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Introduction The standing waves we found as solutions to the wave
equation can be used to explain any type of vibration in
continuous media, since they represent the most general
solution to the problem. Any arbitrary set of initial condi-
tions can be taken care of by appropriately selecting the
adjustable parameters in the expression for the standing
waves.  On the other hand, these standing waves are particu-
larly inappropriate to illustrate certain kind of very common
wave phenomena. Suppose for example that you drop a stone
on the surface of a lake. You see a circular wave traveling
away from the point where the stone hits the water. This
appears to be a very simple (and beautiful) type of motion,
yet it is by no means clear how this simplicity shows up
when we write the disturbance as some type of combination
of standing waves in the lake. You had a similar experience
when you solved Problem 2 in Chapter 5. After a very
complicated series expansion, your final solution is so simple
that it can be accurately described in words: the initial
perturbation splits into two equally shaped pulses that travel
without distortion toward the ends of the cord. The simplic-
ity of the traveling waves is such that even football fans -
not necessarily the most (mathematically) gifted members of
our society - have no trouble generating waves that travel
back and forth around the stadium. In this chapter, we will
show that the solutions to the wave equation can indeed be
written as traveling waves. Traveling waves are not new,
additional solutions to the wave equation. Rather, the
standing wave solutions can be written as traveling waves. In
many practical cases, the traveling wave form turns out to be
much simpler than the standing wave form.

Traveling wave
solution to the
wave equation

Consider a cord under tension where at time t =0 a distur-
bance of the form a(x) is produced, as indicated in Figure 1.

phy 241 Men�ndez  102



Chapter 6

11
11
11

00
00
00
11
11
11
11

00
00
00
00

111
111
111
111

000
000
000
000

111
111
111

000
000
000

a(x)

   

a(x+vt)
   

a(x-vt)

   

t=0

   

t>0

Figure 1 Evolution of a perturbation in a cord under
tension.

You have already solved this problem (Problem 2, Chapter 5)
within the context of standing waves, starting from the
solution

ξ(x ,t) = A 1 sin k 1 x cos (ω1 t +  α 1 ) + A 2 sin k 2 x cos (ω2 t +  α 2 ) +

A 3 sin k 3 x cos (ω3 t +  α 3 ) +  ...

(1)

The coefficients A1, A2, A3, ... and α1, α2, α3 were deter-
mined from the condition that ξ(x,0) = a(x) and ∂ξ/∂t(x,0) =
0. (The latter applies if the initial velocity of all points in the
cord is zero, as assumed in this particular case). The exact
procedure to determine the coefficients is not very compli-
cated but involves Fourier analysis, which is beyond the
scope of this course. In the famous Chapter 5 problem, you
were given the coefficients corresponding to a rectangular
initial shape, which were calculated by your instructor
exclusively for you.

The standing wave solution to our problem looks quite
complicated. Eq. (1) is a infinite series with an infinite
number of terms. On the other hand, we found that the final
solution was extremely simple: it looks like two disturbances,
similar in shape to the initial one, traveling away from the
origin of the perturbation. This suggests that we study the
properties of ÒtravelingÓ functions.
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The mathematics of a traveling function
Consider any function a(x). For example, this function could

-4 -2 0 2 4

∆

Figure 2 A function can be shifted to the right by ∆∆∆∆  if
the argument is changed from x to x-∆∆∆∆.

be the bell-shaped pulse with a maximum at x = 0 displayed
in Fig. 2. We would like to find the function f(x) which is
equal to a(x) but shifted to the right by an amount ∆. This
function is shown as a dashed line in Fig. 2. What we want is
a function such that its value at x+∆ is equal to the value of
a(x) at x. This can be written as f(x+∆) = a(x). Hence the
value of f at any point is the value of a  at a point  Ò∆
behind.Ó An obviously equivalent form of writing this is f(x)
= a(x-∆). So the function a(x-∆) is shifted to the right of a(x)
buy the required amount ∆. It is trivial to show that a(x+∆)
is shifted to the left of a(x) by an amount ∆. (Of course, right
and left depend on the orientation of the x-axis. To be more
precise, we should say that a(x-∆) is shifted in the direction
of the positive x-axis by an amount ∆, and a(x+∆) is shifted
in the direction of the negative x-axis by an amount ∆). 

