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Introduction The basic laws of electromagnetism were established in the
nineteenth century. Initially, the electric and magnetic
interaction were considered to be independent, each of them
governed by its own Gauss-like law. Ampere's law provided
the first hint of a linkage, since it acknowledged the fact
that moving charges produce magnetic fields. The link
between electric and magnetic fields was further clarified by
Faraday's induction law. Finally, James Clerck Maxwell,
completed the set of laws that fully characterize the electro-
magnetic interaction. Maxwell also went a step further: by
combining the electromagnetic equations, he was able to
show that electric and magnetic fields in free space satisfy a
wave equation in which the wave speed happens to be
exactly equal to the measured speed of light. The obvious
conclusion was that light is nothing but an electromagnetic
wave. In this chapter, we will explore this fascinating
discovery.

MaxwellÕs equations Maxwell's equations in integral form
When Maxwell started his work on electromagnetism, the
known field equations were GaussÕ laws for the electric and
magnetic fields, Amp�reÕs law, and FaradayÕs induction law.
You probably know these equations in integral form. GaussÕ
law for the electric field states that

      
E ⋅ =∫ dS

q
S ε0

                   (1)

where E is the electric field, q the electric charge enclosed by
the surface S  and ε0 = 8.854 × 10-12 N-1 m-2 C2  is the
vacuum permittivity. Since there are no magnetic charges,
GaussÕs law for the magnetic field is

      
B ⋅ =∫ dS

S
0                     (2)

Amp�reÕs law relates any current I with the magnetic field B
it creates:

      
B ⋅ =∫ dl I

L
µ0     ,               (3)
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where the magnetic field is integrated along any closed path
that encircles the current and µ0 is the magnetic permeabil-
ity of vacuum µ0 = 4π × 10-7 m kg C-2.  Finally, FaradayÕs
law describes the electric field produced by a changing
magnetic flux:

        
E ⋅ = − ⋅∫ ∫d d

d
dl S

t
B

L S
              (4)

where the surface integral is over the any surface S enclosed
by the line L along which the line integral is performed.

Maxwell noted an inconsistency in the accepted form of
Amp�reÕs law. Suppose you apply this law to the circuit
illustrated in Fig. 1
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Figure 1 The line integral of B along L is
proportional to the current
across any surface S bounded
by L. When L shrinks to zero,
the surface becomes closed.

If the line L  shrinks to a point, the line integral of B
becomes zero. At this point the surface is closed, so that
Amp�reÕs law implies that the net current leaving a closed
surface is always zero. This is perfectly reasonable if we
imagine a wire entering and leaving the surface, for the
current that enters the volume enclosed by the surface is
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exactly equal to the current that leaves the volume. Thus the
net current is zero. Imagine, however, that the above surface
encloses one of the plates of a capacitor. If the net current
flowing across the surface is zero, this means that the net
charge enclosed by the surface is constant. In other words,
the charge on a capacitor plate should remain constant. This,
of course, is not true. Maxwell figured out an ad hoc way of
fixing this problem. He reasoned that for the case of a closed
surface the inconsistency is removed if the right-hand side of
Eq. (3) is replaced by µ0 (I + dq/dt), where q is the charge
enclosed by the volume.  When the line shrinks to a point,
we get I + dq/dt = 0, or I = - dq/dt. This is obviously true,
for the net current leaving a volume is by definition the rate of
change of the charge inside the volume. Using GaussÕ law to
express the charge in terms of a surface integral of the
electric field, Maxwell proposed that Amp�reÕs law be
modified to

        
B ⋅ = + ⋅





∫∫ d d

d
E dl Sµ ε0 0I

t SL
      (5)

For the case of a closed surface, MaxwellÕs modification of
Amp�reÕs law must be correct. But he also assumed that the
new expression would be valid even in cases when the surface
is not closed. Of course, this would have to be verified by
experiment. For cases where the electric field does not
depend on time, such as in DC circuits, the new term added
by Maxwell is zero and we recover the standard Amp�reÕs
law. Eqs. (1), (2), (4), and (140) are known, together, as
Maxwell equations . They characterize the electromagnetic
fields completely. They also lead to the wave equation for the
electromagnetic field. However, the wave equation is a
differential equation. To show that it follows from MaxwellÕs
equations, we must first rewrite MaxwellÕs equations in
differential form.

MaxwellÕs equations in differential form
Let us first consider GaussÕ law for the electric field. Suppose
that we apply Eq. (1) to the infinitesimal volume element in
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Fig. (2).
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Figure 2 Infinitesimal volume on which we apply GaussÕ law for
the electric field

The surface integral over the six faces of the cube becomes

    

S x x

y y

z z

E x x E x y z

E y y E y x z

E z z E z x y
q

∫ = + −[ ]
+ + −[ ]
+ + −[ ]

( ) ( )

( ) ( )

( ) ( )

d d d

d d d

d d d =
ε0

         
(

where q is the charge inside the cube. This charge can be
written q = ρ dV  = ρ dx dy dz.  On the other hand, the
terms inside the square brackets can be written in terms of
the derivatives of the field, so that we obtain

    

