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PREFACE.

THIRTY years have now elapsed since the appearance of
the treatise on the Calculus of Variations by Prof. Jellett,
which, although it had been preceded by the smaller work
of Woodhouse in 1810, and of Abbatt in 1837, is justly deemed
the only complete treatise which has ever appeared in Eng-
lish. But all the works named have long since been out of
print, and are now so rare as not to be found in the majority
of the college libraries of the United States. Moreover, even
Prof. Jellett’s treatise can no longer be regarded as complete,
since its author had not read the memoirs of Sarrus and
Cauchy relative to multiple integrals, while the contributions
-of Hesse, Moigno and Lindelsf, and Todhunter were subse-
quent to the publication of his work. It should be added,
also, that all the memoirs and contributions just named are
contained in works which are likewise out of print, and are
now almost as difficult of access to the general reader as is
that of Prof. Jellett.

These considerations first led the author to undertake the
preparation of the present treatise, in which he has endeav-
ored to present, in as simple a manner as he could command,
everything of importance which is at present known concern-
ing this abstruse department of analysis.

In the execution of this design the following method has,
so far as possible, been pursued: When a new principle is to
be introduced for the first time, a simple problem involving it
is first proposed, and the principle is established when re-
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quired in the discussion of this problem. This having been
followed by other problems of the same class, the general
theory of the subject is finally given and illustrated by one or
two of the most difficult problems obtainable; after which
another principle is introduced in like manner.

Although the view taken of a variation is that of Profs.
Airy and Todhunter, and the methods of varying functions
are those of Jellett and Strauch, still all the other leading
conceptions and methods have, it is hoped, been explained
with sufficient fulness to enable the reader to follow them
when they occur in other works.

The history of the subject is also briefly given in the last
chapter, it being believed that the proper time for the presen-
tation of the history of any science is after the reader has
become familiar with its principles, as it can then, by the use
of some technical terms, be accomplished more fully within a
given space.

To aid the non-classical reader, the use of Greek letters
has, with the exception of two, whose use is now universal,
and which are explained, been avoided, except in references,
or in such passages as may be omitted without serious loss.
Attention is also called to the words bracikistochrone - and
parallelepipedon, which are in this work spelled according to
their derivation. The correct orthography of the former had
been previously adopted by Moigno and Todhunter, and it is
hoped that it may be sufficient to call the attention of Greek
scholars to the latter.

One of the great obstacles to the preparation of the pres-
ent treatise has been the difficulty of procuring the author-
ities which it was necessary to consult ; and the author would
here return his thanks to the officers of his Alma Mater,
~ Columbia College; to Dr. Noah Porter, the President, and
Mr. A. Van Name, the Librarian, of Yale College ; and to Mr.
Walter M. Ferris, of Bay Ridge, L. I, for the extended loan
of rare works which could not be found in other libraries, or
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if found, could not be had at home for that careful study
which they in many cases demanded. The author is also
greatly indebted to Lieut. Fred. V. Abbot, U.S.A.; to M. S.
Wilson, Ph.B., to Prof. P. Winter, and to the late A. San-
der, Ph.D., all of the Flushing Institute, for valuable assist-
ance in the examination of French and German works. But
the greater part of the assistance which the author has received
was rendered by his youngest brother, who, in addition to
aiding in the examination of many works, recopied the manu-
script for the printer, and subsequently undertook, in con-
junction with the author himself, the proofreading of the
entire publication.

It having been found necessary to publish the present treatise
by subscription, the author, supported by President Barnard
of Columbia College, Prof. J. H. Van Amringe of the same,
Joseph W. Harper, Jr., and others, issued an appeal to the
public, which shortly elicited the following subscriptions, the
copies being placed at four dollars each:

Seth Low and A. A. Low, 25 copies each.

D. Appleton & Co., 12 copies.

Richard L. Leggett and John Claflin, 10 copies each.

A. S. Barnes & Co., 6 copies.

Joseph W. Harper, Jr., Chas. Scribner’s Sons, Ivison, Blake-
man, Taylor & Co., F. A. P. Barnard, LL.D., Prof. J. H. Van
Amringe, Columbia College Libraries, Gen. Alexander S.
Webb, John H. Ireland, Malcolm Graham, Franklin B. Lord,
Francis A. Stout, Fred. A. Schermerhorn, Frank D. Sturges,
Robert Shepard, Edward Mitchell, E. H. Nichols, Prof. Felix
Adler, W. Bayard Cutting, Hon. Benj. W. Downing, A.
Ernest Vanderpoel, John Cropper, Willard Bartlett, Clarence
R. Conger, Wm. Macnevan Purdy and Chas. Pratt, 5 copies
each. d

Prof. C. W. Jones, 4 copies.

Wm. C. Schermerhorn, J. Harsen Rhoades, Prof. E. M.
Bass, Henry C. Sturges and Dr. Edw. L. Beadle, 3 copies each.
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Hon. Abram S. Hewitt, Gerard Beekman, Geo. P. Put-
nam’s Sons, Dr. Geo. M. Peabody, Chas. A. Silliman, Hon.
Robt. Ray Hamilton, Morgan Dix, S.T.D., Wm. B. Wait,
Mrs. Asa D. Lord, Dr. J. W. S. Arnold, Dr. R. W. Witthaus,
Rev. Fred. B. Carter, Mrs. C. Roberts, R. L. Belknap, Prof.
C. M. Nairne, J. Forsythe, D.D., R. L. Kennedy, John A.
Monsell, Robt. Willets and John F. Carll, 2 copies each.

Johns Hopkins University, Williams College, Dartmouth
College, National College of Deaf Mutes, Perkins Institute
for the Blind, Kentucky Institute for the Blind, Indiana
Institute for the Blind, B. B. Huntoon, A. M. Shotwell, Henry
Bogert, N. J. Gates, Prof. E. L. Youmans, Prof. Wm. G.
Peck, Prof. Henry Drisler, Prof. Ogden M. Rood, Prof. Chas.
Short, Rev. Spencer S. Roche, W. E. Byerly, Prof. T. H.
Safford, J. P. Paulison, M. M. Backus, A. Wilkenson, J. H.
Broully, Geo. H. Mussett, F. L. Nichols, Col. Chas. McK.
Loeser, Prof. Samuel Hart, Prof. W. W. Beman, S. P. Nash, J.
McL. Nash, O. R. Willis, Ph.D.,S.Vernon Mann, Hon.Wm. H.
Onderdonk, Henry Onderdonk, Rev. E. A. Dalrymple, Gouve-
neur M. Ogden, Robt. C. Cornell, Bache McE. Whitlock, Geo.
C. Cobbe, S. A. Reed, Prof. D. G. Eaton, Dr. D. H. Cochrane,
Geo. S. Schofield, Hon. Stewart L. Woodford, William Jay,
John McKean, Prof. H. C. Bartlett, Denniston Wood, Prof.
A. ]J. Du Bois, F. L. Gilbert, J. B. Taylor Hatfield, Foster C.
Griffith, Hon. Thomas C. E. Ecclesine, Malcolm Campbell,
Lefferts Strebeigh, R. H. Buehrle, Prof. H. A. Newton, Wm.
Hillhouse, M.D., Jas. L. Onderdonk, Wm. B. Patterson, Prof.
J. E. Kershner, Francis M. Eagle, Warren Bigler, C. J. H.
Woodbury, Rev. Peter J. Desmedt, D. H. Harsha, Prof. 5.
W. Nicholson, Prof. Peter S. Michie, Lieut. S. W. Roessler,
E. F. Milliken, Wm. P. Humbert, Chas. E. Emery, Prof. A.
B. Nelson, Adam McClelland, D.D., Prof. H. T. Eddy, Miss’
H. L. Baquet, and others not wishing their names published,
I copy each.

Warned by the experience of others, the author was con-
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vinced from the first that he could hope to derive no pecu-
niary profit from a work like the present. But if it is now
possible that there may accrue to him some small financial
return, this possibility is due to the liberality of his publishers,
who, although consulted late, and knowing the unremuner-
ative character of the work offered, proposed voluntarily to
undertake its publication upon terms more favorable than
those which he had been endeavoring to secure.

The acknowledgments of the author are due also to his
printer, S. W. Green’s Son, for the general excellency of the
proof furnished, and especially for his uniform readiness to
do, without regard to trouble, whatever was indicated as
tending to render the work more correct in minor points.

But while the author has, in the particulars mentioned,
received much assistance from friends, to whom he would
return his unfeigned thanks, he deems it but just to himself
to say that he has never enjoyed the acquaintance of any one
who had made the Calculus of Variations the subject of
extensive study,and has consequently been obliged to depend
solely upon his own judgment and the various works which
he has consulted.

It is not therefore believed that the present treatise can
be entirely free from mathematical errors; and hence the
author would respectfully ask his readers,and especially those
among them who may have given previous attention to this
subject, to indicate any points in which his methods or results
appear erroneous, or any places in which misprints may have
been allowed to pass unnoticed.

L. B. CARLL.
FLusHING, QUEENS Co., N. Y., July 8, 1881.
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CALCULUS OF VARIATIONS.

CHAPTER 1

MAXIMA AND MINIMA OF SINGLE INTEGRALS INVOLVING ONE
DEPENDENT VARIABLE.

SEcTION I.

CASE IN WHICH THE LIMITING VALUES OF X, Y, Y', ETC., ARE
GIVEN.

Problem 1.

. Suppose it were required to find the shortest plane curve or
line which can be drawn between two fixed points.

Let ACB be the required line, which is of course straight,
and AEB any other line derived from the first by giving

'B

D X

indefinitely small increments to any or all of its ordinates,
while the corresponding values of » remain unaltered. Then
the line 4CB must be shorter than the line 4£B.

This remark would be equally true if the changes in the
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ordinates of 4B had not been made indefinitely small; but
then, even if the second line were shown to be longer than the
first, we could not be certain that some third line, lying a little
nearer the first, might not be shorter than either. Thus it
will be seen that questions may arise which require an investi-
gation of that increment which a curve would receive, not
from any change in the values of x, nor in the values of the
co-ordinates of the fixed extremities, but from indefinitely
small changes in the values of y throughout the whole or a

portion of the curve; thus altering in a slight degree the
functional relation which previously subsisted between x
and y.

2, Now the genex.'al expression for the length of any plane
curve between two fixed points is

Ji / 77w - (1)

in which the suffix 1 relates to the upper, and o to the lower
limit of integration, and this expression cannot be integrated
so long as y is an unknown function of x.

Hence, in determining the increment which will result
to a curve from an indefinitely small change in its form, we
shall be concerned with two species of small quantities: first,
those changes which x and y undergo as we pass from one
point to another indefinitely near or adjacent on the same curve,
which aré denoted by @r and dy, these being necessary for
the general expression of / in (1); and secondly, that change
which 7 undergoes as we pass from a point on one curve to
a point on another curve indefinitely near or adjacent, the
value of » being unaltered. These latter quantities are called
variations, and are denoted by the Greek letter 6, delta, or 4.
Thus 6y isread, the variation of y; %, the variation of %, etc.

As another illustration of the difference between these two
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classes of quantities, we might say that 4y as used in (1) is
the difference between two consecutive states of the same
function of x, while 8y is the difference between two consecu-
tive or adjacent functions taken for the same value of ». The
use of this symbol ¢ is due to Lagrange, and while it prevents
confusion, it also suggests the character of the variation as a
species of differential. It is plain that we can vary the form
of a curve which terminates in two fixed points in any man-
ner we please, by simply giving suitable changes to its ordi-
nates without varying its abscissa, and we shall therefore at
present ascribe no variation to the independent variable z,
but simply to the dependent y or to its differential coeflicients
with respect to . 2

3. Resuming equation (1), we will now show how to find
6/, or that increment which / would receive, not from any
change in the limits of integration, but from an inappreciably
small alteration in the value of y as a function of . We shall
dy dy
dr 7 dz”

in general put y’ for " for 55, etc. Then we have

dr +dy = "Z‘#f-dx’ = (1 + ") do;
hence (1) becomes

= [PV @)

It will be seen that y does not occur directly or explicitly
in the last equation; but since j’ represents the natural tan-
gent of the angle which a tangent to the curve at any point .
makes with the axis of z, it is clear that the form of this curve
can be also altered at pleasure by giving suitable variations
to the slopes of these tangents, and that if these variations be
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indefinitely small, the remarks that have been made regarding

dy will be equally true regarding dy'.
Equation (2) may be written

R /; “ Vi,

V= Vit

where

Now in V' change » into 3’ + d¥'.
Then the new state of V, being denoted by 77, may be
developed by the extension of Taylor's Theorem, thus:

Ia”V I W4V

V+dy6 +557 7 t1as e O tete,

where, following the analogy of differentials, we write &y,
0y”, etc., for (6y'), (6¥')°, etc. Hence, if we call V'— 7V, 67,
we have

av Ia”V e oL TR N
é‘V_ 6 +2a’y’“ Sy +6dy” 0y + etc.,

X S 1 ! ; )
in which r etc., are the partial differential coefficients of 7

with respect to /.
But T ‘/x"xl de;

whence, if we change Vinto V7, dr rerﬁaining unaltered, and
denote the new state of /by 7/, we shall have

= L/; b

0

and calling /’ — /, 6/, we arrive at the equation
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av LAl arv
o= |G 3 T O TR O et fdn (3

4. Before proceeding it may be well to advert to the
theory of maxima and minima, as developed by the differ-
ential calculus.

A function is said to be a maximum when its value is
greater, and a minimum when its value is less, than that
which it would have if any or all of its variables should receive
indefinitely small increments, either positive or negative.
Thus while the greatest value of a function, if not infinite, is
always a maximum, it does not follow that every maximum
is the greatest value of which the function is capable. Neither
is the greatest value in every case the only maximum. The
foregoing remarks apply equally to a minimum, it being only
necessary in either case to compare the supposed maximum
or minimum state of the function with the value of the states
which immediately precede and succeed it.

Taking, for simplicity, a function of a single variable, this .
state is determined and comparison effected as follows: Let
/ be any function of » and constants, and change x into x -+ 4.
Then if we develop f’, the new state of the function, by Tay-
lor’s Theorem, and subtract the original state, we shall have

F~r=Zrelln e, @

% being either positive or negative.

We shall denote this series by S. Then, if 7 is to be a
maximum or minimum, f/'— / must be negative in the former
case and positive in the latter, independently of the sign of 4.
But if no differential coefficient in .S become infinite, and we
make % indefinitely small, the sign of S will either depend
upon that of its first term, which cannot be independent of %,
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or, if that term reduce to zero, upon the sign of the first that
does not.

Now if this term be of an odd order, its sign would be
affected by any change in that of %; but if of an even order it
would not, since /2 must be real. Hence any value of + which
would render a maximum or minimum must at least satisfy
the equation 5% = o, and the roots of this equation furnish us
with trial values of x, which, when substituted in the remain-
ing terms of S, must render the second term negative for a
maximum and positive for a minimum, or must fulfil the
same condition for some other term of an even order, having
reduced those which preceded it to zero; and we must reject
those values of » which do not satisfy these conditions.

It may also be useful to observe that Z{d{ does not repre-
sent the exact ratio of the increments of f and #, dr being
infinitesimal, but merely the limit of that ratio; that is, the
value toward which it may be made to approach to within
any assignable limit, but which it can never actually equal, it
being meaningless to say that &x ever really becomes zero.
df
dx
from f by certain algebraic methods which accord with the
rules of differentiation; and the same remarks will apply to
the higher differential coefficients of £, ,

Hence, since these coefficients are entirely independent of
any increment which f actually receives, we may, without
altering any of them, replace % in (4) by dx, dx, or any other
infinitesimal we please.

Or, better, we may regard as merely a function derived

5. If the roots of the equation g = o comprised all the

values of » which could render / a maximum or minimum,
still, since / might be capable of several maxima or minima,
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we would have to determine which maximum would be the
greatest, or which minimum the least; although the deter-
mination would in general be easy enough. But the equa-
tion in question does not give all the required values of .
For, if any of the differential coefficients in (4) become infinite,
the reasoning of the last article will no longer hold true. In
fact, it is well known that # can become a maximum or mini-
mum when its first differential coefficient is infinite, or when
the same is finite while the second is infinite. These instances
are examples of what are often termed failing cases of Tay-
lor’s Theorem—although, strictly speaking, the theorem does
not fail at all, only the development becomes useless from its
indeterminate character, and that not from any imperfection
in the theorem itself, but owing to the existence of such con-
ditions as to render impossible an entirely finite development
of the form required.

6. Since the value of % in (4) is altogether independent of
its coefficients, and might be replaced by dx, dx, or any other
symbol we please, it is clear that the form in which we have
expressed d7 in (3) is analogous to that of S or /'~ f, except
that each term in 67 is multiplied by 4z, and is under an
integral sign, and that the function taken is one of 3 and con-
stants, among which x is reckoned.

Considering the first term of that expression, viz.,

T
(/x: @, 8y'dx,

we see that by taking &y indefinitely small throughout the
curve we may ultimately render this term greater than the
sum of the others, unless, indeed, that integral becomes zero
for all possible values of 6y’; it being understood that the
variation of any quantity is to be always infinitesimal as com-
pared with that quantity. It is also clear that if we change
the sign of 6’ throughout the integral—that is, of each dy/,
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leaving its minute numerical value unaltered—we shall also
change the sign of the above integral, while the sign of the
succeeding integral in (3) will remain unchanged.

7. From an examination of the figures, Art. 1, it will be
seen that if ACB be the minimum line between two fixed
points, and we draw a second in any manner we please by
giving infinitesimal variations to »/, we may also draw a third
line by giving to ' variations numerically equal but of oppo-
site sign. Then, since ACB is a minimum, //'— / or 6/ must be
positive ; /’ being the length of either of the lines 4CAB.

Hence, from the reasoning of the last article, we must have

“dl
"/xo W Sy’dx =0,

since otherwise 6/ could not be of invariable sign, as its sign
would be the same as that of the above integral, which could
be made to vary by changing that of dy’. Moreover, the sec-
ond term in ¢/, viz.,

§ 4 M e
;'/x; ‘W;é\_y a’x,

must become positive; or if it reduce to zero, some other
term of an even order must become positive for all values of
dy’, all the preceding terms having reduced to zero.

But, as in the differential calculus, the foregoing is based
upon the supposition that none of the differential coefficients
of Vin (3) become infinite within the limits of integration, or,
in other words, that ’’—7” is throughout these limits capa-
ble of a finite development by Taylor’s Theorem, where 7’
denotes what 7" becomes when we change 5 into ' 6y/.

8. We may now proceed to a full solution of the problem.
We have
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I

A o

J’ d]” V_tl_yn_ V
g el A S AN R
dylz 4/(—1—_{7)—3 V® dya (I +y/a)5 V

Hence, as these and the succeeding partial differential coefhi-
cients of V" with respect to »’ are all finite, we can develop 7’
by Taylor’s Theorem, and equation (3) gives

W i e e }
= = 0y'+ oy (o)
Y4 '/zo {V S 5 A +- etc. [ dx, ()
in which we have first to consider the expression

22074 .,
‘K %é‘ydx:o. (6)

i
This equation is of course satisfied by making Jl/_f zero,

which gives necessarily y’ zero, and y a constant. This would
make the required curve a right line, coinciding with, or par-
allel to, the axis of . While this solution is correct so far as
the general form of the required curve is concerned, it will
not be always possible to draw such a line through two fixed
points given at pleasure, unless we are at liberty to assume
the axis of x so as to make y, and y, equal, which is not con-
templated. We must, therefore, seek another solution.

9. We will begin by transforming ¢ y thus:

Change y into y 4 &y, whike x, and consequently dx, undergo
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no alteration. Then denoting the new value of ' by ¥/, we

&)

have
dé‘
L+ =242
Whence, subtracting from the first member »/, and from the
last its equal 0 We have
ddy
(s Y77 R A
y o
But YV'— y'= 6y, whence
doy
oyl= —=—.
A dx
In like manner,
R
A5 dr

Change y into y4J6y. Then

a: d’y | d*dy
== S 0y =—=+4+ —=
V= 20+ 0) =54 =5,
26y
V/i— = 8y — d
27 X == 3
and, similarly,
am oy
Sy = __ 7
J/ dx”' ’

where 7 is any positive integer.

10. Equation (6) may now be written

“y ddy
'_l: s =103

But integrating by parts, we have

B)

©

)
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ny doy _(y ) (y’(;)_ F4. %5
-A: I e A GO R . 2z 7O =0i()

where the suffix 1 denotes what the quantities affected become
when z is x,, and o what the same quantities become when »
is x,. But since the two points through which the required
line must pass are fixed, dy, and dy, are each zero; that is,
y receives no increment at these points, and therefore (8)
becomes

Ly

setih) de .0y dxr=o. ©

This equation can be satisfied by writing

gl .
7 il R

Squaring, clearing fractions, and transposing, we have

y/z i Ca)/m = C’, y/___ __I:t_ccg =S Jl =% + b,

the general equation of the straight line.

i1, It will be seen that the solution y’=o0 is only a par-

ticular case of the more general one just obtained, and we are

therefore led to inquire why the method pursued in Art. 8

did not give a satisfactory result. Now, since we have the
ddy y _

equations 8y’ = =5 F =6 (6) may be written
X

Axxy?’ N A— lA:rlca’é‘y =.0)

whence, by integration,



12 CALCULUS OF VARIA T[ONS.
c(0y, — dy,) = 0;

and because both &y, and Jy, are zero, this equation can be
satisfied without making ¢ zero.

The error, therefore, in Art. 8 appears to have arisen from
the fact that we required the curve to pass through two fixed
points, and then entirely disregarded that condition in obtain-
ing our solution. But (9) was established by expressly impos-
ing this condition upon the problem; and as there are no
further conditions to be imposed, and as dy cannot be further
transformed, that equation can only be satisfied by equating
to zero the coefficient of dy dr in that equation.

12. Resuming equation (5), let us next consider the term
of the second order,

e I /3
[/.:. —2—V.3 6] dx. (IO)

If the solution given above be a true minimum, this term
must become positive, or must reduce to zero. Now since
x i1s the independent variable, dr is always supposed to be
estimated positively; and as 95" can never be negative, if we
also regard 1 as positive, we see that every element of (10) is’
positive, and that consequently the integral itself must be of
the same sign. We conclude, therefore, that a right line is
the plain curve of minimum length between two fixed points.

If the coefficient of dy”dx in (10), which we may call Z,
could have changed its sign within the given limits of inte-
gration—that is, if Z could have been positive throughout
some portions of the curve, and negative throughout others
—we could make (10) take either sign, and there could be
aeither a maximum nor a minimum. For by varying 5/
throughout those portions of the curve for which Z was
negative, while leaving the other portions unvaried, the inte-
gral would become negative, or by pursuing an opposite
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course it would become positive. Hence, in this and similar
cases, the coefficient of Jy”°dx must be of invariable sign for
all values of » from z, to x,.

If Z could have reduced to zero throughout the whole
range of integration, thus rendering the integral itself zero,
we might generally infer that the solution was neither a maxi-
mum nor a minimum. For in order to the existence of either,
the term of the third order involving dy” must also vanish,
which would seldom if ever occur.

It will be observed that the term of the second order is
positive whether the extremities of the required curve are
supposed to be fixed or not. But if we disregard this con-
dition, the terms of the first order would not vanish, so that
we would not obtain a minimum, except, indeed, we adopt
the particular solution of Art. 8. We shall, however, subse-
quently show that when the limiting values of x only are
given—that is, when the required curve is merely to have its
extremities upon two fixed lines perpendicular to the axis of
z—the solution of Art. 8 is that which must be taken.

13. In the preceding discussion we have merely proved
that the straight line between two fixed points is shorter than
any other plane curve which could be derived from it by
making indefinitely small changes in the inclination of its tan-
gents to the axis of z, either in certain portions or through-
out its whole extent. We could not, therefore, by the use of
the calculus of variations alone, become certain that the
straight line is the shortest plane curve which can be drawn
between two fixed points, but merely that it is a curve of
minimum length, the existence of other minima being possible ;
one of which might, perhaps, be less than the present, and
might itself be the shortest curve.

Again, the preceding method does not permit us to com-
pare the straight line with all other plane curves which can be
drawn indefinitely close to it. For in developing /, Art. 3,
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we were obliged to ascribe indefinitely small increments or
variations to »’ only, since y did not directly or explicitly
occur in /. Hence the curve which we derive by variations
can have no abrupt change of direction; because no such
change could occur without rendering dy" appreciably large
at that point. Therefore all curves with cusps, and all systems
of broken lines, are excluded from the comparison, although
it is evident from the figure that such curves might be drawn
without making the variations of y appreciable, but only those

(4, From the remarks of the preceding article, which
were deemed necessary in order to guard the reader against
certain misconceptions which are common among students of
this subject, it must not be inferred that the calculus of vari-
ations is of little use as a method of solving questions of max-
ima and minima. For we shall see as we advance that it can
in general be made to give a satisfactory solution when such
a solution exists. Indeed, the recent discoveries relative to
the theory of discontinuity, which are due chiefly to the labors
of Prof. Todhunter, and of which we shall speak hereafter,
show that this branch of the calculus does not in reality fail
to present solutions even in very many of those cases in which
its failure has been hitherto assumed.

15. It remains only to determine the constants @ and &
which occur in the general solution. Tt will appear that since
the required line is to pass through two fixed points whose
co-ordinates are x,, ,, x,, 7, we must have
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P =5 Hoy

T

x,—x,

and therefore so soon as these quantities are given a becomes
known. Then to determine 4, we have y,= ax,+ 4,
Spl R

rHh— 4

and thus ¢ is also known when x,, z,, ,, 7,, are fully given.

16. In further illustration of our subject we next proceed
to consider another problem, the solution of which is not so
generally known.

Problem II.

It is requived to determine the equation of the plane curve,
down whick a particle, acted upon by gravity alone, would descend
Jrom one fixed point to another in the shortest possible time.

Let @ be the upper and & the lower point. Assume the
axis of x vertically downward, and « as the origin of co-ordi-
nates. Also let the variable s be the length of the required
curve at any point measured from «; v, the velocity of the
particle at the same point ; and ¢, its time of descent from « to
that point. Then we wish to determine the curve which will
render 7 a minimum, where 7 is the total time of descent
from a to &, or what # becomes at the point 4. We must first
then find # as a function of » and y, or their differentials.

Now, from the well-known differential equations of motion
in mechanics, we have

dt = —, (1)
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We also know that the particle loses no velocity in pass-
ing from one point to another of a curve with no abrupt
change of direction, and that therefore, if it start from a
state of rest at «, its velocity at any point of the curve must
equal that which it would have acquired in falling freely
through the same vertical distance. Hence we shall have

v = Y25z,
£ being the acceleration due to gravity. Therefore (1)
becomes

Vits"
dt=_"—F  gp
V2gx

= /Ty
O 2y

and

6= dz, (2)

which is to become a minimum.

I7. But since g is a constant, the second member of (2)
may be written

1 Xy '/I_{_ylid
VgV Vx

Now, it is evident in general that if ¢ times any integral is to-
be a maximum or a minimum (¢ being any constant), the in-
tegral itself must also be a maximum or minimum. Hence,
omitting the constant factor, the expression to be rendered a.
minimum in this problem may be written

“+9’ dr=| Vi, ).

Lo

Now, as in the preceding problem, change 5’ into 3/ - 8y’
and develop by Taylor's Theorem. Then we shall obtain



BRACHISTOCHRONE BETWEEN TWO POINTS. 17

dV ! RAL S <5
OVi= —|—2 " oy + etc.

U= f{ a;/+;f,ﬂ 8y + etc. } 2

15 .4 .
,'/x: 1/1,‘([ + ,2) y + Zo Zml——*——i)d\y dx+etc‘ (4)

We shall not in future develop any variation beyond the
terms of the second order, since if the terms of the first two
orders should become zero, there could rarely if ever be
either a maximum or a minimum, as explained in Art. 12.

Hence we must have

S e
A e i i

But since the two extreme points are fixed, we must impose
this condition upon the problem by integrating (5) by parts,
as in the preceding problem, and neglecting the terms thus
freed from the integral sign, because containing dy, and dy,.
Performing this operation, we shall obtain

WP o N Ay T
% dx "’Z(I _{__yla) 6}’ dx o, (6)
LA
GVt O 4
E
Z s M i

Now since ¢ in the last equation is an arbitrary constant, make
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it equal to 1—/i_ Then squaring, clearing fractions, and trans-
a

posing, we have

N
8N

Whence solving for y/, we obtain

oL ¥E

which is known to be the differential equation of ‘the cycloid.
Therefore :

*-
y=versin~'x — Yaxr — 1’45, (10)

where « is twice the radius of the generating circle, and & is
zero, because the origin was taken at the upper point. The
last equation may be finally written thus:

£ 3%\
y:rversm“;— Vary — 2, (11)

where the circular function is natural, and 7 is the radius of
the generating circle.

18. By disregarding the condition that the curve must
pass through the two fixed points, we shall, as in the preced-
ing problem, obtain from (5),

v'd

— = 0,

which makes y' zero, and 7 a constant, which must also be
zero, because the curve passes through the origin. There-
fore the curve would in this case coincide throughout with

®*  wers u:l-Mu:Lsh‘{,zv‘;M

.f»:n.%':: . e o sem ™' SV
> /3 p

L e | maiserspbl Sl RS RS
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the axis of x, which solution could only be possible when the
two points were in the same vertical line, and then its truth is
self-evident.

19, Let us now consider the term of the second order, viz.,

— dx. (12)

2y I
K v :

If the cycloid be the true solution of our problem, this term
must become positive, whether ' be varied throughout the
whole integral or only throughout certain portions taken at
pleasure. To satisfy this condition it is merely necessary that
Z, the coefficient of 8y”dx in (12), shall become positive and
not change its sign as we pass from a to 4. But since » can-
not become negative in this problem, the square root of x is
real and may be considered as always positive from a to &;
then, as we may regard ¢'1 - y” as always positive, the above
conditions are satisfied, and we conclude that the cycloid,
having a cusp at e, its base horizontal, and its vertex down-
ward, is a solution of our problem.

Let us also try the solution » = o of Art. 18; this will

reduce (12) to
r 1
8y dx,
L=

" 2uer

which will also become necessarily positive if we assume ¢
to be positive. Thus this solution*likewise, when it is pos-
sible, renders 7 a minimum, as it evidently should.

20. Remarks similar to those made in Art. 13 apply also
to this example. For it is plain that we have only compared
the cycloid as a curve of descent, with all other curves pass-
ing through the given points, having no abrupt change of
direction, and drawn indefinitely near to it. Hence we have
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in reality only shown that the cycloid is one of thz curves
which renders 7" a minimum, the term minimum being used
in the technical sense hitherto explained. However, asin the
former problem, these restrictions are merely theoretical, and
are noticed in order to prevent misconceptions which might
occasion difficulty in subsequent discussions.

For in the present case the cycloid between two points is
undoubtedly the curve of quickest descent from one to the
other, and from this property it is often called the brachisto-
chrone.

2{. In addition to what has been already said, we must
here call attention to another point which is often passed
over by elementary writers on this subject. Suppose 7 to
become infinite for some point within the range of integra-
tion, as it does at the vertex of the cycloid. Then when we
change y' into 3’ - d7/, if we regard, as we must by the theory
of the subject, 5’ as taken arbitrarily, but always indefinitely
small, we can make the new or derived curve assume any
form we please, except that its tangent at X must have the
same direction as that of the cycloid at the vertex, where X
is the abscissa of the vertex. For suppose the vertex tangént
of the cycloid to undergo a slight change of direction, so that
its new angle of inclination to » may differ from a right angle
in an indefinitely small degree. Then we cannot assert that
this small change of direction could be produced by an in-
definitely small change in the value of #/, or the natural tan-
gent of the right angle. That is, owing to the indeterminate
nature of infinity, we cannot with certainty apply the method
of variations to any element of the integral which is affected
by an infinite value of »/, and hence the integral must not be
extended so as to include this element. In the present case,
then, we are only sure of a minimum so long as we are not
obliged to go beyond the vertex of the cycloid for 4.

But the occurrence of an infinite value of » in any case
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will not warrant us in concluding that the solution does not
give a true maximum or minimum, even when the integral
includes that value of /. All that we can say is that the pro-
posed method becomes inapplicable. Indeed, we shall have
occasion to show that sometimes, by changing to polar co-
ordinates, or by some other change of the independent vari-
able, the integral may in these cases be freed from infinite
quantities, and the previous solution shown to give a true
maximum or minimum. '

Of course if we regard dy’ as zero when ' becomes in-
finite—that is, consider the tangent to the curve as fixed at
that point—the variation of the element becoming zero, may
be included in the development, and all difficulty disappears.

It will be observed that 7 becomes infinite at 4, and the
solution is therefore still subject to any objection, but there
would seem to be none, which can arise from this fact.

CASE 2.

22, As a means of still further extending our knowledge
of variations, let us resume the preceding problem, merely
taking the horizontal as the axis of x.

‘Then, the notation and the other conditions being un-
changed, we must, as before, render 7 a minimum. But, as
formerly,

a’t=%{, &= VIF X dy = V1T,

where ¥ now means the natural tangent of the angle which
any tangent to the curve makes with the horizontal instead of

the vertical axis. Also, v = #'2gy, so that, neglecting, as be-
before, the constant factor, we must minimize the expression

U= "“"' dr= [ v,
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Now in 7 change yinto y -+ dy, and » into ' 4 6y’. Then

we may develop V7, or the new state of V, by the extension
of Taylor’s Theorem, thus:

| LA ekl d
v=v+ D o+ oy

2d'V s
+1(ZF r+ddy 0987 + 3 05") + et
We also have
T

where U’ is what U becomes when we change Vinto V4 6V
or into V", dr being unaltered. Hence calling U’ — U, 60,
we have

o= i {_6 —[—d,6y }dx

I av 2d'V av }
= Ve ) ) z
Syt { +dydy y O + 7 0" | dz + ete. (1)
Indeed, it is evident that a similar course could be pursued
should 77 contain any number of quantities capable of being
varied.

23. It may be well before proceeding further to refer
briefly to the subject of maxima and minima of functions
involving more than one variable, as it is developed by the
differential calculus.

Let / be a function of x, y, 2, etc. Give small increments,
%, 1, k, etc, to z, y, 2, respectively, and develop f’, the new
state of £, by Taylor’s Theorem. Then the terms of the first
order in f’— f will be

df +f +gk+etc.,
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which must collectively vanish; and if the quantities £, 7, £,
etc., be independent, each of the partial differential coeffi-
cients of f must also vanish. Then the terms of the second
order,

2 2 2
%(%/z’ +2 d(izjz’; ki % 2t etc.),
must become collectively negative for a maximum and posi-
tive for a minimum. Also, if the increments be independent,
the second partial differential coefficients of # must fulfil cer-
tain conditions among themselves, for an account of which, as
they have no application here, the reader is referred to works
on the differential calculus.

24. The expression for 6 U in (1) is similar to that for /'— £,
only each term is multiplied by Jr, and is under an integral
sign, 0y and dy’ taking the place of % and 7, dr being regarded
as constant. Inthe present case, therefore, the two integrals
of the first orderin (1) must collectively vanish, while the three
integrals of the second order must become collectively positive.

