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Introduction A fundamental property of the solutions to the continuum
wave equation is the linear relationship ω = ck between
frequency and wavenumber, or, equivalently, the famous λν
= c relationship. The most important implication of this
relationship is the following: if a certain perturbation is
imposed on a medium, the perturbation travels without
distortion. You have already found one such case in Problem
2, Chapter 5, where you started with a rectangular shape and
watched this shape travel back a forth in a cord with speed c
while remaining undistorted. Media where waves propagate
without distortion are called non-dispersive.

Systems which do not satisfy the wave equation are called
dispersive . Since the wave equation was derived as a
continuum limit approximation, one would expect all media
to be somewhat dispersive. Moreover, even in cases where
the continuum approximation is perfectly justified, the
system may not satisfy the standard wave equation. Very
important examples of this are water waves and electromag-
netic waves in matter. We will discuss water waves in this
chapter and electromagnetic waves in the next chapter as a
example of dispersive waves. 

When the medium is dispersive, a wave packet will distort
as it travels.  This has many important consequences. The
amount of information that can be transmitted with optic
fibers, for example, depends on the ability of the material to
maintain the separation between different wave packets. If
the packets broaden due to the dispersive nature of the
medium, then the initial separation must be large if one
wants to avoid overlaps. The speed of propagation of the
packet also becomes an issue. Packet distortion means that
different points travel with different speeds. Hence it is not
obvious how to define and what is the meaning of the wave
velocity concept. We will show in this chapter that this
problem can be addressed by introducing the concept of
group velocity.
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Water waves The first thing that comes to mind when one talks about
waves is the beautiful pattern of waves on the surface of a
quiet lake or the imposing shape of the ocean waves.
Surprisingly, water waves do not satisfy the standard wave
equation we derived in previous chapters, except in some
special limit cases. Hence water waves are dispersive. We
will study these waves as the first example of dispersive
waves.

Description of water waves
Our system is illustrated in Fig. 1
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Figure 1 The mathematical description of the
position of a drop of water.

When no waves are present, a certain drop of water has an
equilibrium position x,y. Under the effect of the wave, the
drop will be displaced to the position x  + ψx(x,y), y  +
ψy(x,y). Normally, the drop will oscillate about the equilibri-
um position. We see immediately a fundamental difference
with the wave problems we discussed in previous chapters:
to describe water waves, we need two position functions
ψx(x,y) and ψy(x,y). The wave equation as we now it, howev-
er, is an equation for a single function. Moreover, the
displacements of the drop in the x- and y-directions are
coupled by a number of requirements. For example, we now
that water is essentially incompressible. This means that the
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amount of water entering a certain volume must equal the
amount of water leaving this volume. This imposes a
connection between the functions ψx(x,y) and ψy(x,y), as we
will see below. An additional connection is imposed if we
consider water without whirlpools or vortices. Instead of a
wave equation with a single function, the mathematical
description of water waves requires several coupled differen-
tial equations. We will start with some simplified examples
in the sections below.

Equation of motion for an element of water
The starting point of all dynamical problems is NewtonÕs
second law. Let us apply this law to the x-direction motion
of an element of water of volume L × dx × dy. (The accelera-
tion of gravity is in the negative y-direction).
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Figure 2 The horizontal motion of an element of water.
The dashed horizontal line represents the
equilibrium surface of the water.

The forces FÕ and F acting on our element are caused by the
pressure exerted by the surrounding water. In equilibrium,
these forces cancel out, but in the case depicted in the figure
the height of the water is different at points x and xÕ, so that
F and FÕ are not exactly equal and opposite. The force F is
given by F = pL dy, where L × dy is the cross-sectional area
of the element of volume and p the pressure. The pressure at
depth y is given by p(y) = p0 - ρgy, where p0 is the atmo-
spheric pressure and ρ the density of water. The difference
between FÕ and F arises from the fact that the depth for FÕ is
-y+ψy(xÕ,0), while the depth for F is given by -y+ψy(x,0).
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Hence the net horizontal force is

F − F N = −   ρ gL d x ψ y ( x N , 0 )   −   ψ y ( x , 0 )          (1)

This must equal the mass ρ  L × dx × dy times the horizontal
acceleration. For xÕ = x + dx with dx small, we can approxi-

mate ψ y ( x N , 0 )   −   ψ y ( x , 0 ) � 
M ψ y 

M x y = 0 

d x , so that we finally obtain

M 2 ψ x 

M t 2   =   − g 
M ψ y 

M x 
                        

(2)