The separation between the two functions is ∆ . If this
separation increases uniformly with time, we can write ∆ =
vt. The quantity v has units of velocity. It is actually the
velocity with which one of the functions moves relative to
the other. Hence the function a(x-vt) ÒmovesÓ to the right of
a(x) with speed v. The function a(x+vt) moves to the left of
a(x) with speed v.
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Any traveling function is a solution to the wave equation!
Let us now consider an arbitrary traveling function a(x-vt). In
view of Fig. 1, we would like to investigate if such a function
is a solution to the wave equation

M 2 ξ
M x 2 =

1

c2

M 2 ξ
M t2                         

(2)

The usual way to verify that a function is a solution of
certain differential equation is to plug the function into the
equation. We would like to do this here. However, we have
not specified the function a(x). It appears that without
further details we will not be able to compute the second
derivatives in the wave equation. The best we can do is to
write down how we would compute the derivatives of a(x-ct)
if we knew the function a. Of course, we would use the chain
rule. For an arbitrary function f(u), with u = u(x,t), we know

that the partial derivatives are 
M f
M x

=
df
du

M u
M x

 and 
M f
M t

=
df
du

M u
M t

.

In our particular case u(x,t) = x-vt. Hence ∂u/∂x = 1 and ∂u/∂t
= -v. Substituting into Eq. (2) we find

d2 a

du2 =
v 2

c2

d2 a

du2                      
(3)

For v = c this is an identity regardless of the specific form of
the function a(x). Hence we donÕt need to know the form of
the function a(x) to show that it satisfies the wave equation
because any function of x-vt will be a solution with the sole
condition that v = c. Thus possible solutions to the wave
equation are

(x − ct)3 , sin (x − ct), e − (x−ct)2

          (4)

and any other function of x-ct you can think of. Of course,
functions of x+ct are also solutions to the wave equation
that travel to the left with speed c. Both left- and right-
traveling functions are solutions to the wave equation
because the velocity appears squared, so that its sign doesnÕt
matter.

By studying traveling wave solutions, the meaning of the
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coefficient c in the wave equation becomes clear: it is the
speed with which the waves travel along the x-axis, which for
this reason is sometimes called the propagation axis. We can
now understand the solution we found for Problem 2,
Chapter 5, in much simpler terms. We started with an
initial condition ζ (x,0) = a(x), so that at later times the
solutions must be a(x-ct) or a(x+ct), i.e., the same shape
traveling away from the initial location. Since there is no
preferred direction in our problem, we obtain the two
traveling waves with equal ÒweightÓ. In other words, the
solution to Problem 2, Chapter 5 was simply ζ(x,t) = 1/2 a(x-
ct) + 1/2 a(x+ct), which at t = 0 gives the correct initial
condition ζ (x,0) = a(x). This solution is valid for any
function a(x), not just the square pulse discussed in the
Chapter 5 problem.

Traveling waves versus standing waves
The traveling wave solutions to the wave equation are so
different form the standing wave solutions we found earlier
that it is hard to believe that they are equivalent. Let us first
consider the standing wave solution to the problem of Fig. 1.
This solution is given by Eq. (1). Any given term in the
series is of the form sin kx cos (ωt + α) = (sin kx cos ωt) cos
α  - (sin kx sin ωt) sin α.  Using the rules for the sine and the
cosine of sums of angles, we can rewrite the position- and-
time dependent parts as 

sin kx  cos ωt =  
1
2

sin (kx − ωt) +  sin (kx + ωt)

sin kx  sin ωt =  
1
2

cos (kx + ωt) − cos (kx − ωt) (5)

But kx-ωt = k(x-ct) and kx+ωt = k(x+ct), which are functions
of x±ct. Hence our standing wave solution can be written
entirely in terms of traveling waves. Conversely, the traveling
waves a(x±ct) in Fig. 1 can be written in the standing-wave
form of Eq. (1). This shows that standing waves and travel-
ing waves are merely alternative ways of writing the same
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solution.

Eq. (5) suggest an interpretation of the standing-wave,
normal-mode solution sin kx cos ωt in terms of traveling
waves: a standing wave is the superposition of traveling
waves moving in opposite directions. When the traveling
wave sin (kx-ωt) reaches the boundary on the right, it is
reflected back as sin (kx+ωt) The mathematics of traveling
waves combined with reflections and transmissions has many
advantages over the mathematics of standing waves or
normal modes, as we will see in coming chapters.

For each problem, we must decide whether we want to use
traveling wave or standing wave solutions. The following
considerations should help in deciding which form is more
convenient:

¥ The initial conditions are easily incorporated into the
traveling wave solution. For example, if the initial
position is ξ (x,0) = a(x) and the initial velocity is
∂ξ/∂t(x,0) = 0, the solution is simply ξ(x,t) = a(x-ct).
When the initial velocity is not zero, the solution is
slightly more complicated (see homework problem)
but still much simpler than determining the coeffi-
cients A and α  for the infinite terms in the standing
wave solution Eq. (1).