∂
∂

∂

∂
∂
∂

ρ
ε

E
x

E

y
E
z

x y z+ + =
0

             (

This is GaussÕ law in differential form. We can now define a
special vector that simplifies the notation. Our ÒvectorÒ,
denoted as ∇∇∇∇ , is defined, in terms of its components, as
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∇ =







∂
∂

∂
∂

∂
∂x y z

, ,                  (8)

This vector follows the usual rules of vector multiplication,
except that multiplication means in this case differentiation.
For example, for two vectors A and B it is known that the
dot product can be written as A¥B = AxBx+AyBy+AzBz.
Similarly, the dot product ∇∇∇∇ ¥E is given by

      
∇ ⋅ =







⋅ ( ) = + +E ∂

∂
∂
∂

∂
∂

∂
∂

∂

∂
∂
∂x y z

E E E E
x

E

y
E
zx y z

x y z, , , ,

(9)

Hence we can write GaussÕ law for the electric field as

    
∇ ⋅ =E ρ

ε0

                        (10)

Similarly, we can write GaussÕs law for the magnetic field as

    ∇ ⋅ =B 0                       (11)

FaradayÕs law can also be written in differential form by
considering three infinitesimal squares on the planes XY, YZ,
and ZX. Computing the line integral of the electric field
along the sides of the squares and equating it to the flux of
the electric field, one can show (see homework problem)
that FaradayÕs law in differential form can be written as

    
∇ × = −E B∂

∂t
  ,                  (12)

where the left-hand side is the vector product between the
ÒvectorÓ (¶/¶x,¶/¶y,¶/¶z) and the real vector E. As in the case
of GaussÕ law, when the vector ∇∇∇∇  ÒmeetsÓ another vector, it
differentiates it. Finally, Amp�re-Maxwell law can be written
as 

      
∇ × = +B j Eµ µ ε ∂

∂0 0 0 t
   ,          (13)
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where the vector j represents the current density. Its
magnitude is the current per unit area at a given point, and
its direction indicates the direction of the current.

Wave solutions to
Maxwell equations

Solution to MaxwellÕs equations in free space
Let us consider MaxwellÕs equations in free space, where the
charge density ρ as well as the current density j are zero. Let
us assume that the only non-zero component of the electric
field lyes along the y-axis, that is, E = (0, E,0) and that the
magnetic field has a single component along the z-axis, B =
(0, 0, B). If you donÕt see any reason for making these
assumptions, itÕs because we are cheating: since the solution
to MaxwellÕs equations will have this form, we will simplify
the math a lot by making the assumptions at the outset.
However, our solution is no less rigorous: once we find a
solution - by whatever dishonest means - we know it must
be the solution. In advanced courses you will learn how to
derive the solutions to MaxwellÕs equations under the most
general conditions.
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Figure 4 Orientation of the electric and magnetic
fields for the proposed solution to
MaxwellÕs equations in free space.

Figure 4 shows our electric and magnetic fields, which due
to our choice are perpendicular to each other. Notice that
although the electric field only has a component along the y-
axis, this component will in general be a function of the
three coordinates x, y, and z and the time, that is, E =E(x,
y,z,t). Similarly, although the orientation of the electric field
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is along the z-axis, this component will in general be a
function of x,y, z, and t: B =B(x,y,z,t). We will now apply the
four Maxwell equations to these fields.

A) GAUSS LAW FOR THE ELECTRIC FIELD

      

∇ ⋅ =






⋅ ( )

= =

E ∂
∂

∂
∂

∂
∂

∂
∂

x y z
E

E
y

, , , ,0 0

0
          , (14)

since the charge density in free space is zero.

B) GAUSS LAW FOR THE MAGNETIC FIELD

      

∇ ⋅ =






⋅ ( )

= =

B ∂
∂

∂
∂

∂
∂

∂
∂

x y z
B

B
z

, , , ,0 0

0

          (15)

C) FARADAYÕS LAW

      

∇ × = = − +

= −

E

u u u

u u

u

x y z

x y

z

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

x y z
E

E
z

E
y

B
t

0 0
      (16)

where ux, uy and uz are unit vectors along the directions of
the three axes. Notice that FaradayÕs law is a vector equation.
It actually contains three scalar equations, one for each
component. Equating the different components (and not
including the trivial equation 0 = 0 for the y-direction), we
obtain
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∂
∂
∂
∂

∂
∂

E
z
E
x

B
t

=

= −

0
                        (17)

D) AMPERE-MAXWELL LAW

      

∇ × = = −

=

B

u u u

u u

u

x y z

x y
∂

∂
∂

∂
∂

∂
∂
∂

∂
∂

µ ε ∂
∂

x y z
B

B
y

B
x

E
t y

0 0

0 0

 ,   (18)

which implies

    

∂
∂
∂
∂ µ ε

∂
∂

B
y
E
t

B
x

=

= −

0

1

0 0

                   (19)

The results above show that the derivatives of E and B with
respect to the y and z coordinates are zero. This means that
E and B are functions of x and t only: E = E(x,t) and B =
B(x,t). These fields satisfy the coupled equations

    

∂
∂

∂
∂

∂
∂ µ ε

∂
∂

E
x

B
t

E
t

B
x

= −

= − 1

0 0

                   (20)