This equation is clearly different from the standard wave
equation. It can be converted into a wave equation if we
make the additional assumption that the horizontal motion
is the same for all depths. This is the so-called Òshallow
waterÓ approximation. With this assumption, let us consider
a narrow rectangular section of the water, where the top is
at the open surface and the bottom has depth h. (See Fig. 3)
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Figure 3 Conservation of mass in the
shallow water limit

If the mass of the volume is to remain constant, we must

have ψ y  dx =   − ψ x ( x + d x ) − ψ x ( x ) h , or ψ y = − h 
M ψ x 

M x 
. Substitut-

ing into Eq. (2), we finally obtain
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M 2 ψ x 

M t 2 = gh
M 2 ψ x 

M x 2                           
(3)

which has the form of the wave equation with c =   gh .

Dispersive water waves
The shallow water assumption cannot be true in general, for
it is unreasonable to assume that the horizontal motion of
the water near the bottom of a very deep lake will be the
same as the motion near the surface. The derivation of the
general solution for water waves requires an exact treatment
of the conditions that mass be conserved and that there be
no vortices. This is done following exactly the same ideas
applied to the analysis of Fig. 3, except that one must
consider volumes of infinitesimal dimensions in all direc-
tions. Let us consider one such volume on Fig. 4
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Figure 4 Conservation of mass in an incompressible
fluid.

A certain amount of water occupies initially the volume dx ×
dy. When a wave is present, the volume is distorted to [dx +
ψx(x+dx) - ψx(x)] × [dy + ψy(y+dy) - ψy(y)]. However, since
the amount of water inside the two volumes is the same and
the water is incompressible, the volumes themselves must be
equal. This requires [ψx(x+dx) - ψx(x)] dy  +  [ψy(y+dy) -
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ψy(y)] dx = 0, where we have assumed that the ψÕs are small,
so that quadratic terms in ψ can be neglected. Dividing by
dx dy we finally obtain

M ψ x 

M x 
+ 
M ψ y 

M y 
= 0                         (4)

An additional condition linking the displacements in the x-
and y-directions is obtained by requiring no vortices or
whirlpools. The condition of no vortices can be written as

    
v l 0⋅ =∫ d     ,                      (5)

where v  is the velocity vector and the path integral is
performed along any closed loop. Suppose we apply this the
square loop in Fig. 6
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Figure 6 Infinitesimal loop for the application of the
no vortices condition.

If we integrate counterclockwise starting from the (x,y)
point, we obtain [vx(y) - vx(y+dy)] dx + [vy(x+dx) - vy(x)] dy
= 0. Using the definitions vx = ¶ψx/¶t and vy = ¶ψy/¶t this
condition reduces to

M ψ y 

M x 
− 
M ψ x 

M y 
=   0                        (6)
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Hence waves in water do not satisfy a simple wave equations
but rather the set of coupled equations given by Eqs. 2, 4,
and 6. Clearly, we cannot expect the solutions to these
coupled equations to look like the solutions to the standard
wave equation. On the other hand, we know that waves
propagate in water, so that the solutions to the coupled
equations must be similar to the solutions to the wave
equation. Moreover, the only thing obviously wrong with the
shallow water approximation is the neglect of any depth
dependence of the displacements. This suggest that we try a
solution of the form

ψ y ( x , y )   =  A cos ( ω t − kx )  f( y )              (7)

with the function f(y) to be determined. This looks like a
familiar traveling wave, except for the function f(y) that
should give the attenuation of the amplitude for points
below the surface. Inserting this solution in Eq. (4), we find

ψ x = 
A 
k 

sin ( ω t − kx )  f N ( y )                   (8)

When the expressions for the ψ Õs are used in the no-
whirlpools condition Eq. (6), we obtain an explicit equation
for the unknown function f(y):

f O ( y )   =  k 2 f ( y )                         (9)

This equation has the well-known solution

f ( y )   = B e ky + C e − ky                      (10)

The boundary condition at the bottom of the volume, y =-
h, is that the vertical displacement of the water be zero.
Thus f(-h) = 0. This implies C = B e2kh, so that we can write
the final solution as

ψ y =  D cos ( ω t − kx ) ( e ky − e − 2 khe − ky) , 

ψ x =  D sin ( ω t − kx ) ( e ky + e − 2 khe − ky) , 
              

(11)

where D is an arbitrary constant. We have not yet show that
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these expressions are a solution to Eq. (2). You will do this
in a homework problem. You will find that they are indeed
solutions to the equation of motion provided that the
relationship between ω and k is no longer linear but given by

