closes
itself because of an internal error. Example: Call barring is started and
closed by pressing on ‘terminate’. After that Call Barring is started again
and when a subscribed number is called or the application is terminated
again the problem might occur.

• The Simulator does not support follow-on calls; when the terminating leg
is disconnected, the origating leg is disconnected as well.

4 SYSTEM REQUIREMENTS
The minimum system requirements are specified below:

• Pentium II or higher (for PC systems)

• 64 Mb internal memory (128 Mb recommended)

• 50 Mb free disk space for downloading and installing.

• Soundcard (optional, e.g. for ringtones)

• Microphone (optional, for recording of announcements)

• Network connection2

• Windows 98, 2000, ME, NT4.0, Linux, UNIX

• Java 2 Standard Edition version 1.3.13

5 INSTALLATION INSTRUCTIONS

5.1 INSTALLING WITH THE INSTALLER
The installer will automatically install the simulator and the test application on
the target system.

5.1.1 Downloading and using the installer

Note: it is recommended to uninstall any existing installations of the simulator
before installing a new release.

• Go to the mobility world internet site,

http://www.ericsson.com/mobilityworld/open/solutions/parlay/index.html

• Select ‘Tools & Enablers’
• Download install.exe to your hard disk
• Run the ‘install’ program and follow the steps.

2 For Windows 98 and later versions there is a patch available that makes the network connection superfluous.
3 Not required when using the installer for the simulator because it will be automatically installed.

http://www.ericsson.com/mobilityworld/open/solutions/parlay/index.html

 User Guide

Open 11 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

5.2 INSTALLING WITHOUT THE INSTALLER
It is also possible to install the simulator manually. This is recommended only
for people with Java experience.

5.2.1 Download and install JAVA 2 SDK

• Download and install Java 2 SDK 1.3.1 from http://java.sun.com/j2se/1.3/.

5.2.2 Download and install the Ericsson OSA/Parlay simulator

• Go to the mobility world internet site (see paragraph 5.1.1)
• Select ‘Tools & Enablers’
• Download Simulator.zip to your hard disk
• Extract the files in Simulator.zip to a dedicated folder (e.g. C:\Simulator).
• For UNIX only: After unzipping it is necessary to make the shell files

executable (chmod –R a+x *.sh).
For last-minute information, see the file RELEASE_NOTES.TXT in the
installation directory.

5.2.3 Configure PATH and CLASSPATH settings
Two files will be created in the installation directory: JavaEnv.bat (Windows)
and javaenv.sh (UNIX). These files are used to set the environment variables
PATH and CLASSPATH to the correct values.
To set the environment variables, open the script file for the corresponding
platform and edit the following line:
 set JAVA_HOME_DIR=not_set_yet
Change the value ‘not_set_yet’ into the correct directory where the Java
Development environment (JDK 1.3) is installed (e.g. c:\jdk1.3.x) and save
the file.

6 THE SIMULATOR

6.1 GENERAL

This paragraph shows the commands and settings for starting the simulator
and applications. If the Simulator has been installed by using the automatic
installer, this has been done already. In that case, you can start the simulator
directly by shortcuts in the start menu (Windows).
When you install the Simulator manually or when you want to change
environment or host settings then the text below gives more information.

In the installation folder, there are a number of batch files. These are:

• JavaEnv.bat/ javaenv.sh
Files used by the start-up scripts for setting the Java environment
variables (Windows and UNIX respectively)

http://java.sun.com/j2se/1.3/

 User Guide

Open 12 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

• run.bat/run.sh
Files used for running the simulator (Windows and UNIX respectively).

• run_without_parlay.bat/run_without_parlay.sh
Files used for running the NetworkSim without any parlay interaction.

Note:
The simulator and applications can be run on separated machines. The
application run scripts support the following two command line arguments to
determine the location of the name server (see also the individual script files):

• ORBInitialHost
the IP-address of the machine where the ORB is running (default: the
local machine).