25. We have
S Wy o dY P b vV 3ViL"

&~ T Vatry F A
R ¥ YV _ I
b = T Varry B ko

Hence equation (1) becomes

7 T yeibant e
UL it i b
SRRl ™
ek T Y
BN TRACs il O
e A
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Whence we have

"/x:v,g_ V;—-{—:T/mdy_*__‘_/(ltii?%);é'y'%dx:O- (3)

Now, it might at first appear that we could regard dy and
0y’ as independent, and thus might equate to zero each of the
integrals in (3). But since the curve is to pass through two
fixed points, this condition, which has not yet been regarded,
must be imposed upon the problem, and may be said to limit,
in some sense, the independence of &y and dy’. This condi-
tion can be imposed by means of the second integral only,
since the first is incapable of any further integration. For
putting for dy’ its value from (A), we have

9 dd_ydx 7
(3 72 /2 ,}’ 72 ydx
fV(I +7%)y 9 fd" Vi+5"y —i—y )J/

.Hence, since dy, and dy, are zero, when we make the integral
definite, the two terms which will be without the sign of in.
tegration will disappear, and we shall have 2

1 f 1 ’

= Va+7Y Ty
and therefore (3) may be written
A8 et A e J AT
Bt e

Thus d)’ has been eliminated, and there being no further
conditions to impose, (4) can only be satisfied by writing

4/1 _l_y/f.- J’I
i TS PR i =o. ()

Multiply the first term by @y, and the second by its equal,
¥'dx, and we have
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Py a+y - a,x W =a. (©6)
Then by parts,
't 1 +y/2 o '/I +y/2
T N e T e » +f1/(1+ ’”)yj/

and again by parts,

_y' P _J’n__ a’x;
‘/ Gty . G+ f dz V(I +J/ )
so that we have, finally,

S _TEF

(e VR .

Now reducing the first member to a common denominator,
we have

I —1 & . @ — 7

— e y Y1+ =a = S £

Ya+My  ve ( ) 7 :

which last equation cannot be integrated by solving for y'.
But we readily obtain

which is as before the differential equation of the cycloid, in
which @ equals 27; only » and y have been interchanged, as
will appear from equation (10), Art. 17.

26. If we disregard the condition that the curve is to pass
through two fixed points, we shall have, from (2),
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./;xx 1/1 +}’ é\ydx <2t '/x:%m 6y’dx —D. (9)

Now the first of these equations can c;nly be satisfied by
equating to zero the coefficient of dydz, and then, as we may
evidently neglect the supposition that y is infinite throughout
the curve, we have, necessarily,

Vi+y*=o Jy==L V-1,

a result which shows that a solution by this method is impos-
sible.

The solution ' = o of Art. 18, which will become in this
case J' = 0, is also suggested by this method; for if in the
second of equations (8) we make « infinite, then, since y cannot
be always infinite, we shall find that y’ is infinite. This solu-
tion, representing the vertical through A4, has been already
shown to give a true minimum ; although the considerations
of Art. 20 show that it could not be investigated so long as
the horizontal is taken as the independent variable. This case
then exemplifies the remarks there made relative to over-
coming, by a change of the independent variable, the difficulty
presented by the occurrence of infinite quantities.

27. Let us now examine the sign of the terms of the
second order in 8 /. Since those of the first order vanish, we
have, from (2),

/3 {7
U= { EER AP VS CN R
7 2 V1 4y

6y12
+m }dx. (10)

.. tom the second of equations (8) we have

V(1 45" = Va,
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and therefore (10) becomes

SU = ./; {34/0 81 — ]’_6y6y,+__.7__ 6)/’2}0’;(. (II)

2y Va 2a Va
But §—@ can be written —L, where » = ‘-Z-, or the radius
8y’ 2Va.z2y 2

of the generating circle. Whence (11) becomes

U = 211/—"[ {3rf J/6y6y'+y6y”}d- (12)

But, from equation (A),

f-j 6y6y’dx-—’1/6f faf;ijl/ dx. (13)

Put / for j,il Then

- p i pn L dl
/?: 18y oydr = (1,67, — 4, ay’.,) - Loy Z v (14)

But since the extreme points of the curve are fixed, 8y, and
dy, are each zero, and we have

i Loyoyde=—" y’——-a'x (15)
But
al 1Yy —ydy _ &y )"
L ar=ai=29 I D _ I gy,
dx 0 PP
and because dy = y'dx, the last equation may be written
dal __ V1 yay g3 y”}
de_ {y_df e dz. (16)
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Now differentiating the third of equations (8) and dividing by
2, we have

dy rdy
Id = — ’a_T = e 29
e 2y X
and therefore (16) becomes
dl A }
—_ = e -— -y d 5

But, from the third of equaticns (8),

n__ 20—y
J ——_J’ y
whence _
/AR ot 4
P = " dx. (17)
Therefore
8 o il f 123t T2
i % oy oydr = ;‘/x: oy ¥ =L a. ()

Substituting this value in (12), we have, finally,

%, o 392
U= " Vel a

§ 24/2‘/% R e
and it is evident that this integral is positive, since each of its
elements is positive.

28. Although we might infer from the preceding article
that we have a minimum, that term being used in its technical
sense, still our investigation will not be entirely trustworthy
unless we regard the direction of the tangent at 4 as absolutely

fixed. For we have seen that y* = 27; 7 and therefore when
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yis zero, ' becomes infinite. That is, we cannot with confi-
dence include in our investigation every element of the definite
integral U, because at 4, I’ becomes infinite. We cannot,
however, conclude -that there is not a minimum, because we
do not know what effect a variation of #’ in this element would
have upon the general result. Indeed, we do know that if the
second point be not beyond the vertex, we have a true mini-
mum, and we now see also that if the tangent at 4 be fixed—
that is, if the cycloid be compared with any other derived
curve whose tangent is at right angles to the horizontal—we
shall in any case have a minimum.

The term derived will be used to denote any curve which
can be obtained from the original or primitive curve by the
method of variations, and must therefore be always indefinitely
near to its primitive, and without abrupt change of direction.

29, The preceding discussion shows the advantage of
taking the vertical as the independent variable. For while
the result by either method is the same, as indeed it must be
in every case, it is much more easily obtained by the former.
This is due to the fact that in the former case x, being inca-
pable of variation, enters the function 7, thus leaving ' only
to be varied, while in the latter y and y/, both being capable
of variation, enter V, thus rendering the problem one of two
variables.

When -we come to the terms of the second order, the
results apparently agree also. But while that in the former
case is readily obtained, and is probably entirely trustworthy
so long as we do not wish to pass the vertex, in the latter
case some transformation is required in order to obtain any
result, and even then, owing to the occurrence of an infinite
value of y/ at the outset, we cannot rely implicitly upon our
investigation unless we regard the derived curve as having at
A the same tangent as its primitive ; that is, the vertical
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Problem III.

30. 7z is required to determine the form of the plane curve
whick shall pass through two fixed points, and which shall include
between itself, its evolute, and its radii of curvature at the two
Jfixed points a minimum area ; the extreme tangents of the required
curve being also fixed.

As before, let 4s be an element of the required curve, » the
radius of curvature, and U the area which is to become a
minimum. Then

U= [ ﬁm’s, (1)
and we must first express U in terms of x, , ¥/, etc.
We have v
ds = V1 - 9" dx,
2 g ) 9 3 72\ 3
MR, ) B N (e 0

drdy ~ drxd'y y”a’x 7

the sign + having been disregarded. Substituting these
values, and assuming that the curve is to be concave to the
axis of #, and »” therefore negative, (1) may be written

=—f x‘(“”") dr = Vi 3)

Now change 5’ into y/ + 6‘3/ , 7" into y” 4 65", and develop as
before. © Then including the terms of the second order, we
have

6U = — K%‘W(Ij@ sy - (ALY oy | e

” 2

L2 I /% ol 8 /2 3
_ZA {4( + 3 sy J/(y—l-y)aydy”

l/s

2( 14 J,n)ﬂ Sy } dx. (4)
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Whence we must have

i {41/(1) +7%) 5 (I+”{") ay”}dx—o )

Now it is plain, as before, that the two integrals combined
in the last equation are not independent, there being here two
conditions to be imposed upon the problem ; namely, that dy,
and &y, shall vanish, and also that dy, and dy,” shall vanish.

To impose these conditions, we have only to extend the

method already employed. Thus, putting X for _4__2/_(_1_;{_—)/_),
we have J
dK
0y'de = K dy — [ — 6.
fK y'dx = K 6 '/dx y dx,
¢ e 1 dK
k. K6yd1 K, 6y, — K, 0y, — . —Eé‘ydx. (6)
Also putting L for (1_'1—731’ and observing that
,_doy_doy
6 i S AL SNEAT,
4 dr’ de3
we have
~ ; T gL
— Léy'de = — (L, S8y — L, 3dy,’ —— 6y/dx.
l/x: Y dx (L, 0y — L, J.,)+t£, 5 dx
And in a similar manner we obtain
“JL ., (a’[,) (dL) 5 4L
— 4y Ogpe— == gy — —
T dx gl ] T \ax o e %zt op dx,

_f L6”dx—(L6y Ldy) (Z;_Lay_Lay')
X

~ S sy an. )
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Collecting and arranging these results, (5) becomes

L {4y(ly+y A o RS 6}/,}[,,5_

I/ LR

[+ 22r—z0v} |+ Loy 2]

dK | d'L
oy { +dx2}aydx_o ®)

1 0

Now, if we suppose dy,, dy,/, dy,, dy/, to severally vanish,
we shall thereby impose the two given conditions upon the
problem, and (8) will become

dK | d°L
T Ja {dx+ di }6_ydx.—0 (9)

As there are no further conditions to impose, this equation
can only be satisfied by writing

a]{ d*L
—-|— g O (10)

Restoring the values of KX and Z, and integrating, we have

Z(CEAIN SES" U

which, since 4y’ = y"dx, may be written
‘*—y%,—,,_i_—y—)dy”ry”d & Ut | ety =o. (12)
Then integrating by parts, we have

f 4y'(1 —I-J/“) P e +J/") I / S @,

// 2

/e +,z">“ pr =t +,z'">“ _ fra B2,
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Hence (12) gives

LIV oy to=o, (13)

But from equations (1), (2) and (3) we readily obtain

Dt s
(47 —rds’

and substituting this value in (14), observing that ydr = dy,
we have

dy GEAgE
cE-}—c’-d—s-_zr. (15)

Let # denote the angle which the tangent to the required

curve at any point makes with the axis of . Then Z_y =gin 7,
S

and % = cos ¢z Also, let & be the constant angle whose

natural tangent is % Then ¢ = / sin &, and ¢ = A cos &; %

being some constant at present unknown. Then substituting
: dy dx .
4

in (15) these values of ¢, ¢/, 75 T it becomes

= g(sin ¢ sin & - cos ¢ cos b) = ;ﬁ cos(t —2%), (16)

which is the intrinsic equation of the cycloid, % being equal to
eight times the radiusof the generating circle, and 4 the angle
made with the axis of x by the chord joining the cusps.

31. Let us next examine the sign of the terms of the second
order. Since those of the first order vanish, (4) becomes



34 CALCULUS OF VARIATIONS.

L LG e YT
o0U = Z'A: { i é‘y
1l 8y'(1 +J’m) 8y 8y + 2(1 ‘*/‘J’n)’ 3 } dr

=1 r2 ra 2
Sl )
,A,: o {4(I+J/ + 29”0y

_8.7’,(1_/”_.7“) 6‘_}/6_}/”—]—2(1 +J"/2)2 J/ }dx
A/

732

=£”‘ ;”‘

{ 2(I +J/I2)6\ylﬂ+ 4y/‘26yl‘l

72

e ooy LU o) g,

AL CH e /2 /2 ( ,6 /_I+J’_,j //)2}

et T { 2L a0 RN T )

But since the axis of x is so taken as to render the cycloid
concave to it, y” is always negatlve and therefore the factor

upon that of this factor. We infer, therefore, that the cycloid
is the curve required ; although, because »” becomes infinite at
the two cusps, our investigation will perhaps be subject to
some doubt if we are obliged to include either cusp within
the range of integration.

32. If we attempt to neglect the two conditions which are
to hold at the limits, and to regard 3’ and d” as independent,
we shall have the two equations

B0 ) & o e )
// A ) T AR
Y J
both of which give »” = o0, which cannot be true if the re-
quired curve is to be continuous. The seeming solution,
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' = o, of the first equation must be rejected, because, if it
could hold, the curve becoming a straight line would cause y”
to vanish also, and thus the equation would become indefinite.

33. It is evident that the cycloid will not give the least
possible value of the area in question. For by joining arcs of
cycloids, or even of circles, of indefinitely small radius, the
area may be made as small as we please, as will appear by the

subjoined figures :
CNC Yo

We have, therefore, theoretically only a minimum in the tech-
nical sense hitherto explained.

In fact, the method here employed excludes all curves
having either 3’ or y” infinite within the given range of inte-
gration; and it also enables us to compare the cycloid with
such curves only as can be derived from it by any arbitrary
indefinitely small changes in the values of ' and y’. Still,
under the conditions which we imposed upon the problem—
viz.,, that the extreme points, and also the direction of the
extreme tangents, should be fixed, and the subsequent condi-
tion that the required curve should be concave to the axis of
x—there can, we think, be no doubt that the cycloid gives not
only a minimum, but also the least value of the area in ques-
tion.

SecTION 1L
CASEIN WHICH THE LIMITING VALUES OF X ONLY ARE GIVEN.
34. The reader having now become somewhat familiar
with the general method of the calculus of variations, we shall

next present some theoretical considerations, which are usually
advanced before the discussion of problems is attempted.
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Suppose we wish to determine the conditions which will render
U a maximum or minimum, where

Ty
U:l/x; S (x, 9, dx, dy, 4%, etc.).

Then it will be found, as in the preceding examples, that U
can be reduced to the form

v=/"var,

where V7 is some function of z, », ¥/, 5", etc.

Now change y into y -} dy, 3 into 3’ + d4/, etc., ¥ remaining
unaltered. Let 7, in consequence of these changes, which are
indefinitely small, become V’, and U become U’. Then we

shall have
U= V.

Also let " — Ube denoted by 6U, and V' — V'by V. Then
if 8y, 8/, etc., be indefinitely small, 6 U and 67" will also be in-
definitely small. It is clear also that we shall have

U' — Uor 6U=‘/x.xll'”dx—"[lea’x
=L = vyar = [ ovar. (1)
Now if we develop 6V by Taylor’s Theorem, it becomes
a’V

oV = —|— ’—}—Z—y—l/,:6y”+ etc.

o 6y’+zBayay'+C6y"+206y6f”+et°')’ )
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3 bl
in which i
V with respect to y, ¥/, etc.; and 4, B, C, D, etc., are the second
partial differential coefficients of 7 with respect to the quan-
tities whose variations immediately follow them. Substituting

this value of ¢/ in (1), it becomes

etc., are the partial differential coefficients of

z (dV 44 av }
ol = =24 O 0y Al v d.
i {dy 7+ G 0+ G O Fete f d

Lo

+‘21'"/x:xl(/1 0y*+2Bdydy + Cdy”"+2D8ydy" 4 etc.)dr, (3)

Now, by our previous reasoning, the first integral must
vanish for either a maximum or a minimum, while the Lecond
integral must become negative for a maximum and positive
for a minimum.

35. It has probably been observed that our treatment of
the terms of the first order has been quite uniform, while our
treatment of those of the second order has differed in nearly
every case. The general discussion of this latter part of the
problem, or, as it is called, the discrimination of maxima and
minima, is the most difficult of all the subjects connected with
the calculus of variations. Although the foundations had been
laid by Legendre and Lagrange, and the problem could be
solved in certain cases, still no general method was known
prior to the year 1837, when Jacobi published a theorem,
which we shall explain hereafter, and which reduces this
portion of our investigation also to a uniform rule.

We shall, therefore, at present speak of 6 as involving
terms of the first order only, except when the contrary is
expressly stated.

36. Let us now consider more generally than hitherto the
equation 6 U = o. ’
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By (3) this becomes

6‘U._‘/:{ c5‘+d, ’—l—d,,6y -{-etc}dx_o, (4)

and this equation is true whether the values of y, ¥/, 5/, etc,,
at the limits are fixed or not, it being merely required that the
limiting values of x only should be fixed. Now by means of
the known relations given in formula (A), (B) and (C) we
can, by integration by parts, transform any term in (4) until it
shall consist of terms free from the sign of integration, and an
integral involving &y dx.

Let v, 2, Q, R, S, etc., be the coefficients of dy, 6y, 65’, etc.,
in (4), and consider for example the term

Sd'dy

6 iv e 5

Sdy 77

We have

de §yd Sa”é‘y a’Sa”6y
2 dr di*
/a’S d? dy _ dSd*y /’d S d*sy e
dr dr* ~ ~  dx di’ dr dr*

d*S d*Sy *SdSy  Ld*Sddy 75
dv di dx* dr dve® dx

i g(l’é‘_y Q’SS
T dx 20} —|—f Sy dx.
G v e TS p) Y e as
'/z: SOPY dx _(Sd_y — 226y +__ oy — 23 6‘_;/)1
—-(563/” -5 ok g + 6}/ i 2963/)

(3

27 Y
4+ s dy dx.
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Integrating the other terms in 6 U/ in a similar manner, collect-
ing and arranging the results, we have

U = ( —dQ—I—ng j;‘?-{—etc)&y,

(T S,

-I—(Q LA + Z,;‘,g etc.)lé‘y,’

_(Q df +Z}S etc')o‘w

riaS ) " _ ( _das ) ”
-I—(R Z;—{-—etc. lé‘y, R E—}-etc. 06)'“

+(S — etc.), 8y, — (S — etc.), 0y, + etc.

) dP a:Q d’R a'sS }
+ w2 Te TR TS ecloyarn ()
dP 4'Q ¥ :
in which — 7 T etc., are the total differentials of these quan-

tities with respect to x.
Finally, for convenience, (5) may be written thus:

sU=L— [ Méyar, ©)

and this equation holds, whether the values of dy, 5/, 65, etc.,
at the limits vanish, as we have hitherto supposed, or not; the
Jimiting values of x only being required to remain fixed.
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37. We see that 6 U in (6) consists of two classes of terms
which are essentially different ; the first depending solely upon
the values which the quantities dy, 67/, etc., and 7, Q, R, etc.,
with their total differential coefficients, may have at the limits;
while the second is an integral involving the general values of
these quantities. Now since 6 U must vanish when U is to be
a maximum or a minimum, let us consider these two parts of
0 U separately in this case.

Write, for convenience,

L =k, 8y,— &, 0y,+ ¢, 0y, — 4,09,/+ 7, 63,"— 7, O9,"+etc.  (7)

Then it is plain that the several quantities dy,, dy,, dy,/, o5/,
etc., are entirely in our power ; that is, we may impose at the
limits any conditions we please, so long as all the variations
are indefinitely small and x, and x, remain immutable. It is
likewise clear that the quantities #,, 4, , 7,, etc., are not in our
power. For suppose the equation

6U:L+UC:” Mbydr=o )

to have been solved so as to give y as a function of x, say f(x).
Then this equation would be a solution of the problem to find
the value of y, or the equation of a plane curve, which would
render U a maximum or a minimum ; and as we wish to compare
only this primitive with its derived curves, we must consider
Ly, R, €tc., as referring to this primitive and to the given limits
only. These quantities can therefore, so soon as the equation
of the curve and the values of x, and #, are known, be found.

Hence if 4, 4, i, 7,, etc., do not severally vanish, we can
make Z assume any infinitesimal value we please by suitably
choosing 6y,, 8y,, 47/, dy,/, etc. But if the solution y = f(x)
cause these quantities to severally vanish, Z must become zero
also, and no other condition will cause Z to vanish necessarily
without restricting the values of dy,, 6y, 6y, etc.
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38. Let us now consider the second term,

Sty dx.

In this integral 8y is wholly in our power, being subject only
to the condition that neither it nor any of its differential co-
efficients, to the »¢% inclusive, shall become appreciable within
the range of integration, ™ being the highest differential co-
efficient in V. In other words, dy may be any arbitrary func-
tion of x which fulfils these conditions, or it need not even be
the same function throughout the entire range of integration.

On the other hand, /7 is not in our power, but will, as in the
case of /,, 4,, etc., depend upon the equation y = f{x). Hence
if M be not necessarily zero throughout the given limits of
integration, the integral will be wholly in our power, and we
may, by suitably varying y, make it assume any infinitesimal
value we please. But if the solution y = f{zx) reduce 4/ to
zero throughout U, then the integral itself, being definite,
must become zero; and it will not necessarily vanish under
any other condition, so long as dy is wholly unrestricted.

39. Resuming equation (8), we have

f— —L[flﬂ!c?y dz. (9)

Now if the solution y = f{x) be such as to cause the quantities
gy, 1y 1, 2, etc., and also M to severally vanish, then each
member of (g9) will likewise vanish, and no difficulty will occur.
But if the proposed solution be not able to fulfil all these con-
ditions, (9) becomes an impossible equation. For inasmuch

Zy
as L and l/z: M dy dx are no longer necessarily zero, it would

in effect imply, as Prof. Jellett has remarked, “that the inte-
gral of an arbitrary function may be expressed (without deter-



42 CALCULUS OF VARIATIONS.

mining or even restricting its general form) in terms of the
limiting values of itself and a certain number of its differen-
tial coefficients. This is manifestly untrue.”

'~ We conclude, then, that it is necessary to the existence of
a maximum or minimum not only that Z and A/ shall vanish,
but that each of the quantities %, %, i, ¢, etc., and 7, shall
become zero.

40. Although the truth of the preceding principles would
appear to be sufficiently evident, yet Strauch, one of the most
- elaborate writers on the calculus of variations, asserts that it

cannot be proved that Z and ‘/xo M 0y dx must severally vanish;

and as this is a point of the highest importance, and of some
difficulty, we have given it more attention than it has generally
received hitherto. Strauch is, however, compelled to admit
that we do obtain correct results by this method; and there
can, as Prof. Todhunter states, be no doubt that the principle
is sound.

41. Before proceeding further we will apply the foregoing
theory to the solution of some examples.

Problem IV.

Let V be any function of y' and constants only, and let it be
required to determine the relations which must subsist between x
and y in order to maximize or minimize the expression

U=/ "var,

o5 and x, only being fixed.
We have

6U_f IZT/; o8y"dx —-f Q 6y"dx = o.
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Then transforming 60U, as just explained, and denoting by
accents total differentials, we have

| &

6U=— Qll 6)’:+ Qo’ 6)’0-*— Qx 6}’1, e Qo 6}'0’

_*_IL::“Q” 6_]/ dy = o. (I)

Whence, since M must vanish, we have "
Q=0 Q@=¢ Q=cx+7. (2

If we had supposed the values y and »’ at the limits to be
given as in former examples, the solution could be carried no
further without determining the form of V. But since ¢y,
dy,, dy,/, 8y are not necessarily zero, we must, from the pre-
ceding discussion, have the coeflicients of these quantities
severally zero. Hence.Q,'=o0, 0/=0, §,=0, Q,=0. From
the third and fourth of these equations, combined with (2),
we have cxr,4 ¢ =0, cx, + = 0, o(x, — ) = 0. Whence
¢ =o0, and then ¢ =0. Therefore the last of equations (2)
gives Q0 = o.

If this equation is to hold throughout U, y” must be con-
stant, although it may have several constant values. Let «
be one of the roots of the equation Q =o. Then, as y” = a, by
integration we obtain

Q.

r=2Z ot s, 3)

the equation of a parabola; or of a straight line if # should
happen to become zero.

The constants 4 and &’ cannot be determined so long as the
values of y, and y, are not fixed. For it is easy to see that
the equations Q,"=0 and @, = o furnish no new equations
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of condition, because they follow from Q = o, and any values
of 4 and & which satisfy the latter will also satisfy the former
two. '

Owing to its simplicity, we may also examine the term of
the second order, which is

Ifx‘d 0 6_]/“&11’.

5 %o dylm

‘.
2

! 2 74 : iy :
Since y” is a constant, which is some function of 5/,

Q
dylm’
must be also a constant, say 4 ; then, since the terms of the
first order vanish, we may write

__A T8 e
6(/'_;'/; 8y dz,

which shows that we have a maximum or minimum accord-
ing as A4 is negative or positive.

Problem V.

42, It is required to maximize or minimize the expression

Uzﬁxl(y”’—zy)dx =‘/:1de,

the limiting values of x only being given.
We have

(YU:A::E'(ZJ"/Q’V” - 26_7) dr = — 29" 8y, + 2}’0”’ 8,

Ly
429" 0y, — 29" oy, —}—L/z; (20'" — 2) 8ydx = o. (1)
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Whence equating M/ to zero, and integrating, we have

=i, (2)

V'=z+a, 3)

y2 Lt W

Y=L+ pbrta (s)
4 3 bxﬂ

y=g+% tyhate 6)

Now if 8y, and dy, be unrestricted, we must have, from (1),
3" =o0,y,”" = o, which give, in (3), r, -2 =o0,and z,4-a =0,
which are impossible equations, since x, and z, are not to be
equal. Whence we conclude that the solution will not be
possible unless we restrict dy, and dy, so that y,” and y,”
need not severally vanish.

We will now suppose y, and », to be given, but »," and
to be unrestricted. Then, from (1), we must have 3" =o,

2." = o, which would give, in (4),
7
-2—+ax,—|—b=o, (7)
x 2
—tar,+b=o. ®
From these equations we readily obtain

a=——(r+ =), ©

X, X

2

0=

1 (10)
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Now suppose, for simplicity, that we take z, equal to any
constant ¢, and x, to — e. Then (9) and (10) give a = o,

b= — 62;, and (6) would become
y:i-—g: +ex+d. (11)

But it will be remembered that this equation is only
admissible on the supposition that we are able to make
2,0y, — A0y, vanish ; and as 4, and /%, cannot severally vanish,
this is accomplished by fixing the values of y, and y,, and the
assignment of these values will afford us the conditions for
determining the remaining constants. Equation (11) now
gives

.
22 = g + e+ 4, (12)
Yo = _Zie — ce+d. (13)
Whence we obtain
_J/l_.yo
¢=T R (14)
a 5_54__.71—.}/0
d_y1+24 2 4 (IS)

Suppose, for still greater simplicity, we take the fixed
points on the axis of ». Then (14) and (15) give ¢ = o,

= 2—2, and we shall have, finally,

w2 Pr ) he
i) +24

But suppose, as usual, the limiting values of y and 5’ were
both given, and let us consider the particular case in which
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we have si=l¢, ¥, = — &;'y, = 0, 9, =6} YL =iyl 1,
Then, from (5), we have

3 2
bl ax,

I = —2*-’{‘51’1"1‘5, (17)
,_xﬂs axon -
W= et (13)

Then eliminating ¢ between (17) and (18), we have

6—¢
b= 6¢ J (19)

and from the same equations we obtain

=Ty

a=-—. (20)

&

Moreover, substituting in turn ¢ and — ¢ for x in (6), we have

e ac’ be
J’x—a+'6—+—2—+“’+d, (21)
_fi_a_g’—l—_bi“_("_'_d
yo‘—24 6 2 9 i (22)

Eliminating &, we have

aé

v + 2ce = 0. (23)
Substituting for « its value from (20), we find ¢ = o, whence
also 2 = 0; and again substituting these values with that of 2,

(21) gives
ihe=

GhHuse
2T 2:f
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Now substituting these values in (6), we have, finally,

x o=
== 24— — -
¥ 24-I— +24 5

es

6=
12¢

The term of the second order is merely
wla llﬂd
., 07"dz,

which is of course positive, thus giving a minimum. That is,
any solution which reduces the terms of the first order to
zero will render U a minimum.*

43. Now resume for a moment the consideration of Prob.
I. There we have

77 4

Ll e R b o

which give ' = o0, and 5,/ = 0. But since we know from the
general solution that 3’ = &, these two conditions are in reality
only one, @ = 0. Hence if no restrictions be imposed except
that x, and #, shall be fixed, the line must be parallel to the
axis of x.

But the constant & cannot be determined in this case. In-
deed it is evident that the straight line parallel to x is shorter
than any other curve, or straight line even, which can be drawn
having x, and =z, as the abscissae of its extremities, and that
hence our first result is confirmed. Moreover, since the
length of this line will be the same, whatever be its distance
from the axis of x, the value of 4 can have no effect upon its.
length, and therefore ought to remain undetermined. If,
however, the co-ordinates of one of its extremities be given,
the line becomes a parallel to » through that fixed point, and
& is determined.

* The last two examples are from the Adams Essay, by Prof. Todhunter (p. 15),
but have been considerably elaborated.



THEORY ILLUSTRATED. % 49

44, Next consider \Prob. I1., Case 1. There we find

o iy o Ok

But from equation (8), Art. 17, if we make %, or %, zero, we
see that the equation

O B N
V(i+")x

must hold throughout the curve, and this gives 3’ = o, which,
as it denotes the vertical, is the true solution. For if a par-
ticle be merely required to descend from one horizontal plane
to another, it will do so along the vertical sooner than along
any other line. The equation of this vertical is y = 4, in
which the value of 4 can have no effect upon the time of
descent, and therefore remains undetermined, as it should.

Next consider the second case of the same problem. There
we have

{7 4

oy e R
ST A T

The first of these equations gives y,” = 0; and since V(i
= ¥2r, » being the radius of the generating circle, we have

7

{ V(1 iy”)y}o: ij/—r

and this, if equated to zero, will give /= o, which is evi-
dently impossible. Hence %, cannot be zero; and to make the
term /,0y, vanish, we must assign the value of 7,.

Now it will be remembered that the general solution was
a cycloid, having a cusp at the starting-point of the particle,
and that ¢ was merely the value of y, which is now deter-
mined. Moreover, since we have just found that the tangent
to this cycloid at the point which is not fixed must be par-
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allel to the axis of z, it follows that its vertex must be at this
point. Hence the generating circle must be such that it
would roll through a semicircle while its centre was de-
scribing the distance x,— x,, and therefore we have

x, — %,

? o A M)
T

45, Let us in the last place consider Prob. III. If we

could have fully integrated equation (10), Art. 30, the inte-

gral would have involved four constants, and for determining

these constants we would have ,/, 5/, 7, 7 equal to four

assigned quantities. It would, however, be too tedious to

discuss this case in detail, and we will next SUDRORE the values

of y, and y, to be fixed, while those of y,/ and y,” are variable.

Then equating to zero the coefficients of dy,’ and dy,’, we
shall have

{(I—I—y”) } }((I—I—y”)’} L 3

"2 /2

& V]

and since ¥'1 -+ »” cannot be zero, »,” and y,” must each be
infinite, thus giving the cycloid cusps at the two fixed points.
Let & denote the angle which the line joining these cusps
makes with the axis of x. Then & is identical with & of equa-
tion (16), Art. 30, and is at once determined, its tangent being
Wl Mo,

1 %

Then, also,

V(x, 15 xo)a'!' (.71 '—yo)g.

27T

) =

%
8

Let us now suppose the values of y, and y, to be unre-
stricted. Then we must equate the coefficients of dy, and
dy, severally to zero, which will give the equation

/2 /2\2
{4)/(1-%—3/ )+ d (14" } il

B0~

J
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and a similar equation for the lower limit. But from equa-
tion (11), Art. 30, the first member of the last equation equals
— ¢, making ¢ in this case zero. Therefore equation (13) of
the same article becomes

(i+yy__d
J/II 2 -

Now & cannot vanish. For if it can,’ we must either have

V1 + 3" = o, which would render 5 imaginary, or y” must be
infinite throughout the curve, which is also inadmissible. But
if dy," and &y,” do not vanish, we must, as we have just seen,
have 7,” and »,” infinite. It follows, therefore, that y, and y,’
must become infinite, as & would otherwise vanish.

We conclude, then, that the cycloid must in this case be
so placed as to have the line joining its cusps parallel to the
axis of . Then we shall evidently have

x, —x,

p—= "0
2

0y

while the constant angle & of equation (16), Art. 30, will be-
come zero, and it is easy to show also that & = 8» = 4.

46. It is evident that none of the results of the preceding
articles could be confirmed as maxima or minima without an
examination of the sign of the terms of the second order,
because evén if those terms were shown to be certainly posi-
tive or negative, in any particular problem, by making any
of the variations 8y, dy,, dy,, 83/, etc., zero, it would not fol-
low that we could be certain of the same sign when those
restrictions were removed or modified.

But it will be remembered that in the problems thus far
discussed we have, with the exception of Case 2, Prob. II.,
been able to determine the sign of the terms of the second
order without imposing any restriction upon the variations
of y and 3 at the limits. The only result, then, which we
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have to confirm is this: that when the starting-point of the
particle is given, its terminal point being restricted to have a
given abscissa x,, the curve of quickest passage from z, to x,
will be a cycloid with a cusp at the first point, and its vertex
at the second. An examination of equations (12) and (13),
Art. 27, will show that if we had not supposed dy, and dy, to
be zero, equation (19) of the same article would have become

60U = ___{(-? §y)+(yyay)

Y L P s } e
T (Ey—g+;6y )dx =0,
in which the integral is positive as before. But by hypothesis
dy, = 0, and as 3’ vanishes at the vertex, while y becomes @ or

27, we have (%—) =o. Hence both terms without the sign of
291, :
integration vanish, and we have a minimum as before.,

47. We may now proceed without difficulty to that gen-
eral discussion of the terms of the first order which is usually,
but unadvisedly we think, presented prior to the discussion
of particular problems.

Assume the equation U = de, where 7 is any func-

Lo
tion of x, y, 9 . ... 3™, and let it be required to determine
what function y must be of » in order to render U a maxi-
mum or minimum. Then finding 6, and transforming it by
integration as far as possible, and then equating to zero sever-
ally the coefficients of dy,, 6y, etc., together with A/, which is
the coefficient of dy J+ under the integral sign, we obtain the
equations %, = o, /4, = o0, 7, =0, 7, = O, etc., and also #/ = o,
where, as will be remembered,
RO

M=N-"" 55—

i etc.,
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all the differentials being total, and &, P, Q, etc., being the
partial differential coefficients of 77 with respect to y, ¥/, ¥/,
etc.

Now the equation 47 = o will, in general, be a differential
equation of the order 2#, because its last term will be

arav
dx™ dy™’
which will usually involve

dny(n)

—_ n\n) — 2)1).
T = () = 58

Hence the complete integral of this equation must usually
contain 27 arbitrary constants, and may be supposed to be
put under the form

= TG Cayl s o S BGE)E— (1)

Now since every solution of our problem must satisfy
the equation J/ = o, it must also be comprised in (1), which
establishes a general relation between » and jy, or, in other
words, gives us some plane curve; which relation or curve is,
however, capable of great modification, by adjusting suitably
the values of these 27 arbitrary constants. -

48. If now we examine the equations %, = o, %, = o, etc.,
which we may call the equations at the limits, we shall find
that their number is also 2z. Moreover, these equations, not
holding throughout the curve, do not establish any general
relation between x and y, as did the equation A7 = o, but
merely fix the conditions which the required curve must fulfil
at the limits. This is as it should be. For if the equations
/& = o0, 7 =0, etc., could be supposed to hold throughout the
curve, they would each establish a relation between x and y,
and unless these relations should happen to agree with each
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other, and also with that derived from the equation 47 = o,
which would seldom if ever occur, the solution would become.
nugatory.

Now suppose the complete integral of the equation 47 = o
were obtained, and expressed as in (1). Then if the form of £
were known, we could form the expressions %, %, z,, etc., and
these expressions would all be known functions of either x, or
%, together with some of the 27 arbitrary constants, no vari-
able entering these functions, because x, and x,, being assigned
quantities, may be regarded as constants also.

We see then that in the equations %4, = o, %, = o, etc., we:
have 27 equations between x, and x, whlch are assigned, and
2n arbitrary constants, and should therefore be able to deter-
mine these 2z constants in terms of the known constants x,
and z,.