ω 2 = gk  tanh kh                           (12)

This means that water waves are dispersive. Let us consider
the limits of Eq. (12). When kh << 1, tanh kh = kh, so that
we obtain the shallow water limit ω2 = gh k2. In this limit
the waves are non-dispersive. Of course, this is the expres-
sion we derived above, but we can now understand the
meaning of Òshallow:Ó we are in the shallow water limit
whenever kh << 1, or λ  >> h. The opposite limit is the
Òdeep waterÓ limit for which λ  << h or kh >> 1. In this
case tanh kh = 1 and we obtain

ω 2 = gk   .                        (13)

Hence deep water waves, defined as those for which the
wavelength is much less than the depth of the water, are
dispersive. Their frequency is proportional not to the
wavenumber but to its square root. A pulse of shallow water
waves does not distort, but a pulse of deep water waves will
become distorted as it propagates.

From Eq. (11) one can easily see (see homework problem)
that a given water drop travels in an elliptical path, forward
if on a crest and backward when on a trough. When friction
is taken into account, the fact that there is more friction
when the water is trying to go back during the troughs leads
to a net displacement of the water and to the ÒbreakingÓ of
the waves.

Propagation of
dispersive waves

A MUCH BETTER WAY OF DOING THIS SECTION IS
TO GO BACK TO THE SQUARE WAVE PROBLEM 5.2
AND TO CONVERT THE COS SIN PRODUCT INTO
TRAVELING WAVES. SHOW THAT FOR W = CK ALL
TERMS ARE FUNCTIONS OF X-CT, BUT NOT IF THE
SYSTEM IS DISPERSIVE. IN THE PROCESS DEFINE
PHASE VELOCITY. SAY THAT WE HAD USED JUST
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VELOCITY BEFORE BECAUSE THERE WAS NO DIS-
TINCTION BETWEEN GROUP AND PHASE VELOCITY.
MAY BE ONE COULD USE JACKSONÕS ANALYSIS PAGE
301 TO INTRODUCE GROUP VELOCITY AS A DERIVA-
TIVE OF W VS K

To better understand the difference between dispersive and
non-dispersive waves, it is convenient to write the traveling
wave as a sum of sinusoidal traveling waves. For the case of a
non-dispersive wave a(x-ct), we can write

    
a x ct A kx k tk k

k

( ) sin ( )− = − +[ ]∑ ω α       (14)

where the sum runs over an infinite number of terms. It is
known from Fourier analysis that any wave can be written in
this form. This result was also discussed in previous chap-
ters. Notice that we have written ω = ω(k) to emphasize
that there is a unique frequency ω  for every valid
wavenumber k. The ω vs. k relationship is the dispersion
relation. For waves that satisfy the standard wave equation,
we know that ω = ck. Using this result, Eq.(14) can be
written as

    
a x ct A k x ctk k

k

( ) sin− = − +[ ]∑ α          (15)

This means that every sin term in this equation is a traveling
wave moving to the right with speed c. (As usual, by ÒrightÓ
we mean here the direction of the positive x-axis). If all
ÒpartsÓ of the wave are moving with the same speed, it is
not surprising that the total wave moves with that same
speed without suffering any distortion. When the relation-
ship between ω and k is not linear, however, the term c is no
longer constant and different parts will travel with different
speeds. This is the case of dispersive waves.

In this chapter, we have introduced water waves, which are
an important example for which ω ≠ ck. (Except in the
shallow water limit). An earlier example is the discrete chain
of masses and springs. When we solved the problem of N
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masses m connected by springs K of equilibrium length a, we
found that their dispersion relation was given by 

    
ω = 4

2
K
m

kasin                      (16)

In these cases, we cannot use the trick we used in Eq. (15).
Waves with different kÕs will travel with different speeds. If
we produce a distortion in the chain or in deep water, the
distortion will not keep its shape as it propagates. For
example, if we initially displace a single mass and keep all
others in their equilibrium positions, a non-dispersive
solution would be one in which the first mass stops and its
neighbor starts vibrating, then the neighbor stops and the
next neighbor starts its motion, etc. Instead, we see a spread
of the perturbation: after a while, all masses are oscillating at
any given time. The reason why the waves in a chain of
masses are dispersive is that they do not satisfy exactly the
standard wave equation. In fact, the standard wave equation
was derived as an approximation valid only when the
wavelength λ of the mode is much longer than the separation
a between neighboring masses. In this case (recall that k =
2π/λ) ka << 1. Using sin x ~ x the dispersion relation in Eq.
(16) becomes ω = (Ka2/m)1/2 k. In this limit, ω is propor-
tional to k, so that the wave becomes non-dispersive. The
proportionality constant is (Ka2/m)1/2. This is precisely the
expression we found for the speed c when we solved the
equations of motion in the limit where the wave equation is
valid.