¥ When the initial perturbation is concentrated in a
region of space, as in Fig. 1, we know that distant
parts of the medium (the cord in our example) will
not move for a while. That is, ξ  (x,t) =0 until the
traveling wave reaches the point x. On the other hand,
each individual term in Eq. (1) will not give zero at
that point. Only their sum will be zero. In fact, the
coefficients A and α in each term are adjusted so that
the motion is zero in those distant points. But if we
know that the motion is zero at these points, why
should we spend time adjusting the coefficients of an
infinite series to give a result we know in advance? In
fact, if we produce a perturbation at a point in a cord,
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we know that whatever happens initially will not
depend on what is going on at distant points. We
could even change the boundary conditions and
nothing would happen until the traveling wave reaches
the boundary. Hence traveling waves are the physically
best form of the solution when we start with a
perturbation concentrated in a small region.

¥ On the other hand, when the traveling wave reaches
the boundary, it may be partially or totally reflected
back. If we wait long enough, we may end up with
multiple successive reflections and, consequently,
many waves traveling back and forth. The traveling
wave solution becomes increasingly more complicated.
In these cases, it may eventually become simpler to
use standing wave solutions. In the example of Fig. 1,
it is probably better to use the traveling wave solution
for times shorter than the time it takes to the
traveling wave to reach the boundary. For times much
longer than that, the standing wave approach may be
better.

¥ The above complications are avoided in open media,
where there are no boundaries. In these cases, it is
always better to use traveling wave solutions. Exam-
ples include the propagation of sound and light in
open spaces. As a rule of thumb, if there are one or
two reflections in the problem it is better to use
traveling wave solutions. If there are multiple reflec-
tions, standing waves solutions may be simpler. When
we discuss traveling waves in open media, we will
often consider the case of waves given by ξ(x,t) = A
sin (kx-ωt) However, our results will be general
because any traveling wave a(x-ct) can be written as a
sum of sines and cosines of (x-ct).

Traveling waves
transmit energy

Let us consider the traveling waves set up in Fig. 1. You
notice that parts of the cord do not move for a while.
Clearly, these parts have zero energy. When those parts are
reached by the traveling waves, however, they start vibrating,
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so that they acquire some energy. It is quite apparent that
the traveling wave carries energy with it. On the other hand,
if we consider a standing wave, each part of the system
executes a simple harmonic motion, so that its energy
remains constant. Hence there is a fundamental difference
between a traveling wave and a standing wave: the former
carries energy, the standing wave doesnÕt. This can be better
understood if we recall that a standing wave can be written
as a sum of traveling waves moving in opposite directions, so
that the net transfer of energy in a given direction is zero.

Let us now try to put these ideas in mathematical form. If
we go back to the discrete chain, we can write its total
energy as the sum of the kinetic energies of all its masses
plus the potential energy (1/2Kx2) associated with each
spring:

E =
N

3
n =1

1

2 mv 2
n +

N

3
n =0

1

2 K(x n +1 − x n )2          
(6)

In the continuum limit, the displacement is ξ(x,t) and the
velocity is given by ∂ξ/∂t. In terms of these quantities, Eq. 6
can be written as

E =
N

3
n =1

1

2 m
�

�
��
M ξ
M t

(na,t)
�
�
��

2

+
N

3
n =0

1

2 K ξ(na+ a,t) − ξ(na,t)
2

(7)

We can now complete the transition to the continuous
regime by equating a = dx and replacing m by ρdx. Thus the
sum becomes an integral and we obtain

E =  
1

2 ρ I �
�
��
M ξ
M t

�

�
��

2

dx + 1

2 Ka I �
�
��
M ξ
M x

�

�
��

2

dx          (8)

But in the previous chapter we showed that Ka/ρ = c2 , so
that we can finally write this result as 

E =  
1

2 ρ I �
�
��
M ξ
M t

�

�
��

2

+  c2 �
�
��
M ξ
M x

�

�
��

2

dx             (9)

Note that in this expression there is almost no reference to
the original problem (longitudinal vibrations in a chain). All
quantities in the expression appear in the wave equation
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itself, which is valid for all types of vibrations. The only
exception is the density ρ, but we have noticed earlier that a
density of some sort always appears in the expression for the
wave speed. We can therefore speculate that Eq. (9) is a
general expression valid for all wave phenomena. In each
individual case, the formula must be adapted to the problem.
In Eq. (9), which we derived for a linear chain of masses, the
density ρ is a linear density (mass per unit length) and the
integration is along the length of the chain. If we were to
apply this equation to sound waves in a gas, we would use
dV rather than dx (.e., we would integrate over the volume of
the gas) and the density ρ would be a volume density (mass
per unit volume). In all case, the limits of integration define
the section of the cord (or the volume of gas) whose energy
we want to compute.