These equations can be uncoupled by taking one more
derivative and noting that the  order in which the deriva-
tives with respect to x and t are performed is irrelevant. This
means that the t-derivative of the first equation in (20)
equals the x-derivative of the second equation, or
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∂
∂

µ ε ∂
∂

2

2 0 0

2

2

B
x

B
t

=
.                (21)

Similarly, by taking the x-derivative of the first equation in
(20) and comparing with the t-derivative of the second
equation, we find

    

∂
∂

µ ε ∂
∂

2

2 0 0

2

2

E
x

E
t

=
               (22)

Thus the electric field and the magnetic field both satisfy a
wave equation! The wave speed in this equation is c =
(µ0ε0)-1/2. Intrigued, Maxwell used the known values of ε0
and µ0 and computed the speed c. He found

c =

=
× ⋅ ×

= ×

− − − − − −

1

1

1 22 10 8 85 10

3 03 10

0 0

6 2 12

8

µ ε

. .

.

m kg C C N m

m/s

2 1 2

(23)

This is exactly equal to the speed of light. The conclusion
was unavoidable: light is nothing but electromagnetic waves!
If confirmed, Maxwell had made one of the most important
scientific discoveries of all times. Because he had introduced
an ad hoc modification to the electromagnetic equations, he
felt that his result had to be confirmed experimentally. The
confirmation was provided by Heinrich Hertz.

Electromagnetic waves are transverse waves
Since the electric and magnetic fields satisfy the same wave
equation as the mechanical waves we have discussed so far,
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we can immediately write the solutions as traveling or
standing waves. For example, one possible solution is E = E0
sin (kx-ωt). A similar solution would be valid for the magnet-
ic field. The two solutions are related, because the fields are
coupled. For example, if E =E0 sin (kx-ωt), then from Eqs.
(20) we obtain B = B0 sin (kx-ωt), with kE0 = ωB0. Using ω
= ck, we find

E0  = cB0                             (24)

Notice that the wave propagates in the x-direction, whereas
the E-field is in the y-direction and the B-field is in the z-
direction. Of course, there is nothing special about our
choice of axis. We could have oriented the axis in any
arbitrary way. This means that our result is completely
general: in electromagnetic waves, the electric and magnetic
fields are perpendicular to the direction of propagation.
Therefore, electromagnetic waves are transverse waves. The
electric and magnetic fields are also mutually perpendicular,
as shown in Fig. 6
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Figure 6 Schematic diagram of a linearly polarized
electromagnetic wave propagating in the x-
direction

The direction of the electric field is conventionally regarded
as the direction of polarization . For the waves in our
solution, the field is said to be linearly polarized because
the electric and magnetic fields are in fixed directions.
However, you can show that the fields E = [0, E0 sin (kx-ωt),
E0 cos (kx-ωt)] and B = [0, B0 cos (kx-ωt), -B0 sin (kx-ωt)]
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satisfy the wave equation. In this case, the electric and
magnetic field are still mutually perpendicular, but their
direction no longer fixed in space: they rotate in the y-z
plane. This type of wave is said to be circularly polarized.
The figure above represents a linearly polarized sinusoidal
wave.

The meaning of the
wave equation for
the fields: From
ether to relativity

For the first time, we have encountered a wave equation
that is not derived from NewtonÕs second law. The wave
equation for electromagnetic waves is a direct consequence
of MaxwellÕs equations. Unlike the wave equation for elastic
waves in matter, which is an approximation only valid when
the wavelength is much longer than the separation between
atoms, the wave equation for electromagnetic waves is exact.

Since elastic waves in matter represent the vibration of a
continuous medium, such as air, water, a solid, etc., it was
initially thought that the electromagnetic waves represent
the vibration of a certain medium, which was called ÒetherÓ.
Aside from the obvious analogy, there was a more disturbing
reason why physicists hung to the idea of ÒetherÓ for a long
time. Physicists expect all physical laws to be identical when
tested from different inertial reference frames. For example,
if observer A is at rest and observer B moves with constant
velocity relative to A, both will measure the same accelera-
tion for a given object. In other words, NewtonÕs laws are
the same for the two observers. On the other hand, suppose
that observer A is at rest with respect to the medium where
an elastic wave propagates, but observer B is in motion with
some constant velocity. Now B will not see the same wave
equation as A.  We have already confronted this issue
(although not in the context of the wave equation) when we
discussed the Doppler effect. However, there is no conceptu-
al problem here, because A and B are not equivalent Òby
symmetryÓ. One of them is moving relative to the medium
and the other is not.