• ORBInitialPort
The corresponding port number (default: 1500)

The ORB settings for the Simulator can be found in the file
‘config/simulator.cfg’

6.2 STARTING THE SIMULATOR
Executing the ‘Run.bat’ (Windows) or the ‘run.sh’ (UNIX) script in the
installation directory will start the simulator. When the installer is used, a
shortcut to the start-up script will be created in the Windows ‘Start’ menu,
which can be used instead. The following steps are automatically performed.

First a name server is started. After that the J-SCS lite and network
Simulator is started. The output window will look like Figure 6-1.

Figure 6-1: Start-up trace window for the Simulator

 User Guide

Open 13 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

Next, the NetworkGUI (Figure 6-2) will appear on the desktop.

To be able to use the simulator, first click away the ‘about’-window. To test
the Network Simulator, different terminals can be added.

6.2.1 Functionality of the NetworkGUI
Create a terminal

• Or click ‘New… Insert’ on the menu

Figure 6-2: Start-up screen of the Simulator

• Press the terminal-icon:

 User Guide

Open 14 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

The following window (Figure 6-3) appears:

For the new terminal, a number of properties can be set. These properties
are divided in two groups:
1. Network Address.

The meaning of these properties can be looked up in the Parlay
specifications.
Note: The address presentation field is not used in the Simulator.

2. Appearance.
The ‘Window Title’ property defines the name that is shown on the
terminal window. When this field is empty, the ‘Address String’ will be
used as title.
With the ‘Terminal type’ property, you can choose a different telephone
model (appearance only).

After entering an address string (telephone number) for the terminal and
pressing the ‘OK’-button, the terminal will appear in the NetworkGUI (see for
example Figure 6-4). It is also possible to choose a different type of terminal
from the list and to specify a title for the terminal window.

Figure 6-3: Terminal properties window

 User Guide

Open 15 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

The following terminals are available in the network simulator.

T68

T39

R320

Classic Phone

6.2.2 Test the NetworkGUI

• Create two terminals (for example John and David, John has the number
123 and David has the number 456)

• Initiate a call from terminal John to terminal David by entering the number
456 via the keypad (in the phone-window) and clicking the ‘Yes’-button of
the originating terminal (Figure 6-4).

 User Guide

Open 16 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

• Click the ‘Yes’-button of the terminating terminal to answer the call. The
call is now established.

• Click the ‘No’-button of either terminal to release the call.

6.3 THE CHATBOARD
Instead of using the keypad, it is also possible to use the Ericsson
Chatboard as an input device for the terminals.

The Ericsson Chatboard can be activated and deactivated by pressing the
right mouse button in the terminal window and than selecting the ‘Chatboard’
option from the pop-up menu (see Figure 6-5).

Figure 6-4: Example of created terminals

 User Guide

Open 17 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

6.4 COMMAND LINE INTERFACE

To give better support for testing applications and specially for automated
testing, the Simulator has a command line interface.
With this interface the properties of the simulator can be overwritten at the
start-up. To list all possible commands one can type the –help command
while starting the simulator.
Example in run.bat

java -cp jars\simulator.jar;jars\parlay3gpp.jar _Simulator –help.

The following commands are supported:

-help Shows this screen

-configFile value Set the location of the config file

-noAboutBox No about box at start up

-noNameServer Simulator starts without nameserver

Figure 6-5: Example of how to show the chatboard

 User Guide

Open 18 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

-ORBInitialPort value Set value of the ORB port

-ORBInitialHost value Set value of the ORB host

-cosNamingPort value Set value of the cosnaming responder port

-cosNamingHost value Set value of the cosnaming responder host

-EPCTfiles value Set used epct files (separator ',' no spaces)

-staticProcs value Set used static procs. (separator ',' no
spaces)

-releaseTimeout value Timeout (ms) for release of a call after the
call has ended

7 APPLICATIONS
The Call Barring application and the Web Dial application are delivered with
the simulator as test/example applications. These applications are described
in the following chapters.