Let us now compute expression (9) for the case of a standing
wave of the form ξ(x,t) = A sin kx cos ωt. Substituting the
appropriate derivatives and using ω =ck, we find

E =  
1

2 ρA 2 ω2 sin2 ωt I sin2 kx  dx +   
1

2 ρA 2 ω2 cos2 ωt I cos2 kx  dx 

(10)

If we take the time-average of this expression,  and use 

sin2 ωt = cos 2 ωt =  
1

2  this expression reduces to

E =   1 

4 ρ ω 2 A 2 I d x =   I � 1 

4 ρ ω 2 A 2 � d x        (11)

The quantity in brackets is the energy density E,  since its
integral over a region of the medium gives the energy of that
region. Note the familiar aspect of the energy density. If you
have a single harmonic oscillator, its energy is E = 1/

2KA2.
This can be written as 1/

2mω2A2. This involves the same
quantities as the expression for the energy density E, except
that instead of the mass we use the mass density and
integrate over the length (or the volume) of the vibrating
medium. The expression we have derived for the energy
density is very general and not limited to mass-and-springs
systems. In all wave phenomena, the energy density is
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proportional to the square of the amplitude of the vibration.
As discussed above, the integration over dx means an
integration over the region of the medium whose energy we
want to calculate. ItÕs an integration along a line for a cord,
but becomes an integration over a three dimensional volume
of waves such as sound. In this case, the density ρ is a
volume density. A good mnemonic rule is that the product ρ
× dx should have units of mass: if dx is a length, then ρ is
mass per unit length. If dx actually refers to a volume, ρ is
mass per unit volume.

Suppose now that we have a traveling wave of the form ξ(x,t)
= A sin (kx-ωt). Substituting into Eq. (9), we find (home-
work problem) that the energy density is given by an
expression similar to the standing wave case, namely E =
1/2ρω2A2. There is, however an important difference between
the two cases. To understand this difference, let us compute
how the energy  changes as a function of time. This quantity
is given by the derivative dE/dt of Eq. (9). For definiteness,
let us consider a cord under tension T and let us compute
the energy of a region of the cord between x1 and x2.
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Figure 3 A snapshot of a vibrating cord under tension.

Differentiating Eq, (9), we obtain

d
dt

E(x 1 ,x 2 ) =

=  
1

2 ρ
x

2

I
x

1

2
�
�
��
M ξ
M t

�

�
��
�

�
���
M 2 ξ
M t2

�

�
���+ 2c2 �

�
��
M ξ
M x

�

�
��
�

�
��
M 2 ξ
M x M t

�

�
�� dx

     

(12)

Using the wave equation, this becomes
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d
dt

E(x 1 ,x 2 ) =

=  ρc 2

x
2

I
x

1

�
�
��
M ξ
M t

�

�
��
�

�
���
M 2 ξ
M x 2

�

�
���+ c2 �

�
��
M ξ
M x

�

�
��
�

�
��
M 2 ξ
M x M t

�

�
�� dx

=  ρc 2

x
2

I
x

1

M
M x

�

�
��
M ξ
M t

M ξ
M x

�

�
�� dx

=   ρc 2 M ξ
M t

M ξ
M x

x
2

x
2

=   ρc 2 M ξ
M t

(x 2 , t)
M ξ
M x

(x 2 , t) −   ρc 2 M ξ
M t

(x 1 , t)
M ξ
M x

(x 1 , t)

(13)

This expression has a very simple physical interpretation.  In
a cord, for example, ρc2 = T. If we call F(1) the force acting
on our cord segment at x1 and F(2) the force acting on our
cord segment at x2, then for small  angles (as implied by the

validity of the wave equation)    T
M ξ
M x

(x 1 ,t) = T tan θ1 �T

sin θ1 = -Fy (1). On the other hand,    T
M ξ
M x

(x 2 ,t)  = T tan θ2

�T sin θ2 = Fy (1). The time derivative is, of course ¶ξ/¶t =
vy, the velocity in the transverse direction (remember that in
this problem we assume that the motion the direction
perpendicular to the length of the cord). We can therefore
write

d
dt

E(x 1 ,x 2 ) =  Fy(1)v y(1) +   Fy(2)v y(2)      (14)

This obviously means that the change (per unit time) in the
total energy of the segment between x1 and x2 is equal to the
work (per unit time) done on the segment at x1 plus the
work (per unit time) done on the segment at x2.