Now suppose the limiting values of y, and y, were given.
Then, since the variations of these quantities would become:
zero, %, and /%, would no longer necessarily vanish. DBut in
this case it is evident that the two equations thus lost would
be replaced by the equations y, = flx,, ¢, ¢, . . . . €) = f;, and

= Ak, - - - ) =ifopland a8 7, Tand g, are nOW.Sup-
posed to have assigned values, the number of the equations
for the determination of the 2% constants remains, as before, 2.
In like manner, if dy,"and dy, should become zero, the con-
ditions 7, =0 and 7,= o would disappear. But to supply
their place we would have the equation

'y‘,zd_(if(x" Cirid, b sinps Kl =i/ 4e

and a similar equation for the lower limit, ' and y, being
now assigned constants also; so that we still have, as before,
2z ancillary equations.

Suppose, lastly, that any of the variations dy, dy,, d7/, etc.,
were connected by given equations, and suppose there were
m such equations. Then if we should express as many of the
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variations as possible in terms of the remaining variations,
and then equate to zero the coefficients of the several varia-
tions in the reduced system, it is plain that our ancillary
equations would be only 272 — 7 in number. But since we
have the » equations between certain variations, we are evi-
dently able to form new systems of independent variations in
such a manner as to obtain 7z more equations between x,, x,,
and the 27 constants.

Thus we see that, theoretically at least, the terms at the
limits furnish us with 2# equations for the determination of
the 2z arbitrary counstants, which would in general occur in
the complete integral of the equation 47 = o, and that what-
ever condition reduces the number of the original equations,
by annulling or combining two or more of them, will at the
same time furnish in their place as many new equations for
the determination of these constants as have been removed.

49, The preceding considerations, which are theoretical,
require some modification, first as regards the terms at the
limits, and second as regards the equation 47 =o0. With
regard to the terms at the limits, it has probably been noticed
that it has not been in general possible to satisfy all the equa-
tions /%, = o, %, = 0, etc., as some of these equations become
conflicting. But even in these cases we can,as we have seen,
generally obtain 27 harmonious equations by restricting one
or more of the variations; as, for example, by supposing dy,,
éy,, or dy/, etc., to vanish.

In fact, the occurrence of these conflicting equations de-
notes merely that the problem in its present form is not
capable of solution, and as it might be foreseen that such
questions would present themselves, the occurrence of these
conflicting equations would naturally be expected.

50. The following exceptions may be regarded as due to
" the nature of the equation A7 = o, although they properly
arise from the nature of the function 7.
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Exception 1. Suppose V to vanish in the equation M = o,
which would of course happen if y did not explicitly enter 1.
Then we would have

Bl I/ et i il
 f dx T drt e =0
whence

a0 , d°R k!
P—E—]— :Z,?———etc. =1

But the first member of the last equation equals %; and as %
must vanish at either limit unless the values of y, and y, be
assigned, we have ¢ = 0; and since the equations /%, = o and
%, = o are each satisfied by this value of ¢, they furnish no new
condition for the determination of any other constant which
may enter the complete integral of the equation 4/ = 0. Thus
the conditions furnished by the terms at the limits are in this
case reduced to 2z — 1, two of them having become identical.
If, however, the value of either y, or y, be assigned, this will
furnish a new equation of condition which will compensate
for that which was lost.

This case is fully exemplified by the discussion of Prob. L.
in Art. 43 and Prob. I1., Case 1, in Art. 44.

Similarly, suppose I to contain neither y nor 3. Then
we would have

_d'Q_d'R

d0 4R 2
2;—' W—i—etc.—— a, (2)
adR :
Q—Zt——}—etc._ax—l-b. (3)

Now if the limiting values of y are variable, we have 4, =0 °
and %, = 0; and it is easy to see that in this case, as 2 is want-
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ing, the first member of (3) is 7 and that of (2) is —4%, and
therefore we have ax,+ &6 =0, and ar, + &6 = o, whence we
find 2 =0 and 4 =0, and (3) becomes

dR | d*S
Q—;,}-—l—zr—;—etc.—o. (4)

Now it must be remembered that this equation has been de-
duced solely from the conditions 7, =0 and 7,=o. But dif-
ferentiating (4), we have

2
Zf dR—{—etc_o, or —/Z=o.
Whence it appears that since the equations %, = o, %, = o, can,
without involving any other relations, be deduced from the
equations z, = 0, 7,= 0, they furnish no new data for the de-
termination of the constants which will be found in the com-
plete integral of the equation #7/ = o. Hence in this case our
ancillary equations will furnish but 272 — 2 distinct conditions,
thus leaving generally two constants undetermined, unless
one or more additional equations be supplied by assigning
the values of one or more of the quantities »,, 7, 7/, 7/, etc.

This case is fully exemplified in the discussion of Prob. I'V.
Generally, if the first m of the quantities y, 3/, 3/, etc., be
wanting in 7, while at the same time the variations of these
quantities at the limits remain unrestricted, 7 arbitrary con-
stants in the general solution must also remain undetermined.

51. Exception 2. Suppose V to contain only the first
power of ®, the highest differential coefficient which is in-
volved. Then in this case the equation J/ = o cannot be of
an order higher than 2z — 1. For the last term in 4/ must be

A% U

T and as only the first power of ™ occurs in 7, the
3 4
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partial differential coefficient of 77 with respect to ™ will not
contain that quantity at all. Whence it is evident that A7
cannot be of an order 27; and indeed Prof. Jellett has shown
that it cannot in this case rise above the order 27z — 2 (see his
page 46), -but it does not seem necessary to reproduce his
proof here.

Now in this case the equations at the limits will be, as
before, 27 in number, while the constants in the complete in-
tegral of the equation 47 = o will not exceed in number 22 — 1,
and in fact will not exceed 2z — 2. This seeming exception
is, however, explained by the fact that in all such cases the

integral U, or xxl Vdzx,is capable of being reduced by integra-
tion to the form U = f, —f‘,—{—!/;1 V'dx, where f, and f, are

quantities free from the sign of integration, while I”” does not
contain any differential coefficient of y higher than y»~-1; and
we will next show that this reduction can be effected.

52. Let y™ be the highest differential coefficient in V.
Then, since its first power only occurs in 7, we may write

V =yt s ()

where = is that part of 7 which is a factor of y®), and z the
other terms of 7, both being of course of a lower order than

#®. Then the equation U = ‘/x‘ " Vdx becomes

U= /ﬂ; oy 4 /x' " o, (2)
But we are evidently able to form the following equation:

/ wymdy = W~ f Zdx, (3)
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where I and Z are functions at present unknown. For this
equation can, if in no other manner, always be formed thus:

cuy(") xdx. (4)

f wy™dx = wy™x + f —_

But ¥ and Z can be so taken that the second member of (3)
will contain no higher differential coefficient than 3*~1, be-
cause (3) can, in the following manner, be satisfied upon this
assumption. First differentiate (3), and we shall have

aw W, W AW
m = Z+ S0+ TS+ T ete o ()

which must be the complete differential of (3) if our assump-
tion be true, but not otherwise. But (5), and consequently (3),
will be satisfied if we put v

aw

o (6)
aw le
—Z= s + 7' 4+ etc. +a’y<n 2)_;/(7»—1) )

Therefore W is found by integrating w with respect to y»=b
only. Hence, finally, we have*

U= =W, — W, [ o+ Z)dz

e m_|-f:V'dx. ®)

This case, then, is in reality no exception at all, because the

* This theorem is due to the great Euler (see Meth. Inven., pp. 62, 75), and
has been nearly reproduced by Prof. Jellett on his page 46.
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difficulty arises merely from the fact that the original integral
had not been reduced to its lowest terms. For although we
have not yet considered the class of problems to which this
reduced form of U belongs, it is easy to see. that the equation
M = o, resulting from V7’ only, will not now be of an order ex-
ceeding 2z — 2, which is the result obtained by Prof. Jellett.

53. Exception 3. Let I be of the form y/ -+ F, where f
contains only quantities incapable of variation, e.g. x and con-
stants, and / may contain any quantities except y. Then
AV becomes simply £, and the equation &/ =o will give the
equations

ar_i'g

H -+ etc. = f,

~ Ly IR etomfit=f@ e @

Now the first member of (1) equals %; and if we suppose
7, and y, to be unrestricted, we must have 4, = o, %, = o; and
using these restrictions, (1) will give

7@} +e=o, 407 )
and

{7@} +e=o @)

But as the first members of (2) and (3) contain only one
indeterminate constant, ¢, it will in general be impossible to
satisfy both equations, and the problem in this form does not
usually admit of a solution. But if we make f zero, so that
V is any function not containing 7, the problem becomes a
case of Exception 1, and may or may not, according to its
nature, be capable of a general solution, one constant at least
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remaining undetermined. This exception is exemplified by
Prob. V., in which f= — 2, F= ",

54, It is now evident that if we require that U shall be a
maximum or minimum, the .calculus of variations will ter-
minate its aid in the discussion by leaving us with a series of
differential equations, that of the highest order holding true
for all values of x from x, to x,, the others merely holding at
the limits of integration. From the former of these equations,
as it is general, the general solution must be obtained, and
then the remaining or ancillary equations, not being general,
must be satisfied, if they can be satisfied at all, by the assign-
ment of suitable values to the constants which will occur in
the general solution; or we may say that these ancillary
equations determine the values of the constants.

The determination of these constants is not in general dif-
ficult when the complete integral of the equation is known;
but this integral is often obtained with difficulty, and is some-
times altogether unobtainable. In fact, this difficulty is anal-
ogous to that which is frequently experienced in solving the
final equation or equations of condition given by the differ-
ential calculus in the discussion of an ordinary problem of
maxima or minima, except that in the former case the final
equations are differential and must be solved by the calculus,
while in the latter they are algebraic and must be solved by
the theory of equations.

55. We shall next proceed to establish some principles re-
garding the integrability of the equation 7 = o, and to deduce
some formule which will be found useful in our subsequent
discussions.

Suppose, in the first place, that the first 7z of the quanti-
ties IV, P, O, R, etc, were wanting in the equation 4/ = o,
which would of course happen if the first 7 of the quantities
7 ¥, ¥, ¥, etc, were wanting in J7; then the equation
M = o can be integrated at least 2 times.
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For let m be 4, for example. Then we would have

ARY dT
M_% +etc =10,

-

which, being integrated four times, becomes
oI ax’ | b1
S—;;-ketc. = 6_+?+Cx+d’
and similarly if » were any other number.

56. Suppose, in the second place, that the independent
variable x does not occur explicitly in J/; then the equation
M = o can be integrated at least once. For since V" does not
contain x, we have

dV = Ndy + Pdy + Qdy" + Rdy'" -} etc.
=Ny + Py + 0y -+ Ry 4 etc.) dx. (1)

Now substituting in the last member of (1) the value of &V
derived from the equation #/ = o, viz.,

_dRSy a’Q
T dx

we shall have

=45}t o -/ 5B}

‘;;f } dr+etc.  (2)

—i—{Ry”-l-y’

But every parenthesis in (2) can be integrated by parts.
Taking, for example, the third, and recollecting that

J/lv dr = d}/"’, _y”'dx Y dy", y”a’x — dy,,
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we have
S e = Ry - /g s,
—f )gy”’dx =— +f ‘f,;fy”a’x,
% Yidri— % ¥ — [2;1? y'dx.
Hence

d°R L ey @R, .
dr }dx—ky _d'_xy + dxr}" (3)

S1®

Integrating the remaining terms in a similar manner, we
would have

v=ctry+{0yr -2y
Ry By 1 ER b pete, ()

which equation is certainly of an order lower than that of the
differential equation J7 = o.

The following particular cases of this formula are given
for convenience of reference :

First. 1f V be a function of 3’ only, we shall have, from (A),

V=c4 Py. (B)

But since in this case V7 is a function of y’, P must also be a
function of 7'; so that (B) may be written

STV RY)y=c=1(¥)

where f’ is an arbitrary function. The last equation can
therefore only be satisfied by making " a constant, say 3’ =¢,
which gives y=c¢x -+,
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Hence if we require the nature of the curve which will

ealie o oo o Ty .
maximize or minimize the expression U = Vdx, where V' is
Lo

any function of y’ only, the straight line is the solution, if
there be a solution; that question being decided by an appeal
to the terms of the second order.

Second. 1f V' be a function of y and y’ only, (A) will still

give
V=c+Fy. ©)

Tlurd. If V' be a function of y and y” only, then (A) will
give

_C+ Qy” Q / ; (D)

57. Suppose, in the third place, that the independent vari-
able x, and also the first # of the quantities y, 5/, 5/, etc., are
wariting in J7; then the equation J/ = o can be integrated at
least 741 times. Let s, for example, be 4 as formerly.
Then the equation M = o, after having been integrated four
times, according to the first case, and using p, ¢, 7, s, etc., for
P, O, R, S, etc., to prevent confusion, becomes

at d ’u

$ Sy — etc. = ax' 4 62" + cx + 4. (1)

Also, we have the equation
AV = sdy'” + tdy® + udy® -+ etc.
= (9P + 159 + w0y + etc.) dr. (2)
Substituting in (2) the value of s derived from (1), we have

dt d*u
== 6) ) PDheh
dV-(z‘y‘ -+ y‘5>a’x—{—(y(7 “”)d

-+ <ty* iﬂy“”) dx +etc. + (ax' + b2+ cx + d) y® dx. (3)
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Integrating by parts, as in the second case, we have

Vet 19+ (w79 — 22 58 (97— Dy 1 T8 ) et

+ f (ax’ 4 02" 4 cx + d) 3P dx. (4)

Moreover, the integral sign can easily be removed from the
remaining terms in (4). For, by parts, we have

'/ ax’yPOdy = ar’y” — / ) 3ax’ydx,
—f3tzx’y“’dx = — 3ax’y”’ +/6axy”’a’x,
f 6axy" dr = 6axy” — f 6ay’'dx,

—-J 6ay"dx = — 6ay'.

Hence
'/ax’y(s’dx = axr’y)’" — 3ax’y"" 4 6axy” — 6ay ;

and in like manner we may integrate all the other terms.

Thus, for example, in Prob. IV. we find, after two integra-
tions of 47,

G @he Zj”:cx—{—c’,

which, being again integrated, gives

V=cxy" — ¢y +y"}-d.
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Or, let V" be a function of y’ and »” only.” Then, after one
integration of /, we have

We also have , :
dV = Pdy + Qdy";

and substituting the value of 7 from the preceding equation,
we have

o T / d ”
av = (0" + 05"+ 525" \a,

which, being integrated, gives

V=ay+ Q"+

Problem VI.

58, 7t is required to determine the jform of the solid of revo-
lution which will experience a mintinum resistance in passing
through a homogeneous jfluid in the divection of x, the axis of
revolution of the solid.

Although it is evident that the problem does not admit of
a solution until some further restrictions are imposed, we shall
at present merely assume that the distance x, — z, is given.

Let s be an element of the generating curve, pds the nor-
mal pressure which it experiences in passing through the fluid,
and v its velocity in the direction of that normal, or the velo-
city with which the particles of the fluid are displaced by it
in that direction. Then, adopting the usual theory regarding
the pressure and resistance of fluids, we have

pds = cv'ds, (1)
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where ¢ is a constant depending upon the density of the fluid.
Let ¢” be the velocity of the body in the direction of the axis .
Then

p igp B
Rt~ « @)
and (1) becomes
/2 d.y’
pds = cv p ds. (3)

Let dz be the surface of the elemental zone, described by ds.
Then, since dz = 27yds, we shall have pdz, or the normal pres-
sure upon this zone,

= 2mypds = 2mcv"” 4 dj: ds. (4)
ds

Now the force pdsz being distributed normally about the
zone, may be regarded as aggregated and exerted in the
direction of any particular normal, and may, moreover, be
resolved into two components, the first in the direction of x,
and the second in the direction of y, and the first is the only
one which resists the motion of the body in the direction of .
Therefore, rdz being the resistance of any elemental zone to
the forward motion of the body, we have

dy _aydy
z:pdagg_zrtcu pa ds, (5)
in which only the numerical values of the quantities have
been regarded. Let R be the resistance of any zone included
between the two planes x = x,, * = x,, and we shall have

8y xy 3
R =2mct’ f 4 dy ds = 27wco” A —{Z -
So o I 4

Now we shall not regard the resistance experienced by any
plane cylindrical end, should there be one, so that R is the
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quantity which must become a minimum. Therefore, neglect-
ing, as usual, the constants ¢, 7, 7/, we are to minimize the

expression
_ o
U=/ 2= Srvan.

Here, as Vis a function of y and »’ only, and as

3J//2(I +J//2) — 2},14
=

we have, by formula (C), Art. 56,

=W

/3

Y 3970 4 ") — 29
e 7a\2 — 2¢, 6
i+ 7T a7y ©

which is the convenient form of the constant. Whence we
derive the equations

2V an s e R B sy o
bt 37 LR R el AT i
" "°
¢ (7)

N S

Reducing the first member of (7) to a common denominator
and solving for y, we obtain

ﬁl;"/sl”_):_ (8)

y:
&

From this differential equation, although it cannot be fur-
ther integrated, we may obtain the value of ». For differ-
entiate (8), and we have

7 a4y N — 0+

dy or ydr=c e (9)
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Whence
Ik St S L s 2 50,
)/5

=L =3 Z3gy

(a’}" 2dy’ 3a’y’), éio)

which is easily integrated, giving

e ’ I 3
r=c(py +}/,+4y,‘)+d. (1)
Now if we suppose equations (8) and (11) to be combined
so as to eliminate y/, we shall obtain an equation between
x, ¥, ¢, and d, which will be the equation of the required
curve in finite terms, and may be supposed to be expressed
under the form

A T AT N0 =

Then if we suppose the values of y, and y, to be given, we
shall bhave

j(xnyv (2 d):O, _f'(xo,y,, G d):o;

from which equations we must determine ¢ and & in terms of
the given quantities x,, x,, 7,, .. But if », and y, be not given,
we shall have

Amaee- LeRAELY) 200N
]ll_Pl—Jl< (I _I__y’?)? >l—or

which gives either y, =0 or y/=o0; and a similar equation
for the lower limit.

But it is easy to see that the form of / cannot be practi-
cally determined, as the elimination of ;' just proposed can-
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not be effected ; while it is well known that the theory which
we have adopted regarding the resistance of fluids is not
altogether trustworthy. The problem will, however, afford
ground hereafter for some useful remarks regarding the terms
of the second order, and is also of historic interest, having
occupied the attention of Newton, Legendre, and others.

Problem VII.

89, 7t is requived to determine among all curves whick can be
drawn between two fixed points,that whick, being revolved about
the axis of x, will generate the surface of minimum area.

Let ds be an element of the generating curve. Then the

. . GO . 'S
surface which is to become a minimum will be 27 / ' yds, or
So

Ty AL L N
2”'/9; y ¥1 4 3"dx, so that, neglecting the constant, we must
minimize the expression

U=y Vi A=) Var.

Here V7 is a function of y and ' only, énd /2= ——I——VT—}%
Hence, by formula (C), Art. 56, we have the equations

PR :
e 0 T
Gitr " e

Squaring, clearing fractions, and transposing, we have

=tz )
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To render (3) integrable, we must solve thus:

ady

dr = + (4)

Vy’-—tz”

the integral of which, using the upper sign, is

r=al(y+Vy—a)+4 (5)

the equation of the catenary, as we will next show.

Now it is plain that if we regard the axis of x as fixed, but
that of y as movable, we can render & any quantity we please
by suitably choosing the position of that movable axis; that
is, by suitably determining the origin on the fixed axis . In
this case let it be so taken that b becomes — ala, and then
(5) will become

TR ile 1L 'Zz—“, (6)
Let ¢ be the Napierian base, then (6) will give
ad =y + VTG @
But from (3) we obtain
Vy'—a' = ay,
whence (7) gives
ac* =y +ay. (8)

Now if in (7) we make y = o, » becomes imaginary.
Whence the curve does not meet the axis of x, and yisalways
positive. But if we make x = o0, y becomes 4, and y’ at this
point becomes zero, it being zero at no other. Moreover, we

have 5" = »(J;;, so that the curve is convex to the axis of r, and

is without cusps or points of inflection. Therefore y' changes
sign when x = 0, and also we have certainly a minimum ordi.
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nate at that point. Now as points wvhich have equal ordi-
nates have also ' numerically equal, but positive or negative
according as the point lies at the right or left of the origin,
and as (6) shows that there can be no two equal values of y
on the same side of the origin, we conclude that the curve
has—at least so far as it extends—for every point at the right
of the origin, a point at the left, having an equal ordinate,
while the values of x and y' are numerically equal, but with
contrary signs. Hence we may also write

x
a

ac ®=y—ay. )

Therefore, adding (8) and (9), we obtain

e 5
- a
y_za<ea+c >, (10)
which is the usual form of the equation to the catenary when
the directrix is the axis of x, and the origin under the lowest
point; also, # is the constant which would in mechanics rep-
resent the tension in the direction of .

60. We have already seen how to dispose of the constant
& which occurs in the general solution, and we now proceed
to consider the remaining constant a.

It must be evident that even when the limiting values of
x and y are given—just as when they are not—it may happen
that no constants can satisfy the given conditions; that is,
that no curve of the required kind can be drawn between the
given points. Let us first suppose that the two points are
equally distant from the axis of z, and let », =¢ and y,=24,
Then (10) gives

c

(4]
é:%a(c"—”—}—e"“), (i1

and from this equation # must be found in terms of ¢ and 4.
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But we are chiefly concerned in knowing when, if at all,
the solution will become impossible; and this point we will
now consider. If we differentiate the second member of (11)
under the supposition that ¢ is constant and « variable, and
then equate the result to zero, we shall obtain, on solving, the
values of a expressed in terms of ¢, if any exist, which will
render 4 a minimum. Performing this operation, we have

-;-(e%—l-e—‘g)—i;(e‘%—e—s):o. (12)

Developing each term of (12) carefully by Maclaurin’s Theo-
rem, we have

c
] —————~—— —¢tc.=o, I
: = (13)
an equation which evidently gives but one positive value for

a, because its first member is — « when « is zero, and unity

when « is infinite. But (12), when solved for £, is known to
a

give approximately 5 = 1.19968 = 4, which evidently renders

4 a minimum, as it is clear from (11) that we can make it in-
finite by making « infinite. To determine this minimum value
of 4 in terms of ¢, first substitute in (11) thus:

— & R
¢ (‘ T )’
which, being solved, is known to give approximately
4 =1.81017. Therefore we have ] ¥ 1.5088.
a (2
Now as this equation gives the least value of 4 in terms of
¢, it is evident that if the extreme points be so given that %
c

will be less than 1.5088, there can be no catenary drawn hav-
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ing the axis of x as its directrix, although of course some

catenary can always be drawn; and if -é become equal to

1.5088, then a single catenary can be drawn in which  must
b (B

equal e Or o and i Uecome greater than
1.19968 1.81017 ¢

1.5088, then two real and positive values can be found for «,

and we may, by using each in succession, draw two catenaries

between the two given points, each having the axis of x as its
directrix.

61. As it will be found highly important, in determining
the question of their minimum property, to distinguish be-
tween the upper and lower catenary, we must now also con-
sider the more general case in which y, and y, are unequal.

Suppose, then, that the given points are unequally distant
from the axis of x, x being so estimated that y, shall be greater
than .. Then move the origin along the axis of x to a point
midway between the ordinates y, and y,. Denote 3, by 4,
7. by % x,byc and x, by —c. Then # being the distance
of the new origin from the former, and of course positive, the
general equation of the catenary becomes

a x+n _xT4mn
J’:—(e’ a +€ a ) (I)

2

Hence we have at the limits the equations

c+n e
<g A ) (2)

<en;c+e‘n30). : (3)

From these equations we must now find 2 and ». Mul-

U
I
STEN

e
I
N
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tiply (2) by ea and (3) by e “, and subtract; then multiply (2)

by ¢ ¢, and (3) by ea and subtracts Then we shall have the
two equations

PRIVZRIC RSN 30 & il
gw(ga—e “):bea——ke 2 (4)

TR e _e c
ea(e “——e“):be a— koo, (s)

Changing signs in (5) and multiplying by (4), we have

YT\ e _e e _¢
Z(e“—e “>:(be“—,€e “) (ke"'—be “). ©6)

Having thus eliminated », we must now determine whether
(6) can be satisfied by any real and positive value or values
of a. Write, for convenience,

/S ICRRRas 20\ G ER¢ ¢ PEC
F:%(aa—e “)—(&e"'—l’e “) (,ée“—be “), %)

which becomes zero whenever a catenary is possible. Differ-
entiating 7 under the supposition that  only’is variable, we

obtain
kit G

(VRN

da et — ¢

§;<e%—e_%z>—c(e%+e—%>—{—2;€k§. ®)

Now if F’ can vanish for any real and positive value of &,
F has a corresponding minimum value or values. For it has
its greatest when « is zero, its value then being infinite. For
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if we develop by Maclaurin’s Theorem the first member of
the following equation, we shall have

g(e%__g_gf>—2c<1+ I; +2:‘] —|—etc>

Whence, when « is infinite, 7 becomes 4¢" + (& — £)*; and when
a is zero, 7 becomes infinite.
Now to determine whether /7’ can vanish and change its

sign as a ranges from zero to positive infinity, we must
2c 2

recollect that ¢# — ¢ @ is of invariable sign, and that therefore
the only part of /’ which can change its sign is the second
factor, and this, when developed by Maclaurin’s Theorem
and arranged, becomes

Now if 4% be greater than %, we can evidently make (9), and
consequently £, vanish and change its sign once, and once
only, for any real and positive value of «; and therefore 7 is
in this case susceptible of a minimum value; and if this mini.
mum value be negative, /7 can be made to pass through zero,
and to change its sign twice. Hence in this case equation (7),
or F=o, can be satisfied by two real values of 2; and we can
draw two catenaries by using these values successively. But
if the minimum value of # be zero, # can touch zero but once,
and (7) can only be satisfied by one value of @, and thus we
can draw but one catenary. If the minimum value of F be
positive, then # cannot become zero at all, and (7) cannot
be satisfied by any real and positive value of @, and thus no
catenary can be drawn.
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Now if 44 be equal to or less than %, F’ will be always

negative, and F can consequently have no minimum value.
In this case / cannot touch zero at all, and there can be no
catenary. For we have already seen that the least value of
Fis 4¢*+ (6 — &), which expression is evidently greater than
zZero.

62. The preceding article is taken from Chapter 1V. of
the Adams Essay, by Prof. Todhunter; and we shall now,
before closing this section, subjoin an investigation of the
terms of the second order in a particular class of problems,
in which Probs. VI. and VII. are included. This investiga-
tion appears to be due entirely to the same author. (See
A‘dams Essay, Arts. 26, 27.)

Problem VIII.

1t is required to investigate in full the conditions whick will
maximise or minimize the expression

U= [ ypde = S var,

where fis any function of y only.

Put /' for if-,, and f” for dj,:. Then, to the terms of the
dy dy

second order inclusive, we shall have
sU= l/xl (fOy +3f'0y')dx

+-;—‘/x;x1(2f16y 3y'+yf”6y")dx. (I)
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Here Iis a function of y and »' only, and P = y//, so that we
have at once, by formula (C), Art. 56, since the terms of the
first order must vanish,

W=y fl=e (2)

This is as far as we can carry the general solution, so long
as the form of f is entirely arbitrary, although we may sup-
pose the solution to be of the form

3 ‘= dfdrc,) ).

63. Let us now consider what transformations can be
effected in the terms of the second order. By parts we have

’ ’ o8 dory
ff Oy 0y'dx = f'dSy —fé‘y.zrf dy.dx. (3)
But
d A dar’
) = [0y’ 4 oy ——.
a’xf e y.dx
Whence

! / o 2 7 i d T 2
S rioyoyar=roy— [ f 6y6ydx—fﬂéd‘ydx. @)

Therefore

! 2 L 2 d ¢ 2
2 ) Foy 8ydi = f16y _f;; Sydr. (s)

Substituting this value in (1), and observing that the terms of

’
the first order vanish, and that f = f"y", we have

oU = %( b AL A fo’dyo’) +§/; xl(yf "8yt — y'f ”W) dz. (6)

£
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But if we suppose, as usual, the values of 7, and y, to be as- »
signed, we have

sU = %Ao lf”(_yd‘y”-—y"dy’)dx. ()

Now in our applications of this formula we shall usually be
able to regard y as positive; and let us also suppose that 3"
does not change its sign within the range of integration; that
is, that the required curve is always, at least for the part that
we consider, convex or concave to the axis of . We will
consider first the latter case. Here, since y” is always nega-
tive, the factor ydy” — »"dy* is always positive, and therefore,
if 7" be also of invariable sign, we shall have a maximum or a
minimum acording as it is negative or positive.

But we can show that when »” is of invariable sign, /"
must be also. For from (2) we have

c
= s 8
S Sl ®)
Whence, by differentiation, we have
Y . s g
=~y )
’=T=77) ©
and solving for »”, we find
J’”= <f_€j.‘j'//f) ; (IO)

which shows that when »” is of invariable sign, /” must be
also. But since ¢ may be either positive or negative, the sign
"of f” cannot be determined so long as the problem is per-
fectly general, and therefore we can only say that when »” is
negative, we have a maximum or minimum according as f”
is negative or positive.
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Next suppose 7’ to be always positive. Then, although
/" must be of invariable sign, we cannot say that the factor
y6y" — "8y" may not change its sign; and therefore this case
will require further investigation, which will be given here.
after, when we have presented Jacobi’s Theorem.

64. We will now apply the preceding formula to the in-
vestigation of the terms of the second order in Prob. VI,
although we did not succeed in obtaining the equation of
the generating curve in finite terms.

From equation (g), Art. 58, we easily obtain

y=dity) =3 1)
y 4

Now we will consider the case in which 5’ is positive and
of invariable sign. Then, observing that tan® 60° = 3, we see
that if 3" be always less than 3, »” will be always negative ; if
" pass through 3, »” will change its sign; and if 3" be always
greater than 3, y” will be always positive. Hence we may in-
vestigate the first case. Write the fundamental equation of
Art. 58 thus:

i 745 == dx.
,_/x: (I _I__ /2) / Jf
Then we find

Wt
=T

and

1 ’ 3_3/2
=2y ==
(477

Hence, if we suppose the limiting values of x and y to be fixed,
the terms of the second order will become

i .J/’ ( fi:3 2 " 2
7278 S 4 ) T J dx,
L/,:<I+y) ) (385" — 783"
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which expression is evidently positive, thus giving us a mini-
mum.

65. The term minimum must here also be understood in
its technical sense, and we must by no means say that the
curve whose differential equation we have obtained is the
curve which will generate the solid of least resistance. For
Legendre has shown that by taking a zigzag line we can
make the resistance as small as we please. The fact is that in
this case, as in every other, we can, by means of the calculus
of variations, compare the curve or curves obtained from the
differential equation A7 = o with such curves only as can be
derived from their primitives by making infinitesimal changes.
in the values of y and y’. And although we might pass from
a continuous curve to a zigzag line by means of infinitesimal
changes in y, we ceitainly could not by such changesin 3.

SEcTION III.

CASE IN WHICH THE LIMITING VALUES OF X ALSO ARE
VARIABLE.

Problem IX.

66. Suppose it be required to find the shortest curve which can
be drawn so as to connect two given curves, all the curves lying in
the same plane.

Let ff and gg be the given curves, and a4 the required
curve, which is of course a right line. Then if we assume
two other points, ¢ and 4, indefinitely near to « and 4, and join
them by another curve which is of the same kind as, or
differs infinitesimally in form from, @4, the curve ¢4 must ex-
ceed in length the curve .
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This assertion would be equally true if the points @ and ¢,
4 and & had not been taken indefinitely near, and if the curve
¢d had not differed infinitesimally in form from 4. But then,
even if cd were shown to exceed @4 in length, we could not
be certain that some third curve might not be drawn be-

tween ff and gg differing less in form from a4, or having its
extremities a little nearer to 2 and 4, which might be shorter
than either aé or cd.

Now since, whatever be its nature, the length of the line
ab is given by the equation

U:L’”‘ VT dr =L/:‘de,

we see that we are now required to determine what change
U undergoes when not only »/, but also the co-ordinates
Zo» Yo %1 Iy, Of the points @ and 4, receive indefinitely small in-
crements.

Now it is evident that we may pass from the curve a4 to
the curve ¢ in the following manner: First, without at all
changing the form of b, give indefinitely small increments
dx, and dz, to the original limits x, and x,, so that the new
values of these limits may become the abscissae of the new
points ¢ and 4, which change would give to the curve a4 an
increment like that which it would receive by differentiation.
Then, secondly, vary y', supposing x throughout the new
limits to be incapable of variation. By the change in the
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limits we obtain the required absciss® of the new extreme
points, while by varying 5’ we obtain their ordinates, and also
any desired alteration in the form of the primitive curve.

Now if we denote by U’ what U becomes when we change
z, into z, 4 dx,, and x, into x,+ dx,, the form of the primitive
curve being unchanged—that is, ¥ and ' being unvaried—we
shall have

U=

Zo+dxq

= [rvae+ [T vae - T v, )

in which expression it must be remembered that the incre-
ments dx, and dx, are to be taken either positively or nega-
tively, according as the abscissz of the new extreme points
are further from, or nearer to — « than those of the original
points. But it is evident that to the second order

LT Vi = v+ (dV)a” )

and making the same reduction for the lower limit, (1) be-
comes

Vit Vi 3| () = (97

L fz Bl 3)

which is true to the second order. -

Let us next ascertain, as far as the terms of the second order,
what change would result to U’ from changing 3’ into 3’ + dy/.
Since the integral in (3) equals U, the change which will re-
sult to it will be merely U, where 6U is to be found to the
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second order, and the terms of the first order transformed as
hitherto explained, so that we need only consider the terms
without the integral sign. The change in the term V,dx,, pro-
duced by varying y,/, dx, remaining unaltered is 6 V,dx,, which,

/

if we put as usual 2 for - Ak

Vity”

becomes

R 6)’1, dxl + < Va) 5)/1”dx,,

the first term only being retained, as the others are evidently
of an order higher than the second ; and similarly for the cor-
responding term at the lower limit. The term %(—‘?) dx
is already of the second order, and must simply be retained
without regarding its variation, every term of which would
be of an order higher than the second. Similarly, we merely
retain the corresponding term at the lower limit.

Now collecting our results, and denoting by [6U] the
entire change which the length of 24 or U has undergone, we
shall have

wm=ﬁa—mm+3%_a%ﬁﬁug@ﬂ

I dV) (dV) } , b
= iEEs S (Fat b E — P 6y d:
+! {( ) = Gr) i [+ oyl — Pdylan,

+3 L, T 0. (9)

Zo

67. Now it will appear, by reasoning in all respects similar
to that which has been hitherto employed, that since dx, and
dx,, like dy, and 6‘_)/,, are capable of either sign, if U is to be a-
maximum or minimum, the terms of the first order in [6U]
must vanish, and those of the second must become positive
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for a minimum and negative for a maximum. Disregarding,
therefore, at present the terms of the second order, we have

(U] = V,dr,— Videy+ P8y, — Booy+ [ — % sy ar. (5)

Now it must be evident that the curve sought can be no
other than a straight line. For suppose the points @ and 4 to
be joined by any curve other than a straight line. Then even
if this curve were shorter than any other line which could be
drawn between the given curves, when one or both the ex-
treme points ¢ and & were changed, yet we know from our
previous investigations that, without changing these points,
it could be still further shortened by making it a right line.
Whence we see that our present problem must concern merely
the position which this line must have in order to render its
length a minimum. Moreover, the term under the integral
sign in (5) is just what it would have been had we merely re-
quired the curve of minimum length between two fixed points.

Therefore, since the right line is the general solution, Z—P will
X

vanish, and consequently the integral must vanish, thus leav-
ing us with the terms at the limits, which must also be equated
to zero.