7.1 CALL BARRING

7.1.1 Overview
The Call Barring application is delivered together with the Ericsson
OSA/Parlay simulator to serve as an example of an application that makes
use of the Generic User Interaction Service.
The Call Barring Application enables a user to prevent people from setting up
a call to his/her number, unless they have the correct PIN code. The users of
this application are registered in a user database. Only users who have
registered can make use of the application.
The application consist of two parts:
• Management part: this enables the user to change his/her PIN code.
• Traffic Part: this part performs the actual Call Barring service.

7.1.1.1 Management part
The following sequence describes a call scenario to the management part:

• Set up a call to the service number (default ‘667’).
• The user is requested to enter his/her current PIN Code4.
• If the correct PIN code is entered, the user is requested to enter the new

PIN code.
• The newly entered PIN code is repeated and the call is released.
• If an incorrect PIN code is entered, the call is released immediately.

If a user was not registered in the Call Barring application yet, his/her
number will be added to the User database.

5 Input is submitted by pressing the Yes-button (on the softphone keypad) or by appending a hash (#) to the input.

 User Guide

Open 19 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

7.1.1.2 Traffic part
The following sequence describes a call scenario to the traffic part:

• Set up a call to a user of the Call Barring Application.
• The user is requested to enter the PIN code for the destination number

that was dialled.
• If the correct PIN is entered, a call will be set up to the specified

destination number.
• If an incorrect PIN is entered, the user is requested to re-enter the PIN

code, after three incorrect attempts the call is released.
Calls to destination numbers, which are not registered in the application, are
handled normally.

7.1.2 Installing and running the application
The Call Barring application is delivered together with the Ericsson
OSA/Parlay simulator. It is installed in the application directory:
 <installationdir>\applications\CallBarring
Running the ‘run.bat’ (Windows) or the ‘run.sh’ (UNIX) scripts in the
application directory will start the application (when using the installer a
shortcut to the start-up script is created in the Windows ‘Start’ menu, which
can be used instead). Before starting, make sure the simulator is running.
When the application is ready to process incoming calls the application log
window looks like Figure 7-1.

Figure 7-1: Call Barring application log.

 User Guide

Open 20 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

The initial user database is simulated using a text file named ‘users.ini’. Users
can be added manually in this file. This file is loaded on start-up and not used
during runtime, any changes should be made before the application is
started.
The file ‘config.ini’ contains default values for constants used throughout the
application, if necessary it is possible to adapt these values before starting
the application.

7.1.3 Source code
The Java source files for this application are included and are stored in the
subdirectory:
 <installationdir>\simulator\applications\CallBarring\src

The application has the following package structure:

• com.ericsson.cba.common
common application classes and common constant classes

• com.ericsson.cba.management
management specific classes and management specific constant classes

• com.ericsson.cba.management.states
state classes defining the different management input states

• com.ericsson.cba.traffic
traffic specific classes and traffic specific constant classes

• com.ericsson.cba.traffic.states
state classes defining the different traffic input states

• com.ericsson.cba.users
classes defining the application users and user database

Note: Other packages can be found under:

• com.ericsson.datastructures

• com.ericsson.configuration

• com.ericsson.parlay

• com.ericsson.tracedebug
These packages contain standard classes with utilities that can be used
by applications.

Details can be found in the Java documentation that is delivered together with
the source code. This documentation can be accessed by opening the
‘index.html’ file in the ‘<installationdir>\Simulator\CallBarring\javadocs’
directory.
The full source code of the Call Barring application can be compiled by
running the ‘Compile.bat’ (Windows) or Compile.sh (UNIX) script in the
application directory.

 User Guide

Open 21 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

7.2 WEB DIAL

7.2.1 Overview
The Web Dial application is delivered together with the Ericsson OSA/Parlay
simulator to serve as an example of an application that makes use of the
Generic Call Control Service.
The Web Dial application shows how to create an application initiated call.

7.2.2 Installing and running the application
When the application is ready to connect two parties, the application log file
window looks like the following window (Figure 7-2).

Figure 7-2: Web Dial application log

To create an application initiated call, at least two terminals must exist (see
Figure 6-4).

Fill in the numbers of those terminals in the Web Dial window (see Figure
7-3) and press ‘Create Call’.