 Let us now compute the expression in Eq. (13) for the case
of standing and traveling waves. For standing waves of the
form ξ(x,t) = A sin kx cos ωt, we find 

d
dt

E(x 1 ,x 2 ) =  Tωk cos kx 1 sin ωt −  cos kx 2 sin ωt (15)
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If we average this with respect to time, we find that both
terms  on the right-hand side of this equation give zero, so
that on average no work is done at either end and the total
energy remains constant. This is consistent with our finding
that the average energy density E is not a function of time.
On the other hand, if we apply Eq. (13) to a traveling wave
of the form ξ(x,t) = A sin (kx-ωt) we obtain

d
dt

E(x 1 ,x 2 ) =  − TωkA 2 cos2 (kx 2 − ωt) +  TωkA 2 cos2 (kx 1 − ωt)

(16)

Averaging over time, and using T = ρc2 and ω =ck, we find 

d
dt

E(x 1 ,x 2 )  =  − 1

2 ρcω2 A 2  + 1

2 ρcω2 A 2  (17)

which of course gives zero, as in the case of the standing
wave. However, there is a fundamental difference. While in
the case of the standing wave the average work at either end
of the segment was zero, here we have equal and opposite
non-zero quantities. This means that energy is entering the
segment at x1 and leaving the segment at x2. Notice that we
obtained this result for a traveling wave of the form ξ(x,t) =
A sin (kx-ωt), which travels from left to right (assuming that
the positive x-axis is to the right). Had we chosen a traveling
wave in the opposite direction, you can easily show that the
two terms in Eq. (17) reverse their sign, so that energy
would enter the segment at x2 and leave it at x1.

Clearly, traveling waves carry energy in the direction they
travel. The reason why the average energy remains constant
in our example is that we chose a special kind of traveling
wave of the form sin (kx±ωt). This wave is a continuous
train of pulses traveling either to the right or to the left.
Had we chosen a different type or traveling wave, such as
the pulse depicted in Fig. 1, we would have the following
situation: when the pulse reaches x1, there would be positive
work done on the segment, so that its energy would increase.
Since the pulse does not affect the cord at x2 initially, no
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work would be done at this point.  Eventually, the pulse
would reach x2. Negative work would be done at this point
until the energy of the segment drops again to zero as the
pulse moves further to the right.

Standing waves can always be written as the sum of traveling
waves moving in opposite directions, so that the energy
transfer at the ends of the segments always cancel out.

Plane waves and the definition of intensity
When we discussed waves in columns of air or in bulk solid
objects, we considered this as a one-dimensional problem. Of
course, we are dealing with three dimensional objects. The
reason we were able to ignore the y and z-directions is that
the displacement function is independent of these variables.
In other words, we can write ξ(x,y,z,t) = A sin (kx-ωt) for a
traveling wave in the +x direction.
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Figure 4 The geometry of a plane wave.

 This means that all points in a plane perpendicular to the x
axis, as indicated in Fig. 4,  execute exactly the same type of
motion. This is called a plane wave.

The formulas derived in the previous paragraph for the
energy density and the rate at which energy changes are still
valid for these waves if we understand ρ as a volume density
(mass per unit volume) and use dV  = dxdydz instead of
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simply dx. For example, Eq. (9) becomes

E =  
1

2 ρ I �
�
��
M ξ
M t

�

�
��

2

+  c2 �
�
��
M ξ
M x

�

�
��

2

dx dy dz         (18)

where ρ is the volume density. Since nothing depends on y
or z, the integral over these variables simply gives the area S
of the wave front. For example, if we apply this to sound
waves in a tube, S would be the cross-sectional area of the
tube. We thus obtain

E =  
1

2 ρ S I �
�
��
M ξ
M t

�

�
��

2

+  c2 �
�
��
M ξ
M x

�

�
��

2

dx          (19)

Hence all formulas derived in the previous section are valid
if we make the change ρ (linear) →  ρ (volume) × S. For
example, if a plane wave of the form ξ(x,y,z,t) = A sin (kx-ωt)
enters a volume, the energy per unit time that enters that
volume is 1/2ρScω2A2.