If we apply the same analysis to electromagnetic waves, we
also find that different observers see different wave equa-
tions. This is no problem if there is ether, because Maxwell
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equations would be valid only for a reference frame at rest
relative to the ether. But if there is no ether and Maxwell
equations are to be valid for all inertial observers, then all
these observers should ÒseeÓ the same wave equation. The
only way to make the wave equation the same in all inertial
reference frames is to abandon the Galileo transformations
that relate the motion of objects seen by different observers.
For example, the well-known (and obvious) addition-of-
velocities theorem can no longer be valid. This was absurd
and unacceptable to most physicists in the late XIXth
century. So they concluded there must be something called
ether. Hence they devised experiments (the famous
Michelson-Morley series) to measure the speed of the Earth
relative to the ether. This velocity was found to be zero. In
other words, the Earth was found to be the object in the
Universe which was at rest with respect to the ether.  This
idea would have been attractive to the Church officials who
ÒhelpedÓ people like Galileo correct his Òmistakes,Ó but it
was unacceptable to the physicists of the early 20th century.
So they were forced to abandon the standard transformation
laws and embrace the so-called Lorentz transformations,
which have the property that they make the wave equation
for light look the same in all reference frames. The first to
propose this revolution was Albert Einstein in a 1905 paper
entitled ÒOn the electrodynamics of moving bodies.Ó You
can now understand the reason for the word Òelectrodynam-
icsÓ in the first paper on relativity theory: relativity is
almost a necessity once we accept MaxwellÕs equations.

Energy in the
electromagnetic
field

In your previous physics courses, you found that the energy
needed to create an electric field is given by

    
W d

V
= ∫1

2 0
2ε E V ,                  (25)

where the integral over the entire volume occupied by the
electric field. To avoid confusion between the notation for
electric field and energy, we use here W for energy. We can
therefore define an electric energy density E given by
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EE = 1/2 ε0E2                               (26)

Similarly, the energy needed to set up a magnetic field B is
given  by

    
W d

V
= ∫1

2 0

2

µ
B V ,                (27)

so that the magnetic energy density is given by

EB = 1
2µ 0

B 2
                    (28)

An electromagnetic wave has both electric and magnetic
fields, so that its energy density will be the sum of Eq. (26)
and Eq. (28). Thus we obtain

E = EE + EB = 1/2 ε0E2 + 1
2µ 0

B 2 = ε0E2          
(29)

where we have used c2 = 1/(ε0 µ0) and B = E/c. Notice that
for an electromagnetic field the magnetic and electric
energies are equal. In a previous chapter, we showed that the
intensity of a wave, that is, the energy per unit time passing
across a unit surface perpendicular to the direction of
propagation, is I = cE. Hence the intensity of an electromag-
netic wave is given by

I = cε0E2                                        (30)

Momentum in the
e le ct ro m agne t ic
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Figure 7 A charge under the influence of
an electromagnetic wave
absorbs a net momentum from
the fields.

Let us now consider a charge q,  initially at rest at some
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point on the x-axis. An electromagnetic wave, with the
electric field polarized in the y-direction an the magnetic
field polarized in the z-direction, approaches the charge. The
force acting on the charge is given by the well-know Lorentz
formula

    
F E v B= + ×( )q                      (31)

If we write v =(vx,vy,vz), E = (0,Ey,0), B = (0,0,Bz), we can
express this force as 

    
F u u= −( ) +qE qv B qv By x z y y z x        (32)

where the uÕs are unit vectors along the three axes. Let us
now average the force over one cycle of the oscillation.
Clearly, <qEy> = 0.  On the other hand, we can easily show
that vx changes much more slowly that vy. The acceleration in
the x- direction can be written as

dv x

dt
=

q
m

v yB z =
q
m

v y

Ey

c
=
�

�
��
v y

c
�

�
��

qEy

m
=
�

�
��
v y

c
�

�
��

dv y

dt
   (33)

Because vy/c << 1 for non-relativistic objects (our final result
will be correct even for relativistic particles, but the deriva-
tion must take into account the relativistic expression for
momentum. The derivation presented here is only valid for
particles that move at speeds much smaller than the speed of
light) we conclude that the acceleration in the x-direction is
much smaller than the acceleration in the y-direction. This
means that vx remains almost constant over one oscillation
cycle of the electromagnetic fields. Hence we can write-
q<vxBz> �qvx< Bz> = 0. Therefore, the force in the y-
direction averages to zero and there is no momentum
transfer in the y-direction. We can thus write

    
F u= q v By z x                   (34)

Let us now compare this expression with the average work
done on the charge per unit time. Only the electric force
does work, so that we can write
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d
d
W
t

q qv Ey y= ⋅ = ⋅ =F v v E            
(35)

The average of this over a cycle is

    

d
d
W
t

q v Ey y=                  
(36)

If we note that Bz = Ey/c and compare Eq. (34) with Eq.
(35), we conclude that

      
F

p
u= =

d
d

d
dt c
W
t x

1
              

(37)

Hence the momentum transfer and the energy transfer and
directly proportional. In analogy with the energy case, we
can define a momentum density P given by

P = E/c ux                          (38)

Here P is the momentum per unit volume contained in an
electromagnetic wave.

Why do fields carry
e n e r g y  a n d
momentum?

We have computed the energy density and the linear
momentum density in electromagnetic waves. We can also
show that there is a corresponding angular momentum
density associated with these waves. At this point you may
wonder what is the meaning of all this.  When the concepts
of energy and momentum were introduced in previous
physics courses, they were associated with particles having a
certain mass. However, now we seem to be associating the
energy and the momentum with the fields themselves. We
say that the wave ÒcarriesÓ energy and momentum. In the
case of elastic waves, this is no problem because the waves
involve the motion of masses, so that the energy we are
talking about is the standard energy of vibrating particles.
But there are no ÒparticlesÓ vibrating in an electromagnetic
wave, itÕs the fields themselves which oscillate. How can the
fields ÒhaveÓ energy and momentum? The whole idea is even
more disturbing when you remember that the fields were
introduced as a mathematical artifact. The ÒrealÓ thing was
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the force between charges, the fields were viewed only as a
practical way to compute those forces. When you derived
the ÒenergyÓ of an electromagnetic field as proportional to
the integral of E2 over the volume, this was little more than
a mathematical curiosity. It was always clear that you were
talking about the standard potential energy of a system of
charges.