This mode of demonstration will probably be most appa-
rent, but the following is the true analytical method. By rea-
soning similar to that employed in Art. 39 and the preceding
articles, we can show that the term under the integral sign
must vanish, as must also those free from the sign of integra-
tion, taken collectively. Equating the integral to zero, we
obtain, as before, the right line as the general solution, and
have then to consider the remaining terms, which may be rep-
resented by the equation Z =o.

68. We have, then, from (5),
L= I/lﬂ’,t‘l RE 170(1'2’0 +P15)’, = })néj,u =0. (6)
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Now if the quantities dx,, dx,, dy,, 6y, were entirely indepen-
dent, we would evidently be obliged to equate the coefficient
of each one severally to zero. Then we would have four
equations at the limits to be satisfied, whereas the general
solution contains but two arbitrary constants, and this would
usually be impossible in any problem. But in the present
case we know, without further investigation, that two of these
equations, /; =0 and V,=o, cannot be satisfied by any real
value of . This is as it should be. For if the quantities dx,,
dx,, 0y, oy, were independent, the extremities of the required
curve would be entirely unrestricted, and we could have no
maximum or minimum, because we could always increase
or diminish its length at pleasure. But as in the present case
the extremities of the required curve are confined to two
given curves, we can obtain a definite result, and we now
proceed to show the method of imposing this condition upon
the question.

69. Let y = f(¥)and y = F(x) be the equations of the two
given curves, and let y be any ordinate of the required curve,
and Y the ordinate of the derived curve corresponding to the
same value of ». Then ¥V, =y 4 dy,and ¥, =y, 4 dy,; and
let us consider, for example, the upper limit. It is evident
that when we derive ¢ from aé, the abscissa of & will become
x, -+ dx,, where dx, may be positive or negative, and the value
of its ordinate is evidently obtained by passing along the de-
rived curve from the point whose co-ordinates are x, and ¥,
to the point whose abscissa is x, - dx, ; that is, to the point .
Denoting then the ordinate of & by #, we have

n=Y,4 ¥/ de,+ = ¥, dr}+ etc. @)

Hence, substituting in (7) the value YV, =y, 6y, and omit-
ting all terms of an order higher than the second, we have
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= (y + 0y +y'dx + 0y'dx + Z—Iy”dr’) : (8)

*

But since 7 is an ordinate of the given curve whose equation
is YV = f(x), we must have » = f(x, 4 dx,). Developing this
expression by Taylor's Theorem, we have to the second order

n=fi+flde ©

where :
C ey A M £ AN
Combining (8) and (g), observing that y, = f,, we have
O = (f" =3 hdx+ ;—(f "=y hdx—6y/dr.  (10)
Similarly, we have at the lower limit
8y, = (' = y)odr,+ S (F" = hdz) = 8y dx. (10)

70. If now we substitute in (6) the values of dy, and 6y,
just found, and set aside all terms of the second order, which
must be added to those of the second order in (4), we shall.
after restoring the values of 7 and 7, have

AL S g
=Lt FT | 4

J/F ik /2
{Vf_—}——E+VI+y }a’x =o. (11)

Having thus eliminated 6y, and @y, it is evident that the
remaining quantities dz, and dx, are absolutely independent,
and that we must therefore equate their coefficients severally
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to zero. Performing this operation, and reducing, we have
the equations

1+ =0, and 1+ 7/F =0;

equations which show that the required right line 24 must be -
normal to each of the curves ff and gg.

*

71. Although for the sake of simplicity we have used
equation (6), it is evident that the true mode of reasoning
would be the following: First eliminate dy, and &y, in (4) by
the use of equation (10), by which elimination we shall add
some terms to those of the second order. Then, by the usual
reasoning, those of the first order must vanish. But these
terms will then consist of Z as given in (11), together with an
integral; and, by the reasoning already employed, these two
parts must separately vanish. Now by making the integral
vanish, we obtain the right line as the general solution; while
by making L vanish, we obtain at once equation (11), from
which we derive the same conclusion as before.

72. If we use equation (6), recollecting that it is true to
the first order only, we may evidently obtain the complete
terms of the second order by adding to those already in (4)
those which result from the elimination of dy, and dy, in (6)
by the use of equation (10). But these terms will by either
method become, since those of the first order vanish,

S LY\ IR Yk
[6[]]"‘23 v1+y=)l & vm;”)o ”“}
+/[ 5(1_;_7? 8y dr. (12)

Now the integral in (12) is known from Prob. I. to be posi-
tive, so that we shall be sure of a minimum if the remaining
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terms be positive, but not otherwise. But since the solution
it e
itsr

is a right line, is a constant, say ¢, and these terms

become
%(ﬁ”dx,’ s, Ep”({xoz)'

But ¢ is the sine of the inclination of @& to the axis of x, and
we may therefore so assume this axis as to render ¢ positive,
and then we shall be sure of a minimum if /" be positive
while /" is negative.

73. But it is unnecessary to pursue this investigation fur-
ther. For it must now appear that the problem under con-
sideration is one rather of the differential calculus than of the
calculus of variations. For since we know from Prob. I. that
the right line is the plain curve of minimum length between
two points, whether they be situated upon given curves or not,
we might have been certain beforehand that the solution could
be no other curve than the right line, and that our problem
could concern nothing but its position. Moreover, its posi-
tion being determined, we need only compare the line with
other right lines drawn to points on ff and gg consecutive to
a and 4. Forif we vary ab so as to obtain a derived curve,
cd, which is not exactly a right line, then, even if we show that
ab is shorter than ¢4, we could shorten ¢Z by making it a
right line, its extremities remaining unchanged, and could not
without a new comparison be certain that the new line ¢
might not be shorter than aé.

The problem might then have been enunciated thus: 7o
Jind the position of the right time of minimum length whick can be
drawn between two given plane curves.

74. Although problems of this sort might be altogether
omitted here, there appears—at least so far as the terms of the
first order are concerned—to be some advantage in solving
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them by the calculus of variations instead of by the ordinary
methods of maxima and minima. At all events, they are gen-
erally discussed by writers on this subject, and it is deemed
necessary to render the reader familiar with the methods
which they employ. We shall therefore subjoin a few more
problems of the same kind, considering the terms of the first
order only, since a discussion of those of the second would in
general be unsatisfactory.

Problem X,

15. 1t is required to determine both the nature and position of
the curve which will minimize the time of descent of a particle
Jrom one given curve to another, the particle starting from a fixed
horizontal line, and being acted upon by gravity solely, all the curves
lying in the same plane.

Assume the fixed horizontal line as the axis of z, and let
x,and y, be the co-ordinates of the point in which the required
curve cuts the upper of the given curves, while », and y, are
the co-ordinates of the point in which it cuts the lower. Then,
reasoning as we did in Prob. II., we see that we have to min-
imize the expression

O A SR T
&o Vy 7Y

Now it is clear that here, as in the preceding problem, the
limits of integration will be also subject to variation. For
suppose that after the required curve and its points of inter-
section with the given curves have been found, we assume
points on the given curves consecutive to those just found,
and then connect these new points by another curve. Then
the abscissa of these new points will be x, + dx, and z, -} dxr,,
dx, and Jdx, having either sign. It also appears, as before,
that the total change which U will undergo, both from a



BRACIHISTOCHRONE BETWEEN TWO CURVES. 9l

change in the form of the curve and an alteration in the posi-
tion of its extremities, can be found by first changing the
limits of the integral in such a manner that the new limits
may be the abscissa of the new points, while the form of the
curve remains unaltered, and then changing by the ordinary
methods of variations the form of the curve taken throughout
the new limits. By the change of limits only, U becomes U”,
where U’ is given by equation (1) of the preceding problem,
because that equation will hold irrespectively of the form of
V. Then if in U’ we change y into y -+ 6y, and 3 into 3+ 8/,
and subtract U, we shall have the exact value of [6U], to
which, however, we can only approximate. This approxi-
mation, so far as U’ is concerned, is effected as in equations
(2) and (3) of the last problem, which also hold irrespectively
of the form of V. If now we take the variation of U’ in the
usual way, we shall have first the terms 0V, dx, — 6V, dx,
which are evidently of the second order and must be rejected
unless we are developing [6U] to the second order, when
they must be added to those involving 4z and dr,’. Next we

obtain 6U or [ '6Vdx, where U is to be developed to the

To
first or second order as required, and. the terms of the first
order transformed as in the case of fixed limits. Hence to
the first order we shall have

£31
[8U) = V,dz,— V.du,+ [ 6Vdz,

which equation would evidently hold irrespectively of the
form of V.
But as in the present case V7 contains y and » only, if we
put as usual &V for Z—Vand P for a’_l'/," and then develop 6V to
ly dy
the first order, and transform as usual, we shall have

[8U) =V, dr,— V.dsA POy~ Pyt [ | N — L gydr.(1)

3 x
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76. Now it will be remembered that the relation expressed
in either equation (10) of the preceding problem, not having
been established upon any particular supposition, is true what-
ever be the equations of the limiting curves. In this case,
therefore, if we assume y = f(x) and y = #(x) to be the equa-
tions of the two given curves, we can eliminate 6y, and ¢y,
the terms of the second order which result from the elimina-
tion being added to those already existing, or else being re-
jected if terms of the second order are not to be considered.
When these terms are to be neglected, equations (10) are
better written

6)’1 = (f,_y,)l dxv 6)’0 5= (F’_.y’)odxo' (2)

Performing this elimination, we have
(60Ul = (V+ Bf'— PY), dx,— (V+ PF'— PY), dx,

i dP
+xo {N—gz}d‘ydxzo. (3)

Now having equated the terms of the first order to zero, it
will appear that, as the integral cannot be made to depend
upon terms which relate solely to its limits without in some
manner restricting the generality of the function dy, we can
only satisfy the equation [§U/] =0 by equating the integral
and the terms at the limits separately to zero.

It will be seen from (3) that [§ U] and d U differ only in the
terms at the limits, the integrals being identical, and this would
be the case if 7 were any function whatever of z, 5, ¥/, 5/, etc.
Hence if we make the integral in (3) vanish, it must lead to
the same general solution as though we had been discussing
the problem of the brachistochrone between fixed points, and
therefore the general solution must be a cycloid.

It is clear, also, that if 4z, and dx, be entirely independent, as
they are in this case, we can only make the terms at the limits
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certainly vanish by equating severally to zero the coefficients
of these quantities. Performing this operation, and substitut-
ing the values of 77 and 7, we obtain for the upper limit

V=" *’W} A
g VJ/(I—I—J'”)+ e N

whence by reduction we have

L+ =0

and in like manner, at the lower limit, we find
1+, F/ =o0;

equations which show that the cycloid must cut each of the
two given curves at right angles.

77. We see, then, from the preceding examples, that if
we wish to determine the conditions which will maximize or
minimize any single definite integral in which the limits
also are to be subject to an indefinitely small change, we
have merely to put the integral, if possible, under the form

U= /)Il Vdzx, V being some function of z, 3, ¥/, 5/, etc, and
Sy

then, if the general solution be known in the case in which
the limits are fixed, we need only consider the terms at the
limits, as the general solution will in every case be the same,
whether the limits be fixed or variable. Moreover, if we wish
to consider the terms of the first order only, the terms at the
limits in [0 U} = o will be identical with those which occur in
60U = o, with the addition of the terms V,dx,—V,dx,. Then if
no restriction be imposed upon the quantities 2x,, 4x,, 6y,, 97,,
the coefficients of these quantities must be equated severally
to zero. This would give us, in addition to the usual 22 con-
ditions,/;= o and V, = o, equations which, as we have already
seen, could not in general be satisfied, as we would have
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27 + 2 equations and only 2z arbitrary constants. But when
the extremities of the required curve are restricted to two
given curves, we can eliminate 6y, and dy, as already shown,
and thus the number of ancillary equations is reduced once
more to 2.

Problem XI.

18. [t is required to determine the conditions whick must hold
at the limits, when in Prob. I11. we also demand that the required
curve shall have its extremities upon two given curves.

Assume, as before, the differential equations of the curves
to be dy = f'dx,dy = F'dx. Then, following the last ar-
ticle, we neglect all terms except those at the limits, since
the general solution is known to be a cycloid. Here

V: | (I+y/2)2
y//

, and the terms at the limits, as will be seen

from Art. 30, will, after adding V, dx, — V, dx,, become

<( I —I—f’)’) o ((1 +y”)“> i
y” i

4y’ (1 4 7Yt @)
ne ( B + E ym )lé‘yl

73

J
£ <(I _.|.;”2y/7)> J__ (( —{—/,;yn)) 63,0!___._ o. (I)

But from equation (11), Art. 30, we have

ARG A IR G
P + Z; ]///2 TR O

e ( GG SR d (I —|~y”)’> 5,

Moreover, we shall assume that the cycloid has cusps at the
poinfs whose co-ordinates are suffixed, in consequence of which
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" will become infinite, and the terms in (1) which are divided
by »” will vanish. Hence (1) becomes

L=—ddy,—dp)=o. @)

But 6y, = (f' — ), dx,, 8y, = (F'—y'),dx, and substituting
these values in (2), and equating severally to zero the coefh-
cients of dr, and dx,, we have

_f;’—yllzo, E,—J’o,zo'

But " and »,” are equal, because the tangents to the cycloids
at its cusps are parallel, and therefore the quantities y/, 7,,
/., £ are equal. Hence we conclude that the chord joining
the two cusps of the cycloid must be normal to each of the

given curves.

Problem XII.

19. 1t is required that the generating curve in Prob. VII. shall
have its extremities upon two given curves.

Let the equations of the given curves be as in the preced-

ing problem. Then ¥ = y +'1 4+ 7, and the terms at the limits
become

L= (y¥VTF77), de,— (y V157, dx,

L i e S b o ikt
+(m>l T Vo 06)’0 o (1)

Eliminating dy, and dy, as before, we have, after equating to
zero the coefficients of dx, and dx,,

ST AP L R %

g T AT v,

gyVI+y’*+ LA & %zo.
Yi4-y®  Vi45"),

o
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Whence reducing, we have
1+ =0, I 495 =o,

which show that the catenary must cut its limiting curves at
right angles.

SEcTION IV.

CASE IN WHICH SOME OF THE LIMITING VALUES OF 2XF, SV
ETC, ENTER THE GENERAL FORM OF V.

Problem XIII.

80. /7 is required to determine the nature and position of the
curve down which a particle will descend tn a minimum time from
one given curve to another, all the curves being in the same vertical
Plane, and the motion of the particle beginning at the point of its
departure from the upper curve.

Assume the axis of y vertically downward, and let x,, 7,
x,, 7, be the respective co-ordinates of the initial and terminal
points of the motion, and let the differential equations of the
respective curves be dy = F'dx, and dy = f'dr. Now in this
case the velocity of the particle at any point whose ordinate
is y will be ¥2¢(y — 5,), because the motion begins at the
point whose ordinate is y,. Therefore in this problem we
must minimize the expression

AT F " 2y
U= [ s Vdx. I
oy o WA, " o ( )

Although it at once appears that the limits x, and x, will
also be subject to change in this problem, we see that one of
these limiting co-ordinates, 7,, enters likewise as a component
part of V throughout the integral, and this fact will require
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some modification of our previous method of solution, because,
since y, is a component of V, any change in the value of y, will
produce a change in that of J”throughout the entire range of
integration. Moreover, the co-ordinates at the lower limit
must always satisfy the equation y, = F(z,), so that when
we change z, into z, -} dx,, we necessarily change y, into
F(x,+dx,). It happens that V7 is not affected by any change
in the values of the other limiting co-ordinates, as they do not
occur in V; but if they did, the method of treatment would
be similar to that which we are about to explain for z,.
Now let 7/ be what 7 becomes when we change 7, into
7, + dy,, and we shall have, from the change of limits only,
z) + dx,
Uit V'de. (2)

xo+dxo

If we next change y into y - 6y, and y’ into 3’ + dy/, and sub-
£21
tract U or . Vdx, the result will be the exact variation of

to which we will now approximate as far as terms of the first
order only. As before, to the first order, (2) becomes

U'=Vdr,—V, dr, 4 / V'dz. )

Now when we change x, into x, 4 dx,, we to the first order
change y, into y,+ F,'dx, and therefore I’ is what I becomes
when we change j, into y,4- F/dx,, y and » in V being re-
garded as constant, since they in no manner depend upon y, ;

and this change in 7 will evidently be Z—Vﬁ’dxa, where Fdx,

has simply been put for &y,. Hence to the first order,
e S
V' =V %, Fldx,. (4)

Substituting this value in (3), rejecting again all terms of the
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second order, and observing that 7 and dx, may be regarded
as constants, we have

0 Ty JV 2,
U'=V,dx,—V,drv+ F/dx, o dx -[—./;o Vdx. (5)

If now we vary y and »/, we shall obtain the variation of
L5 s St .
j; Vdrx or U in the usual manner for fixed limits, while the
variations of all the other terms must be neglected, being of

an order higher than the first. Hence putting &V for ‘%,'

P for Z%: we shall have, after the usual transformation of 6 U,

 dV
[6U] = V,dz, —V,dz,+ P8y, — Py, + Fldz, . o

& apr
i {N——a}dydxzo. (6)
But j—j‘:: — g: — NV, as will readily appear from the form

of V" given in (1), so that we have

[8U] = V,dz,—Vidert P8y~ P.6y,— F)dx, [ ‘Nz

+ [ moydr=o, )

where M = N — %1-) Now whether we can integrate the ex-
x

&7 . . .
pression !/; "N dx or not, we know that it is merely a function
0

of the limiting co-ordinates and their differential coefficients,
the form of the integral being dependent upon the nature of
" the general solution obtained by making the second member
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of (7) zero, and it is not, therefore, in our power. Hence, by
L2}
the same reasoning as before, we must have ‘/x' Moydx=o

and M = o.

As we have merely assumed that the axis of y shall be
vertical, we may take that of x so as to make y, zero, in which
case the equation 47 = o will become identical with the same
equation in Prob. II., Case 2, and the general solution will
therefore be a cycloid— which solution will evidently also
hold however we assume the axis of x, since by changing
that, so long as that of y is vertical, we change neither the
form of the curve nor the values of any of the differential co-
efficients of y. The general solution then being a cycloid with
a cusp on the upper curve, we must next, if possible, satisfy
the equation

[6U] = V,dr,— V,dx,+ P8y, — P.dy,— Fdx, |, Ndr=o.(3)

Now in this case the equation M/ = o gives N = g, where the

differential is total. Hence
x, { .
— Fldx, [N dr = — Fldz,(P,— P). ©

Now substitute this value in (8), and next eliminate dy, and
dy, by equations (2), Art. 76. Then equating to zero severally
the coefficients of dx, and dx,, we have

V1+Pxf1”‘PJ’1'=O» (IO}
V0+P1E),_])o.yo,=O° (II)

Since the general solution is a cycloid, we have, from the
equation y(1 4 ") = a of Art. 25, by putting y — y, for »,

Vi —2) 0+ =Va = Vor.
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Substituting this value in (10) and (11) after having restored
the values of V7 and 2, they become after reduction

I+.71’.f1/:o’ I-'I;)’,,F;/:O,

equations which show that the cycloid cuts the lower curve
at right angles, while, since £’ = F/, the tangents of the two
given curves at the initial and terminal points of the motion
must be parallel.

8l. We have seen that when a particle starts from a state
of rest, the cycloid must have a cusp at that point. But if it
is to start with a given initial velocity in the direction of the
tangent, which velocity could always have been produced by
falling from some height %, 7 in Prob. II., Case 2, would be-
come '

_4/1 +J’l2.
Vy+h

If, as usual, we obtain the differential equation

aP
N — i M=o,

we can evidently, while keeping y vertical, remove the axis of
x to the height /% above the initial point, without affecting the
form of the curve given by the equation'// = o. But making
this change, y 4 % will become y, and A/ will become identical
with 47 in Prob. II., Case 2, thus giving us a cycloid with its
cusps upon the new axis of ». That is, when the particle
starts with a given tangential velocity, the curve of quickest
descent, or the brachistochrone, will still be a cycloid, but
having its cusps upon the horizontal, from which the particle
must have fallen in order to acquire the given initial velocity
upon reaching the starting-point.

In like manner, in the last problem, if we require the par-
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ticle to start from the upper curve with a fixed tangential
velocity, due to some height %, 77 will merely become

Vity”
VE+y—1

and no change will be effected in the results of the last article,
except that the cycloid will no longer have a cusp upon the
upper curve, but its cusps will then be upon the horizontal
whose distance above the upper intersection is /.

82. As examples of the kind discussed in the preceding
problem are not numerous, we shall, as a means of more fully
developing the method therein explained, now examine the
terms of the second order.

For greater simplicity, change the independent variable,
assuming the axis of x vertically downward; and for greater
generality, suppose the particle to start from the upper curve
with an initial tangential velocity due to the height 4. Also
let the equations of the curves be y = F(x) = F for the upper,
and y = f(x) = ffor the lower, while x,, 5, x, 7, are the co-
ordinates of the initial and terminal points of the motion.
Now we shall have

s IS 1/I_l_y/2

V/z—{—x—xo.

Let V' be at once what 77 becomes when » is changed into
¥ -6y, and x, into x, + d»,. Then we have

z, + dr, Zy
U= o Vide— [ Vi, (1)

which is exact; and we will now approximate to the second
order. We have
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=+ + 5

1d’V6 a”V

" Ia'V 2 2
+2 dy/n J/ +d/d d + =] (2)'

For brevity, let 4 denote all the terms of the first order ex-
cept V, B those of the second, and C their sum. Then (1)
becomes

2+ da x1+d-'01 1
U=/ . Vi f vz + J s ()

(]

But, as formerly, the first integral in (3) gives

Bt (dx)dx: (ZZ} e} [ var (4)

Moreover, neglecting terms of an order higher than the
second, the last integral in (3) becomes

2, + dzy 2y
S dd +/; B (5)
Also to the second order
) - day 2z,
v/x;—{-dxo Adx:Aldxx_l'Aodxo‘l“/x: Adx. (6))

Hence, finally, we have

[6U] =V, dx,—V.dr,4- & (Zf)ldx, ;——(j—f)odxo’

Ly
+4,dr,— A,dr,+ [ Ca. 7y

Restoring the value of A, transforming by integration, as



BRACHISTOCHRONE CONTINUED. 103

usual, the term f 6y’dx, and then eliminating dy, and dy,
by equations (10), Art. 69, we have :
[6U] = I/ldxl - I/odxo

+(‘Z,)l(f'_ i (‘W) (= Pz d, [ L e

dx,
5 d AV 1 (dV) : (dV) ¢
_ [mddv, 1(eV o
% dr dy ydx+2 dx ,dx’ 2 \dx

+H() = et = HE) s — (57) e
+(57) riaect (G oyt dan) e (T oy + 5 d) dx,

+ [ Bax. @)

Making the terms of the first order vanish, we shall, as before,
obtain the cycloid as the general solution, and it will be sub-
ject to the conditions already explained. Then [6U] will
consist of the terms of the second order only, which must
become positive if the solution give a true minimum. As the
terms in 6y cancel, we shall have

601 =3(5) = = 2() " = s

{80 ) s () ()

& L[ " Bdz. ©)
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Now we cannot render it evident that this value of [6U] is
necessarily positive, nor will any of our subsequent investiga-
tions afford us the required assistance, there being no known
method applicable. Therefore, although the great Legendre
‘erroneously supposed that we were sure of a minimum, we
cannot in fact be certain of its existence in every case. (See
Todhunter’s History of Variations, Arts. 202, 300.)

83. When V contains several of the quantities x,, ¥, 7.,
x, ¥, ¥ etc., the expression for [6§U] becomes somewhat
complicated. But as we know that to the first order the
change which any function undergoes from an indefinitely
small alteration in any of its components may be found by
considering each change separately and then taking their
sum, we may, as Prof. Jellett has suggested, use this method
with advantage here, as we shall not require the terms of the
second order.

Suppose, then, that we have to maximize or minimize the

£
expression U = ../x. Vdx, where V'is a function of x, y, ¥/, and

also some of the limiting values of these quantities, #, and z,
being subject to change into x, 4 dx, and x, 4 dx,. From the
change in x, alone, supposing the other quantities could re-
main unaltered, U will be increased by V,dx, — V,dx,. From
av av

=0 — 6y

5 L i i :
etc., or 6V, and U would therefore be increased by L/xl 1‘6 Vdx.

varying y, ¥/, etc.,, I/ would be increased by

Lastly, by the alteration in the limiting quantities which enter
it, V" would, throughout the entire range of integration, be in-

° av av av
) av s 4
creased by " dx, 4 & 'y, -+ 27 8y, -} etc., and the same for
the lower limit. Calling this change ¢’V U is increased by
'/z: e 0’Vdz. Adding these results, we have
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[6U]=V,de, - Vdz,+ [ &'Vdzr+ [ 6Vdr=o. (1)

Now the last integral in (1), being transformed as usual,
will give us, besides certain additional terms at the limits, a
differential equation M = o, and this equation will be the
same in form as though /" had not contained any of the limit-
ing components. Hence the general solution will be the
same as though V" had not contained these quantities, and the
limits also had been fixed. Then, by using this general solu-
tion, we must if possible, by definite integration, express the
remaining integral in terms of suffixed quantities, our power
to complete the solution being dependent upon our ability to
remove this integral sign. After this has been done, we dis-
cuss the resulting limiting equations as we would in any other
case.

SecTION V.
CASE IN WHICH U IS 4 MIXED EXPRESSION; THAT IS, CON-

TAINS AN INTEGRAL, TOGETHER WITH TERMS FREE
FROM THE INTEGRAL SIGN.

Problem XIV.

84. 1t is required to maximize or minimize the expression

U:‘/x:xly”g;dle/;xll/dx.

Here I7is a function of y, 5/, 5", whence, by formula (A),
Art. 56,

’ a
V:C+PJ’+QJ’”—J"(T£’ (1
and
P:—yni’/_m Q:J_/’i ‘f’g:”yn_l_ynj%

L SRy b
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Hence (1) gives
mm=ly =g, (2)
and, by integration,

y=cx+d. (3)

Now the terms at the upper limit are
a’Q) ;
— ==\ d ; L
( 2z ) 00 TG

and similar terms at the lower limit, so that unless some re-
striction be imposed upon the independence of dy,, 67, 6y,
and dy,, there will be four limiting equations to satisfy, while
the general solution contains but two arbitrary constants, and
this will in general be impossible.

But the above example, containing the first power only of
7, the highest differential coefficient in 7 is, as will be re-
membered, a case of Exception 2, Art. 51. It will also be
remembered that it was shown by Euler’s method, equation
(8), Art. 52, that all such integrals can be reduced to a lower

order, the expression taking the form W, —W, 4 'Aj Ay dx,

a class of problems not yet considered. In the present case,
recollecting that y’dxr = dy’, y'dx = dy, wé easily obtain, by
parts,

1 4 .
:w§w=wm—wmulﬁwme

=W, —W,+ [ V. @
Now if we vary p,, ., we shall increase W, by

dW. dW, ; (;m )
i, 5+ P I AT n=172/¢ 2 s8y'),
T 7, + i e (mym=1 /' 6y), + S
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and we can change ¥, in no other way. A similar equation
of course holds for I¥,. But these terms, relating to the limits
only, can have nothing to do with the form of any general
solution, which must, therefore, depend solely upon the form
of I".

Now V'’ is a function of y and ' only, and

P=—nr—1ly —npymn-L
Hence by formula (C), Art. 56, we have, as before,

wr-ly =¢  pr=cr4d.

Now the terms at the limits resulting from the variation of
V' are P8y, — P,0y,, which must be added to those obtained
by varying W, and W,. Performing this operation, these terms
become

o (ny” =083+ (7). 07, +( Jy’—’:)ldy{ i (%) 94

But these terms are the same as those which we obtained by
discussing the problem as originally given; and as the general
solution is also the same, the difficulty which formerly oc-
curred is not removed.

85. We may, however, from this example see how to pro-
ceed in more important cases of mixed integrals which will
hereafter occur. Thus, suppose we have to maximize or min-
imize the expression

U=w,~W,+ [ vir,
where I, and ¥, are any functions of z, 7, 7/, etc,, and z,,

Yo Vo« - . .¥™ and V is any functionof z, y, ' . ... y™.
while the limiting values of x are also variable. As before,
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if we change z, into z, + dr, and vary y,, »/, etc., W, will re-
ceive the increment

’ff”’d A '6 +"’W'6yl+etc,

and W, will be increased in a similar manner by changing z,
into x, 4 dx, and varying y,, 7/, etc. These terms, being all
suffixed, cannot control the general solution, which must be
obtained by varying V7 in the usual manner, transforming the
variation as previously explained, and solving the differential
equation /M = o which will be obtained. Then we have as
the terms at the limits those derived from the transformation
of 8V, together with those derived from varying W, and I7,.
Now if the limits be fixed we shall generally, in order that the
number of limiting equations may not exceed that of the con-
stants in the general solution, require that 2 shall not exceed
n — 1, the difficulty in the last problem arising from the fact
that » is equal to ». But if the limits be not fixed, we shall
also, as before, require usually some restriction upon the ex-
tremities of the curve given by the general solution.

SecTIiON VI.
RELATIVE MAXIMA AND MINIMA.

Problem XV.

86. It is requived to find among all plane curves of a given
length whick can be drawn between two fixed points, that which,
together with the ordinates of its extremities and the axis of x,
shall contain a maximum area.

Whatever be the nature of the required curve, we know

5 4 Z1
that its length is ,A: ¥'1 -+ y"dx; and since it is to be com-
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pared with curves of the same length only, its derived curves
must not differ from it in length, and we must therefore have

) _— ¥ Ty
L/r: 8 Y1+ y"dx =o. But the enclosed area is [o ydx; and

since this is to be a maximum for all changes in the form of
the curve which permit its length to remain unaltered, we

. Ty
must have also to the first order £ dydx = o.

Now in the problems hitherto considered no restriction
has been imposed upon the variations of , ', etc., except that
they must always be infinitesimal, and the curves given by the
general solution have therefore been compared with all others
which can be derived from them by such variations. The
results, therefore, being subject to no restriction so far as
the variations are concerned, are termed absolute maxima and
minima, observing that the terms maxima and minima are
used in their technical sense only, and not in that of greatest
or least. But in the present problem we are to compare the
required curve with such only as can be derived by infini-
tesimal variations of y without any increase in its length,
and the area is to be a maximum with respect to such varia-
tions only. That is, if we vary the required curve so as to
increase its length, the area need no longer be a maximum.
Examples of this nature, therefore, are termed problems of
relative maxima and minima, and also Zsoperimetrical problems,
and constitute the most numerous and important class of ques-
tions discussed in the calculus of variations.

. 87. Resuming the equations of the last article, and treat-
ing the first as usual, recollecting that &y, and dy, are zero,
we have

z: yr

“ dr {1ty

S sydr =o, @)

Sydx = o, (1)
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which signify merely that any values of dy which will satisfy
(1) must also satisfy (2), it being supposed that the derived
curve has been obtained. But although we are permitted to
pass from the required curve to such derived curves only as
do not differ from it in length, the number of such curves may
nevertheless be infinite, so that we cannot express in an ex-
plicit form the nature of the restriction which has been im-
posed upon dy, or rather upon 65/, although we know that
such variations could be given to y’ as would not satisfy equa-
tion (1), and might or might not satisfy (2). This restriction
prevents us from employing our former reasoning, which

would here give the equations ) L o i o, the differen-
- dx 1/1 __I_J/m
tial equation of the right line, as appears from Prob. 1., and

4

the impossible equation 1 =o. Now put Z for a,i AR SN

x V145
Then if Z can be a constant, it is evident that any values of dy
or 6y’ which will satisfy one of the equations at the beginning
of the last article will satisfy the other also; and we will now
show that this is the only condition which will insure that dy
cannot be so taken as to satisfy one equation and not the

other.

88. Let x,, 7, x,, x, be four particular values of » chosen
as hereafter explained, and let s denote the value of the inte-

gral f dydx. when the limits are z, and x,, and 7 its value

when the limits are », and x,. Then supposing the required
curve to be obtained, let us make dy zero, except from x, to
x, and from x, to z,; that is, leave the required curve un-
varied in form except between these limits. Also let us give
to 6y an invariable sign from z, to z,, and an invariable but
contrary sign from z,to #,. Then we shall have

“oydr =s4t. (3)

Lo
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Now although neither s nor # separately vanishes, we can
so take 6y that their sum shall vanish, and thus (1) be satisfied.

Next let ¢ denote the value of the integral / Zdydx when the

limits are z, and =z, and 7 its value when the limits are x,
and z,. Now the four values of » may also be so taken
that Z will be of invariable sign from z, to z,, and also from x,
to x,,it being of no importance whether the signs be the same
or not for these two intervals. We can now, with the values
of dy formerly chosen, secure that, unless Z be a constant, ¢
and » shall be numerically unequal, and consequently that
their sum shall not vanish. But, as before,

‘[E'Zc?y dr = ¢ 47, (4)

and hence, if Z be variable, we can, without violating the re-
striction which has been put upon dy, give it such values as
will satisfy equation (2) but not (1), which is contrary to the
conditions of the question.

89. Now since Z is a constant, let it equal 711 Then

aZ = 1; and restoring the value of Z, we may write

d 2
Y o
+7

an equation which involves the coefficients of 6y dx in both
(1) and (2), and is necessarily true, being equivalent to
I —1=o0. But it will be seen that this differential equation,
which combines both conditions of the question, would also
have been obtained if we had at first required to maximize or
minimize the expression

f +a1/1+y”)dx,
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the extreme co-ordinates being fixed, and &y or &y’ being
subject to no restriction. Moreover, we shall presently show
that all problems of this sort can be treated in a similar
manner.
Now integrating (5), we have
i _J// o ? ay'
ity o Wit

and solving for y/, we have

=—(—2);  (6)

Pl v c—x
=i, @)
Whence, by integration, we obtain

y+d= VT ==, ®)

which shows, if we employ, as we have, the positive sign, that
the required curve must be a circular arc, in which @ must be
numerically equal to the radius 7.

90. Suppose now, as just suggested, we attempt to maxi-
mize or minimize absolutely the expression

U=["(r+a ViFs)de =) Vin.

i/
Here is a function of y and 5/, and P = — g that
1/1 +ym

by formula (C), Art. 56, we have

/2

JtaVityl=ct —— 4/1{/1-;/*

Whence

a 2

7 s




PLANE CURVE OF MAXIMUM AREA. 113
which must be solved thus:

(c—2p) dy
d o et |
T Ve —e—y)

where we still use the positive sign. Integrating this equation,
we have

r+d=Va —(c— ), (9)

which evidently has the same interpretation as before, except
that cand & need not be identical with ¢ and & of the last article.

91, It will be seen that besides the two constants which
arise from the integration of (5), which we may call 47 =o,
we have also a third constant, 2. But now we also have, be-
sides the two ordinary conditions given by assigning the values
of », and y,, a third condition, that the length of the circular
arc shall have an assigned value; and these conditions are
sufficient for the determination of the three constants.

Consider first the constant . We know that the. length
of the chord of the given arc is ¥ (x, — z,)* + (3, — 7,), and s,
therelore, determined as soon as the limiting co-ordinates are
given; and since the length of the arc is assigned, if we find
an expression for the length of any arc in terms of its chord
and radius, and then substitute in that expression the known
values of the chord and arc in question, we can, by solving for
a, determine its value definitely. This expression is

(x-—‘xo)"l‘(J'I—J’o)’-:MSin’ '%; (IO)

where. s is the length of the given arc, and « is numerically
equal to 7, its sign being reserved for future discussion.