 User Guide

Open 22 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

Figure 7-3: Web Dial main window
When the terminal of the A-party is ringing press ‘Yes’. The terminal gets into
state ‘Waiting’ and the B-party will be called. Press ‘Yes’ when the terminal of
the B-party is ringing. A- and B-party will be connected then.

With Web Dial you can test all kinds of scenarios. E.g. the terminals do not
exist (routing failure) or are busy.

7.2.3 Source Code

The Java source files for this application are included and are stored in the
subdirectory:
 <installationdir>\simulator\applications\WebDial\src

The application has the following package structure:

• com.ericsson.wda.common
common application classes and common constant classes

Note: Other packages can be found under:
• com.ericsson.datastructures
• com.ericsson.configuration
• com.ericsson.parlay
• com.ericsson.tracedebug

These packages contain standard classes with utilities that can be used by
applications.
The full source code of the Web Dial application can be compiled by running
the ‘Compile.bat’ (Windows) or Compile.sh (UNIX) script in the application
directory.

 User Guide

Open 23 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

8 3RD PARTY APPLICATIONS

8.1 INTRODUCTION
The Simulator can be used to test and demonstrate 3rd party applications.
These applications may require a different configuration of the Simulator than
provided by default. For example, announcements other than those
configured for the Call Barring test application might be needed.

It is outside of the scope of this document to describe all possible
configurations, but the following types of configuration will discussed:

• Defining application IDs
• Defining announcements

Changing the configuration of the Simulator involves updating certain fairly
low-level configuration files5.
This method of changing the configuration (including the syntax used by the
configuration files) is subject to change without notice. Since an incorrect
configuration may cause the Simulator not to function properly, it is
recommended to always make a backup of the impacted files and to keep the
changes to a minimum.

8.2 DEFINING APPLICATION IDS

Application IDs (and their keys) are used by the framework to authenticate
client applications6. By default, the following application IDs are predefined:
‘test_application1’, ‘test_application2’ and ‘test_application3’. All applications
use the key ‘3A47B193823F7D88’ based on DES_56 encryption.

If this predefined set of application IDs is insufficient, it is possible to add
additional IDs. To this end, the file ‘fw_config.epct’ in the ‘config’ directory
must be updated.

One entry in this file is used to identify all client applications:

apps.ids = "test_application1, test_application2, test_application3"

For each of the above application IDs, a set of application specific properties
is defined:

test_applicationX.props = "authType,P_DES_56,P_NONE,name,email"
test_applicationX.authType = "P_OSA_AUTHENTICATION"
test_applicationX.P_DES_56 = "3A47B193823F7D88"
test_applicationX.P_NONE = "key_is_not_needed"
test_applicationX.name = "test_applicationX"
test_applicationX.email = "test_applicationX@ericsson"

5 In the actual J-SCS also graphical management interfaces are available.
6 The process of authenication involves obtaining the IpInitial and handling of
IpAppAPILevelAuthentication:authenticate() (by the application).

 User Guide

Open 24 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

In order to define additional application IDs (e.g. ‘hello_world_appl’), the
property ‘apps.ids’ must be updated as follows:

apps.ids = "test_application1, test_application2, test_application3, hello_world_appl"

Next, the application specific properties must be defined by adding the
following entries7:

hello_world_appl.props = "authType,P_DES_56,P_NONE,name,email"
hello_world_appl.authType = "P_OSA_AUTHENTICATION"
hello_world_appl.P_DES_56 = "3A47B193823F7D88"
hello_world_appl.P_NONE = "key_is_not_needed"
hello_world_appl.name = "hello_world_appl"
hello_world_appl.email = " someone@somewhere"

At this stage the application ID ‘hello_world_appl’ has been defined but it
does not yet have access to the service capabilities (Generic Call Control and
Generic User Interaction).

In general, the use of a service capability may be limited for certain
applications. Not every application may use all features of all service
capabilities. A service profile is available for each collection of applications
that use the same features of a service capability. Thus many applications
can make use of the same service profile.