In the case of a cord, the change per unit time in the energy
of a segment between x1 and x2 is governed by the amount of
energy per unit time that enters or leaves the segment at the
two points x1 and x2. In the case of a plane wave in three
dimensions, the expression 1/2ρScω2A2 gives the energy that
enters or leaves the volume through the planes defined by x1
and x2. Sometimes, these planes are very large and we are not
interested in the total energy per unit time that moves
through the entire plane but in the total energy per unit
time per unit area. Suppose for example that sound from a
distant source reaches your ears. (Sound from a point source
is a spherical rather than a plane wave. We will discuss
spherical waves in later chapters. However, far from the
center the surface of a sphere is very flat and can often be
approximated by a plane.) You are not interested in the
amount of energy per unit time that flows from the source
but in the energy that reaches your ears. If the energy per
unit area is large, you will hear a strong sound. If the energy
is spread over a large plane, only a tiny fraction will enter
your ears and you will hear a feeble sound. Thus the quantity
that is useful to characterize the intensity of the sound is
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the flow of energy per unit area per unit time. This is called
intensity (I) and has units of W/m2. 

For a plane wave of the form ξ(x,y,z,t) = A sin (kx-ωt), we
found above that the energy per unit time that flows
through a plane perpendicular to the direction of propaga-
tion is  1/2ρScω2A2, where S is the area of the plane. Hence
the intensity is given by

I =  
1

2 ρVcω2 A 2                       (20)

Notice that this can be written as

I = cE                             (21)

where E is the energy density (energy per unit volume) given
by E = 1/2ρVω2A2

Detector engineering by natural selection
Humans and other similar animals carry very sophisticated
wave detectors, such as ears and eyes. Throughout the course
of evolution, it became apparent that it was very beneficial
for the individuals of a certain species to be able to detect
sound and light over a very wide range of intensities. For
example, the intensity associated with a whisper is I = 10-11

W/m2, whereas the typical sound intensity in the first rows
of a rock concert is 1 W/m2. Similar requirements apply to
light detection. Designing a detector over such a wide range
is a monumental task. If the response of the detector to the
signal were linear, we would have to deal with a system able
to respond to 11 orders of magnitude in intensity. Such a
Òdynamical rangeÓ is virtually unattainable. For example, the
state-of-the-art CCD in your camcorder may be able to
detect 3 orders of magnitude of light intensity. In order to
overcome this problem, nature discovered, all by itself, the
logarithmic function.

If the response of the detector is logarithmic rather than
linear, then eleven orders of magnitude become a factor of
11. We lose the ability to compare intensities of sound in a
linear scale, but we are able to detect all sounds. Because the
psychological intensity does turn out to be roughly propor-
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tional to the logarithm of the intensity, it is useful to
introduce a quantity that characterizes this psychological
intensity. This quantity is called intensity level B, and its
unit is the decibel (dB).

B =  10 log 
I
I0                        (22)

where I0 is conventionally taken as 10-12 W/m2. According to
this definition, a rock concert has an intensity level of 120
dB and a whisper an intensity level of 10 dB. The ratio of 12
represents well our perception that the rock concert feels
about 10 times stronger than a whisper.

Doppler effect The Doppler effect is the change in the detected frequency
of a wave produced by either the motion of the source of
the wave or the motion of the observer of the wave. In all
wave phenomena, the frequency ν is given by

ν =  
c
λ

                               (23)

A change in frequency thus implies a change in the wave-
length λ  or a change in the speed c of the wave. We will
consider the two cases.

Case I: Source in motion, observer fixed
This case is illustrated in Figure 5. It is quite clear that in
this case the speed of the wave does not change. This speed
is a property of the medium, and does not depend on the
state of motion of the source. Suppose for example that you
hit an iron bar with a hammer. Sound will propagate at the
speed of sound in iron. If you hit the bar while you are
walking, the fact that you are moving is completely irrele-
vant from the point of view of the bar. What you do after or
before the instant you hit the bar cannot affect the speed of
propagation of the wave in the bar.
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Figure 5 Doppler effect when source moves

On the other hand, the wavelength of the waves received by
the observer will change. If the source doesn't move, the
separation between maxima is λ . When the source moves
toward the observer, however, this separation becomes
smaller because the source moved a certain distance toward
the observer from the time it emitted the nth wave to the
time it emitted the (n+1)th wave. The time between
successive maxima is precisely the period T, so that during
that time the source travels a distance vST. If we use primed
quantities to indicate what the observer measures, we can
write for this case:

c N  =  c

λ N=  λ − v ST
                          

(24)

Although we have derived this for the source moving toward
the observer, Eq. (24) also gives the right answer when the
source moves away from the observer, provided we use a
negative value for vS. Combining Eq. (23) and Eq. (24), we
obtain

ν N=  
c N
λ N

 =  
c

λ − v ST
 =   ν

c
c − v S

          
(25)

where ν is the frequency detected when the source doesnÕt
move. Notice that the frequency increases when the observer
is approached and decreases when the source moves away
from the observer, in agreement with our daily experience
with ambulances. Notice also that we get an unphysical
negative result whenever vS is larger than c. This is because
the source will reach the observer before its own waves if its
speed is higher than the wave speed. In this case, all wave
fronts accumulate in front of the source and produce an
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explosion-like sound known as a shock wave. This occurs
frequently  with supersonic aircraft.