After the determination of @, the other constants are readily
found. For, from the general equation of the circle, we have

htd= % Va—(c—x),
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and a similar equation for the lower limit; and from these two
equations, when the sign of their second members has been
agreed upon, ¢ and & can evidently be expressed in terms of
« and the given limiting co-ordinates.

92. We will now, before proceeding further, consider the
general mode of treating problems of relative maxima and
minima.

1
Suppose, then, we require that LA‘ 'vdx shall be a maxi-
0
mum or minimum, v being any function of z, y, . ... y™,
T
while at the same time '/x) 'v'dx is to remain always constant,
0
7’ being any other function of z, 5, y. ... ™. Then because

X

(/xl 'vdx is to be a maximum or minimum, we shall have to the
(]

first order

’/x:xlé‘z;dx:o; (1)

E xy g
and because L/x‘ v'dr is to be always constant, we must have
0

absolutely
f “6v'dr = o. (2)

Zo
Now suppose the variations of these integrals to be found,
and transformed by integration in the usual manner. Then

if we make dy,, dy, dy/, etc., zero, we shall obtain, from (1)
and (2) respectively, results of the form

'/:l Viydr =o, (3)

l:xl V'éydx=o. 4)
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But dy being restricted, as hitherto explained, we cannot say

that 77 and 7’/ must separately vanish, but equations (3) and

(4) will certainly be satisfied simultaneously if we can be sure

that 7" is always equal to 77 multiplied by some constant;
v

that is, that -;- is a constant; and we will now show that no

other condition will satisfy these equations simultaneously.

93. Supposing the required curve to have been obtained,
choose, as before, four values of x such that neither " nor I’
shall change its sign while x lies between z, and z, or between
z,and r,. Now, as previously, vary the form of the curve
between these two intervals only, and make the sign of &y
invariable for each interval separately, giving to it the same -
or contrary sign for these two intervals, according as that of

Vis contrary or the same. Then, although f Véydx does not

vanish when taken throughout either interval separately, we
can so vary y as to make the integral taken throughout the
second equal to the same integral taken throughout the first,
but with a contrary sign. But we have

L:llfd_y dr = L/I;IsVé‘ydx—{—‘/x:bedydx, ()

9y being zero for the rest of the curve. Therefore (2) would
L
in this case be satisfied. Now put f for IL/_ then (4) will be-

come
./x; 'fVé‘ydx:o, (©6)

dy being supposed taken as before. But unless f be a con-
stant, we can certainly select the four values of x so that the
two integrals in the second member of (6) shall be numeri-
cally unequal, in which case their sum would not vanish and
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(6), or rather (4), would not be satisfied. Hence /' must be a
constant in order to the existence of a relative maximum or
minimum, since then any values of dy which will satisfy (3)
will also satisfy (4), while otherwise it would be possible, even
from among the restricted values of dy, to select such as would
satisfy one of these equations and not the other.

The preceding demonstration is due to Bertrand (see Tod-
hunter’s History of Variations, Art. 312, and also the seventh
volume of Liouville’s Mathematical Journal, 1842), and the
author most heartily agrees with Bertrand in regarding the
ordinary method of treatmg this subject as insufficient.

Now write
I Vv

o TR
VtalV’/=V—V=o.

then

But this equation, which involves V" and V7, and, being true
under all circumstances, is evidently sufficient for the solu-
tion of the problem, would have been obtained if we had been
seeking torender U an absolute maximum or minimum, where

g
U= 'K l(v—}—av’)a’x, and thus we are enabled to substitute
0

for the given problem a problem of absolute maximum or
minimum, the general solution of which will be identical with
that which we require.

This method is due to the illustrious Euler, who first re-
duced the treatment of this class of problems to a simple yet
comprehensive rule. (See Jellett, Introduction, page xvii.)

It is evidently immaterial which of the quantities v and o/
we select to be multiplied by a constant. For if we have

V=alV’ =o,then I+ 6V =0, where 6 = % Moreover, we

may also give the constant multiplier any form which may
be convenient, as — a, 2a, etc., its value being ascertained
subsequently.
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94. Resuming the consideration of Prob. XV, let us now
examine the terms of the second order. Here a difficulty
presents itself in the outset which must be surmounted before
we can proceed. We find that the variation of the area is

simply '/x oxlé‘ 'y dx, there being no additional terms of the second

order; so that if we equate this variation to zero, it would
seem that the area could undergo no change whatever when
the curve is varied, and that consequently we could have
neither a maximum nor a minimum. But the supposition that
the terms of the first order must vanish is only necessary
when there are terms of a higher order, it being sufficient, in
a case like the present, to suppose that they are zero so far
as the terms of the first order are concerned; that is, they
need not be zero as regards 6y°. Nevertheless, as we cannot
. determine the nature of these terms of the second order,
should any exist, we shall be compelled to change our
method of investigation.

Suppose, then, that we had required the curve of mini-
mum length which, together with its extreme ordinates and
the axis of x,shail enclose a given area. Here the general
solution will evidently be the same as formerly. For pro-
ceeding as in the first three articles of this section, we shall
obtain equations identical with (1) and (2); and moreover, by
the last article, we see that by Euler’s method we are now
merely to maximize or minimize the expression

U:/;'(VWJF@) dz,

I ! .
where 6 = ) But the enclosed area, instead of being a maxi-

3 <
mum, is now to be constant, so that .A) dydx is absolutely

zero; while the length of the required curve, instead of being
constant, is now to become a minimum.
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It should here also be noticed that while the length of the
required curve was to be constant, equation (1), Art. 87, can
be true to the first order only. For since the variation of the
length contains terms of an order higher than the first, and
the entire series is to vanish absolutely, it is clear that the
term of the first order must equal the sum of the others, taken
with a contrary sign.

As the area gives us no term of the second order, we have
only that obtained from the variation of the required curve,

which is
fxl I 6]/”({1" = (I)
Zo 2 4/(‘;_*_J//a)s X {
and if we regard 4'1 +»” as positive, the length of the curve
is evidently a minimum. It must, however, be remembered
that dy and dy’ are restricted to such values only as will satisfy
the equation ‘/xxldydx =o0. But since (1) is positive for all

real values of dy/, we only require that the term of the first
order in the variation of the length of the curve shall com-

3 4 L : d 4
pletely vanish to insure a minimum; and since —- 7

adx 4/1 __l__y/z

is a constant, this condition is secured when we make
Xy 0

'/xo 0y dx vanish absolutely.

It will be seen that equation (1) would have been obtained
had we found, according to Euler’s method, the terms of the
second order in

U:L/x:xl(VI -|—y”+&y)a’x,

b being 2. But, as before, the variations are not entirely
a
unrestricted, since they can have such values only as will

N :
make ‘/xj dydx vanish absolutely.
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95. Now let us, according to Euler’s method, consider the
problem as originally given. Then we shall have

U=£j‘(3/ +a V1457 dr. (2)
Here
NN ey ) ¥ohed
v=y, o= I—l—y, V-:I, V :—zﬁ.
Hence
PO [t g s g AT
gy +" e i 9

where the last member has the negative or positive sign ac-
cording as the circular arc is convex or concave to the axis

ol z.. i lherelore. g = _; = + 7, the positive or negative

sign being used according as the circular arc is convex or
concave to the axis of x. Making the terms of the first order
vanish, (2) will give

gk e a /2 A % = I /2
O — il —(I?’;?)—aé‘y dhr= e r T/(I_Tya)_ﬁy dx.(4)
Hence if the arc be concave to the axis of x, the area is a
maximum ; but if convex, the area becomes a minimum ; and
these results are evidently as they should be.

It must, however, be remembered that we have not as yet
shown that the use of Euler’s method, as far as the terms of
the second order, must in this latter case give necessarily a
trustworthy result, but merely that this result is one which is
known to be true.

96. We may now extend the discussion of this problem, and
also that of relative maxima and minima generally, to the case
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in which the limiting values of z, », ¥/, etc., are also subject to
change. We have already seen that if we seek to maximize

X
or minimize an integral of the form U= L/x] 'Vdx, the general

solution will be the same whether we suppose the limiting -
values of x, 3, ¥/, etc., to be fixed or not. Hence when /7 be- -
comes, as it will in the use of Euler’s method, v 4 a7/, the
general solution, obtained under the supposition that the
limits are variable, will be identical in form with that ob-
tained by supposing those limits to be fixed. Now suppose
we add to Prob. XV. the condition that the required curve
shall always have its extremities upon two given curves; and
suppose that the two required points had been found and con-
nected by the required curve. Then, unless this curve were
a circular arc, we could evidently, from our preceding dis-
cussion, vary it so as to increase the required area without
changing the extremities of the curve. The general solution
must therefore, as formerly, be a circular arc, the only ques-
tion being to determine the position of its extremities.

The reader will be able at once to apply a similar mode of
reasoning to any problem of relative maxima or minima which
may present itself; and therefore, without taking space to gen-
eralize the demonstration, we shall assume that the general
solution of these problems is, like those of absolute maxima
and minima, the same in form whether the limiting values of
z, 3, ¥, etc., be fixed or variable. Hence, from what has been
said, we see that Euler’s method may be employed whether
the limits of integration be fixed or variable, the problem
being treated in all respects like one of absolute maxima or
minima.

97. Assume, then, in order to discuss the limits,

U:‘[f’(y:tﬂ/x +y”)dx. (1)



PLANE CURVE OF MAXIMUM AREA. 121

If we suppose first that x, and x, are fixed, while y, and y, are
variable—that is, that the arc has its extremities upon the two
right lines whose equations are » = x, and x = x,—the terms
at the limits evidently become

¥ ¥
redtSsie———— 1 — O, Frr——————u ==H0;
(1/1 _l_J,lﬂ)l ( 1/1 _i_ym>o

which equations signify that the tangent to the arc at each
limit must be parallel to x, which is clearly impossible. But
if one of the limiting values of y be fixed, the tangent at the
other limit can be drawn as described, and it must be so
drawn.

Now suppose that the limiting values of x are to be vari-
able also. Then the terms at the limits will evidently give the
equation

(y:tr‘/I—{-_ym)ldxlir(-iIJ——’l—y”) (9_]/1:.0, (2)

with a similar equation at the lower limit. Let the extremities
of the arc be confined to two curves whose equations are
y=HFx)=F, y= fix) =f Then eliminating Jy, by means
of equations (2), Art. 76, (2) becomes, after omitting the com-
mon factor dz,,

: 7 rfy o
(J * At 4/1—:}—_1/")1_ o, (3)

and a similar equation for the lower limit. But since s, any
element of the arc, equals 41 - 3”4z, (3) may be written

ner (G 7% =e

sin # sin 7z ! :
cos 7 . (4)

-

:y,;tr{cos m -
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where 7 is the angle which the tangent to the arc makes with
the axis of x, and » the angle which any tangent to the upper
limiting curve makes with that axis. Let ¢ be the angle which
the tangents to the arc and the limiting curve make with each
other at the upper limit. Then, since # is numerically equal to
n — m, we have

COS #, = €OS 7, COS 72, + sin 7, sin 7,. (5)
Hence, clearing fractions, (4) gives
7 COS £, = y, COS 7,

and we can establish an equation of a similar character for the
lower limit. ;

It must, however, be remembered that none of these results.
concerning variable limits can be confirmed as true maxima
or minima without an examination of the terms of the second
order, which examination would be impracticable.

Problem XVI.

98, /7 is required to determine the form of the solid of revolu-
tion which shall possess a given surface and a maximum volume,
the generating curve being rvequired to pass through two fixed
points on the axis of revolution.

Assume x as the axis of revolution. Then the volume to

. . xl - . .
be a maximum is '/; my’dz, while the given superficial area
(]

. o . Ty
which must remain constant is ./; 2zy ¥'1 + y”? dx. Hence,
0

omitting the constant 7, we have, by Euler’s method, to maxi-
mize absolutely the expression

U:Lxl(y’—{- 2ay V1 -—{—y”) dx :'/x;x'de. (1)
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Hence, after the usual transformation, we have

3O L {a R Dy o ... {2 gy
V145", Vi),
7/

+f gzy—l—zaVI—{—y —Zaaii /Iy_{_ m%(?_ya’x, (2)

which equation is evidently true whether dy, and 8y, vanish or
not.

Here, as V' is a function of y and ' only, and P = ——Vzaf -,
L=
we have by formula (C), Art. 36,
J” + i =" (3)

4/1 +)’/2

But since the generating curve is to meet the axis of x, ¢ must
vanish, and we have

J’z+v +J/,,‘J’<J’+ "I—l—y’“>=é. (4)

Whence, if y be not always zero, we have

y+-VI g i o. (5)
Hence ) )
L 4__11'1/2;3/ (6)
and
d
dz = & 74%17 @)

which, by integration, gives
r4b=+ Vid—7, (8)

the equation of the circle whose radius is, numerically at least,
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2a, and whose centre is on the axis of x, thus rendering the
required solid a sphere.

99. We are evidently prevented, by the nature of this
problem, from supposing that y can ever become negative,
and we may therefore use the positive sign only in equation
(8). For if we were to regard y as negative throughout any
interval, say from x, to x,, we would have the corresponding

zone of surface negative, because dr and ¢'1 + »” are taken
positively, which would be absurd. Hence we see from (5)
that 2a is necessarily negative; and using its known numerical
value, we have 2a = — .

100, We have now two constants, 7 and 4, to determine,
since we were obliged to make ¢ vanish before we could com-
pletely integrate equation (3). But it will be observed that it
would have been sufficient for a solution had we merely
required the generating curve to meet the axis of x at some
point, taking this point as one of the limits, say the lower, and
then regarding the limits as variable. By this method we
would obtain a sphere, as before; and then if we impose the
condition that both extremities of the generating curve shall
be confined to the axis of x, as is most natural, we shall have
a complete sphere. Hence, since the superficial area is given,
7* is at once determined by dividing the area by 47, and the
distance x, — r, being necessarily equal to 27, becomes also
known ; so that when one limiting value of x is given, the other
can be readily found. Now from (8) we see that 4is merely
the abscissa of the centre of the circle or the sphere, and
equals #,+ 7, or x,—». As soon, therefore, as one of the
limiting values of x is given, all the required quantities can be
determined ; but if neither x, nor x, be given, » only can be
determined.

101, Thus far there would seem to be nothing peculiar or
unsatisfactory about our solution; but we come now to speak
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of a point which has occasioned considerable discussion among
mathematicians, and which has led to an important extension
of the calculus of variations.

Suppose that, as in the original enunciation of the problem,
we require that x, and z, shall have assigned values, or that
the value of », — x, shall be assigned. Then the diameter of
the sphere must be x, — x,, and the only value which the sur-
face of such a sphere can have is z(x, — z,)’, so that, as we are
no longer at liberty to select a value for the superficial area,
the solution appears at first to fail. But it has now been made
apparent that the general solution of any problem of maxima
or minima in the calculus of variations is entirely independent
of any conditions which may be required to hold at the limits,
the limits having been supposed fixed in the earlier problems
for the sake of simplicity only. Therefore no general solution
can be said to fail so long as it is always possible to assume
such limiting values of z, 7, ¥/, etc., as will satisfy all the con-
ditions of the question which are necessarily involved in the
general solution.

In the present case, if we require that the surface of the
solid may be entirely generated by the revolving curve, these
conditions are merely that the value of the superficial area
may be assigned at pleasure, and that the generating curve
shall have both extremities upon the axis of x, which condi-
tions can, as we have seen, always be fulfilled by a sphere.
Thus, since no restriction of the limits x, and x, is implied in
the method by which the general solution was obtained, the
apparent failure of the solution, when these limits are assigned,
appears to arise from imposing too many conditions upon the
question, some of which are incompatible, and for this the
calculus of variations is evidently not responsible.

It will be remembered that in Prob. VII. we obtained as a
general solution a catenary, having its directrix upon the axis
of #, and then subsequently showed that the two fixed points
could easily be so taken that no such catenary could be drawn.
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In like manner, in Prob. XV. we shall be unable to draw the
required arc if the given line be shorter than the right line
which joins the two fixed points, or longer than a semicircum-
ference constructed upon this right line as a diameter. In the
first of these problems the conditions can, without changing
the limiting values of x, always be satisfied by assuming suit-
able values for y,and y,, and a similar remark will apply to the
second problem unless the length of the given line be less than
x, — #x,, in which case some change will become necessary in
the limiting values of x also.

The only peculiarity, then, about the present problem would
seem to be that, while in the former two we are permitted to
make various but not all possible assumptions regarding the
quantities x, — x, and y, — »,, here but one supposition regard-
ing these quantities can be made for a given superficial area,
and thus, as the probability of failure when we attempt before-
hand to assign the limits, and also the surface, is vastly greater
in this problem than in the other two, it more readily presents
itself to our minds.

But we are naturally led to inquire whether there may not
be some other solution for this and similar problems in those
cases in which the general solution cannot be made applica-
ble. This question, which has received much attention of late,
and has led to an important extension in the calculus of varia-
tions, will be discussed in a subsequent section on discontinu-
ous solutions. It will here be sufficient to say that such solu-
tions do in many cases exist, and are generally composed of
arcs of curves, or of right lines, or of some combination of
both, and they are hence termed discontinuous solutions.

102 Now if we put for 24 its value — 7, the general equa-
tion given by the terms at the limits is

: by 7y
(_y —ry V14 )]dx, — ('m)é'y, =0 ©)
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together with a similar equation for the lower limit ; and these
equations are evidently like those of the preceding problem,
except that they are multiplied by y, and — » only is used. If
we suppose z, and z, to be fixed, and y, and y, to be variable,

(9) gives
o g e s sl
vitr)=% \vitr)

Hence we may have y, =o, y, =0, thus giving an entire
sphere, which is satisfactory if the surface will permit. If
one limiting value of y be also given, the solution can always
be effected, it being the closed segment of a sphere, having a
given base and height, » being determined by the equation

s‘l

1S AR (10)
4 gy

s being the given surface, and R the radius of the base. Re-
garding the other solution, ," =0, y, = 0, it may be remarked
that but one of these equations can ever be true, and therefore
the other limit must be fixed.

Now suppose the extremities of the generating curve to
be limited to two other curves, all the curves being supposed
to revolve about x, which is the same thing as limiting the
sphere to two surfaces of revolution. Then, since the terms
at the limits in this and the preceding problem compare as
we have just shown, it will appear, by methods precisely like
those employed in Art. g7, that we shall have

7y, €os ¢, =y, cos n,, (11)

together with a similar equation for the lower limit. Thus
we have either y, =0 and y, = o, giving a complete sphere,
or else the relation given in the last equation of Art. g7.

To interpret this relation, let ap be the upper limiting curve,
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2 the point of intersection with the arc whose centre is ¢, py
the ordinate y, of the limiting curve, and 7p the normal.

DEeE Ry G En

Then ¢pn = ¢, and #py = »,, and we have

P e0s
7« - NDQES ¥

(12)

and this equation can only be satisfied by making cos ¢, unity,
which shows that the tangent to the limiting curve at » must
be parallel to the axis of x; that is, that y, must be either a
maximum or minimum ordinate. But if y, should become
equal to 7, this relation would no longer be necessary, for
then the lines ¢p and yp would coincide, the angles c¢pn
and ypn become the same angle ¢p7, and (12) becomes merely
feagiis o7 ” which determines nothing regarding the direction
7  COS ¢pn
of the normal or tangent to the limiting curve; and hence in
this case the ordinate y, need be neither a maximum nor a mini-
mum.

103. It must not, however, be assumed that all the results
obtained in the last two articles will necessarily render the
volume either a maximum or a minimum. For we have
already seen that it is always necessary to appeal to the terms
of the second order before the results obtained by making
those of the first vanish can be interpreted. We have, more-
over, also stated that the discussion of these limiting terms,
when the general solution is known, is a problem of the differ-
ential calculus rather than of the calculus of variations, and
particularly so when the terms of the second order are to be
considered. As a means of illustrating both these remarks,
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we shall consider only the case in which one limiting value of
s zero, and take the liberty, as that work is now inaccessible
to most readers, of copying the discussion from Todhunter’s
History of Variations, p. 408.

Let y be any ordinate of the limiting curve, Z the height of
the segment, = its volume, and s its surface. Then, since the
segment is known from the general solution obtained from:
variations to be always spherical in form, and by supposition
has but one base, we have, 7 being the radius of the sphere,

o= (i — ;i) (1)

and we can now, by the differential calculus, determine the
conditions which will render © a maximum or a minimum, sup-
posing s to remain constant. Since s = 277/ is to remain con-
stant, 7/ is a constant, say #°. Then from the equation of the
circle, when the origin is at the extremity of any diameter, we

have
Vi=ork—1 =2 -1,

whence
=2 — 5,
and therefore (1) becomes
v:yz%k’ Vzk*_f_—_wg. (2)

Whence

dv ay(# —y’)

- = L YAE] Vol s/

dy g Vziz’ —l—y g % V2R — g ®)

and since the differential of the limiting curve must be
dy = y'dx, we have

v _ myy' (& — y)

P~ @
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To make the second member of this equation vanish, we must
have y' =0, y = £, or y = 0.
To test these solutions, write z = 2 — 5*, z = 2F° — j°.
Then :
d’v 2 T 2 ” B yre 72 2. /2
E,——ga—(ouyy R +”)’}/)- (s)

Whence it readily appears that if ' vanish, making » a maxi-
mum or a minimum ordinate according as y” is negative or
positive, v will have the like or contrary property to y ac-
cordmg as « is positive or negatlve

If y= 4, without making 5’ vanish—that is, Wlthout being

at the same time a maximum or aminimum ordinate— % will
X

be negative, and v will be a maximum. But if y, while equal
to %, be also a maximum or a minimum ordinate—that is, make

7' vanish— Z, ; will also vanish, and it will be found by trial
that the third differential will do so likewise, while 571 will
X

become negative or positive according as y is a maximum or a
minimum, thus making v have the like maximum or minimum
property with .

We have already seen that the question does not permit
us to suppose that y can become negative, and hence the limit-
ing curve must be such that when y is zero it shall be a

minimum ordinate, which will cause y' to become zero also.
4

These suppositions will render Z—T-i positive, having reduced
X

the preceding differential coefficients to zero. Therefore the
supposition that y is zero renders v a minimum.

The foregoing results, which have been verified by the

author, appear to be correct, although they do not agree with
those obtained by Prof. Jellett. (See his page 165.)
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We have not yet examined the terms of the second order
in the general solution obtained by the calculus of variations
in the problem as originally given, but shall resume this point
hereafter.

104, It will be remembered that we were unable to in-
tegrate equation (3), Art. 98 (that is, the equation A7 = o),
without supposing ¢ to become zero. Nevertheless this dif-
ferential equation has been shown to be that of a curve traced
by the focus of some conic section as it is rolled along the
axis of z, and the following outline of the demonstration is,
with some difference of notation, given by Prof. Jellett on
page 364, but the proof is due to Delaunay.

Let » = f(v) = f be the polar equation of any curve, the
pole being assumed at pleasure; and when that curve is rolled
along the axis of x, let y = F(x) = F be the equation of the
curve traced by that pole. Then the following relations are
not difficult to establish:

yue iy
Y= . k2)

r’dv
e (2)

Vadr + rdo

By means of these relations we are sometimes able, when the
equation (differential or other) of one curve is known, to deter-
mine that of the other; and such is the case in the present
instance. Now write equation (3), Art. g8, thus:

by=(r+d)vi4y* ‘ (3)
where 4 = — 2a¢ and d = — ¢. Then, from (1), we obtain
VT LA Yartrdy @

rdv



132 CALCULUS OF VARIATIONS.

Substituting in (3) the values of y and #1 + »” from (2) and
(4), we obtain

Vddr
Ay = e ST 5
rd Ny — ¥ — d ®)

The integral of this equation is known to give

I b : I
;—Q—VF—ZCOSW
=d£—1/ ?:g _;_icos v, ©6)

where 4 = % If now we assume, as the polar equation of the

conic section,

I 4 ¢cosv
(= 7) @)

£
7
we can obtain from it equation (6) by merely making ¢ equal

to 1/ 1 — il_?’ and hence the truth of the proposition is estab-

lished.

The curves which may be thus described are exceedingly
various. Thus, if we make & = — ¢ vanish, the conic section
will become a straight line, and the curve generated will be a
circle, giving a sphere as a general solution, which agrees
with what has been already shown. Moreover, the circle is
evidently the only one of these curves which can ever meet
the axis of ». Again, if we take the circle as the conic sec-
tion, the curve, traced by its focus—that is, its centre—will be
aright line parallel to the axis of x, and the required solid will
be a cylinder.



CURVE OF LOWEST CENTRE OF GRAVITY. 133

Problem XVII.

(05. It is required to determine the form which a uniform
cord of given length, whose extremities are confined to two fixed
points or curves, must assume in order that its centre of gravity
may be at a maximum depth.

Take the horizontal as the axis of x, and let Z or

L viigran

be the given length of the cord, which, by the conditions of
the problem, is to remain constant. Then, by the well-known
principles of finding the co-ordinates of the centre of gravity
of any curve, we shall have, D being the depth, which is to
become a maximum,

D:Iz./s:ﬁydszj—;t/;ﬁyvry”dx.

Hence, by Euler’s method, we are to maximize absolutely the
expression

e / 73 R 2,
U= gM—IL_F—Z———{—aVI—}—y”%dx:‘/x: Vdx.

Lo

Here V'is a function of y and »/ only, and

7 a 0

g I 2 et
LVx-{—y’”+4/I+y” (®
so that by formula (C), Art. 56, we have
y ,‘/ I +J/2 4 VI__—N yylk ayl‘l
=E AP = - 5 2
T teViFr =t 2t @
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Whence, by reduction, we obtain

y+tal
- =L,
VI _{_J/z 4 (3)
and
L 3
which, to be rendered integrable, must be solved thus:
‘ cLd
dr = = 5)
V(y+aly —c>L
Integrating this equation, we obtain
x=Al(y+B+Vy+ B —4) +C 6)

where 4 =c¢L, B=alL. Comparing this equation with equa-
tion (s5), Art. 59, we see that it is also the equation of a cate-
nary, in which y+ B is put for y; because the reasoning in
Art. 59 will apply equally to any curve whose equation is
of that form, and this equation will take that form if, while
keeping the axis of » horizontal, we remove it so as to make
B zero. Indeed, without integrating, we may at once reach
this conclusion. For by comparing equation (3) with equa-
tion (2), Art. 59, we see it to be the differential equation of a
catenary, as described.

106. To determine the constants A, B, C, we have the con-
ditions that the curve must, if its extremities be fixed, pass
through those fixed points, and must have also a given length,
and these three conditions are sufficient, assuming that we
can solve any exponential equation which may arise. Com-
paring (6) with equation (5), Art. 59, we see that if we make
the axis of » pass through one of the given points, and esti-
mate y upward, B will be the distance from the axis of x to
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the directrix, estimated positively ; but if we estimate y down-
ward, B will have the same numerical value, but will be nega-
tive. We adopt, however, the former supposition. Then, as

L is positive, a or % must be also taken positively. We may,

if we choose, dispose of the constant C, as we did of the con-
stant 4 in Art. 59, by making it — A4/4.

If, then, we can determine A, the discussion of the con-
stants will be complete; and this may be done in the follow-
ing manner: Let D denote x, —-x,, which is supposed to be
known, and £, y, — 7, which is also known, and let the ordi-
nate, drawn to the lowest point of the catenary, divide 2 into
two segments, / and g, while the corresponding segments of
the arc L are » and #, so that we have

f+g=2D, )
m—+n=0L. 8)

Then, in discussions of the catenary, the following equation

is easily established:
EERY
m = ﬁ(e“i — e A), (9)

2

together with a similar equation between g and ». Whence

ARSI L el
L:—<eA—-e Ated—¢ A). (10)

2

Now because the catenary passes through the two fixed
points, we have from its equation, (10) of Art. 59,

A S Sy
E=7(e‘1+e 4 _ 4 o A), : (11)
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which equation, combined with the preceding four, will evi-
dently determine 4, which in statics denotes numerically the
tension which the cord will sustain at its lowest point.

107. If the extremities be not fixed, but merely confined
to two curves, the general solution will of course be un-
changed, only certain conditions must hold at the limits. For
now the limiting terms, which vanished when the extremities
were fixed, become

V;dxl_ mdxo+R6y1_Pod‘yo:o' (12)

Substituting the values of 2 and V' from (1) and the preced-
ing equation, (12) gives, for the upper limit,

{2

(—{« + a>, VT 7, dr, + (—?L— > a><7;y_¢7)ay =0, (13)

together with a similar equation for the lower limit. Let the
equation of the upper limiting curve be dy = f'dx. Then
eliminating ¢y, by the equation

6)/] e (f, —y,)ldxﬂ (14)
(13) gives
J+al e —
(ZEZ) o +xm=o a3

Now, to make the first factor vanish, we must have either
y=—al=—DBor y =+ «. But since B is numerically
equal to the distance of the directrix from the axis of #, this
supposition would make the lowest point of the cord touch
the directrix, and this could not be unless the tension were
zero, in which case the cord would hang in a double right
line, having its extremities at a common point. Neither can
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we suppose y,’ infinite. For, from the general equation of the
catenary, we have, by differentiation,

K= i_(ez ok Z)? (16)

and to make this infinite we must have ‘% infinite, giving

either 4 zero, which condition has just been discussed, or x,
zero, which would make the catenary a right line as before.
Hence we must have 1-7,// =0, and a similar condition
will evidently hold if the other extremity be confined to
another limiting curve. Therefore we conclude that the
catemry will cut its limiting curves at right angles, the con-
stants in this case being determmed by the conditions that
the catenary must have a given length, and that its extremi-
ties must cut two given curves at right angles, or pass
through a fixed point and cut one given curve atright angles.

108. The terms of the second order in the case in which
the extremities are fixed are

60’21_/11_%.:*__3“:6]”(1}. (17)
2¢% T ‘(I _l_yla)a
Now from equation (3) we see that y-+ B must be of the
same sign as ¢. Now writing (3) y 4- B = ¢ ¥1 4 57, differen-
tiating and dividing by &y or y'dx, we obtain

cy’

Vit
and therefore ¢, and consequently y + B, must be of the same
sign as y’. Now if we estimate y upward, the catenary is
convex to the axis of r, and »”, and therefore y -+ B, is posi-
tive, and we have a minimum. But if we estimate y down.
ward, y -+ B is negative, and we have a maximum.

These different results appear to be due to the fact that

= 1, (18)
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by estimating y upward we make the distance of the centre
of gravity from the axis of x approach as near as possible to
— o, while by estimating y downward, we make it approach
as near as possible to +- o, its numerical value in either case
being the same, and a maximum.

109. If we assume the vertical as the independent vari-
able, the general solution must be the same whether we can
obtain it by that method or not. For whatever change can
be made in the form of the required curve by ascribing varia-
tions to y and its differential coefficients with respect to =z,
can, at least if the curve be continuous and drawn between
fixed points, also be made by ascribing suitable variations to x
and its differential coefficients with respect to y, y itself re-
ceiving no variation. This principle will be found to aid us
in the solution of the following problem.

Problem XVIIL*

0. 7t is required to draw octween two fixed points A and B
a curve of grven length having the following property : that if at
any point S of the required curve an ordinate NS be drawn, and
on it we lay off NP cqual to the arc AS, the curve traced by the
point P shall enclose a maximum or minimuin area.

B
Y
Q
A
P
0 N F X

* This problem is only a particular case of the second of the celebrated iso-
perimetrical problems given by James Bernoulli, the original problem requiring
NP to be any function of the arc 4.5, which can, of course, not be fully solved so
long as the nature of the function is entirely undetermined. The solution is
from the Adams Essay, Chapter XI.
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Here the area to be made a maximum or a minimum is

1/:. I'.m’x, s being the length of the arc measured from 4, while

1[ S + y*dx (that is, the length of the arc ASB) is to re-

main constant. Hence we are, by Euler’s method, to maxi-
mize or minimize the expression

U=["(s+aVTF57)dx (1)

Hence, to the second order,

6U—j: §65+ _l_'ynay'+ - m-é‘y”}dx. (2)

2V (147
But
s=‘£° V14 y* dr.
Whence
sy et by e+l L __sde, (3)
\-#la-&7 * Va4
and
fé‘sdr—xé‘s —-fxdds (4)

Hence, taking this integral from x, to x,, and observing from
the figure that x, is zero, while 4 may be put for z,, because it
is constant, we have

d=N0
f6s g ‘/ g Vl—{—_y +21/(1 + %

—f% A T A jy”}dx

Yi4-y" 24/(1 + 7

o

= L syl
~ )u/1+y"6y HPYTCE % 4
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Substituting this value in (2), and employing the usual nota-
tion for the limits, we have

su=/[" (a+6—x){1/ _;—ymﬁ_y’—i—z s ’*%a’x ©)

Now examining the second factor of the second member of

(6), we sce that it is the variation of 41 4 3" dx, or ds, and that
b— x, or Z,is the distance of any point of the arc 455 from
the line BF, and therefore it is not difficult to see that the prob-
lem is really in solution as though, taking the vertical as the
independent variable, we had required the form of the curve
of given length passing through 4 and B, and having the dis-
tance of its centre of gravity from B/ a maximum or a mini-
mum. Therefore, without solving (6) in detail, we know from
the last article of the preceding problem that this curve is a
catenary, having its directrix parallel to the axis of y.

(fl. But some investigation will be necessary in order to
determine the sign of the terms of the second order. For
although, as before, it is evident that 4, like B of the last prob-
lem, is numerically equal to the perpendicular distance from
BF to the directrix, its sign is not at once clear. Treating
the terms of the first order in (6) in the usual way, we obtain

/

(a+06—x) 0 —}—_y”:a 7)
Whence
Zplp s NN @)
J

Differentiating (8), and dividing by dx, we have

4

B2 2
ym 1/1 +y/2 (9>
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from which it appears that ¢ must always be of the same sign
as y”. But the catenary may be either convex or concave to
the axis of x, so that ¢ will be positive in the former and
negative in the latter case. Moreover, we see from (7) that
a - & — x must always be of the same sign as ¢, and therefore
the terms of the second order will become positive when the
catenary is convex to the axis of x, and negative when it is
concave, thus showing that the area in question will be a
minimum in the former and a maximum in the latter case.

Problem XIX.

W2, It is required to determine the form of the solid of revo-
lution of given mass and uniform density whick will exert a maxi-
mum attractive force upon a particle situated upon the axis of
revolution.

Take the axis ol revolution as that of x, and let the at-
tracted particle be at the origin. Moreover, conceive the
solid to be divided into slices of the thickness dx, by planes
perpendicular to x. Then, by dividing these slices into dif-
ferential rings, it is easily found that, omitting the factor of
density, because constant, the force exerted by any slice in
the direction of x is

27:% T— W}q—zdx.
Hence
xr

t/:lgl —m%dx

. 3 . xl . .
is to be a maximum, while the volume /; my’dx is to remain
‘ L]
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constant. Hence, by Euler's method, we maximize the ex-
pression :

i gl— Va5

Therefore, to the second order, we have

6U:,/: g(x i >%+2ay%6)’dx

U= +ay%dx f Vdz. (1)

e g s fz((z_}_j%) % 8y d. 2)

Here V' is a function of » and y only, and the terms of the
first order in 6 U/ need no transformation; so that we have at
once, unless y be always zero,

EEaAa s ©

Now putting — ;—2 for 2a, (3) gives

(& + ) i=cx (4)
But 7, the volume, or I I’ny’q’x, is a known quantity, and
(4) gives
y=©Cxt -2 ()
‘Whence
v=nf (A2 —P)dn ©)

But the general integral of the second member of (6) is

ﬂ(gﬁ 2 ;.x) + 4. )
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Now suppose z, to be zero, which will place the particle
upon the surface of the solid; and assume also that when
x = z, the generating curve meets the axis of ». Then, by
making y zero, and z, x,, in (4), we see that z, is numerically
equal to ¢; and taking (7) between the limits o and ¢, we find

3
U=E ;e . 8)
15
It therefore appears that, when the volume is given, the
length of the axis is not in our power, but is determined by
that volume; and ¢ being known, « is also known.

