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Introduction The study of systems of many particles is facilitated by the
introduction of the concept of temperature. We will do this
by successive approximations. We will start with a definition
of temperature that is not very rigorous. With the help of
this definition, however, we will be able to study a number
of systems and improve our definition of temperature.
Eventually, we will provide the most rigorous definition, but
this will have to await the introduction of the concept of
entropy in Chapter 13.

Temperature The concept of temperature is associated with the sensa-
tions of ÒhotÓ and Òcold.Ó ÒColdÓ corresponds to low
temperature, ÒhotÓ to high temperature. In addition, we
know that if two objects, initially at different temperatures,
are placed in contact, they eventually reach the same final
temperature. These characteristics of temperature make it a
very useful quantity. From the point of view of physics,
however, the concept of temperature presents a problem
because it is not obvious how to define it in terms of
elementary quantities. After all, we have specific definitions
for quantities like momentum, angular momentum, energy,
etc. All these quantities can be expressed in terms of
elementary particle properties, such as mass, velocity, etc.
We said at the very beginning of this course that if we know
the initial positions and velocities of the particles in our
system, plus the forces that act among them, we have
everything we need to calculate any property of that system.
That includes temperature. The problem is how. Our
definition of temperature must correspond to the sensations
of ÒhotÓ and Òcold,Ó and must also reflect the phenomenon
of equalization of temperatures when two objects are
brought into thermal contact. It turns out that this problem
is very complicated, so that we will address it following more
of less the historical path. To understand the properties of
temperature and do experiments, we need a scale of temper-
atures. It is difficult to come out with a scale if we still donÕt
have a rigorous definition of temperature, but we can hope
to find a reasonable scale with which we might later find a
better scale and eventually solve the entire problem. The
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obvious choice for an ÒinitialÓ scale of temperature is some
material property that changes with temperature.

Temperature-dependent properties of materials
Many material properties depend on temperature: the length
of an object, its electrical resistance, the volume of a gas, etc.
Any of these properties can be used to build a thermometer.
Once we settle on a given property, we must choose a scale.
This is done by arbitrarily defining two ÒfixedÓ points. For
example, in the Celsius scale the value of 100 ¡C is assigned
to the temperature of boiling water at the pressure of 1 atm,
whereas the value of 0 ¡C corresponds to the temperature of
melting ice. 

Of course, the problem with the above thermometers is that
their measurements may not agree. This is because there is
no reason why all thermal properties should be linear with
respect to each other. In other words, suppose we compare a
thermometer based on the length of a column of mercury
with a resistance thermometer. Of course, the two thermom-
eters agree on what is 100 ¡C and 0 ¡C, since these two
points are defined in terms of the properties of water. But
they may disagree at intermediate temperatures: the
mercury thermometer might read 40 ¡C when the resistance
thermometer reads 42 ¡C.  Many experiments done in the
XIXth century lead scientists to the conclusion that by
choosing gases as their thermometers the results of tempera-
ture measurements could be made much more consistent.

The gas thermometer
It was recognized by Boyle that for a fixed amount of gas the
product of its volume times its pressure remains constant if
the temperature remains constant. This can be written as

pV =  N f ( T ) ,                        (1)

where N is the total number of molecules in a gas and f(T) a
certain function of temperature. This can be plotted in a p-V
diagram, as shown in Fig. 1.
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Figure 1 BoyleÕs law

The way to establish a temperature scale based on this
property is to define the temperature T such that f(T) is given
by kT, where k is a constant. In other words, the product of
the pressure and the volume of a given mass of gas is taken
as the material property to be used as a thermometer.
Notice that by taking this product as our thermometer we
can no longer define ÒzeroÓ temperature arbitrarily. This
temperature corresponds to pV = 0. The conditions under
which this product becomes zero depend on the properties
of the gas and have nothing to do with other ÒzerosÓ such as
the zero of the Celsius scale, which represents the tempera-
ture of melting ice. However, we still are free to select the
constant k so that the difference between the temperature of
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melting ice and the temperature of boiling water is 100
units. Let us call T0 the temperature of melting ice and T1 =
T0+100 the temperature of boiling water. According to
BoyleÕs law p0V0 = NkT0 and p1V1 = NkT1 Combining these
relationships we obtain

T 0   =   
100 p0 V 0 

p 1 V 1 − p 0 V 0 

                         
(2)

The value of T0 can be determined experimentally by
measuring the pressure and volumes of a given amount of
gas in equilibrium with melting ice and boiling water. The
value so obtained is T0 = 273.15 K, where we have intro-
duced the name ÒKelvinÓ to indicate this scale of tempera-
ture. By definition, the separation between degrees in the
Kelvin scale is the same as in the Celsius scale, but the zero
is shifted by 273.15 degrees.