When electromagnetic waves are considered in their proper
relativistic context, however, they must carry energy and
momentum. The reason why the total momentum of a
system of particles is conserved is NewtonÕs third law.
Because any pair of particles exert equal and opposite forces
on each other, the momentum gained by one of them is
exactly compensated by the momentum lost by the other
one. But NewtonÕs third law is not valid for charges in
motion, because the force (the electric and magnetic fields)
cannot travel faster than the speed of light. When a charge is
suddenly shaken, it takes some time for a second particle to
ÒfeelÓ this displacement. If NewtonÕs third law is not valid,
then momentum cannot not be conserved unless we assume
that the missing momentum is ÒtravelingÓ with the wave.
Hence only the sum pparticles + pfields can remain constant. To
the extent that we believe that energy and momentum are
conserved, we must accept the fact that the fields carry
these quantities. At this point, the fields cease to be a
mathematical artifact. They are as ÒrealÓ as the particles
which generate them.

Radiation We have so far discussed the solution to Maxwell equations
in free space, where ρ = 0 and j = 0. Of course, a possible
solution is also E = 0 and B =0, i.e., no field at all. In free
space, this solution is just as good as the electromagnetic
waves we proposed above. The reason why the wave is the
right solution is that somewhere in space, maybe far from
our ÒfreeÓ space, the charge and/or the current is not zero.
Thus E and B cannot be zero at those points. On the other
hand, if charge and current are zero everywhere, then the zero-
field solution is the right solution and there are no waves.
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This is equivalent to saying that electromagnetic waves
originate in charges and currents. If we solve MaxwellÕs
equations in the presence of charge and currents, we can
show how the electromagnetic waves are radiated by
accelerated charges and fluctuating currents. The mathemat-
ics of this, however, is complicated enough to make it a
topic for advanced courses. However, if we admit the
relativistic principle that no ÒinformationÓ can travel faster
than the speed of light, we can at least begin to understand
how a transverse wave can be generated. Consider the charge
in Fig. 9.

111111111
111111111
111111111

000000000
000000000
000000000111111111
111111111
000000000
000000000

   

0
   

x  +ct
   

x
   

0
   

0

   

x
   

f

Figure 9 Transverse electromagnetic waves are
produced when the charge at the origin is
suddenly displaced to position x0.

Before t = 0, the charge it at rest at the origin and a distant
observer at xf  sees the usual Coulomb field emanating
radially from the charge. Note that the electric field is radial,
not transverse. At t = 0, the charge is suddenly displaced to
x = x0. Now the charge will produce a radial Coulomb field
whose origin is at x0. The observer, however, will not see an
immediate change in the field he detects, for if he would, he
would be able to tell instantaneously that the charge has
moved. In other words, the information that the charge has
moved would travel in no time from x0 to xf. This violates
relativity. So the observer must see the ÒoldÓ Coulomb field
for a while. The ÒnewÓ Coulomb field front cannot travel
toward him at a speed higher than c. On the other hand,
GaussÕ law applies everywhere; in particular, at the boundary
between the ÒoldÓ and the ÒnewÓ Coulomb field. But because
there is no charge at this boundary, the field lines must be
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continuous. Thus the field lines must bend and the field will
be transverse at the boundary between the ÒoldÓ and the
ÒnewÓ Coulomb field. This transverse section is nothing but
the electromagnetic wave produced by the sudden motion of
the charge. 

If the charge had been moving at constant velocity, it would
produce a standard Coulomb electric field plus a magnetic
field. The information that the charge is moving would have
infinite time to arrive to the observer, and relativity would
not be violated. It is only when the velocity is changed, i.e.,
when the charge is accelerated, that electromagnetic waves
are produced. We can thus state

Electromagnetic waves are produced by accelerated
charges.

Radiation and
Quantum Mechanics

Our conclusion that charges under acceleration radiate
electromagnetic waves has a dramatic impact on our
understanding of the atomic structure. Experiments suggest
that electrons in atoms orbit around the nucleus in much
the same way planets orbit around the Sun. But an electron
in orbit around the nucleus is under acceleration (centripetal
acceleration) and must radiate electromagnetic waves.
Because these waves carry energy away from the electron,
the electron should rapidly spiral down to the nucleus: the
atom should not be stable! This paradox can only be solved
with quantum mechanics. According to quantum theory, the
electron can be viewed as a wave like the standing waves in a
cord. When the electron is in one of the Ònormal modesÓ
the wave is stationary and no radiation is emitted. When
the electron changes from one normal mode to a different
one, the electron wave is suddenly modified and radiates
electromagnetic waves during the transition.