Case II: Source fixed, observer moves
This case is illustrated in Fig. (6).
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Figure 6 Doppler effect when the observer moves

The observer now sees no change in wavelength, because the
separation between maxima does not depend of the state of
motion of the observer. This basically says that the length of
an object is independent of the motion of the observer, a
basic fact of classical, non-relativistic mechanics. On the
other hand, the waves are approaching the observer at an
increased velocity, given by the sum of the two velocities. (If
a car moves North-South at 40 miles/hr and a second car
moves South-North at 60 miles/hour, they approach each
other at a speed of 100 miles/hr). We thus have

c N=  c + v O

λ N=  λ
                          

(26)

where vO is the velocity of the observer. Combining this with
Eq. (23), we obtain

ν N=  
c N
λ N

 =  
c + v O

λ
 =  ν

c + v O

c
            (27)

where ν is the frequency detected when the observer doesnÕt
move. Again we note that this expression is automatically
correct when the observer moves away from the source, if
we take vO as negative. Notice that when the source ap-
proaches the observer or the observer approaches the source
the frequency increases, but the expressions that give the
increase in frequency, Eqs. (25) and (27), are not mathemat-
ically identical. This is because the physics is different: in
one case the wavelength is reduced, in the other case the
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speed increases. When vS and vO are much smaller than the
speed of the wave, however, the two expressions give very
similar results (see homework problem).

When both source and observer move, we have a simulta-
neous change in wavelength and speed. It is then trivial to
show, following the reasoning in the previous paragraphs,
that the detected frequency is given by

ν N=  ν
c +  v O

c −  v S

                       
(28)

The sign convention can be summarized as follows: vO is
positive if the observer moves toward the source, negative
otherwise. On the other hand,  vS is positive if the source
moves toward the observer, negative otherwise. Hence
ÒtowardÓ = +, ÒawayÓ = -. However, you should not rely on
these conventions to solve problems. The best way to avoid
mistakes is to rederive the equations every time you need
them. You can afford the extra time because the ideas
behind the Doppler effect are very simple.

You may wonder what happens if the medium itself is
moving. For example, when you study the Doppler effect for
sound waves, how are the above formulas modified if wind is
present? Our derivation assumed implicitly that the medium
doesn't move. In other words, our derivation was made from
a reference frame that is "attached" to the medium, so that
the velocity of the medium is always zero. If the medium is
moving, vO and vS refer to the velocities of the observer and
the source relative to the medium. For example, if the source is
moving to the east at 30 miles an hour and the wind blows
west-east at 10 miles/hr, then the value of vS that enters in
the above formulas is 20 miles/hr.
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Problems

1. Consider the function a(x) = e
−

x2

2σ2

, known as
Gaussian. Take σ = 1.  Plot a(x-vt) at five different
times, using v = 2m/s.

2.Verify (plug the proposed solution into the wave
equation and compute the corresponding deriva-
tives) that  for initial conditions ξ(x,0) =  a(x) and
M ξ
M t

(x,0) =  b(x) ,  the  traveling  wave solution to

t h e  w a v e  e q u a t i o n  i s  
1
2

a(x − ct) + a(x + ct) +
1
2c

x+ct

I
x−ct

b(s)ds

3. Suppose that the initial perturbation on a cord
under tension T is as given in the figure. Assume
that the initial velocity is zero.
a)  Give analytical expressions for the evolution of
the cord as a function of time. For how long is your
solution correct?
b) Plot the solution at several times.
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4. (Alonso 28.2) The equation of a certain wave is ξ
= 10 sin 2π(2x-100t), where x is in meters and t  is in
seconds. Find
a) the amplitude,
b) the frequency,
c) the velocity of propagation of the wave.
e) Draw the wave, showing the amplitude and the
wavelength.

5. (Alonso 28.3) Given the wave  ξ = 2 sin 2π(0.5x -
10t), where t is in seconds and x is in meters,
a) plot ξ over several wavelengths for t = 0 and t =

0.025 s.
b) Repeat the problem for ξ= 2 sin 2π(0.5x + 10t)
and compare results.