Of course, the values of T0 obtained by using Eq. (1) might
depend on the gas being used, reflecting again the fact that
different materials have properties that do not scale linearly
with each other. However, for many elementary gases one
obtains very similar values. This indicates that there is
something universal and fundamental about this scale of
temperature.

The equation of state of a gas
The relationship

pV =  NkT                          (3)

is called the equation of state of an ideal gas. Notice that
so far the product Nk appears as a combination, so that we
do not have a way of finding the number of molecules in a
gas unless we find independently the value of k, which is
known as BoltzmannÕs constant (todayÕs accepted value is k
= 1.3805 × 10-23 J/K.). This was a crucial search for early
chemists, since it could be used to determine the weight of
single molecules. These early chemists used Eq. (3) in a
different form:
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pV =   N RT                         (4)

where N is the number of moles of a given substance. By
definition, one mole is the number of atoms in 12 g of
carbon. By studying chemical reactions the chemists were
able to determine the relative weights of different atoms.
This made it possible to select a given number of moles of
any substance. For example, if an element is three times
heavier than carbon, one mole of this element has a weight
of 36 g. With the above definition of mole, the constant R,
called the ideal gas constant, can be determined experimen-
tally. Its value is R = 8.34144 J K-1 mol-1.

The ratio R/k = NA, called AvogadroÕs number, gives the
number of particles in a mole of a substance. The accepted
value today is NA = 6.0225 × 1023 mol-1. This means that a
molecule is very small!

The mechanical interpretation of the equation of state
To gain insight into the concept of temperature we will
study to what extent we can derive an expression similar to
the equation of state of a gas based solely on mechanical
considerations.  For that, we need a model of an ideal gas. We
will assume that our gas is a collection of non-interacting
point masses. Since the particles do not interact, their
internal potential energy is constant and can be chosen to be
zero. By Òpoint massesÓ we mean that the particles occupy
no volume. These assumptions are not unreasonable for
normal gases at room temperature: the average distance
between molecules is much larger than the size of the
molecules, so that the interactions are reduced. In addition,
there is so much empty volume between molecules that one
can neglect the volume occupied by the molecules them-
selves.

Let us consider first the average force exerted on the walls of
a container by a stream of particles. The situation is
depicted in Fig. 2.
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Figure 2 A stream of particles colliding with the containerÕs
wall.

Let us assume that v is the average velocity of the particles.
If a particle is reflected elastically from the wall, its change
in momentum is given by ∆p = 2mvx. During a time ∆t, the
average force exerted on a section of the wall of area A is
therefore

F =   
( #  of particles that hit wall in ∆ t ) H   2 mv x 

∆ t        (5)

The particles that hit the wall are those contained in the
slanted cylinder of volume (A cos θ)(v ∆t). If we call nx the
number of particles per unit volume whose x-component of
the velocity is towards the wall, we obtain

F =   
( n x A v cos θ   ∆ t ) ( 2 mv x ) 

∆ t 
  =   2 n x mv 2 

x A     
(6)

The pressure exerted on the wall is the average force per unit
area, so that we obtain

p =   2 n x mv 2 
x                              (7)
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For a gas in equilibrium, one-half of the molecules move in
the +x direction, while the other half moves in the -x
direction. Hence nx = n /2, where n is the number of particles
per unit volume.  The velocity term can be rewritten by
noting that on the average v 2 

x   =  v 2 
y   =  v 2 

z . On the other hand,
v 2 =  v 2 

x +  v 2 
y +    v 2 

z , so that we can write

p =   1 

3 n m v 2  .                          (8)

By noting that n = N/V, we obtain

pV =   1 

3 N m v 2   =   2 

3 N E k , ave ,                 (9)

where Ek,ave = 1/2mv2 is the average kinetic energy per
particle. Comparing with the equation of state of an ideal
gas, pV  = NkT , we find that we obtain this result if we
define the temperature as

E k , ave =   3 

2 kT                        (10)