It is ironic that Maxwell equations, the most impressive
achievement of classical physics, brought about the demise
of the very fundamentals on which they were built. Today we
now that the Galilean transformations have to be replaced
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by relativistic transformations and that Quantum Mechanics
replaces Newtonian Mechanics. Maxwell equations them-
selves are the only ÒsurvivingÓ element of classical physics.

MaxwellÕs equations
inside a material

Dipole moment and polarization
The dipole moment  of a system of charges is defined as

    
p r= ∑ qi

i
i      ,                    (39)

where ri is the position vector of charge i. When the system
consists of two charges q and -q, Eq.(39) reduces to the
familiar expression p  = qa , where a is a vector with its
origin at the negative charge and its tip at the positive
charge.

The polarization P of a material is defined as the dipole
moment per unit volume. If a certain substance has N atoms
or molecules per unit volume, each with a dipole moment p,
the polarization is given by P = Np.

In this discussion, we will consider materials that do not
have a permanent polarization, but become polarized in the
presence of an external electric field. We will also assume
that the induced polarization P  is parallel to the external
electric field E. This is expected for homogeneous media and
for cubic crystals.

   

E
   

P

Figure 10 Microscopic picture of the polarization
induced in a material by an external electric
field.

Let us consider any non-conducting material in the presence
of an external electric field.The atoms or molecules will be
distorted in such a way that a net charge appears at the
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surface. It is easy to calculate the magnitude of the charge.
Suppose that the positive and negative charges in each
ÒatomÓ of Fig. 10 is q. The electric field separates these
charges by a distance a. If the number of ÒatomsÓ per unit
volume is N and the surface area is S, then the charges at
the surface occupy a volume Sa. Thus, the total charge at the
surface is Q= NSaq. The surface density of charge, defined as
σ = Q/S , is given by σ = Nqa . But this is precisely the
magnitude of the polarization, so that we find σ = P. If the
dipole moment makes an angle θ with the sampleÕs surface,
the volume occupied by surface charge becomes Sa cos θ, so
that σ = P cos θ. This can be written in general as

    σ = ⋅P un                             (40)
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P

Figure 11 Any volume inside a dielectric
with non-uniform polarization
can have an excess or defect
of charge

Let us now consider any volume inside a dielectric material
with a non-uniform polarization, as in Fig. 11. At each point
at the surface some charge will be displaced just outside the
surface. If the polarization is non-uniform, the net charge
inside the volume might change because the charges moving
in and out of the surface at different points are not equal.
Let us compute the net change in charge due to the polariza-
tion, which we will call ∆Qpol. The change of charge inside  the
volume is equal to minus the ÒsurfaceÓ charge, so that we
obtain
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∆∆Q Spol S

= − ⋅∫ P n d               (41)

where the integral runs over the entire surface of the
volume. On the other hand, we can define a polarization
charge density ρpol as 

    
∆∆Q Vpol polV

= ∫ ρ d                (42)

Combining the two expressions, we obtain

      
ρpolV S

V Sd d∫ ∫= − ⋅P n            (43)

This is a Gauss-like form for the polarization. By analogy
with the standard forms of GaussÕ law, we can immediately
convert this equation to a differential form

    ρpol = −∇ ⋅ P                       (44)

The equation of continuity
Whenever the polarization is a function of time, the charge
will also change with time. This means that there will be
currents, because the current I leaving a volume is equal to-
dQ /dt if Q is the charge inside this volume. This can be
converted to a differential form. Let us consider an infinites-
imal volume as in Fig. 12

1
1
1

0
0
0111
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000

11110000    

j  (x + dx)
  

j  (x)

j  (y + dy)

   

j  (y)

   

x

   

y

   

x

   

y

Figure 12 Infinitesimal volume on which
we apply the relation I = -dq/dt.

Since the current density j represents the current per unit
area crossing a surface, the net charge loss of the cube per
unit time is given by
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where Q is the charge inside the cube. This charge can be
written Q  = ρ dV  = ρ dx dy dz.  On the other hand, the
terms inside the square brackets can be written in terms of
the derivatives of the current density, so that we obtain

  

∂
∂

∂

∂
∂
∂

∂ρ
∂

j
x

j

y
j
z t

x y z+ + = −    ,          (

which can be expressed in a more compact form as

      
∇ ⋅ + =j ∂ρ

∂t
0                     (47)

This expression is universally valid, and is known as the
equation of continuity. It can be viewed as a Òcharge
conservationÓ statement: because charge is not created or
destroyed, the charge loss per unit time in a volume must be
equal to the electric currents exiting the volume. Notice that
in Chapter 7 we found a very similar equation for the case of
water waves. Eq. (4) in Chapter 7 can be written as L C ψψψψ    = 0 .
The right-hand side of the continuity equation becomes zero
because we assume that water is incompressible and that no
bubbles are formed in the liquid.