In the default configuration of the Simulator, all applications make use of the
same service profile for Generic Call Control (serviceprofile1) and the same
service profile for Generic User Interaction (serviceprofile3).

These service profiles are defined in the file ‘fwinitiator.ini’ in the ‘config’
directory. The default test applications are assigned to both profiles by means
of the the following entries8:

serviceprofile1.ASSIGNMENTS = test_application1 test_application2 test_application3
serviceprofile3.ASSIGNMENTS = test_application1 test_application2 test_application3

In order to give the new application ‘hello_world_appl’ access to both call
control and user interaction, the following updates must be made:

serviceprofile1.ASSIGNMENTS =
 test_application1 test_application2 test_application3 hello_world_appl
serviceprofile3.ASSIGNMENTS =
 test_application1 test_application2 test_application3 hello_world_appl

7 It is outside of the scope of this document to explain each individual property of the application specific
properties. It is recommended not to deviate from the given examples.
8 Note the seperation of application IDs by means of spaces.

 User Guide

Open 25 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

8.3 DEFINING ANNOUNCEMENTS

The Call Barring application uses Generic User Interaction to send
announcements via Parlay.
More precisely, the methods sendInfo() and sendInfoAndCollect() are used.
These methods require a logical announcement ID as argument to identify
the proper announcement.

When the logical announcement ID is received by the Simulator (or the actual
SCS), a so called physical announcement ID is looked up, depending on the
logical announcement ID. Next, the physical announcement ID is used to
identify the proper announcement within the network. Graphically, this can be
depicted as follows:

Logical ID Physical ID
Application J-SCS-lite NetworkSim

Translates the logical ID to a
physical ID

The distinction between logical and physical announcement IDs reduces the
amount of assumptions an application must make about the underlying
telecom network and increases flexibility.

Thus, in order to define a new announcement, two actions must be performed
(in arbitrary order):
1. A mapping from the logical announcement ID to the physical

announcement ID must be established.
2. A mapping from the physical announcement ID to the actual

announcement must be established.

The next two chapters explain how to perform these actions in detail.

8.3.1 Defining the mapping of logical announcement Ids

The mapping of logical announcement IDs to physical announcement IDs is
defined in the service profile(s) related to Generic User Interaction. This
means that to change this mapping, the file ‘fwinitiator.ini’ in the ‘config’
directory must be updated.

By default, 18 announcement mappings are predefined in this file (as used by
the Call Barring application).
The following extract shows how this mapping has been defined:

 User Guide

Open 26 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

serviceprofile3.PROPERTY.P_ANNOUNCEMENT_MAPPING.NROFVALUES = 36
serviceprofile3.PROPERTY.P_ANNOUNCEMENT_MAPPING.VALUE.0 = 0
serviceprofile3.PROPERTY.P_ANNOUNCEMENT_MAPPING.VALUE.1 = 0
serviceprofile3.PROPERTY.P_ANNOUNCEMENT_MAPPING.VALUE.2 = 1
serviceprofile3.PROPERTY.P_ANNOUNCEMENT_MAPPING.VALUE.3 = 1
...
serviceprofile3.PROPERTY.P_ANNOUNCEMENT_MAPPING.VALUE.32 = 108
serviceprofile3.PROPERTY.P_ANNOUNCEMENT_MAPPING.VALUE.33 = 108
serviceprofile3.PROPERTY.P_ANNOUNCEMENT_MAPPING.VALUE.34 = 109
serviceprofile3.PROPERTY.P_ANNOUNCEMENT_MAPPING.VALUE.35 = 109

The very first entry defines the total number of announcement values. For
each announcement, two values are required. The first value defines the
logical ID, the second defines the physical ID.

Continuing the example of the previous chapter, suppose that the application
‘hello_world_appl’ requires one, new announcement. This application has
been assigned to ‘serviceprofile3’ (for Generic User Interaction). Therefore,
the mapping defined in ‘serviceprofile3’ must be updated.

First, an unused logical and physical announcement ID must be decided
upon. In the default configuration, 200 could be used for both a new logical
announcement ID, as well as a new physical announcement ID.