The group velocity Suppose that a certain localized perturbation a(x) is pro-
duced in a dispersive medium at time t = 0. After some
time, the perturbation will have travelled a certain distance
and its shape will have changed because the medium is
dispersive. Although one cannot define ÒtheÓ velocity of the
perturbation, because different ÒpartsÓ travel with different
speed,  one can ask what is the velocity of the ÒcenterÓ of
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the pulse. To answer this question, we will form a very
simple pulse, composed of two sinusoidal waves of frequen-
cies ω and ωÕ. We will assume that the amplitudes are the
same, so that we can write

    

ξ
ω ω

ω ω ω ω

=
− + ′ − ′

= ′ − − ′ −[ ] ′ + − ′ +[ ]
A kx t A k x t

A k k x t k k x t
sin( ) sin( )

cos ( ) ( ) sin ( ) ( )2 1
2

1
2

(17)

vg

Figure 7 Group velocity.

This wave is illustrated in Fig. 7. It is not a single pulse
(many sines are needed to build such a pulse) but rather a
train of pulses. Our result, however, will be very general.
Suppose that ω and ωÕ are very close, so that k and kÕ are also
very close. We can thus approximate 1/2(ω+ωÕ) by ω and
1/2(k+kÕ) by k. We thus obtain

    
ξ ω ω ω== ′ − − ′ −[ ] −2 1

2
A k k x t kx tcos ( ) ( ) sin( )   (18)

Hence we have a wave whose amplitude is being modulated.
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The modulation travels with a velocity called group velocity,
given by

    
v

k k kg
d
d

= ′ −
′ −

=ω ω ω
                    (19)

where the last equality is valid for the case of very close
frequencies. One can always define a phase velocity v(k) as
ω = v(k)k. Using this definition, the group velocity becomes

    
v v k v

kg
d
d

= +                       (20)

The importance of the group velocity is that it can be shown
that for dispersive waves the energy travels at the speed vg.
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Problems

1. Consider the exact solutions for water waves
given in Eq. (11). Derive approximate expressions
valid in the deep water and shallow water limits.
Show that in the deep water limit the waves are
exponentially attenuated.

2.  By inserting the solutions Eq. (11) in Eq. (2),
derive the dispersion relation for water waves in Eq.
(12).

3.  Graph the motion of a drop as a function of time
using the solutions Eq. (11). Show that in the deep
water limit the path is a circle.

4.  a) Verify that water can sustain standing waves of
the form

ψ y   =  D cos ω t sin kx   ( e ky − e − 2 khe − ky) , 

ψ x   =  D cos ω t cos kx   ( e ky + e − 2 khe − ky) . 
b) What would be the boundary conditions and
possible values of k for standing water waves in a
rectangular aquarium?

5. (Crawford 7.30) Suppose that at the surface of
the ocean there are traveling waves with 10-ft
amplitude and wavelength 30 ft. If you were a fish
(or a Scuba diver), how far beneath the surface
should you swim if you wished the amplitude of
your motion to be 1/2 foot?

6.  Tsunamis are solitary ocean waves that propagate
without much change of their shape. They are
produced by undersea earthquakes.

a) Explain why tsunamis must be closer to the
shallow water limit. Given the known average ocean
depth of 5,000 m,  what can you say about the
wavelengths involved in tsunamis?

b) Estimate the propagation velocity of tsunamis.

6. Show that for non-dispersive waves the phase
velocity equals the group velocity. Show that for
deep water waves the group velocity is half the phase
velocity.

7.  Use your spreadsheet to construct a pulse as in
Fig. 7 Graph this pulse for several times and verify
the expression for the group velocity by measuring
on the graphs the displacements of the wave packet
for different times.

8. Repeat Problem 2, Chapter 5, for deep water
waves. Determine from the graphs the speed of the
pulse the best you can, and compare with the
prediction from the group velocity expression.
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