6. (Alonso 28.5) Given the equation for a wave on a
string   ξ = 0.03 sin 2π(3x - 2 t), where t is in seconds
and x and ξ are in meters,
a) at t=0, what are the values of the displacement at
x = 0, 0.1m, 0.2 m, and 0.3 m?
b )  At x  = 0.1 m, what are the values of the
displacement at t =0, 0.1s, and 0.2 s?
c)  What is the equation for the velocity of
oscillation of the particles of the string?
d) What is the maximum velocity of oscillation?
e) What is the velocity of propagation of the wave?

7. (Alonso 28.6) Consider longitudinal waves along
a rod and assume that the deformation at each
point is ξ = ξ0 sin 2π(x/λ - t/T).
a) Derive an expression for the force along the rod.
b) Show that the ξ  and F  waves have a phase
difference of one-quarter wavelength.
c) Plot ξ and F against x, on the same set of axes, at a
given time.

8.  Because the Young  modulus and the shear
modulus of virtually all materials are not equal,
transverse and longitudinal waves travel with
different speeds.
a) Develop a method to determine the distance
from the epicenter of an earthquake based on the
above phenomenon. Find realistic numbers for a
California earthquake, assuming you are in Phoenix.
Ask somebody in geology or go to the library to find
appropriate values for Y and G.
b) Suppose there is a huge oil deposit under the
Colorado river bed. How would the presence of
such a deposit affect your measurements in part a)?

9. Show that for traveling waves of the form ξ(x,t) =
A  sin (kx-ωt), the energy density E is given by
1/2ρω2A2, the same expression obtained in the text
for standing waves.

10. (Alonso 28.20) A thin steel rod is forced to
transmit longitudinal waves by means of an
oscillator coupled to one end. The rod has a
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diameter of  4 × 10-3 m. The amplitude of the
oscillations is 10-4 m and the frequency is 10
oscillations per second. Find
a) the equation of the waves along the rod,
b) the energy per unit volume of the wave,
c) the average energy flow per unit time across any
section of the rod and
d) the power required to drive the oscillator.

11.  Consider a column of gas enclosed in a tube
positioned along the x-axis. The mass of a volume
element at equilibrium is ρ0A dx, where A is the
cross-sectional area and ρ0 the equilibrium density.
In the presence of a sound wave, the volume will be
distorted to A (dx + dξ ), where ξ (x,t) gives the
displacement of the air and satisfies the wave
equation.
a) Show, by requiring mass conservation, that the
density in the presence of a wave is given by

ρ   =   
ρ 0 

1 + M ξ M x 

.

b) Assuming ¶ξ/¶x to be small, show that ρ − ρ0 =
  -ρ0 (¶ξ/¶x).
c) Assume that the pressure in the gas is a function
of the density and expand the pressure as a Taylor
series in the density keeping only the terms linear in
the density. Show that

p =  p0 + κ 
� 

� 
� � � 
� � � ρ − ρ 0 

ρ 0 

� 

� 
� � � 
� � � , 

where κ  = ρ0(dp/dρ)0 is the so-called elasticity
modulus and  p0 is the equilibrium pressure.
d) Show that

p =  p0 − κ 
M ξ 
M x 

.

e) Show that if there is a displacement wave with
amplitude ξ0, the corresponding pressure wave has
an amplitude c ρ0ωξ0. (Hint: compute κ using the
adiabatic condition p = Cργ and use the expresion
derived in Chapter 5 for the speed of sound).

12. (Alonso 28.21) The faintest sound that can be
heard has a pressure amplitude of about 2 × 10-5 N
m-2, and the loudest that can be heard without pain

has a pressure amplitude of about 28 N m-2.
Determine, in each case,
a) the amplitude of the oscillations if the frequency
is 500 Hz. Assume an air density of 1.29 kg m-3 and
a velocity of sound of 345 ms-1.
b) The intensity of the sound both in Wm-2 and dB.

13. Compare the Doppler effect for the cases where
the source moves toward the observer with speed v
or the observer moves toward the source with the
same speed.
a) Using realistic numerical values for sound waves,
show that the change in frequency is not the same
for the two cases.
b) Show  that you do obtain the same answer for the
two cases in the limit v/c << 1.

14. (Alonso 28.26) A sound source has a frequency
of 103 Hz and moves at 30 ms-1 relative to the air.
Assuming that the velocity of sound relative to air is
340 m s-1, find the effective wavelength and the
frequency recorded by an observer at rest relative to
the air who sees the source
a) moving away and
b) moving toward the observer.

15 . (CW) Two students decide to use their
saxophones to measure the speed of a car. The
saxophones are both tuned to a frequency of 262
Hz, and each student plays this note while one rides
in the car and the other remains stationary. When
the car approaches the stationary student, 6.00
beats/s are heard by this student. What is the speed
of the car? (Ans.: 7.68 m/s).
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