Maxwell equations with polarization charges
Inside a polarizable medium, it is convenient to split the
charge density into two terms:

  ρ ρ ρ= +free pol  ,                       (48)

where ρfree corresponds to the charges that are unbound, free
to move (as in a metal) and ρpol is the polarization charge
density given by Eq. (44). Similarly, the current density can
be split as
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    j j j= +free pol                        (49)

Each term satisfies its own continuity equation. For the
polarization charges, for example,

    
∇ ⋅ = − = ∇j P

pol
pol

t t

∂ρ

∂
∂

∂
                (50)

which means

    
j P

pol t
= ∂

∂
                          (51)

Suppose that we have a solid with no free charges and
currents. A good example would be an insulating material,
such as a piece of glass. In this case, we can write MaxwellÕs
equations as

(GaussÕ law for E)       
      
∇ ⋅ = = − ∇E Pρ

ε ε
pol

0 0

               (52)

(GaussÕ law for B)                 ∇ ⋅ =B 0                        (53)

(Induction law)               
    
∇ × = −E

t
∂
∂
B

                   (54)

      
∇ × = + = +B j E P Eµ µ ε ∂

∂
µ ∂

∂
µ ε ∂

∂0 0 0 0 0 0pol t t t
   

(55)

(Amp�re-Maxwell law)

Let us try to find a solution to these equations in the way
we found a solution to MaxwellÕs equations in vacuum. We
will assume, as we did in the vacuum case, that the electric
field has a single component in the y-direction, E = (0.E,0)
and the magnetic field a single component in the z-direction,
B = (0,0,B). Also, since the polarization is induced in the
material by the electric field, we will assume that P  is
proportional to E, so that both vectors point in the same
direction. Hence the polarization vector is given by P =
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(0,P,0). If we apply MaxwellÕs equations in exactly the same
way we did in the vacuum case, we end up with the set of
equations

    

∂
∂ ε

∂
∂

E
y

P
y

= − 1

0

                    (56)

  
∂
∂

∂
∂

E
x

B
t

= −                        (57)

    

1 1

0 0 0ε
∂
∂

∂
∂ ε µ

∂
∂

P
t

E
t

B
x

+ = −             (58)

We can satisfy Eq. (56) by assuming that E (and, therefore,
its proportional quantity P) is a function of x and t only, so
that the partial derivatives with respect to y give zero.
Taking the x-derivative of Eq.(57) and the t-derivative of Eq.
(58), we eliminate the magnetic field and obtain

    

1

0

2

2

2

2
2

2

2ε
∂
∂

∂
∂

∂
∂

P
t

E
t

c E
x

+ =            (59)

Because of the term that contains the polarization, the
electric field does not satisfy a standard wave equation.
Hence inside a material ω ≠ ck and the electromagnetic
waves may become dispersive. Since the polarization is a
property of the medium, MaxwellÕs equations will give
different solutions depending on the medium. In order to
find solutions to Eq. (59), we must first find the relationship
between E and P.

Elementary theory of the polarization
We will consider the simplest possible model. We assume
that the polarization arises from the relative displacement of
electrons and positive nuclei in atoms. The force between
electrons and nuclei is represented by a spring of constant K.
(The force is actually a Coulomb force, not a spring force.
Our model is not very realistic from a classical point of view,
but the final result is very similar to the exact expression
obtained from a correct quantum-mechanical treatment of
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the problem.). LetÕs assume that an electric field of the form
E = E0 sin ωt acts on an electron of mass me. The equation
of motion is thus

    
m x

t
Kx eE te

2d
d 2 0= − − sin ω             (60)

where -e is the electron charge. This equation is identical to
the forced oscillations we discussed in Chapter 2. Its
solution is

    
x t e

m
E t( )

( )
sin= −

−e ω ω
ω

0
2 2 0            (61)

with ω2
0 =  K / m .The induced electric dipole is p  = -e x; if

there are N atoms per unit volume, the polarization is given
by

    
P e N

m
E=

−

2

0
2 2

e( )ω ω
               (62)

if the electric field is sinusoidal. Let us now go back to
Eq.(59). Using Eq. (62) to eliminate the polarization, we
obtain

    

e N
m

E
t

c E
x

2

0 0
2 2

2

2
2
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2
1

ε ω ω
∂
∂

∂
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=        (63)

This can be written as

    

∂
∂

∂
∂

2

2

2 2

2

E
t

c
n

E
x

=






                   (64)

where we have introduced the index of refraction n, given
by the expression

    
n e N

m
2

2

0 0
2 2

1= +
−ε ω ωe( )

             (65)

The importance of the index of refraction is that the
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electromagnetic waves in the medium travel with speed c/n.
The speed of light in a medium depends on the frequency of
the light. Red light and blue light travel with different
speeds. This is the reason, as we will see later, for the
separation of colors in a prism. When ω = ω0, the expression
for the refraction index diverges. In this case, we cannot
neglect the damping term in the equation of motion of the
electrons, as we did in Eq. (60). When damping is present,
energy is dissipated. For the case of electromagnetic waves,
this corresponds to light being absorbed by the material.
Thus ω0 corresponds to typical frequencies of light absorp-
tion in the material. Many insulators, such as glasses, are
transparent in the visible. For these materials, ω0 is in the
ultraviolet.