113. Now the coefficient of 6y’ dx in (2) is

x(x* — 29"

9)

Putting for « its value — %, and substituting for the first
A

members of (4) and (5) the second members of the same equa-
tions, (9) becomes:

1 a3 — 2c8 ) T 33y — 248
2¢* + 2( A P ) Of TEEE T o F
3t — o)
or S (10)

Hence the terms of the second order become

= 3 L2 " 3 = fxx
ST M,l[o (S — ) opdr=E [ Zoydr. (1)
Now, since v cannot be negative, we see from (8) that ¢ must
be positive, and it is numerically greater than x, being equal
to . Therefore £ is positive, while Z can never become
positive, and the terms of the second order become invariably
negative, thus giving us a maximum.
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Problem XX.*

4. 7t is required to determine the form of the solid of revo-
lution, having a given base and volunte, which will experience a
mminimum resistance in passing through a fluid in the direction of
the axis of revolution.

Let » be the axis of revolution. Then, reasoning as in

. A 2t & &
Prob. VI, we see that we must minimize j IJ_/}J_/ - dx, while,
: &

. "
the volume being given, we must have ‘A lJ/"a’x constant.
' ]

Therefore, by Euler's method, we minimize absolutely the
expression

e gl B HC
U__L/x: (I—l— ,2—|—2ay dx f Vdz. (1)
Here 7 is a function of y and 7/, and
L PP Y
= ] 2 YR (2
T+ @
so that by formula (C), Art. 56, we have
" e (AP
2ay* = - b.
i T P e &

We will assume that the generating curve cuts the axis of
x, which will render & zero, and then we easily obtain the
equations

/3 /3

=S B O d = —"
Ty TRy 2

¢ being put for s,
a

* The following discussion, which is much more satisfactory than that of Prob,
V1., appears to be almost entirely due to Prof. Todhunter. (See his Adams
Essay, Chapter X., from which this solution is taken.)
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115. Now the last equation can be shown to indicate that
the generating curve is a hypocycloid. For let ' = tan 2.
Then, by (4), we have

¥ = ¢ sin’ v cos 7, (5)

and, by differentiation, we have

- ; dv
¥ = «(3 sin’ v cos® v — sin' v) o
iz

3 hin S dv
= ¢(3 cos’ v — sin® ) sin v ©)

Hence

a’y_c( cos® v — sin® ¢) sin®

b o 3 n’ 7) sin’ 2, )
Dividing (7) by ¥ = tan v = 2> 7 e have

cos v
dr ., L
o = ¢(3 cos’ v — sin® ) sin 7 cos 2. ®)

Squaring and adding (7) and (8), observing that
sin' 7 4-sin® v cos’ v = sin’ v (sin’ v 4 cos’ 7) = sin® 7.1,
we have, putting s for an element of the arc,

a’s_ ( ) e A SR o
75 — 3 cos’v—sin v) sin v = ¢sin 3. (9)

To integrate, write this equation thus:
¢ o
ds = p: sin 3v 4(30).

Then we obtain

s=— 3£ cos 3v+c,. (10)
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This equation is known to indicate that the curve is a hypo-
cycloid, the radius of the rolling circle being one third that
of the fixed circle. If now we suppose that when y van-
ishes  vanishes also, and measure s from this point, we have

o= — -;—cos 0-}¢,; that is, ¢, = 53; and (10) becomes

s :—g (1 — cos 37). (11)

16. To determine the constant ¢, we have the conditions
that the solid must have a given base and an assigned volume,
and we may use these conditions thus: Let z, be what » be-
comes when » = x, and when y =y,, a known constant, say B.
Then it is shown that the volume of the solid is

S _ 7 o, + Lsin's,)
ﬂB’(S o sin’ v, -+ - sin‘ 7, (12)

sin 7, COs" 7,
We have also, from (),
B = csin® v, cos v,; (13)

and from these equations », and ¢ may be determined.

This solution, however, like some others, is not always
possible. For it is shown that the volume can be as great as
we please, but that it diminishes as v, increases, and has its

el
least value when 7, = 7:[, its value then being ﬂi If,
Jd
therefore, the given volume be less than this quantity, no such
solid, with the given volume, could be constructed upon the
given base.

{17. Let us now examine the terms of the second order.
We may evidently write U thus:

U= "(of + 2a5") d, (14)



PROB. VI. WITH GIVEN BASE AND VOLUME. 147

yls
e

Hence the terms of the second order arising from the expres-

sion /; I‘yfdx may be treated as in Prob. VIIIL., while the term

where f= and is therefore a function of 3 only.

e Ty 5 2 1 Ty
arising from _/; 2ay’dx is evidently - £ 4ady’dz. Therefore,

by the formula of Prob. VIII., we have, when we suppose the
limits to be fixed,

o= [ oy —yor)taasrtan ()

where
,_df _ 3yt
f ™ d}’, (I +J/~z)a’ (16)
and
4 _ 29’3 —29")
o il

But, from the first equation (4), we have

WYX Gy Y — £
ay = —W)—!—’ whence za = f"y". (18)

Substituting this value in (15), we have
I 1 n, /32 U4
U =L [T 158y +y89) dx. (19)

Now f” is positive so long as »” does not exceed three; that
1s, when v does not exceed 7—;; and y” is here positive also, so

that the integral becomes positive.
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118. But since the distance x, — x, is not fixed, it is evident
that the limits of integration are not altogether fixed. But as
the base is given, and we may consider its distance from the
origin as fixed, the limit x, may be regarded as fixed, as is also
7. Now the terms of the first and second order arising
from the variation of x, and y, evidently are

~V,dr,— Py, — L () dus — oVide,~ Lpl oy, (20

the last term resulting from the formula in Prob. VIII., when
dy at either limit does not vanish. But

av ”
B &= s P VAR NE S S AR PV R A

OV, = 3./ 09’ + /o 99, + 443, 97

Now since y, is zero, and, as appears from (4), », is also zero,
all the quantities V,, £, /', Z,Z
terms in (20) will disappear. Therefore the variation arising
from a change in #, and y,is not even of the second order,
although it might still be a quantity of the third order; and
as the integral in (19) is positive, we have in this case a solid
of minimum resistance.

will separately vanish, and the

Problem XZXI.

9. Let a curve meet the axis of x at two fixed points, the
origin being assumed midway between them. Then it is required
to determine the form of this curve, so that, being revolved about
the axis of x, it may generate a solid of given volume whose
moment of inertia, with respect to the axis of y, may be a mini-
.
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Conceive the solid to be divided into slices by planes per-
pendicular to the axis of . Then the moment of inertia of
any slice, whose thickness is 2z, is

T (i/—‘ -+ x’y’) dx, | (1)

where 7 denotes the mass, which is constant. This equation
is easily obtained from the moment of inertia of the rings of
which the slice is composed, which is

(42, )

MM being the mass of the ring, or 2zmdydx. Therefore, since
the volume is to remain constant, we must, by Euler’s method,
minimize the expression

U:a;{§+fy—aW}ﬂ:a47Hn (3)

Of course we could have put @ for — &* as the indeterminate
multiplier, and this is what we would naturally do in first in-
vestigating the problem ; still the present form is known to be
more convenient.

Now we have

oU= [ (94 2wy —2ap)oydr= [ W+22'—20)0ydr.(a)
Hence, if ¥ be not always zero, we have

P4 22" = 24, (5)

which shows that the solid must be an oblate spheroid in
which the major axis is to the minor as 42 is to unity.
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120, The terms of the second order are
P R T s
su=/ {_2--}-:; L }d‘ydx,

which, by means of (5), reduce to 6U = /; x‘y’é‘y’dx, and this

being necessarily positive, we have a minimum.

But while the solution is thus apparently satisfactory, it
evidently affords another example of the kind discussed in
Prob. XVI. For if we suppose the limits z, and z, to be
assigned—that is, the minor axis of the ellipse—then, unless.

the volume be just L) , in which B is the semi-minor axis,

no such spheroid can be constructed. But if, without assign-
ing the limits except to make the curve meet the axis of x at
two points equally distant from the origin, we only require
the figure into which a given volume must be formed, as above,
we shall obtain a spheroid in which the axes are related as just
mentioned, the limiting values of » having been determined
by the given volume. Still, in the investigation of the terms
of the second order just given, we have assumed that x, and
x,undergo no change. Nevertheless, if we vary x and y at the
limits, we shall not increase these terms, since, y at the limits.

being zero, V,, V,, 6V, 6V, (%): and (%)o sevérally vanish.
Here the constants are all determined by the assigned
volume, combined with the conditions that y, and y, shall be

zero. For B is determined from the condition that the volume

must equal an assigned quantity ; then 4, the semi-major

axis, by the known relation between the axes; after which a’is
found by means of (5).
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SectioN VII.

CASE IN WHICH V IS A4 FUNCTION OF POLAR CO-ORDINATES
AND THEIR DIFFERENTIAL COEFFICIENTS.

121. The principles of the calculus of variations thus far
obtained are equally applicable when polar co-ordinates are
to be employed; and as the mode of applying these principles
1is precisely similar to that which we have already given for
rectangular co-ordinates, we shall present but two examples,
the first of absolute, and the second of relative maxima and
minima.

Problem XXII.

A particle whick is always attracted towards a fixed centre,
with a force whick vartes according to the Newtonian law of
gravity, is projected from a fixed point so as to pass through a
second fixed point. It is required to determine the nature cf its
path, assuming that it must be the path of least or minimum
action.

Assume the attracting centre as the pole, » as the radius
vector, or distance of the particle at any time, from the centre
of force, 7, and 7, the distance of the first and second points
respectively, and » the natural angle included between 7, and
any other radius vector. Also let £, a constant, be the inten-
sity of the force at a unit’s distance, and ¢’ the velocity of the
particle in its orbit at any instant.

Now, from mechanics, the action of the path is

L[; 3 2'ds, ‘ (1)

where Js is an element of the path. But

s = Va’r’—{— rdo? =der’+;£{; = Vr’—l——r”dv, (2)
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so that the action becomes
vy
j v V47" dv. (3)

Now in determining ¢’ three cases arise. For we know
that the path of a revolving particle will be an ellipse, a parab-
ola, or an hyperbola, according as v,, the Velocity of projec-

tion, is less equal to, or greater than 1/ Let us here con-

sider the first case, and suppose v,” = 1/ Zf {: Then it is

0

YL S @

s a

known that 2 will equal

Substituting this value of ¢’ in (3), and omitting the constant
J/, we have to minimize absolutely the expression

v="Vi-L it

:A”’WW@:A”’V@. ()

Now change 7 into 74 67, and #’ into 7’ - 67/, while v re-
mains unvaried. Then we can develop the new state of U
just as we could if in U we had put x for v, y for 7, and »
for . Hence, to the first order, we have

v Wr Vr+ r’”) wr' }
U = n 8 - o' Ldv. (6
" %(Vr”—{—r” e R S [
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But, as in plane co-ordinates, 67’ = %, so that 6U may be
transformed in the usual manner by integration by parts, 67,
and 67, vanishing because the two radii are fixed. But we
need not perform this transformation, which would give an
expression not readily integrable. For the formule of Art.
56 become at once applicable to polar co-ordinates when in
those formulae we substitute v, 7, 7/, 7", etc., for x, », ¥/, ¥, etc.
Here, then, I is a function of » and 7/, and

P or g_z_Iin___ (7)

ar P
so that by formula (C), Art. 56, we have
wr’* wr
W Vr<4-r"? | and ——— =¢. (8
i 4/7”—{— ~* Ve e Vr4r" @®)
Solving for 7, we obtain
g e
ESNE T 2. . U g 9)

where 4 =¢. Now put —;;for 7. Then the following equa-

tions will be found to hold true:

K I du’
W32 — I /2=_____,
Tt L o' dvt’
and (9) gives
aw' _2u 1 Sy
5 5 AR (0}

Solving and putting C for aib’ we have
dyo = — _L

I
b——u—C (1)
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1 ar

; SABRS du
where the negative sign is used, because R Now
by placing 1—15-2— %ﬂ within the radical sign in (11), that equa-
tion may evidently be written thus:
e — du s \wigdY
=AY 1y VR_X° (12)
V(-6 - (-}
Whence, by integration, we obtain
I
U — —
z:—}—g:cos"%:cos" #
V5 ~c
Whence
o,
.cos (v4+2)= ;/——I—-, (13)
&'—2 T C
and
% or ;-:51-4—1/ [%—Ccos (v+2). (14)

Now write & = a (1 — ¢*), and replace C by its value ;15. Then

the quantity under the radical readily reduces to a—(l e 7y

and we have

I _1-+4ecos(v4g)

A a1 —eé) (15)
Now in equation (8), in order that ¢, or ¥4, may be a real
quantity, we must, since @ is by supposition positive, have
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1 — ¢ positive. That is, ¢ must be less than unity, and (15) is
therefore the equation of an ellipse.

122, It appears as though the general solution contained
four arbitrary constants; but as ¢ depends upon the ratio of 2
and &, the semi-major and minor axes, the number of arbitrary
constants is only three. But, as in former examples, the gen-
eral solution is totally independent of the possibility of render-
ing it applicable in any particular case. Of these constants,
a, or the semi-major axis, is determined as soon as f, 7, and v,’
are given, but must of course be of sufficient value to enable
the ellipse to pass through the second fixed point. The least
value of a which will render the solution possible in any case
may be determined thus: Since the distance of the two fixed
points from the first focus are respectively 7, and 7,, their re-
spective distances from the second focus must be 22 — 7, and
2a —7,. Now from the first fixed point, with a radius 22 — 7,,
and from the second, with a radius 2¢ — 7,, describe circular
arcs. Then if these arcs do not touch there can be no solu-
tion, the least admissible value of 2 being that which will cause
them to touch, while if 2z be increased beyond this value, the
circles will cut, and there will be two positions for the second
focus, that is, two ellipses can be described as required.

Thus, although we seem to have three conditions for the
determination of the three constants—namely, the intensity of
the initial velocity and the distance of each of the two fixed
pomts from the focus—we can in fact only determine a. This
result might, however, have been anticipated, as we know
from mechanics that while the form of the curve and the
value of its major axis depend solely upon the values of f,
v," and 7,, the minor axis, 24, is also dependent upon the direc-
tion of the initial velocity, the equation of condition being

(== 2 V; sin 2, (16)
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where 7, is the angle which the orbit at the point-7, makes
with 7,; and this element of direction we have thus far entirely
ignored. If now we assign the value of s, & and conse-
quently ¢ will be given by (16), and g must then be determined
by making the ellipse pass through the two fixed points.

When 2 has its least value, so that but one ellipse can be
described, the chord joining the two fixed points is evidently
a focal chord; and when @ permits two ellipses to be de-
scribed, one of them will have its foci upon opposite sides of
this chord, while the other will have both upon the same side.
This distinction is important, as we shall subsequently show
by Jacobi’s method that only when the ellipse is of the latter
species does it render the action a minimum.

123. If, with a fixed value of 7, and 7/, we regard s, as
variable, and for each value of #, cause the second fixed point
B to assume the corresponding position, which would render
one solution only possible, the point £ will itself always be
found upon the perimeter of an ellipse. For there being but
one solution, if D be the chord joining the two fixed points,
the circles described as above will just touch on D, and we
shall have

2a — 7,-+2a — 7, =D, or D47, =4a—r7,

But D and 7, are variable, while ¢ and 7, are constant. There-
fore, since the point B is always so situated that the sum of its
distances from the first fixed point and the centre of force is
always equal to a constant, it is on an ellipse whose foci are
at these two points, whose major axis is 42 — 7,, and whose

eccentricity is s _; and we may call this ellipse the limit-

4a — 7,

ing ellipse.

124. We may, in closing, advert to the two remaining
cases of this problem.
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Suppose, first, that we make v,” equal to ¥/ 2% Then it is
0

known that 2’ will equal ¥/ %; and proceeding precisely as
in the former case, or better by making C zero in equation
(14), (since that equation is true when :? is zero,) we shall

obtain

_71:: 1+ecoés(v—|—g)’ (17)

the equation of a parabola, in which & is one half the latus
rectum.

Suppose, secondly, that we have v,” = 1/ 2f f Z.. Then

we know that ¢’ will always equal 4/ 7—{—%; and proceed-

ing in all respects as before, we shall obtain, in the place of
equation (14),

I
=2+ 5+ Ceos(v+g), (18)
where C has the same value as in (14). If now we write
b= — a(1 — ¢), (18) will readily reduce to
B i I:tccos(u+g)
B a(1 — &) (19)

But we shall, in the course of the investigation, obtain an
equation identical in form with (8), except that I will equal

Y ;2_-—}-;-—. Hence, that ¢ or ¥4 may be real, 5 or — (1 — &)

must be positive; and therefore, since @ is by supposition
positive, it readily appears that 1 — ¢* is negative; so that
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since ¢ in this case is greater than unity, (19) becomes the
equation of an hyperbola, having its attracting focus within
the curve. This is as it should be, since a particle, revolving
in an orbit according to the Newtonian law, can never de-
scribe an hyperbolic arc having the attracting focus without
the curve.

Problem XXIII,

125, It is required to determine the form of the plane closed
curve of grven length which will envelop a maxtmum area.

Assume the pole within the figure, and let / be the length
of the given perimeter. Then, because the curve is to be
closed, we have :

Z=[2"VH+ 7" dv, (1)

which is to remain constant. Now 2 being the enclosed area,

we have, by the principle of polar areas, dw —_—_; dv, so that

2 dy
m= t/o. =% (2)

which must become a maximum.

Now the reasoning of Bertrand, in Arts. 92 and 93, is evi-
dently rendered applicable to polar co-ordinates by substi-
tuting v, 7, 7/, etc,, for x, y, 3/, etc. Whence we conclude that
Euler’s method may be used for polar co-ordinates just as it
has been hitherto employed. We must, then, maximize abso-
lutely the expression

we have

U—_—’/:”{;j—l-an}dv:‘/andﬂ- (3)
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Here Vis a function of » and 7/, and

ar’

P b8
so that by formula (C), Art. 56, we have
r T ar’”
£ Vit 7P =L
L tarE —te
and
2a7’
r+ W —ark )
Therefore
2ar*
- =7 —2c
Vot f ©
Whence
e _ 497 . L4877 —(F —20)
AP e N v 2
Hence
c_iz [ 7 — 2¢ 8
dr  rV4a'r — (P — 207 ®)

Now squaring 7* — 2¢ under the radical sign, dividing both
numerator and denominator by 7, and then placing within
the radical the quantity 4¢ — 4¢, (8) may be written thus:

(-2

dv )]

i 1/.4.a2 + 8¢ — (r—{—?;c);
Write

Z=r—|—gr£. (10)
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Then (9) becomes

az

dv = 5

1/442—'—86’—-2’ (II)
. Therefore, by integration, we obtain

vpg=sin~'——Z (12)

V4a* -+ 8¢

and
sin (v + g) = ——2—— (13)
V4a® -+ 8¢ R

Clearing fractions and restoring the value of Z, then clearing
fractions again and transposing the first member, we obtain

» —2rv¥a+t2csin (v+4g)42c=o0, (14)

which is one form of the polar equation of the circle when
the pole is assumed at pleasure, @ being the radius.

126. Equation (14) is the form in which the result is left by
Prof. Todhunter. (See his History of Variations, Art. 9g.)
To interpret this result, let 2 be the pole, APB a diameter,
and denote P4 by C. ‘

Y
/D
A 3 X B
G
E

Then since the equation of the circle, when the origin is at 4,
a being its radius, is y* = 2ax — 4, if we remove the origin to
P, it will become

y:za(x—]—C)—(x+C)’- (15)
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Now, in passing to polar co-ordinates, let » = PY be the radius
vector, and A8 the initial line. Then we have x = » cos 7,
and y = 7 sin z. Substituting these values in (13), and per-
forming the indicated squaring, we easily obtain by transpos-
ing, observing that sin’ 2 4- cos’v = 1,

r=2aC— C'+27r(a— C)cosv
=2aC — C*+ 2r ¥a' — 2aC+ C* cos v. (16)

Now put 2¢ for — 22C+ C?, and also put for cos v the sine of
its complement, 7. Then transposing the second member of
(16), and putting v for ¢/, or the angle DPY, it becomes

7 —2r Ya'+ 2csinv +2¢c =0; (17)

and by assuming any other initial, as #G, it is plain that the
present v will become v plus some constant, say g.

127. In this problem the terms at the limits, which should

be
1710’77"1_ Vodi’o+P16’x—Po67'm

present a marked peculiarity. For, since the curve is to be
closed, we must consider the limits of integration, viz., o and
27, to be fixed, so that the terms become merely P, 67, — P, 67,.
Moreover, 7, and 7, become one and the same radius vector,
and the terms at the limits therefore vanish without causing
or,, 6r,, P, or P, to vanish. Hence these terms furnish no
conditions for the determination of the arbitrary constants
which enter the general solution. These constants, therefore,
with the exception of @, which is fixed when the length of the
curve is assigned, must remain undetermined. But this should
not be otherwise. For we see from the last article that g is
numerically equal to the angle Y/PF, while ¢ depends upon the
position of the pole with relation to the centre; and we can
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evidently, without affecting the result, assume any pole and
any initial line we please.

If, however, we had required that a curve of given length
should pass through two fixed points, and should, together
with the radii to these points, include a maximum area, the
three constants would be determined from the assigned length
of the arc, combined with the two equations which would
hold in order that it might pass through the two given
points.

In leaving this subject, we may remark that whatever has
been shown concerning the general treatment of the limiting
terms in problems of rectangular co-ordinates will be equally
applicable here. Thus, if the limiting values of v only be
assigned, while those of 7, 7/, etc., are subject to variation, we
must equate the coefficients of d»,, 6/, 67, 67/, etc., severally
to zero. If it become necessary to vary the limiting values
of v also, we change v, into v, +4d%,, and v, into v,-+} 47, ; and
if the required curve is to have its extremities upon two other
curves, equations (10) of Art. 69, or the more simple equations
(2) of Art. 76, will be applicable when we put v for x, 7 for y,
7’ for y/, etc.

SectioN VIII.

DISCRIMINATION OF MAXIMA AND MINIMA
(JACOBI'S THEOREN).

128. We have already seen that, in discussing the maxi-
mum or minimum state of any definite integral, we must
equate the terms of the first order in its variation to zero, and
then, having solved the differential equation obtained thereby,
this solution must, if it do not reduce the terms of the second
order to zero also, render them positive for a minimum and
negative for a maximum. We have also seen that the method
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of transforming these terms, so as to render their sign evident,
has been far from uniform, while in some cases we have been
unable to investigate the sign of these terms at all. We now
proceed to explain Jacobi’s Theorem, which gives us an invari-
able method of investigating the sign of these terms when the
limiting values of =z, y, ¥/, etc,, are fixed. But as the general
discussion is somewhat abstruse, we shall begin with the most
simple case, which is also the one which will most frequently
present itself for consideration.

CASE 1.

Assume the equation

v=/"var, (1)

where 7 is any function of x, y and 3" only. Then to the
second order, inclusive, we have

su=/" (@6 +d,ay }dx

= (d*V 2d*V v }
Oy 422 oyoy + 2oyt d
h { a7 0 T gy Yt A @)

&

the limiting values of » being fixed. Now the terms of the
first order, when transformed in the usual manner, become

P8y, — P.oy,+ | M ydx,
where
% > ¥
P:d—[,, J[:[V—d——P:ﬂ—id—[-.
dy dr dy dxdy
But if we would render  a maximum or minimum, the
solution of our problem must be the value of y obtained by
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completely integrating the equation 4/ = o; and since this is
an equation of the second order, this value of y will certainly
be some function of x and two arbitrary constants, say

y=fee)=F G)

Of course other constants may enter V, and consequently y,
but with these we are not now concerned. Then, since the
form of the function / will be independent of the conditions
which are to hold at the limits, we must next so determine ¢,
and ¢, as to satisfy these conditions, and then the solution be-
comes complete so far as the terms of the first order are con-
cerned.

129, The foregoing considerations will prepare us for the
discussion of the terms of the second order; but before enter-
ing upon the explanation of Jacobi’s Theorem, we may say that
its object in the present case is to put the terms of the second

2

Vmultiplied by the square of a cer-

/2

order under the form @

tain function, and also to determine the form of this function.

Now, since the terms of the first order must vanish, there
remain only terms of the second and higher orders, and we
may, to the second order, write

su="1 [ a8y + 260y 8y’ - c0y") iz, @

where a, & and ¢ have the values shown in (2).
Let as assume that 8y, 8y, are zero; then we shall first
show that 6 U can be written thus:

i d }
=- Asy+ £ 4,8y | oy dx,
U 2%{ y + =l 0y B (5)

where A and A4, are variable functions, the suffix 1 having



JACOBI'S THEOREM. 165
Y. : ,  ddy
no reference to limits. Observing that dy e BE have,
by parts,
2 / d
fcé‘_y’ et = cOy 6]—f§y2;56y’.dx. 8)
Also

f&dyd‘y’dx: 66y — L[(Y_}f%bdy.dx

'. dé .
=68y — [ b6y oy'de — [ &2 6ydx.
b8y fb y Oy'dx / —, 'dr. (9)
Hence

szdy 0y'dxr = 66y* — l/j—i 8y'dx. (10)

Therefore, collecting results, arranging and factoring, we
have

U= ;— { (665"), — (695"),+ (c0y 0)'), — (cdy 6¥'), }
Ly db G/ ’
il -G -—Gertoe

which, when we make dy, and dy, vanish, gives d U in the re-
quired form, and
' db

A=a——, A
T E

= — ¢

130. We will now show, in the second place, that if we
vary M, we may also write

d
OM = AS s dL
A y+dxA‘ )y (12)
We have
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Varying the first term, we have ady - 4dy"; and varying 7, we
obtain @8y -} ¢6y’. Hence the variation of — Z—P (that is, the
change which it undergoes from changing y into y 4 dy, and

7 into ¥’ + 6¥/,)is — b7 (bé‘ 'y -+ ¢8y’), or, by differentiation,

db d
— b0y — = sy — 2L oy
B Rt

Collecting and arranging, we have

b a
OV fhi— ( _(Z_) JASS zi—cé‘y _A6y+ A 07, (13)

and therefore we may, if dy, and dy, vanish, write

ZIE(L:, ISMaydx. (14)

131. We have already shown that if the terms of the sec-
ond order in 6 U vanish, we shall be obliged to examine those
of the third; and as these will not usually vanish, but will be
positive or negative at our pleasure, we shall be, in general,
safe in assuming that in this case we have neither a maximum
nor a minimum state of . But it is evident that the quantities
A and 4, are not at all in our power, so that unless those
quantities vanish of themselves the terms of the second order
can only be made to disappear by the assumption of suitable
values of dy and dy'.

Now let # be such a quantity as will satisfy the equation

Au—{—%z{l,u’:o, (135)
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where #' = —(g—l— Then it is clear that if dy throughout the defi-
iy

nite integral can be taken equal to #, or to 4x, where # is any
constant, 6 U to the second order will vanish. Of course since
6y and 6y’ must be infinitesimal, Z must be also infinitesimal,
unless # be already so.

132. We will next determine the quantity #, as we shall
then be better able to see how it may be employed. We have
seen that the value of y obtained by the complete integration
of the equation 4/ = o will be of the form y = f(x, ¢,, ¢,) = £,
and that this value of y will satisfy the above differential equa-
tion independently of the value of ¢, and ¢,. If, therefore, we
make any changes in the form of the values of these constants,
the resulting changes in y and its differential coefficients, while
not necessarily zero, will not prevent these quantities from
still causing 4/ to vanish. Now suppose we change ¢, into
¢, -} 6c,, and ¢, into ¢, + d¢,, where d¢, and d¢, are infinitesimal
but independent constants. Then denoting by ¢’y and ¢’y
the corresponding changes in y and »/, we shall have

8y Zfé‘c +df& : (16)

and
: vy — LY s a’f
o'y S dc 1+ ‘5\ ) (17)

Hence these values of dy and 4/, if admissible throughout
the range of integration, will render the corresponding varia
tion, 6", zero throughout those limits, and will also, as we
see from (14), render 6’ U zero. But we shall find it conveni-

ent to write
&'y = é(df+ df) (18)
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2

(oY : :
where £ = d¢, and / = 6—5—; and as d¢, and d¢, are entirely in-

dependent, we can make / assume any real and constant value
we please.

We conclude, then, from (13) and (15), that the general value
of #, if not infinitesimal, is

ST
”:ch:+ld_jc:' (10)

But although this is the most general form of #, it is evident
that we need not vary both constants in £, so that we may
have

ar ar
ke = 2— 651 @8 A= L_l’c‘: 66‘,. . (20)

1

133. Let us next consider whether 4« can be an admissible
value of dy throughout U; because if it can, there will be no
need of any further transformation of the terms of the second
order, since there will be at least one mode of varying y which
will cause these terms to vanish.

We observe, first, that since dy and 6y’ must be always in-
finitesimal, if Zz be an admissible variation of y for any por-
tion of the integral, say from x, to x,, # and #’ must remain
finite throughout these limits.

In the second place, if 2z be an admissible variation of y
throughout a portion only of the required curve, say from x,
to x,, while the values of x,, 5, x,, 7, are fixed, then to certainly
make the terms of the second order vanish we must have 7,
and y, also fixed ; must change y into y -+ £z throughout the
limits x, and x,, and leave the rest of the required curve un-
varied. As this requires that # shall vanish, both when
x = x,and when x = x,, and as dy could not equal %« through-
out any limits unless z vanish at both those limits, we con-
clude generally that to make the terms of the second order
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disappear by the use of 4« for dy, » must vanish at least twice
within the limits of integration.
af

In the third place, if either of the quantities 7 OF g, which

2

are not in our power, vanish twice within the range of inte-
gration, while at the same time its first differential coefficient
with respect to x remains always finite, we can make the terms
of the second order disappear by putting that quantity for #,
but not otherwise.

Moreover, that we may employ the general value of 4z,

all the quantities Zl LZ,{ ZZ and a’_xZ{—, must remain finite
throughout the limits for which 4« is employed, and we must
also be able to so assume # that it shall vanish at least twice
as we pass from z, to z,.

We will now consider under what circumstances this lat-

1

df
ter condition can be fulfilled. Put % for W Then we see
e,
from (19) that we can cause # to vanish for any value of » we
please, say for x = x,, by taking /= — /,; and this is all that

we can effect. We can, moreover, in some cases assume
so that it shall not vanish as we pass from z, to x,, while in
other cases we cannot. For our power over » depends en-
tirely upon our assumption of /. Now suppose we find that
/, which is not in our power, cannot assume all possible values
from negative to positive infinity as we pass from x, to ..
Then, by assuming / equal to one of these values, but multi-
plied by — 1, we can effect that # shall not vanish within the
limits #, and #,. But if, on the other hand, we find that /%
ranges through all real values, we cannot assume / so that «
shall not vanish at least once.

To apply the foregoing, assume / so that « shall vanish
when » = x,. Then if the range of % through all real values
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be complete, » will evidently vanish again at or before the
upper limit, according as ~ may complete or more than com-
plete its range, and we can make the terms of the second
order vanish by the use of Z«. But if the range of % be only
partial, # will not vanish again at or before the upper limit,
and we cannot employ 4« to make those terms disappear.

134. It is evident that when 4z cannot be employed to
make the terms of the second order vanish, some further trans-
formation will be necessary to render their sign apparent ; and
to this we now proceed.

Let « involve #—that is, be £z—so that it may be infinitesi-
mal, and resume the equations

| A d 5 '
6‘(]_5'/; {Aé‘y—}—ax‘lldy }Gydx . (21)
and
Au 4 % Alrites ek (22)

Then whatever be the value of (S‘j/, we may certainly make it
equal to #z, and (21) will then become

sr=L (™ { Aus 42 A,(uz‘) }m:dx, (23)

where (zf) = L—Z; ut.

We wish now to reduce (23) by integrating it by parts;
but before domg so we must show that because (22) is true,
the expression

u { Aut—i—(—lg Al(uz‘)’} dxr or Wdx (24)

can always be integrated, its integral taking the form 5.7,
where B, is a new variable function, the suffix 1 having no ref-
dt

reference to limits, and # =
drx’
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135. Multiply (22) by «#, and subtract the product from the
value of W in (24), and we have

I , d . }
W_u{Zr-Al(ut) —AutaA,u 5 (25)
Now
“”— A (o= i ud (ut)y — A (ut)d'. (26)
But (ut) = wt’' 4+ t«’. Whence
u—A ) = iu’A 2+ —uA g —Ad'ut’ — Aut (27)
and
d /e 'y d 7
Z{—;uAlu t=uAu't 4 ¢ —aTruAlu 5
Whence

d 14 / 'l d gy
uEAl(ut) —-{E”AJ‘ Au {Z—}—B-;u/llt. (28)

Now if the differentiation indicated in the first member of
(28) were performed, it is evident that the only term in whlch
¢ could appear undifferentiated would be

d d ) ){
ula A or { = uAu — Au” ;2.

Hence we see from (25) that the terms in ¥ which contain ¢
will cancel, and we shall have

Lo il Rt G LN
=¥ e — ZrB‘t/’
where
B,= 4, (29)
and
4 5y
Swar=f 4 pt.ar=5y, (30)

the constant being neglected.
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I136. By the use of (30), (23) may now be integrated by.
parts thus:

1 [
U:;L/x: Wtdx (31)

i s S A el
_2{(1312)1 (B, fertg _[o b dx.

Now examining equations (29), (11), (4) and (2), we see that

B = :—-zt’c:—dV

1 1 2}7@‘”?; (32)

and since we put dy equal to «#, we have

,  uby — Sy’
£ (33)

u

If the terms without the integral sign in (31) do not vanish,
they must be added to those already in (11). But the suppo-
sition that dy, and dy, are zero will certainly reduce these
terms to zero unless #, and #, vanish, which would, as we
have seen, indicate generally that there is neither a maximum
nor a minimum. Therefore, finally substituting for 5, and #/
their values from (32) and (33), we have

tad 'V (uby — Syu’

oU= )
o dyla w0 dx

“d*V (u'Sy — udy') 7
zg dy/Z %

(34)

and if we now consider # as no longer involving 4, we must
multiply the last member by 4.

137. Let us now consider the last equat1on more particu-
larly
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First. We shall assume that before obtaining this equation
it had been ascertained that the terms of the second order
could not be reduced to zero by any use of £« for dy; that is,
that # could be so assumed as not to vanish at all, since other-
wise the last transformation would be needless.

Second. Now suppose the second factor of (24) does not
vanish permanently, in which case it will evidently be posi-
tive; and also that it remains finite throughout the range of
integration. Then for a maximum or a minimum we require
av
dylﬂ
nently, and shall be of invariable sign. For we have already
seen that infinite values cause the method of development em-
ployed to become inapplicable, and even in the case of a single
element of an integral, render the entire result doubtful. More-
over, if ¢ can change its sign, we can, as has been previously
shown, vary y for such values of » as will render ¢ negative,
while leaving y unvaried for all other values of z, and thus
make 6 U negative; or by pursuing a similar course with such
values of x as render ¢ positive, we can make ¢ U positive.
But if ¢ remain finite, be of invariable sign, and do not vanish
permanently, we shall have a maximum or a minimum accord-
ing as it is negative or positive.