To define this mapping, two entries must be added9:

serviceprofile3.PROPERTY.P_ANNOUNCEMENT_MAPPING.VALUE.36 = 200
serviceprofile3.PROPERTY.P_ANNOUNCEMENT_MAPPING.VALUE.37 = 200

Since, two values have been added, the property ‘NROFVALUES’ must be
increased by two:

serviceprofile3.PROPERTY.P_ANNOUNCEMENT_MAPPING.NROFVALUES = 38

By making these changes a mapping from 200 (logical ID) to 200 (physical
ID) is established. The changes will take effect the next time that the
Simulator is started.

9 The value immediately after VALUE is similar to an index.

 User Guide

Open 27 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

8.3.2 Defining the mapping of physical announcement IDs

Physical announcement IDs are mapped to actual announcements using the
announcement manager of the simulator. In the menu bar, open the Windows
menu and choose the Announcements menu item.

A new window appears that lists all announcements and their physical IDs:

Buttons are available to change announcements, add new announcements
and delete existing announcements. All changes are automatically saved.

To connect the physical announcement ID to a new announcement (e.g. an
existing WAV-file), press the ‘New’-button. A new entry appears:

 User Guide

Open 28 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

Next, change the ID to the proper physical announcement ID (200 in this
example) and enter the textual representation of the announcement:

Finally, press ‘edit announcement’ to define the sound that is to be played
when the announcement is used:

9 REFERENCES

Ref [1] OSA/Parlay APIs specification, 3GPP TS 29.198 (2001-

03), Specification available on http://www.3gpp.org

http://www.3gpp.org/

 User Guide

Open 29 (29)
 No. Date Rev

 ERA/LU/P-01:0159 Uen 2002-03-18 G

10 TROUBLE SHOOTING LIST

- The simulator does not start.
Check if the CLASSPATH variable has been correctly set, see chapter
5.2.3 (Configure PATH and CLASSPATH settings).
Check if the ORBInitialPort is not already in use.

- I cannot start the application.
Make sure that the simulator is running without any errors.
Make sure that the application uses the same ORBInitialPort as the
simulator.
Make sure that the CLASSPATH and PATH variables are set correctly.

- The Simulator and applications are very slow and produce errors.
On some machines the simulator and applications are very slow while
starting up and running. This might cause timeout errors in Call Barring.
This problem often happens when:
- The machine has no network connection
- The machine has a dynamic IP address
Two things can be tried to solve this problem
1. Add the current IP-address and machine name to the host file (under

windows). This can be automatically done by using the hostname fix
tool in the ‘simulator’\tools directory. Note: In case of a dynamic IP
address this has to be done every time the machine restarts.

2. Use ‘ipconfig /release’ (under windows) to clear the IP settings

	INTRODUCTION
	REVISION INFORMATION

	WHAT IS DELIVERED
	SIMULATOR
	ARCHITECTURE
	CAPABILITIES
	KNOWN BUGS AND LIMITATIONS

	SYSTEM REQUIREMENTS
	INSTALLATION INSTRUCTIONS
	INSTALLING WITH THE INSTALLER
	Downloading and using the installer

	INSTALLING WITHOUT THE INSTALLER
	Download and install JAVA 2 SDK
	Download and install the Ericsson OSA/Parlay simulator
	Configure PATH and CLASSPATH settings

	THE SIMULATOR
	GENERAL
	STARTING THE SIMULATOR
	Functionality of the NetworkGUI
	Test the NetworkGUI

	THE CHATBOARD
	COMMAND LINE INTERFACE

	APPLICATIONS
	CALL BARRING
	Overview
	Management part
	Traffic part

	Installing and running the application
	Source code

	WEB DIAL
	Overview
	Installing and running the application
	Source Code

	3RD PARTY APPLICATIONS
	INTRODUCTION
	DEFINING APPLICATION IDS
	DEFINING ANNOUNCEMENTS
	Defining the mapping of logical announcement Ids
	Defining the mapping of physical announcement IDs

	REFERENCES
	TROUBLE SHOOTING LIST