Metallic behavior
The results of the previous section apply to a system with no
free charges, such as an insulator. The polarization charges
are attached to their sites by the spring constant K. If the
spring constant becomes zero, however, this is equivalent to
setting the polarization charge free, so that the system
becomes a metal. Hence the refraction index of a metal is
given by Eq. (65) with ω0 = 0:

    
n e N

me

p2
2

0
2

2

2
1 1= − = −

ε ω

ω

ω
                     

(66)

where ωp is the so-called plasma frequency, ω 2 
p =   e 2 N 

ε 
0 
m 

e 

. For ω

< ωp, n2 < 0, which is impossible. This means that no wave
can propagate inside a metal at frequencies below the plasma
frequency. If a wave of frequency ω < ωp is incident upon a
metal, the wave is completely reflected. In a real metal, N ~
1028 m-3. Hence the plasma frequency corresponds to a
wavelength of 3300 �, which is in the ultraviolet. Visible
light is completely  reflected from a typical metal.

A good example of a ÒmetalÓ is the EarthÕs ionosphere,
which consists of air molecules ionized by the radiation
emitted by the sun. The ionosphere charge density is
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maximum at a distance of 200 - 400 km above ground. AM
radio waves can reach different points on the surface of the
Earth by reflection in the ionosphere. The ionosphere plasma
frequency is of the order of 20 MHz. This corresponds to a
charge density of 1.2 × 1012 m-3, many orders of magnitude
less that the charge density in a standard metal.

For ω > ωp, n < 1, so that the velocity v of the wave is
grater than c! This, however, does not violate relativity
because the corresponding group velocity is less than the
speed of light in vacuum. Suppose that the electric field is
given by E = E0 sin (kx-ωt). Then Eq. (64) gives

    
n c k2

2 2

2
=

ω
                            

(67)

Inserting the corresponding expression for n, given in Eq.
(66), one obtains, after some rearranging,

    
v

k
c kg = =d

d
ω

ω

2

                        
(68)

which is clearly less than c whenever ω/k > c.
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Problems

1.(Alonso 29.1) The electric field (in V/m) of a
plane electromagnetic wave in vacuum is represent-
ed by Ex = 0, Ey = 0.5 cos [2π × 108 s -1 ( t-x/c)] and
Ez = 0. 
a) Determine (i) the wavelength, (ii) the state of
polarization and (iii) the direction of propagation.
b) Calculate the magnetic field of the wave.
c) Calculate the average intensity, or energy flux per
unit area and per unit time, of the wave.

2.(Alonso 29.4) A plane sinusoidal linearly
polarized electromagnetic wave of wavelength λ =
5.0 × 10-7 m travels in vacuum in the direction of
the X-axis. The average intensity of the wave per
unit area is 0.1 W/m2 and the plane of oscillation of
the electric field is parallel to the Y axis. Write the
equations describing
a) the electric field,
b) the magnetic field.

3. (Alonso 29.5) The electric field of a plane
electromagnetic wave has an amplitude of 10-2 V/m.
Find
a) the magnitude of the magnetic field,
b) the energy per unit volume of the wave.
c) If the wave is completely absorbed when it falls on
a body, determine the radiation pressure.
d) What is the radiation pressure if the body is a
perfect reflector?

4.  Derive FaradayÕs law and Amp�re-MaxwellÕs laws
in differential form.

5. Consider an electric field given by Ey = A cos ω(t-
x/c), Ez = A sin ω(t-x/c), Ex =0.
a) Show that this field satisfies the wave equation for
waves propagating along the x-axis.
b) Calculate the corresponding magnetic field.
c) Is this wave linearly polarized? Are the electric
and magnetic fields perpendicular to each other?

6, Repeat Problem 5 for the case where Ez = -A cos
ω(t-x/c). All other quantities remain equal.

7. Two sinusoidal electromagnetic waves, both of
frequency ν and amplitude E0, travel in vacuum in
the X  and Y direction, respectively. The electric
fields if both waves are parallel to the Z -axis.
Calculate
a) The components of the total electric field
b) The components of the total magnetic field
c) The energy density E. Can it be written as the sum
of the energy densities of each individual wave?
d) Determine the planes over which the mean value
of E2 is maximum or minimum. Discuss the
connection of this result with your result in part c).

8. Show that for typical values in a gas, the second
term in Eq. (65) is small. Show that in that case the
index of refraction can be written as

n = 1 +
Ne 2

2m eε 0 �ω
2
0 − ω2 �

9.  The index of refraction of gaseous hydrogen at
normal pressure and temperatures is n = 1+ 1.400 ×
10-4 for λ = 5.46 × 10-7 m and n = 1 + 1.547×10-4

for λ = 2.54 × 10-7 m. Assuming that the formula in
the previous problem is valid, calculate ω0 and N.
How many molecules per unit volume do you
expect in this gas?

10. Consider a gas whose molecules behave like
dipole oscillators with K =300 N/m. The oscillating
particles are electrons. Calculate their characteristic
frequency. Express the index of refraction in terms
of the frequency, assuming that the gas is at normal
pressure and temperature.

11 , Show that the group velocity of very high
frequency electromagnetic waves is given by

v g =
c

1 + (Ne 2 / 2ε 0 m eω
2 )

12 .  Suppose that the valence electron of silver
atom becomes a free electron in solid silver. Find
from any Handbook of Physics and Chemistry book the
valence of silver, its atomic weight, and its mass
density. Thus find the number N of free electrons
per unit volume in solid silver.
a) Calculate the plasma frequency in silver. Show
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that for visible light the frequency of the light is
below the plasma frequency.
b) For what frequencies should the silver layer
become transparent?
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