Tlird. But suppose the second factor of (34) does vanish.
Then we must have

only that or ¢ shall remain finite, shall not vanish perma-

u'8y — udy’ = o. (35)
Whence
APPSR el g
u oy u dy

Therefore /0y =lu+ g = lu—+ lk = [/ku), and 6‘y.= ku, where
% is any infinitesimal constant. But by supposition the prob-
lem is such that dy cannot be made equal to 4z throughout
the range of integration, and therefore the second factor of
(34) will not vanish permanently.
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Hence we see that if the terms of the second order cannot
be reduced to zero by the use of £« then unless ¢ vanish they
cannot be reduced to zero by any admissible mode of varying
7, and this supplies what was before wanting in the complete
investigation of the subject. To render the second fact(?r of
(34) infinite, we must, if dy and dy’ be infinitesimal, have either
#=o0or # = . But the first condition disappears, since we
suppose « to be taken so as not to vanish at all, and the second

d df d df
cannot occur unless o d_q or I Zic—,

become infinite.

- It will be seen that the expression #dy’ — dyx’ in (34) is
the determinant of #, %/, 6y, 65'; so that, putting D for their
determinant, we may write

P Y D

o G dz,
and we shall see hereafter that determinants can always be
employed in expressing the final results of Jacobi’s transfor-
mation.

138. Before applying this theorem to any example the
following general directions may be useful.
av

/2

First. Having obtained the general solution, find

or ¢,

which must not vanish permanently, become infinite, nor
change its sign. For in the first case the terms of the second
order would reduce to zero; in the second the investigation
would becogie more or less unsatisfactory ; while in the third
the terms of the second order can be made to assume either
sign, thus rendering a maximum or a minimum impossible.
Second. If these conditions be satisfactory, find the quanti-

ties ?Z and éj:

, neither of which must vanish twice within the
de, de, . '
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range of integration, otherwise we can reduce the terms of
the second order to zero by employing this quantity for .

Third. Moreover, the first differential coefficients of these
quantities with respect to » should remain finite as we pass
from z, to z,, otherwise some element of 6/ may become infi-
nite, thus rendering the result untrustworthy.

Fourth. If all these conditions still indicate a maximum or
a minimum, consider next whether, in the general value of #,

ar f

and —<— can range over
de,

all real values as we pass from x, to x,. For 1f 1t can, the terms
of the second order can be made to vanish by the use of Ax;
but if it cannot, those terms cannot be reduced to zero by any
admissible values of 8y, and our investigations are complete,
assuring us of a maximum or a minimum according as ¢ is
negative or positive.

% or the ratio between the quantities ——

Problem XXIV.
139. 7t is required to apply Jacobi's Theorem to Prob. I.

Here the general solution is

Ha— f(xr Cy6) = f= &x +-c, (I)
Also,
Vi— 1/I + /z’
so that
avv_ I @

GGt

and this last expression is evidently positive, finite, and of in-
variable sign. We likewise obtain from (1)

“ j{ 3
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ar :
and ¥R I @)
d df _
ot Y, (s)
and
d df _
T TR o. 6)

Now neither of the first two quantities can vanish twice, nor
do their first differential coefficients become infinite. More-
over, if we divide the first of these quantities by the second,
we find 2 = x, which will not range through all real values.
Hence « can be so assumed as not to vanish at all. For we
have # = » 4 /; and by assuming / to be negative and numeri-
cally greater than x,, the truth of the assertion becomes evi-
dent. Jacobi’s Theorem, therefore, indicates a minimum in
this case.

Problem XXV.

140. 7t is required to apply the theorem of Jacobi to the case
of the brackistochrone in Prob. I1., Case 1.

Here, from equation (11), Art. 17, the general solution,
which is a cycloid, is seen to be of the form

y=f(# ¢ c)=F=cversin='Z — V207 — 7 + 6 (1)
A

where ¢, is the radius of the generating circle. We also have

preei Y Il
Vx
so that
; v I

& TG i




JACOBI'S THEOREM. 177

This last expression is of invariable sign and positive, but be-
comes infinite at the cusp, where both x and ' are zero. The
investigation will therefore be subject to any doubt which
may arise from this fact. (See closing remark of Art. 21.)

Disregarding this objection, we have from (1), by differenti-
ating carefully with respect to ¢, and ¢, successively, while
treating x as a constant,

af

2x

o 1x
=—— VEeISInGs — — ——————>
dC, 21 Y2c,x — oo (3)
A 5
> ok @

Now we shall take x, to be somewhat less than 2¢,. For, as we
have seen, ' becomes infinite at the vertex, and we wish as
far as possible to avoid infinite quantities, since Jacobi's
method does not enable us to overcome the obstacle which
these quantities present to a satisfactory solution. With this
limitation neither of the above quantities will vanish twice
within the range of integration. We also have, by differen-
tiating in the usual way,

A N (5)

dx de,” (2c, — z)} J

d df _

g =L ©
and these quantities remain finite throughout the present lim-
its. Moreover, if we divide gﬁ by g, the quotient %z will be

the second member of (3), and this cannot range over all real
values, so that # can be so taken as not to vanish at all as we pass
from z, to x,. We conclude, therefore, that, setting aside the
objection previously mentioned, Jacobi’s Theorem indicates a
minimum in the present case.
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Problem XXVI.
V&1, 1t is requived to apply the theorem of Jacobi to Prob. XXII.

From what has been previously said regarding the treat-
ment of polar co-ordinates by the calculus of variations, it will
appear that all the reasoning by which Jacobi’s transformations
were effected will apply also to them when we change x into 7,
yinto 7, and y'into . We shall consider only the case in
which we have an ellipse, our object being to verify the clos-
ing remark of Art. 122. We shall, with slight deviations, fol-
low Prof. Todhunter. (See his Researches; or Adams Essay,
Art. 183.)

Here, as we see from equation (5), Art. 121,

r=AZ_L o7

Whence
2) I

av 7y

(e

which cannot change its sign, and is always finite and positive.
Now the general solution in equation (15), Art. 121, may be
written

a(1 — &)

1+ ecos(v+4g)

where ¢ may take the place of ¢, and g that of ¢,

It appears that (1) contains also another constant, 2. But
this constant was introduced when we assigned the initial
velocity, and is not therefore a constant of integration. Now
we have already stated that / might involve, besides the inde-
pendent variable and ¢, and ¢,, any number of other constants;

T:f(?/, €y 52) =f= (I)
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those only which enter by integration being considered by
Jacobi's method.

We must, then, pursue the usual course, and find the dif-
ferential coefficient of £, that is, of » with respect to ¢ and g.
We have, from (1),

ﬁ(l_;ﬁz 14 ecos (v+g). (2

Now differentiating with respect to ¢, we obtain

the last member being found from (2). Solving (3), we finally
obtain [

dr 7" —ar(1 4+ &)

e~ aecl—e) (4
and
d dr _ [2r —a(1+ )]
dvde ae(1 — &) (5)
Also,
dr _ar ,
B Tk (6)
ad ar
& o ol (7)

Now neither the first member of (5) nor (7) can become infi-
nite, so that we may employ Jacobi’s Theorem with confidence.

But before resorting to the most general method, let us
determine whether the first member of (4) or (6) can vanish

. dr g
twice. Now to make v - vanish, we must have
€

‘r=a(1 4 &) (8)
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But this is the value of the radius vector drawn to the ex-
tremity of the remote latus rectum. For the distance between
the foci being 2a¢, and the semi-latus rectum being a(1 — ¢°),
we have

r=40'c+4a'(1 — )Y =a(1+ )

Also 7/, and consequently %, vanishes at each vertex of the

ellipse, so that we conclude at once that there will be no mini-
mum if the arc extend from vertex to vertex, or be cut off by
the remote latus rectum.

Now, in applying the general method, we are only con-

cerned in knowing the range of %, or the ratio of zj: to %
But % evidently varies as
a
2 2 1——(14+¢)
7" — ar(1 -+ € 7
—— e or - . )
o
But
I_1+ecos(v+g)
r e i
Whence

/

7 _esin(v4g)
77 a(i1—¢) "’

and therefore the last member of (9) may be written

1—§(I+e’)

esin(v++g)
a(1 — &)

(10)
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Now this expression varies only as

a
T or 721+,

sin (v 4 £) rsin(v—+g) (1)

Next let us write
r = 2a — R, (12)
rsin (v 4 g) = Rsin w. : (13)

Then R will be the radius vector drawn from the other focus,
and w will become the angle which R makes with the major
axis. Then, by substitution, (11) will become

a(1—e)—R 1 a1 — ) ] }_

Rsinw sinw{ R B L. ()
the last member being obtained by substituting for R its value
a(1 — ¢
1-}¢cos w |

Now, in general, any function will have a complete range
from negative to positive infinity when we can cause it to
start with a given value, change sign by passing through zero
or infinity, and return to its initial value. But cot w be-
comes infinite at the two vertices only, vanishes only when
7 is the semi-latus rectum, and changes sign at these four
points, and at these only.

Now let R, and R, be the radii drawn to the two fixed
points. Then, to make cot w, and cot =, equal, 7, and 7, must
form a continuous line; thatis, a focal chord. Should the arc
extend from one vertex to the other, cot 2, and cot w, will
not be equal, but will be infinite and of contrary sign, having
passed through zero. But in all other cases cot w, and cot w,
are equal, after having changed sign by passing through in-
finity.

, whence % varies as cot w.
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Here, therefore, there is no minimum, and if the arc be still
greater the same remark will hold, unless we were required
to vary the entire arc. For since we can make # vanish at
each end of the focal chord, we can take 8y = 4« through that
portion of the arc, and leave the remainder unvaried, thus
making the terms of the second order in 6 U vanish. But if
the arc be less than that subtended by a focal chord passing
through the present, which is the remote focus—that is, both
foci lie upon the same side of the line joining the two fixed
points—then the range of cot z will be only partial, and there
will be a minimum.

142. We may give a general geometrical illustration of
Jacobi’s method. Let 4 and B be two fixed points, joined by
a curve which satisfies the differential equation 47 = o, and
let CED be another curve derived from the first by such vari-
ations of y and » as will result from varying the constants of
integration, and consequently still satisfying the same differ-
ential equation.

av

/2

Then there will, if permit, be a maximum or a mini-

mum when CED cannot twice meet 45 unproduced. But if
it can meet it twice, we may regard AFEGE as the new de-
rived curve, which would make the terms of the second order
vanish.

But since we can make # vanish once at pleasure, we may
suppose the derived curve to touch the other at A—that is,
we can make C and A coincide—and then we shall have a
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maximum or a minimum so long as the other point of meet-
ing, G, is not reached.

Moreover, we compare A5 with such derived curves only
as satisfy the equation M/ = o, although their number may be
infinite. For we have seen that when £« cannot be used to
make the terms of the second order disappear, they will not
vanish at all if‘;—,[: do not vanish. Hence no other class of

2
curves could render 6 U to the second order zero.

143. Now it is evident that, in order to employ the pre-
a

ceding theorem, we must be able to find the functions = and

2

%ji; that is, to determine the change which y would undergo
C.

when in the general solution we give infinitesimal increments
to ¢, and ¢, We therefore naturally first seek to obtain the
complete integral of the differential equation 3/ = o, and to
exhibit it under the form of y = f(x, ¢, ¢c,)- :

But it frequently happens that even when we are unable

to obtain the general solution in the explicit form just given,
we can still determine the functionsg— and % Still this is not
strange, since we can often obtain the differential of an un-
known quantity ; that is, a differential whose integral is unob-
tainable. When these functions can be found, Jacobi’s method
can be applied to the investigation of the terms of the sec-
ond order, whether the equation 4/ = o can be completely
integrated or not; and we now proceed to show how they
may be determined in the case of a very important class of
problems.

The following method is due to Prof. Todhunter (see his
Researches, Arts. 26, 282), and we shall see that by it he has
been able to obtain some results not previously known, and
to correct some which had been erroneously given,
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Problem XXVII.

144, It is required to discuss in full the conditions whick will
maximize oy wminimize the expression

U:L/g:ly”wdx:(/;:lde,

where v is any function of y' and constants.

Here V'is a function of y and ' only, and

P:y;jw =_j/”7/'.

Hence, by formula (C), Art. 56, we have
rv=yyv e,

whence

Fw—yv)=ec, (1)

which is as far as the integration can be carried, so long as #
and v are entirely undetermined. But we may suppose a
curve to be drawn satisfying (1), and that its equation is
y=f(#, ¢,¢)=/ Then, although we cannot determine the
form of £, we can ascertain what would be the corresponding
variation of y if ¢, and ¢, were increased by d¢, and d¢,, and can
then investigate the terms of the second order.

145. From (1) we have

=V S =) =f 2)

Also,
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Whence, by supposing the integration performed, we may
write

r=Hy,c)ta=F+tq (3)

Now, although f and # may contain other constants besides ¢,,
these will not be affected by any variation of ¢, or ¢,, leaving
only » and ¢, as variables. Moreover, x will undergo no
change when ¢, and ¢, vary, and these constants themselves
are entirely independent of each other. We have then, from

(2) and (3),
a _ a’f +a’f ay

d, 2y de, (4)
and
dF | dFdy
EZ . G (s)
Whence
= ©

Differentiating (2) and (3) with respect to #, we obtain

y=27 %
and
aF
1 =y—;—)/—, (8)
Whence
‘% =j’,—:- (9

Hence, and then multiplying by (8) and comparing with (6),

ar dy _ydy  FdBGy ) gy dF
dy de, ~ yde,  dy de, de,

(10)

1
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Therefore .
dy _df ydF
.t_l’z = ;l’?, —dt" o (I I)
Again, from (2) and (3) we have
Y
dc ~ dy e, (12)
and
_ drdy
b % o + I (13)
c . : Sl Y . dy .
omparing this equation with (8), we obtain o =
Whence, by (9), :
e
ar[ J/ b (14‘)

We must next determine the form of (‘ﬁ) and (g), which
de, a

are only partial differentials with respect to ¢,, this fact being
indicated by writing them in brackets.
From (2) we have

=" ———r

1

= s

1
where 2 = —. Hence
7

(df T _;’, 7y BN NG L (16)

But from (1) we have
0 R Al
== e =

and therefore, restoring », we have

(Z—{) = (17)
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Now although we cannot, while v is unknown, determine 7,
still it is evident, from its mode of derivation from f, that if
¢,™ enter the latter as a factor, it must also enter the for-
mer unchanged. # must therefore be of the form ¢™w, where
w is some function not involving ¢, or ¢, but merely 3, and
perhaps constants, not of integration. Hence, from (3), we
have

T = et ol (18)
and
xr —c,
e
(s
Now
aF ) e 1 ¥ =
(d_g, s ne, (19)
Therefore, finally, »
& _y—ya—c) i

de, ne,

146. Now if the value of y found by the solution of (1)
can render U a maximum or a minimum, the terms of the
second order in 6U can be put under the form given in equa-

- rd*v
Y —
"
bg of invariable sign and finite, it will only be necessary that
u shall be incapable of vanishing twice ; which will in general,
as we have seen, follow if it can be so taken as not to vanish
at all. Now equations (14) and (20) give us the general value
of #, thus:

tion (34), Art. 136. Then, supposing Z,’—,I,/ o or 37" to
)5

dy b,
+dc éc, ——+

e yw—m—wﬁ (21)

72 C,

where L = nc/.
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Now by differentiating the last equation with respect to z,
it will at once appear that #’ will not become infinite so long
as " is finite—that is, so long as there occur no cusps. Were
this not so, we could not feel entire confidence in the follow-
ing investigations.

But in order to make # vanish without supposing either

of the quantities ?’l or Q to vanish, we must have
o
r—2 =¢— L. (22)

Now if y be the ordinate of the curve, we know that the first
member of (22) will represent the abscissa of the point in which
the tangent to the curve at y will meet the axis of x, and we
will denote this abscissa by X. But since Z is a constant
entirely in our power, we can give to the second member of
(22) any value we please. If, therefore, there be any real
value which X cannot assume, we can, by making the second
member take that value, render equation (22) impossible, and
thus cause that # shall not vanish at all.
; &

But suppose either of the quantities - or 4 to vanish
de, de,

twice. Then equating the first to zero, we obtain » — J% b

Whence, if it vanish twice, there must be two tangents which
meet on the axis of x at the point whose abscissa is ¢,, That
the second quantity may vanish twice, ' must also vanish
twice.

147. We may now complete the discussion of Prob. VIIL,
as promised in the closing remark of Art. 63.

Here 7 is unity, and fof that article is identical with 2.
Suppose, as before, that y is positive, but that the curve, in-
stead of being concave, is always convex to the axis of .
Then X cannot always range over all real values. For sup-
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pose the line AZ to slide as a tangent along the curve from 4
to B. Then if we assume DE as the axis of x, this line cannot
meet » between D and £, and the range of X is not therefore
complete. But if CF be the axis of x, X will assume all real
values, its range being just complete; while if G/ be taken as
the axis of x, then X, having passed through infinity, will
complete its range before B is reached, and will then repeat
the values of » from G to A. If we consider such an arc as
BK, the range of X will evidently be restricted, and the tan-
gents at B and K will intersect above A—that is, above x—
since the ordinate of X must be positive.

D\E

Hence when »” is positive, if the tangents at the extremi-
ties of the arc intersect above the axis of x, we shall havea
maximum or a minimum according as ¢” is negative or posi-
tive, because y is positive, and we have seen (Art. 63) that
when y” is of invariable sign, /”, which is here ", will be also.
But if the extreme tangents intersect on or below the axis of
#, there can be neither a maximum nor a minimum.

Problem XXVIII.

14:8. 7t is required by means of the preceding method to apply
Jacobi’s Theorem to Prob. VII.

Here the general equation to be considered is

U:L/x:x'yVI_—de-—_'/x;l'yvdx.



190 CALCULUS OF VARIATIONS.

I i :
Whence v" = V(——I——I———7—’;§, a positive quantity ; and as the gen-
eral solution is a catenary, having the directrix as the axis of
x, y" is always positive. Therefore we infer that the solution
will render ¢/ a minimum when the extreme tangents intersect
above the axis of #, but not otherwise.

Suppose, then, the same condittons and notation as in Art.
61, which will of course hold even should y, and y, become
equal. Now the equations of the extreme tangents are

y—b=y/(x—¢c) and y—ik=y'(x+0).

From these equations we obtain

o e e

» o y—k—ylc’

and solving for y, and giving it a suffix, because it will then be
the ordinate of the point of intersection only, we have

LI 7 %
PR e el (1)
e Yo
Now put
By el
VB 62 =120 %, (2)

Then multiply equation (4), Art. 61, by %e; , equation (5) by

x
Ize ~ @, subtracting the second product from the first, and then,

observing that the first member of the resulting equation be-
comes identical with the second member of equation (1) of the
same article, we have, as the equation of the catenary,

y=‘Z§¢3<ée3 d ke“5>+c"§</ee5 oL be‘«gx)E. (3)
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Now differentiating (3) with respect to x only, and then sub-

c (_3 SE
stituting successively in the result # and ¢ ¢ for ¢4, we have
,_ Mb— 2k
< (4)
,__ 26— Mk
e — Ta % (5)
where
. ke
M=c*+e ©. ©)
Therefore
I
W=y =M—-2)C0+ &+ @)
But i
L= M — 4= (M+2) (M—2). ®)

Whence M — 2 must be positive; and as L cannot become
negative, (7) must also be positive. Multiplying (4) by %, (5)
by &, and subtracting, and then multiplying (4) by (5), we have
the equations

y ,  2Mbk — 2(8* -2
k}’l _&yo= La( + ) (9)

and

rr_ 2M(B B — bk
gy DA B gt ko)

01 Lnaz

_2M(G - F) — bk4 20— M%)
= Lia? (IO)

Multiplying (10) by 2¢, adding to (9), reducing to a common
denominator, and factoring, we have

cho’.yl, + 'é.yll Shi byal S

ZZZ{ (& + ¥ — Mok) (2Mc —Lay+ (M — 4) cbk } . an
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But performing the multiplication indicated in the second
member of equation (6), Art. 61, it may be written

%:Mbk— @ + 7). (12)

Hence, and recollecting that 4/* — 4 = L*, the second member
of (11) will become

7—M5+7' (13)

But equation (8), Art. 61, may be written

La 2cbk
} ; (14)

’— e e—
F._..L{2 Mc - =

and hence, since L is always positive, the sign of (13),and con-
sequently that of y, the ordinate of the point in which the
extreme tangents intersect, will be like that of 7.

Now it was shown that when but one catenary can be
drawn, F'is zero; but that when two catenaries can be drawn,
F’ will be positive for the upper and negative for the lower.
Hence the extreme tangents to the upper catenary will inter-
sect above the axis of x, thus giving us a minimum; while
those to the lower will intersect below that axis, and will-not
give a minimum. When but one catenary can be drawn, the
extreme tangents will intersect on the directrix, and we shall
not have a minimum. Indeed, we may here suppose that the
two catenaries coincide; and for a demonstration of the fact
that the extreme tangents would in this case intersect on the
directrix, see Todhunter’s Researches, Art. 72.
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Problem XXIX.

149, It is required to apply the general method of Art. 146 to
Case 2, Prob. I1.

Here n = ——;— and v = ¥1 4 »",so that

WV iy O I

4 AT

which is always positive and finite; thus indicating a mini-
mum, so far as it is concerned. Now as the general solution
in this case is a cycloid, having the horizontal as the axis of x,
we know that X cannot assume all possible values, since no
tangent can meet the axis of » within the cycloid. Hence,
without determining y as a function of x, or even obtaining
the value of », we are able easily to apply the method of
Jacobi, and to see that we have a minimum.

This result is, however, subject to any doubt which may
arise from the fact that j’ is infinite at either cusp, but is alto-
gether trustworthy so long as the portion of the curve which
we are considering does not contain any cusp, as will be the
case if the particle is to start with an initial velocity.

/2

Problem XXZX.

150. [t is required to apply the theorem of Jacobi to Prob.
XVI

Here, as will be seen from equation (8), Art. 98, the gen-
eral solution is a sphere, having its centre upon the axis of z;
and, recollecting that y must not become negative, that equa-
tion may be written

7= Va@—(z — o). (1)
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Now it must be observed that a is not a constant of integra-
tion, but was introduced in accordance with Euler’s method
for treating problems of relative maxima and minima, so that
it cannot be varied in applying Jacobi’s Theorem; and func-
tions involving it, together with x, y, ¢, and ¢, will merely be
mentioned as functions of the latter quantities.

It appears, then, that y has in this case been obtained mere-
ly as a function of » and ¢, it having been necessary in equa-
tion (3), Art. 98, to make the first constant of integration zero
before we could effect the second integration. Since, there-
fore, the constant ¢, has disappeared from the value of y, we
shall not be able readily to obtain the functions gcl and Z—J&/ re-
quired in the application of Jacobi’s Theorem. ' i

151. Since we have seen (Art. gg) that the sign of 22 must
be negative, we have from equation (1), Art. g8,

V=3 —2ayV1+5~
Therefore
a‘v 2ay

N CE

which, being negative, indicates, so far as it is concerned, that
the volume is a maximum.

Now observing the sign of 24, equation (3), Art. g8, may be
written

20y _ .
Vit B A (2)

But from (2) we see that y' can be expressed as an explicit
function of y and ¢;; and we have always

a 7
dr or y—’f=f (3 ¢)dy. (3)
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Whence, supposing the integration to have been performed,
we have

r=f(ne)+a=r+a )
df

Therefore o must in any case equal 31,7 Taking the total dif-
J/ .

ferential of (4) with respect to ¢, recollecting that any change
in ¢, will affect y but not x, we have

_f Ay _d | 1dy
+dy d[ +yl dc' (5)
Hence
&y __ Y
dc .y d—cl' (6)

Now in like manner, recollecting that ¢, does not occur ex-
plicitly in £, we have

T Y =1T

dy dc, Ty de,
and therefore
Iy p
S K. &)

We must now determine the value of a,f , observing that it is
cl

only the partial differential coefficient of £ with respect to c,.
If f/ could be found as an explicit function of y and ¢, this
could be done directly; but as f cannot be so found, we must
adopt an indirect method. Now the supposition that y is to
become constant, and ¢, variable, will make &y constant, but 3’
still variable, because it is capable of being expressed as an

explicit function of y and ¢, although i%’l will be no longer

total, but merely partial, and can be at once found. But
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= / ~; and if in this expression we vary c¢,, regarding y as

constant and indicate partial differentials by brackets, we

shall ha ve
l — —_— 4
) == / é\y tZJ’.

7
But in this case we must have 6y'= l:%] dc,; and as d¢, must

be constant, we have

I} o 1 [dy
[ElSalr gy e
Now from (2), by partial differentiation, we obtain
_2ayy ‘i'f_':' g
'V(I _I__ ym) dcl (9)
Hence
dc] ./1‘(["*'.7) (IO)

152. When the general solution is a sphere, this integral
can be obtained. For if in (2) we put 7 for 24, make ¢, zero,
and divide by y, it will become the differential equation of
the circle, whose centre is on the axis of »; and we shall have

r ‘ ry'dy’
e d d =l —— 1,
AT T

Hence (10) becomes

] = I+y7dy'- (11)

/2

£
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dw
cos’ w

cos’ w - sin® w
| R e - ¢ fone et sner
de, cos w sin®w cos wsin’ w

—;{'/)(S:lonsizd _I_‘/.COSdI} (12)

Now by integrating this expression, we shall obtain

[j{:'_——l— —smw+’>ll+s§n:w}:—;z' (13)

r 2 I —Ssmnw

Then

Now put ' =tan w and &y’ =

Hence, finally, by equation (6), we have

7

&
“

£ (19)

&
N

1

It will then at once appear, by comparing (7) and (14), that the
range which we are in this case to examine will be entirely

dependent upon that of Z. Now when w 1s Z Zis —oo ;and

when w is zero, z is + «; so that Z ranges twwe from — o to
—~+ » as we pass from x, to x,. We would therefore naturally
infer, from the employment of Jacobi’s method, that the sphere
is not the solid of revolution whose volume for a given sur-
face is a maximum; an inference which we know to be erro-
neous.

153. Although for convenience we have hitherto tacitly
assumed that, even when the terms of the second order are to
be considered, we may by Euler’s method convert any prob-
lem of relative maxima or minima into one of absolute max-
ima or minima, we have not yet established the correctness of
this assumption ; while we see from the last article that it can-
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not be universally true. In order to discuss the subject in a
general manner, let us resume the conditions and notation at
the beginning of Art. g2. Then, as there, we shall have

S svdr= [ Voyar  and  [Tsvdr= [ veyan.

Moreover, since the limiting values of dy, 6/, etc., are to van-
ish, the terms of the second order will become

jpEe] L/
ELA: SV ydx and -Z—L/x: 6V’6J./a’x.

This we have already seen to be the case when the func-
tion contains no differential coefficient higher than 3/, and we
shall subsequently see that it is true generally.

It must likewise be observed that now, besides being infini-
tesimal, the variations of y, y/, etc., are restricted to such sys-

X1
tems of values as will render L/x) ?'dx constant; and although

we cannot express explicitly the nature of this restriction, and
although the systems of values which it permits for dy, ¢/,
" etc., may still be infinite in number, it cannot be disregarded
in the discussion of the problem.

We shall denote this restriction by writing the variations
affected in brackets; then, to the second order, we have

S dr =" viey)dr 4 ;_Ax'[aV] (6] ' B iz R

and

Lotend= [ s ae+ L [C1ov 10 dx =mt 1. @)

. xl . ¢ . 3 . .
Now smce/ vdx 1s to be a relative maximum or minimum,

Xo

% 47 must certainly be a small negative or positive quantity
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. Il .
of the second order; and since [ v'dx is to undergo no
0

change when y, 3/, etc., are varied, 7 -+ » must vanish, at least
so far as any quantity of the second order is concerned.

154. Thus far there can be no doubt; but what follows
may perhaps be subject to some criticism, as the author has
not seen it in any other work, although he will not assert that
no similar discussion occurs.

Now the equation 7z = — » must be true to the second
order, so that it appears that 7z need not vanish absolutely,
but must become less than any quantity of the first order; and
we are therefore led to infer that £ also will not vanish, but
become a quantity of the second order. That this supposition
is not inadmissible in problems of relative maxima and min-
ima, we have already seen in the beginning of Art. 94. But
these suppositions regarding 4 and » will not invalidate the

reasoning of Art. g2, by which it was shown that / orlz/l must

be a constant; because f could not differ from a constant by
any finite quantity.
Now assume the equation

./x;rlt'dx—{-bu/:‘v’dxzu, ()

. 2 1 o
where 2 is any constant whatever. Then, since ‘K v dx is to
o

undergo no change when we vary y, /, etc., the variation of
« to any order, as the second, will to that order equal merely
the variation of its first term. Hence we may write

S = { V4 W’} [8y] dx

[ { [6V]+8[677] } [ ey 7 R e B

I
5 vz,
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Now so long as 4 remains undetermined, Z- 472 may be a
quantity of the second order; but when, as explained in Art.

s , we effect that % |- am shall certainly

92,weputb=a:—-—[7,

vanish, since those terms are then equivalent to

Lo { Vv } [65] dr.

Therefore we have

tan=Lf BV e a9

as the exact expression to the second order of the change
Ly c 5 5

which ‘/x] vdx will experience when 7, ¥/, etc., are varied ac-
(]

cording to the conditions of the problem ; and this is the only

mode of rendering the expression exact, since it is not only

sufficient, but also necessary, that 4 should become « in order

to make the terms of the first order entirely vanish.

Now according to Euler’s method, let U/ be what #« be-
comes when & = a. Then to the second order we have

[6t/x:xlvdx:] — [6U] = _;_Ix { [6V]+a[oV] } [6y}dx.  (6)

Whence it appears that we can and must employ Euler's
method to obtain the terms of the second order in an explicit
form. But it will be observed that the restriction still adheres
to the variations in (6), and no method of further determining
its effect upon the general form of 6 U has yet been devised ;
still, if, as is usually the case, the general solution can render
the second member of (6) invariably negative or positive for
unrestricted values of 6y, Jy/, etc., this restriction can, of
course, exercise no influence upon the problem, and we shall
be certain of a maximum or a minimum. But if; on the other

v
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hand, by employing the most general values of dy, 8y, etc., it
should be found possible to cause the second member of (6)
to assume either sign or to vanish, we may conclude justly
that U is not an absolute maximum or minimum. But this
will not warrant us in asserting that U, and consequently

z . . . . .
f vdx, may not be a relative maximum or minimum; that is,
Lo

a maximum or minimum for all such values of dy, dy/, etc., as
co} S 3

will render '/J: 2/dx constant ; and having no means of taking
0

proper accountof this restriction upon the variations, we may,

at least theoretically, be unable to determine whether Uis or

is not a relative maximum or minimum.

155. Thus we see, first, that Euler’'s method must be em-
ployed in developing the terms of the second order in this
class of problems; and if by it we seem to have a maximum
or a minimum, we may accept the decision as final. But if, on
the contrary, we appear to have neither a maximum nor a
minimum, we cannot always conclude that such is really the
case, the discrimination being correct as regards an absolute,
but perhaps not as regards a relative maximum or minimum
state of U.

This latter result is mentioned by Prof. Todhunter (see his
Researches, Art. 283); and evident as it is, when the former
1s admitted, it appears not to have been noticed by any pre-
vious writer. The former result, however, is assumed by him
without proof. Prof. Jellett has given no discussion of the
terms of the second order in questions of this character.

156. We can now understand why the theorem of Jacobi
is not as satisfactory for problems of relative as for those of
absolute maxima and minima. For example, in the preceding
problem the condition that the surface is to remain constant
will prevent us from making 6y invariably positive or nega-
tive; and as it must change sign, it will certainly vanish at
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least once between the limits x, and x,, say at the point whose
co-ordinates are x, and y,. Buteven if we can so select x, that
# can vanish both when » = x, and » = z,, as we certainly can
by considering a hemisphere, it does not follow that we can
make the terms of the second order throughout the integral
vanish by the use of £z For when we assume 6y = /u
throughout the first hemisphere, we may be obliged to make
some change in the form of the other also; that is, #z may
not be an admissible value of 8y unless the first hemisphere
be permitted to increase or diminish its surface.

Nevertheless, when Jacobi’'s method seems to indicate a
maximum or a minimum, that indication may be regarded as
trustworthy.

157. We may, in passing, notice two particular and ex-
ceptional cases which may arise in the general application of
this theorem. These cases appear to have been first noticed
by Spitzer. (See Todhunter’s History of Variations, Arts.

2

173, 174.) Suppose, first, that Z:y,?: o throughout the inte-

gral. Now if I” involve y’ at all, it can, to render this equa-
tion true, contain only its first power. Therefore the general
form of " must be

V=f(x,3)+3F(x, )=+ yF - (1)

We shall write total differentials in brackets. Then

U= " T

the limiting values of x and y being fixed ; and therefore to the
first order we have

sv= [ (%+y§§) oy mey ldr=0. (2
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Therefore, as usual, we obtain

df | dF l:dF T
E_H/ G o L= (3)

dF _dF , ,dF
&ﬂ—a+ﬁﬁ

But

so that (3) becomes
df dF
dy dx @

Now (4) involving only =z, y, and possibly constants, which are
not of integration, we can, by solving for y, obtain it as a func-
tion of » without constants of integration. Hence, in appli-
cations to geometry, it will be impossible to satisfy the gen-
eral solution unless the given points happen to be situated
upon the curve which is determined by (4).

The second case is that in which we have

LY, LT[ a7
gpE a’xdydy]

As this case is more difficult than the former, and is rather
curious than important, we shall merely give its interpreta-
tion without proof.

First, f being some function of » and y, /' and f” being
functions of x only, and the differentials not enclosed in brack-
ets being partial, it is shown that " must have the general
form

v +y¥ Lt 41
Whence

U= ["Vir=fi—fit [ afdx+ [ frax.
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Therefore
L (%)I% + (%)05% 3 Ax'f’c?y dx =o.

Hence if U is to be 2 maximum or a minimum, # must vanish
for all values of x, and U must be of the general form

U=fi— St

which, since the last integral is constant and might be written
F(x), is not a general problem of variations. Thus in this case
the maximum or minimum value of U must be sought, if at
all, by the differential calculus; and if the limiting values of
x and y be fixed, U can have no maximum or minimum state.

In both these cases V7 involves the first power only of 5/,
and they are therefore examples of Exception 2, Art. 51.

158. We may now, before considering the next case, pre-
sent the following general view of the treatment of the terms
of the second order according to Jacobi.

Assume the equation U = /:: v Vdz, where V' is any func-

tion of #, y, ' . . .. ™, and regard the limiting values of
% 9,9 ....7"Das fixed. Then, as before, the solution must
be obtained from the differential equation /7 = o, which will
in general be of the order 2z. Hence its complete integral
will involve 2z arbitrary constants, and may be written

)/:f(«‘v", €y €35 Cg 0 v e e Czn) =.f:

and this solution is rendered complete when the constants are
so determined as to satisfy the conditions at the limits.

159. Next the terms of the second order must equal

I %y
= OM 6y dx.
L e syan
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For we have always

dV av av
SV =—"0y+4+ —d6ytetc..... Sym,
oV = Gr 0+ T8 ete. o o

But if we vary these coefficients, leaving dy, dy/, etc., unvaried,
we shall obtain the well-known form for the terms of the sec-
ond order in 6 V; namely,

d’ a'v
6‘ R etetr S i
Jf_i_ d d S 7 6 )’ +d /3 .y —l_ etC d_}/("" }'(

Therefore it appears that the terms of the second order in 6 U/
must in any case equal half of what would result from varying
those of the first order, supposing dy, 65/, etc., to undergo no
change. They should not, however, be considered as really
arising in this manner, as y, 7/, etc., receive no second incre-
ment. But when the limiting values of y, ¥/, etc,, are fixed,

the terms of the first order in 6 U become '/r‘xlﬂféydx, so that

those of the second order must equal %dé‘ o Sy dx.

160. It is evident that the reasoning of Art. 132 would be
equally applicable whatever might be the order of the differ-
ential equation 47 = o, and we shall therefore assume at once

Ty
that 647 and ./x: 0M 6y dx will vanish if for 6y we substitute

the variations of ¢, ¢, etc., being, as before, entirely indepen-

du d’u
dent. Then 6y, 87, et ill ==
n n 6y, 63", etc., wi becomed or; "df

the differentials being total with respect to z.

or «”, etc.,
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It will next be shown that 6/ can be made to assume the
form

oM =A%+ L 40y tete.....+ L d,0pm.

After this the terms of the second order can be integrated
by parts, until they finally take the form 60U = é_ x.,xl,;(—nz
multiplied by the square of a certain function, analogous to
that previously found.

As the proof of the last two points is necessarily difficult,
the general reader may, without serious loss, omit the re-
mainder of this theorem, or may at least assume the truth of

the two fcllowing lemmas, whose use will be at once evident.

Lemma 1.

161. 61 can always be put under the form

6M:Aé‘y—[—%.«4,6y’+etc ..... +gﬁAna¢n>.

We shall, for convenience, abandon our former notation,
and, adopting that of Prof. Jellett, write

Y CAAN Ve anp,
M_N~7l,_r —JF—etc ..... ;t-‘—z}—;. (1)
Whence
aP, danrp,
=0N—06-—"+4etc..... O
oM N 7 -+ etc + =

=0\ — ?—;%? + etc..... + wz’. . (2)
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For take any term as 6 ——= an P = 6/, where ¢ = P,. Now
A
if in Art. 9, we put # for y, # for ¥, etc., recollecting that 7/, #,
etc., are the total differential coefficients of # with respect to
x, we shall, by reasoning precisely like that there employed,
find that d‘ﬂm):%; so that it is evident that (2) has been
X
correctly transformed. But

dP
Zysan =2 8y t-etc..... = gym),

and
av

P”L:Wo

Therefore

v 4V v
8y + etc. . . .. pct A
Zimay Ot gy O T et T Zondym

67, = 6}/( ™,

Hence
ar 8P, _ dm { v &V
LEarter o
Zo = g \ gymay 2t gy O Tt

L
d),(m) dJ,(n)

Now consider some individual term of this series, as

+ oym .

%y A1V are
0yD = L]
e dym g I = ggmt I ®

where / is not greater than sz, and kz-@,(_iy%). Now if /
equal 7, this term is already under the required form; but if
! be less than s, there will certainly arise from the develop-

ment of it a term of the form —d—l}:c?y@"). the sign of these
ok dxt '
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terms being like or unlike, according as 7 — / is even or odd.
That is, if 047 be fully written out, it will be found that with
the exception of those terms which are already under the re-
quired form, all the others may be arranged in pairs, the type
of which is the pair

am o al '
GO0 g RO @

But by a theorem of the differential calculus, any pair of
the form (4) can be arranged in a series of the form

dl dl+1
2 OO T g1 O et

(See Note to Lemma I.)
Whence it appears that all the terms in 6/ can be ar-
ranged as stated at the beginning of this lemma.

Lemma I1.

162. If 4, 4, etc., be functions of x, implicit or explicit,
and # any quantity which will satisfy the equation

a ) a’ ;
Au-{—:i;Alu —I—Z:;A,u’—l—etc.zo; (1)
then if we write
j 7 d 4 )
(Y= Aut-{— A J(ut)y 4 ~—-A JSut)'+ete. ¢, (2)

Udx will always be integrable whatever be the value of 7, the
integral taking the form

f Udx = Bt -+ % B"+ etc., (3)

where B, B, etc., are functions derived from 4, 4,, etc.
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As the proof of this theorem belongs entirely to the in-
tegral calculus, we follow the plan of Prof. Jellett, and append
it in a note (see Note to Lemma II.).

CASE 2.

163. Next let U = lAlea’,r, where 7 is any function of

x, y, 7' and »”, the limiting values of x, y and »’ being fixed.

Then, proceeding in the usual manner, the general solu-
tion must be found from the differential equation 47 = o,
where

av ddv 4’ dV
e T Tt (1)

The complete integral of (1) will give y in the form

y:f(x, €y €y Cyy CA)_ =4 (2)

in which the four constants must be so determined as to satisfy
the given values of y,, 5, 7/, 7 -

But when these limiting values are fixed, we need not ex-
press the terms of the second order in the usual way, which
expression would be difficult to transform; but we may write
at once

I Ty 3
U =— oM 3
U 5 '/x: MOy dx (3)

We have now an invariable method of transforming ¢ U, since
we can always, according to Lemma 1., put 647 under the
form

ghliieit
M = Ady4 - A8y + - 4,07,

and we shall now proceed to apply this lemma in order to
determine the functions 4, A, and A4..
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164. For brevity of notation, let ay, a,y, ayy, ayy, ayy
and a,, denote the second differentials of 17 with regard re-
spectively to y, y and ¥/, ¥/, y andy " and y’, and y”. Then,
referring to the value of M in (1), and writing its variation
in full, recollecting that the variation of the differential of any
quantity equals the differential of the variation of that quan-
tity, we have

: d
OM = ayy 0y ayy 6y +ayy 6y — iy (2yy Oy + ayy 8y~ ayy 8y")
dﬂ
i a5 (ayy 0y + ayy 0y + ayy 03")
d A 5 d

= ay 0y — v Ox8-p e R s g |- (—' a7 v 6y + ayy 6.7’)

a ,, a

+da“yy63’+“yy63’ = "u’y‘sy—z‘“y’y 9y’
= 6)/—]—1(—.{1”6_;/)—}—6{ ay y”—}—( k, Oy — /e6y)
vy ¥ vy Z v

+1 (d 4Oy + 4, 6y"> £ (5; £, 0y — ;;é— /5,63’”)> @

where
k = — ayy, k = Qyy, k = Ay (5)

Now the first three terms of (4) are already in the required
form, so that, setting these aside, we will consider the first
couple. Here /=0, n =1, and there can be but one term
resulting from this pair. Therefore, by equation (13), Note
to Lemma 1., the couple becomes

d LA
== 6,979, or ¢,dy, or Eﬁqk,.6y,

d d
LB, G o ey
or —-akdy, or = (= aw)-0¥ (6)
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because @ is always unity. Now consider the next couple.
Here /=0, n= 2, and the number of terms which will re-
sult is two. Hence, by (13), the pair becomes

¢ 0y + ;z,d; 9y .

We also have by equation (14) of the same note, since  is al-
ways one, and ¢ is in this case two,

d*Fk, v
cn S 'd_xg" cl — Z'év
and
a ak
() 31X '— A2 it
R R 0 T 2/6 20y
d’ay,. a
=— 0yt 24y 07 )

In the last pair we have /= 1, » = 1, and it becomes

d (dk, d (da
dx 6 ) dx\ dr dl,,rly' Sy) ®)

Collecting results from the last members of (4), (6),(7) and
(8), and arranging, we have

oM = A6y+ A 07 + A .97,

where
da d’ay.
A:aw~—w—'--{—-—df;y-, or ayy— @ yy+ @y,
= daﬂ’!/' ’
= —ayy + = + 24y, or — ayy +a'yy + 20y,

A, =ayy. ©)
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165. We may now write
1 a2} ad a’
oU == i 7% ov PR ” p
v=1["{asy+ Lasy+ L a0y} syar; (10

and we know that if » be an admissible value of dy, # having
the form given in Art. 160, U can be rendered zero, and we
infer, as in the first case, that there will be neither a maximum
nor a minimum. But since the limiting values of y and y’ are
to remain fixed, we must, in order that dy may equal #, or 4x,
be able to so determine the constants d¢, d¢,, etc., that both «
and #’ shall vanish twice simultaneously at or within the lim-
its of integration. In the former case we may change y into
9+ 4u throughout the limits, while in the latter we make this
change merely for the limits at which # and #’ vanish, leaving
 unvaried throughout the remainder of the integral. Also,
since the variations of 7, ' and »” must be infinitesimal, to
make dy equal £, we must have #, «’ and »” finite throughout
the limits for which they are employed.

166. But suppose that the terms of the second order can-
not be made to vanish by the use of . Then if, as before, we
put «¢ for 8y, (10) will become

1 [/ a A e ' ,,}
=5 == z
sU 2‘/; %Aut—i—dx/l,(ut) + 2 Ay | wrds

I A
=5~4 It dr, (11)

in which we know, from Lemma I, that /dx is immediately
integrable, giving

f]dx =B+ % TB7% (12)

167. Let us next determine the functions 2B, and B,
From (10) and (11) we have
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Au—}—%AJ;’—I—%AJﬂ’:O (13)
and
f {AuH.iA ()2 A ut) | (14)
(7 GhRp AT

Whence, multiplying (13) by #z#, and subtracting from (14), we
have

d , a ” By Zalin 2D
IT=u—A,(ut)y +u 217‘4,(ut) ut — A’ — ut I

4
- 2 ¥

=u{A,tYV + u{A,wt)’} — ut (4,4 —ut(A,4")". (15)

Now we know from Note to Lemma II. that all the terms in /
which contain #z undifferentiated must eventually cancel, so
that we may neglect the last two terms in (15), and may also
reject all others in ¢ as they arise. We have then

u{A (u2)'Y = {ud (ut)'} — v’ A (uz) and (wt) =ut’+ 4/¢.
Whence
A, ut)} = (A, ut’y + @A, 'ty —w'A,ut’ — ' A, u't.

Now the second and third terms of this equation can be united
into one by Note to Lemma I., because here /=0 and #» = 1.
But as this term would certainly contain ¢ undifferentiated,
we need not perform the operation, but may reject them to-
gether with the last, retaining only

(4,7, (16)
Again, we have

ud A (ut)" V' =3ud (ut)"}" — 2 §o’ A (u2)"} 4 u" A, (n2)"
and
(ut)’ = wt”" 424’8 4 o't
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so that
u{A,(wt)'V' = (ud,ut")' + 2(ud, u't)' 4 (ud, u't) — 20’ A, ut"y

— 4 A, 0ty —2( A, w8 4w Ay ut’ 4 20" A, 'V " A, 0"t (17)

Now set aside the first and fifth terms, which are already in-
tegrable; reject the last, and also the couple 6 and 8, because
they could be united into one term, # being 1, and that would
contain ¢ undifferentiated, because /is zero. Then there will
remain two couples; viz., terms 2 and 4, and 3 and 7. The
first, since / =1 and # = I, becomes

$(2ud, ')t} . (18)
In the last couple /= o, » = 2, and it becomes
(e, u")"t + Z(ZIA; % )%
and rejecting the first term, we have
2wA,u"tY. (19)

Now collecting the terms from (16), (18), (19), and the first
and fifth of (17), the result can be written thus:

I={[#A, — 4u"A,+ 20d,u" + 2(ud,u') '} + (4,2")"
= (B,) + (B, "), (20)
and this by immediate integration gives (12); and
B, = A, — 4u"A, + 204, + 2(ud,u’y (21)

and
I = ks (22)
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168. We may now integrate (11) by parts, thus:

o= [ nde=t{ B +iary] | By
e z B,/ +(B,2"Y } tdr. (23)
But

Sy Sy
= 0y, = t, = ('_) ) Z,= (_) .
9%, 5 T =0 ! u/, 2 u/,

If, therefore, we suppose « to be so taken as not to vanish at
either limit, #, and 7, must vanish, and we shall have

I Il‘ £/ LAY i/
6U=_5¢é: «(B,t -+ (B, ") }tdx. (29)

But we see at once that in this case the terms of the second
order require still further transformation, as they are not yet
in a quadratic form; and to this we now proceed.

169. Let v, be such a quantity as will satisfy the differen-
tial equation

B,vat(B,70) =o. (25)
Then by putting %, for v/,, we have

Biug+ (B,u,) =o. (26)
Assuming for the present that 7, and consequently #, can be

determined, (24) can be still further transformed. For we see
from that equation that if #, were an admissible value of #
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throughout the limits, § U would to the second order reduce
to zero. But whatever be the value of #, we may certainly
represent it by #4174, and (24) will then become

i Ty
0U = — 5‘/1:; {B,uata-i— ['B‘z(uata)/], } tolydr

L1
= — %A St (27)

where 7, dx is, as we shall show, immediately integrable by the
note to Lemma II., its integral taking the form

S raz=cz. (28)

170. To find C,, multiply (26) by #,7, and subtract from
the value of 7, in (27). Then we shall have

I, = 1q [B(0a 1)) — st te B, 0's) . (29)
But .
e B, (o ts)t = {ug B(sat.)' } — o Buats)
and
() = 257 a + 252
Whence

ua{Bz(ua taY}, = (ua B, u, t’a)l + (ua Bn #e ta)’
— Uy Byt o — o Byt o 2.

Now since all the terms in 7, which contain #, undifferentiated
must cancel, we reject the last term and also the couple 2 and
3, because, as # = 1, they could be united into one term which
would, as /=0, contain #, undifierentiated. For the same
reason the second term in (29) is rejected, and we have
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L=B,wsts) =(Cta)
and s

S rax=c.1,,

where
=B (30)

171. Resuming (27), U can now be integrated by parts,
thus:

I

Ty
SU=—= [ "I tsdx

=-1 (C, 7y za)’Jr; (C. 7 a)ﬁ%jﬂ “Ctadr. (31)

The following equations will also hold :
t__d_y ¥ t,_udy’—6yu’ e ¢ __udy — Syu’
T’ s w | gt Wty ||

Now since # does not vanish at either limit, and dy and 6y’
vanish at both, it is evident, from the above value of #, that ¢’
and ¢, will become zero, which will cause 7, to vanish at the
limits. Then putting for #, its value 7/,, and for C, the value
obtained by referring to equations (30) (22), and (9), we have

3 i TN L
gL = ;L/x: Qyyptt® V a(x) dzx. (32)

172. We must now determine the form of the quantity v,
and for this purpose we must evidently solve (25). Now by
comparing this equation with (12), we see that v, is what ¢

- xl .
must become in order to render .£ Idx zero; that is, to ren-
(]

der 7 zero. But 7 = #6M, which will at once appear if, in the
final value of 6/ given in Art. 164, we write 6y = u?, 8y’ = (ut)’
and 8y = (uf)", which will in no way restrict the values of the
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variations. Hence, since # does not vanish, we must, when 7 is
zero, have 03/ zero. Now we already know that this condi-
tion will be satisfied by making

a a d a.
é‘y:%&l—}—%é‘cﬁ—{—%&,—{—%&‘

= ar, +br, - or, 4 dr, (33)

and this condition can, since 4, 4, and 4, are not in our
power, be satisfied in no other way. For the integration of
the equation J/ = o gives y as a function of x and certain con-
stants, the form of the function being determined, and the
values of these constants only being undetermined. There-
fore, since x does not receive any variation, any change which
cannot be produced in y by varying the constants would cause
some change in the form of the function, and hence y, when
thus changed, could no longer satisty the equation A/ = o,
which it must do in order that 647/ may vanish. This reason-
ing is evidently applicable whatever be the order of /7.

Now it is evident that we can cause the second member of
(33), which we know to represent the most general form of
u, to assume various values for the same value of » by various
determinations of the arbitrary constants &, 4, etc. Let z and
v be any two such values, so that we may write

U= al rl_l_ a?"?+’a3 7’3+a47‘4’ (34)
v=">0,7r,+ b7, b,7,+ 0,7, (35)

But since 0y = ¢, if we make £ = Y dy will become v, and
A

the equation 64/ = o will be satisfied, as will also the equa-
tion /= o0. Moreover,this is the only solution; since, by suit-

ably determining the constants in v, j—t can be made to equal
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any value of ¢ which will render 7 zero, and therefore every

value which will render f I dx zero.

173. But the value of 7, is not yet fully determined. For
although, by substituting % for ¢, we shall render 7 zero what-

ever be the system of arbitrary constants employed in v, we
shall not, by such a substitution, necessarily satisfy (25). Be-
cause when / vanishes independently of any particular value

of 7/,;/1 Idx is merely a constant. Hence all that we can say

is that the relation 7z, = Z will render the second member of
/4

(23) a constant.  Moreover, it is the only relation which will
render it a constant, because it is the only value of z which
will cause / to vanish. Hence, since zero is a constant, if any
real value of 7, exist, it must be capable of being expressed in

the form %; only the»eight constants, «,, etc., 4, etc., must

be so related as to satisfy (23).

One of these relations will immediately appear. For, ex-
amining (25), we see that it is a differential equation of the
third order in 7,; and hence by integration we should obtain
7 as a function involving not more than three perfectly arbi-
trary constants of integration. If, however, we understand
only by # and v any two quantities of the form given in (34)

and (35) in which the eight constants are so related that ;;,

when put for #, will satisfy (23), which relation must cause the

constants to be so combined that - may contain not more
u

than three arbitrary constants, then we may write

LA (36)
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I174. Although this relation between the constants was
noticed by Jacobi, many subsequent writers have fallen into
the error of supposing that they are entirely independent, and
have thus rendered this portion of their explanation untrust-
worthy. Among these writers is M. Delaunay, who was fol-
lowed by Prof. Jellett. The latter, on page 95, makes a state-
ment which would with our notation be equivalent to saying
that whatever value of ¢ will make 7 vanish, will also render

f Idx zero, which is manifestly untrue.

I175. We may now proceed to the final transformation of
the value of 6/ given in (32). We have, from (36),
oy

'Zla—-———z—, == t/

__udy'— Sy’
w’ 143 u g

2

Therefore
¢ _udy — Syu’
vy  wt'— vi
and

(‘»C_w#-vwﬂwvﬁ-@M%—W®*—¢W9@ﬂ—ﬂwy

o (uv' — vu')?

But

(w0 — va’Y = wt" — va’,
and
(uayl e 6)’”’),: udy” — 6]/%”.

Substituting these values in (32), reducing, and factoring with
reference to dy, 6y’ and Jy”, we finally obtain

£21
s WY

=
2

uv' — vu’ i
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From this equation we see that to render U a maximum
or a minimum, a,-,- must be of invariable sign, and should also
remain finite throughout the range of integration, and not
vanish permanently. If these conditions be fulfilled, it is
necessary also that the second factor of (37) should not per-
manently vanish, and it ought also to remain always finite.
The first condition will always be satisfied. For if in any
case it were not, we would have

oU="L [TeMoydr=o;
v=L[Tsmeydr=o; (38)

and since every element of this integral must have the same
sign as @, which is invariable, (38) can only be satisfied by
making 6/ &y constant. But since dy, and dy, are zero, this
constant must be zero also, which would render it necessary
that 67 should vanish. But this, as we have shown, would not
happen unless # or 4« be an admissible value of dy; and since,
as explained in Art. 165, we assume in (37) that such is not
the case, it is evident that the factor in question cannot perma-
nently vanish.

Hence we see that if a,-,- be of invariable sign, while 6 U/
cannot be made to vanish by the use of # or 4, as indicated
in Art. 165, neither can it be made to vanish by any other
mode of varying y, ' and . To satisfy the second condition it
is necessary that the denominator in (37) shall not vanish, and
that the coefficients of dy and 6% in the numerator shall both
remain finite. That is, we must be able to so determine the
constants that #2’ — v#’ may not vanish, while #, «/, «”, v,
7/ and ¢" must at the same time remain finite. But before we
can examine these conditions, we must be able to express
these coefficients of 6y, d5’ and 6" as functions of x, and per-
fectly arbitrary constants, and we shall next consider how
this may be effected.
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176. Now from (34) and (35) we have

w =a,r, + a7, + a7, —F—ang, ]
w=ar' +ar +ar+ar
w=ar"+ar+ar+ar/,

v = b7, + br, + b7, + b,7,
v = b/ - b7, + b7 + b,7/,
"= br) + br, + b)) + 6,7

As we wish to substitute these quantities in the various parts
of the second member of (37), we can avoid tedious multiplica-
tions and exhibit the results more explicitly by the use of de-
terminants. For (37) may evidently be written

- (39)

TAR/R L
6U=—f e L
2z VY L

L/ (LS — Ly Oy 4 Ly O
i 2'/9; "W'( L, ) o (40)
where
6_]/, 6)/', 6y// I
L=l u’|,
gl | v, e r (41)
u, u w, u u, u”
Lyl’: v, v ’ Ly i 7, o g Lyl g v, ¥ J

Now for convenience we shall denote any determinant of the
second order containing two «’s and two &’s by the numerical
suffixes of its first element, and similarly determinants with
respect to 7, 7/, etc., will be denoted by the numerical suffixes
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of their first elements, together with the accents of ». Then,

since #’, #”, v’ and ¢” have the forms given in (39), while Z,, is-
a determinant of these quantities, we can, by a well-known

principle of the subject, at once exhibit Z, thus:

Ly=12.-12"4+13-1'3"+ 14-1'4"
+23-2'3" 4 24-2'4" + 34-3'4";  (42)
and in like manner we obtain
Ly=12-12"}13-13"414-14"-+23-23"124-24"+34- 34",
Lyp=12-12"4-13-13' +14- 14’ +23-23 +24-24'+34-34'.

Hence if we regard the determinants 12, 13, 14, 23, 24, and 34
as new constants, we see that the eight constants in # and v
have so combined as to leave but six in equation (40). If now
we divide L,, L, and L, by one of these constants, as 12, and
denote the respective quotients by A/, M, and M., we may,
without altering the value of equation (40), substitute these
quantities for Z,, L, and L,,. Hence we require only to
determine the forms of these quantities. But if we write

13 _ 4 23,24

w04
12 12 12 L VA (44?

then
My =12"+ar'3"+614"+c2'3"+d2'4"+ ¢ 34,
My=12"4a13"+ 614" +c23" +d24"+ 347, ¢ (49)
Mp=12" +a13 +b14 +c23 +d24 + ¢34

We have now but five constants to consider, and the last
of these may be expressed in terms of the other four. For
we have i

12:34 + 23-14 — 13-24 =0, (46)
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an equation which will be found upon trial to be identically
true. Hence

Sd A5 14 (150 o —ad =
s 12 35 T RO e

and
a, b

¢ &

e=ad— bc=

5 (47)

which value being substituted in (45) will give M, M, and
My as functions of four constants only.

Our reasoning thus far would hold even were the eight
constants which enter » and v entirely unrestricted. But
since these constants must have such mutual relations as will

satisfy equation (25), where we now know that v, is put for o
u©

the four remaining constants must also be subject to some
restriction, or conditioning equation, which will enable us to
express M,, M, and M, as functions of not more than three
perfectly arbitrary constants. But to determine this last rela-
tion in any particular case it will be convenient to present
equation (25) under another form, and this we now proceed
to do.

177. Assume the equations

As + (4, 2Y + (A4, =F
and
Au+ (A, «'Y + (4,4")" = F.
Then
uf-—-zF=udz—sAutu(4,sy—=4,4"Y
+Fu(A, "Y' —2(A4,u") =itk (48)
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Now
w(Ad, 7)) = A, 2y — 1’4, 7
and
HA, ') = (24,0’ — ZA, o,
Whence
i= A (us — su'). : (49)
Also,

w(A,2"Y = (ud,z") — 2(’4,5") +u"4,7";

and developing the remaining term in like manner, and sub-
tracting, we have

k={A,uz" — z2u")}" — 2{A,('z" — Zu")}'. (50)

But since the second members of (49) and (50) are integrable
once, if we add these equations, obtaining thereby the value
of uf — zF, and then integrate, we shall have

f{uf—— 2FYdy = A (us' — 2’y — 24 (/s — Z'u")

+ {4, (" — au”). (51)

Now put dy for 2, and let « be such a value of z or dy as will
render F zero. Then the second term will disappear from
the first member of (51), and the remaining term will become

f Idx; and we shall have
/]dx = A,(udy’ — Sy’ — 24,(/Sy" — 8y'u")
+ {4.(udy” — oyu")} = B,¢ +(B,¢"). (52)

: ) )
But since # = 7}/ and 7, = ?-. we have only to change dy into
%
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v in order to cause ¢ to become v,. Hence, finally, (25) may
be written

A () — vu') — 24,('v" — V") + {A,(uv" —vu')} =0; (53)

and as we may divide by any constant, we may write, as the
final conditioning equation,

Alﬂ[yu— ZAgMy—i— (A,Myr)’ = 0. | (54.)
It also appears by difterentiation that
Ly=Ly and L'y = Ly+ uv"’ — vi’"’ = L} L,,

where L, is exhibited by determinants in the same manner as
the other L’s. Hence, dividing these equations, as before, by
the determinant constant 12, we have

Mr'—_- M/yu, M/yr-:My—*—Mz, )
55
M,= 12'”+ﬂ 13///+ b 14”/—}—L‘23’”-—I—d24'”—-|—€34”’.

It is evident, however, that in order to apply equations
(54) and (55) to the reduction of the constants, we must deter-
mine the particular forms which are assumed by 4,, 4,, 7, 7,
7, and 7,, which cannot be done so long as the problem re-
mains wholly general.

178. The following example is presented merely as a means
of illustrating the preceding discussion.

Problem XXXI.
1t is rvequired to apply Jacobi’s Theorem to Prob. V.

Here @, = 2, so that we have next to consider whether
the terms of the second order can be made to vanish by the
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use of « or 2z. Now the general solution, equation (6), Art.
42, may be written

y=a'4c 2+, Ffc,x+c. (1)

Hence we have the following equations:

=R D — i s —r, it =T
BNt <1 B2 ¥, =L ¥ =0

r” 144 o 77 (2)

7, =6z, 7, =2 7, =0, r,£, =0 g
rllll — 6, 7,,/I/ — O, rs//l —_ O, r‘//I = 0.

3
w= ax+a,r+ar+a, "
8

' = 3a,2 +2a,xr+ a’.

Now if the constants in « can be so taken that # and #’ shall
vanish twice or more; simultaneously, within the limits of in-
tegration, the terms of the second order can be made to vanish
by the use of #, and we have in general neither a maximum
nor a minimum.

Now if # and #' can satisfy these conditions, let z, and =z,
be two values of » for which they vanish simultaneously.
Then we must have

vy By B, B

“tra +a1 N +a| x2+al o, (4-)
s A a, e

x:‘l‘;l—xs +er+z—o, ()

N T T : 6
2 3a, 2 3[1‘—' ] ()

2 2a, a,
e +_xs+3—al=0- (7)

3a,
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Subtracting (7) from (6), and (5) from (4), and dividing by
x,— x,, we have

x1+xs+§‘;l=o’ (8)
x,’-—]—x,x,-{-—x,’—l—?(x,—{—x,)-—]—:-:-’-=o. : (9)
Substituting in (g) the value of from (8), we have
z, + 25,4+ 2" — ; (x,+ ) (4, +xs)+2—s =0
=—%—2x,x,—7+——. (10)

Substituting in (6) the values of 2 3_a and frorn (8) and (10),

we have, after reducing,
r'—2x,x, 4+ x'=o0

Hence x, and x, cannot be different values of x, and the terms
of the second order cannot be made to vanish by the use of .
But since, as we have seen in Art. 175, these terms can be made
to vanish by no other mode of varying y, we are sure of a
minimum, unless, indeed, we cannot prevent A/, or M, from
becoming infinite, or 4/, from vanishing within the range of
integration ; and these points we shall next consider.

179. Finding, by the use of equations (2), the values of
My, M, and M, in equations (45), Art. 176, and also that of
M, in equations (53), Art. 177, we shall obtain

Mpy = - 2 —2ax" — 302 — cx* — 2dx — ¢,
My = — 42° — 6ax® — 6bx — 2¢cx — 2d,

M, = — 62" —6xr — 2

M, = — 62° — 6ax — 66.

(11)
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Now since a,,» = 2, we see from equations (9), Art. 164, that
A, =o0 and 4, =2. Hence, in this case, equation (54), Art.
177, becomes

— 4M, 4 2My =0 = — 2M, + 2],

as will appear from equations (55) of the same article. Equat-
ing the values of A7, and 47, we have ¢ = 36. Now taking
the value of ¢ from equation (47), Art. 176, and then substi-
tuting in the first of equations (11) 36 for ¢, we shall have, after
changing signs,

— My = 2+ 2ax" + 662° 4 2dx + ad — 30, (12)
— My = 42° + 6ax’* + 126x + 24, (13)
— M, = 6x*+ 6ax -+ 6. (14)

It therefore at once appears that neither 4, nor M/, can be-
come infinite so long as ¢, 4, 4 and x remain finite. We can
also evidently choose these constants in such a manner that
My, shall not vanish within the limits of integration. For
suppose, for example, that we make both 2 and & zero. Then
to render the equation

M—-—"":b’—zx'b—%:o j

possible, we must have

b:x’j:-zﬁ.

V3

Hence if we assume 4 greater or less than this value car be.
come within the limits of integration, and also make z and &
zero, we shall secure that 47, will not vanish at all as we pass
from x, to z;; and therefore, as all the requisite conditions can
be satisfied, we are in this case sure of a minimum.
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180. We have, then, the following general method of ap-
plying the theorem of Jacobi in this case.

First find whether a,,» remains finite, does not vanish per-
manently, and is of invariable sign throughout the range of
integration; because if these conditions be not fulfilled there
is no need of any further investigation. But if they be satis-
fied, next try whether 6U can be made to vanish by the
use of .

For this purpose we write

a, a, a,
wu=r -+ 27 27,4+ 27
Lt 2,
and
a V7 a
wW=r'A4 L) L) 2l
a, a, a,

Then if 6 U can be made to vanish by the use of #, the follow-
ing equations must be possible :

u, =0, uel =0 Uy = 0, us’ =0,
where neither x, nor x, must fall without the limits of integra-
tion. To determine the possibility of these equations we first

eliminate between them the constants Z—“, % and gi, by which
we shall arrive at an equation containing only x,, #,, and such
constants as enter y in the equation of the curve represented
by the solution. It may then happen, asin the preceding exam-
ple, that we can determine the possibility of satisfying this
equation within the limits of integration. Or, if necessary,
we-can, by using the values of y, s/, etc., obtained from the
equation of the curve, eliminate all constants but numbers,
thus securing a numerical equation between x,, x,, 7, ¥s 7.,
etc., which it must be possible to satisfy within the limits of
integration.
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If, then, it be possible to satisfy this equation, we infer, as in
Case I, that we have neither a maximum nor a minimum. But
if the limiting values of # and #’ cannot be made to vanish
simultaneously, we may assume that we have a maximum or
a minimum according as @, is negative ar positive.

This assumption will, however, be subject to any doubt
arising from the- possibility that we may not be able by any
selection of constants to prevent 47, or M, from becoming
infinite, or A/, from vanishing for some value of x within the
limits of integration, thus rendering the corresponding ele-
ment of dU infinite. To dispose of this doubt, we must, in
the next place, actually find the quantities 47,, M/, and M, and
possibly A7, as functions of x, and but three arbitrary con-
stants, any constants which may enter 7, etc, not being
reckoned. But this latter step, which will usually involve
difficulty, may in general be omitted.

181. Some exceptions also occur in the treatment of this
case which are similar to those mentioned under Case 1 (see
Art. 157). We shall, however, merely indicate these excep-
tions, the discovery of which appears to be due likewise to
Spitzer. (See Todhunter’s History of Variations, Art. 276.)

Suppose, first, @, to become zero. Then it is shown that
in order that U may become a maximum or 2 minimum, 4, must
have respectively a positive or negative sign throughout the
range of integration. '

Suppose, in the second place, that we have 2, zero, and
also A4, zero, 4 and A, having the values given in equations
(9), Art. 164. Then it is shown that in order that U may
become a maximum or a minimum, 4 must be respectively
negative or positive throughout the range of integration.
Moreover, in this case, as in Case 1, Art. 157, we shall find
that the equation 47 = o will not be a differential equation in
7, but merely an ordinary algebraic equation, and that there-
fore y will, without integration, be determined as a function of
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x. Hence, geometrically, there will be no solution unless the
limiting values of y and » happen to satisfy the equation of a
particular curve or class of curves.

Suppose, lastly, that ey, 4, and 4 become severally

zero. Then, as in Case 2, Art. 157, the equation U = !/x’ x‘V dx is

capable of being integrated, and therefore -the maximum or
minimum state of U must, if at all, be found by the differential
calculus; and if the limiting values of #, ¥ and ' be fixed, I/
will have neither a maximum nor a minimum state.

It is evident that in all these cases I contains merely the
first power of »”, and they are, therefore, like those in Art.
157, only examples of Exception 2, Art. 51.

182, As the most general case of Jacobi’s Theorem is pre-
cisely analogous to that already explained, and as it is rather of
analytical than practical importance, we shall merely indicate
the method of effecting the required transformation.

CASE 3.

Let U= £ o Vdx, where ”is any functionof x, 5, ¥/, . . ..

™. Then the general solution 47 = o will usually give y as
a function of » and 27 arbitrary constants of integration, and
these 27z arbitrary constants must be so determined as to sat-
isfy the conditions at the limits, where we shall always suppose
the limiting values of z, , ¥/, . . . . ™= to be assigned.
Now, as before, since these conditions hold at the limits,
and the terms of the first order must vanish, we may write

—— I xl
SU = 514 SM 8y d,
and may then, by Lemma I., put 647 under the form

SM = Ady + (A,ay' )'+ are WE +(An 8y )("’.
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We shall also have, in this case,
u=Ar+A4,r,+etc..... + Aonron.

Hence, by changing dy into «#, and integrating by parts with
the aid of Note to Lemma I1., we shall obtain a result which
may be written

Y=
I Py y) ” (n) ’
—E'A: {B,t (Bt)+etc ..... +(Bt ) )zta’x.

Then, as formerly, putting #,7, for #, and integrating again
by parts, we have

o =

f { .2, ( : t”,,)/-|— ete. - . .. + (Cn fon = 1))("— 3 } )

In this equation we may change ¢, into %, where u, = w',
and w, is a quantity which satisfies the differential equation

-9

C,why+ (Cs w”b)’—l— etc..... - (Cn wp M — 1))(n = (2}

Making this change, and integrating by parts, as before, we
have

1 Z1 ” f
U = —5'/x; {D,z'b-{- (D‘t b) +etc .....
=3
+(Dntb(n—2)) }t’ba’x.

Continuing this process z times, we shall evidently arrive at
a result which may be written

1 [ n
sU=+1 :
sU=x_ [THuras,
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the positive or negative sign being used according as # is
even or odd.
Now it is evident, from the mode in which the integration is

effected, that // must equal 4, o’ o’y 2’y . . . ., and 4, = %,
J/ 2

the positive or negative sign being used according as # is even
or odd, as will at once appear if we form the functions 4, 4,,
etc., by Note to Lemma I.

183. Let us next consider the quantities #, #,, u,, etc. We
have, by the same reasoning as that hitherto employed,

o
u=ar +ar,tetc..... —+ awm72n, 2 A— o

v (1)
Vg = —, v=20b,7,+ 6,7, Fetc. . ... ~+ bon7on .

24

But the 27 constants @ and the 2z constants 4 are not entirely
independent, but must be so related that o, may satisfy the
equation '

/ (n—1)
/3 T -+ (Bg '?J”a) +etc..... -+ <Bn 'ya(n)) =o0; (2)

that is, 74, when put for ¢, must render / /dx zero.

The following relations are also evidently true:

I = uéM, M= zta./[dx, =273 /], dz, etc. (3)
Now to determine the nature of #, we see from (1) that w; is
a quantity which, being put for #,, will render f I, dx zero; that
is,will render 7, or #, f [dxzero,will render / [dx or ud. M zero,
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