This is a very appealing definition because it is made in
terms of fundamental particle properties, regardless of the
properties of any thermometer used to measure the temper-
ature. It is also intuitive in that it associates high tempera-
tures with higher kinetic energies: the molecules are moving
faster when the gas is hotter. On the other hand, it is not
clear how this definition can be applied to real systems, not
ideal gases, where the interactions between atoms cannot be
neglected. Moreover, even within the realm of ideal gases, we
have not yet provided an explanation for the fundamental
property of temperature: the fact that two systems in
thermal contact eventually attain the same final tempera-
ture. If two otherwise isolated ideal gases are in contact, we
know that the sum of their energies remains constant.
However, no mechanics principle requires that the average
kinetic energy per particle be the same. If one of the gases is
hot and the other is cold, nothing in the laws of mechanics
prevents the hot gas from getting hotter while the cold gas
gets colder. The only constraint is that the energy gained by
one of the gases comes from the other gas. Clearly, this is
not what happens in real systems. Hence we still need to
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Òfine tuneÓ our definition of temperature so that we account
for this behavior. A satisfactory definition will be provided
in the next chapter when we introduce the concept of
entropy.

Since the internal potential energy in an ideal gas is zero, the
internal energy can be written as

U =   3 

2 NkT                        (11)

This energy will change if external work is done on the
system, according to ∆U = Wext.

Energy, work, and
heat

A small volume of gas may contain an extraordinarily high
number of particles.  The calculation of Wext for such a
system appears to be impossible, since we must compute an
integral of F¥dr for each particle. Under certain conditions,
however, the calculation of the external work can be ex-
tremely simple. These conditions correspond to cases where
some macroscopic parameter of the system changes. Let us
consider for example the container in Fig. 311111111111111
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Figure 3 Work

Suppose that we apply an external force F infinitesimally
higher than the force exerted by the gas on the wall. For a
displacement dx of the wall, the work done by the external
force is obviously dW = F dx. If we call the area of the wall
A , we must have F  = pA , neglecting the infinitesimal
difference between the forces on both sides of the wall.
Hence dW = pA dx = -p dV, where the minus sign repre-
sents the fact that the volume is reduced for dx > 0. Hence
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the total work is given by

W = −
V

2

I
V

1

p dV                           
(12)

On the under hand, suppose that the above container is
heated as in Fig. 4111111111111111
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Figure 4 Heat

In this case, we cannot relate the external work to the
change of a macroscopic parameter, as we did with the
volume in the previous example. It is clear that the only way
to compute this work from Òfirst principlesÓ is to go particle
by particle, something we cannot afford.

From now on, we will reserve  the word ÒworkÓ for that part
of the external work that involves a change in macroscopic
parameters. The symbol used for this quantity is simply W.
The part of the external work that does not involve a change
in macroscopic parameters is referred to as heat. The
symbol for heat is Q. We can thus write

W ext =  W +  Q                    (13)

or, in terms of infinitesimal changes

dW ext =  dW +  dQ                   (14)
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With the above definitions, the change in internal energy
can be written as

∆U =  Wext = W +  Q              (15)

or, in terms of infinitesimal quantities:

dU = dW + dQ                       (16)

Eqs. (15) and (16) are often referred to as the first law of
thermodynamics. There is obviously not much new or
beyond Newtonian mechanics in this law: it simple expresses
the energy-work relationship for a system of particles.

The distinction between heat and work is quite straightfor-
ward. If you take a bottle full of water out of the refrigera-
tor, the warmer air outside will slowly warm up the water by
doing work on it (through collisions between air and water
molecules, etc.). The energy of the water will increase. This
increase ∆U is entirely due to heat Q, since no macroscopic
parameter such as the volume or the number of particles is
changed. (In a real life situation, the bottle may expand a
little, so that there will be some amount of work W done on
the water). Conversely, when a gas in a container is com-
pressed from volume V1 to volume V2, ∆U = W  and  the
work is given by Eq. (12).

Sign conventions for W
Historically, thermodynamics was developed to understand
the behavior of engines that deliver some useful work. The
ÒdesiredÓ quantity in such an engine is the work W . The
engineer would like this quantity to be large and negative, so
that the engine does work on us and not we on the engine.
Because it is sometimes confusing to use negative values, the
work W  is often defined as minus the quantity we have
defined as W . This is done, for example, in AlonsoÕs book,
for which ∆U = -W+Q. You must be very careful if you read
about this subject from different books. They might use
different conventions, which, if not clearly stated, might
confuse you. Since we are not going to be designing engines
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any time soon, we will use the convention adopted in Eq.
(13), which keeps a closer connection between the first law
of thermodynamics and its mechanical underpinnings in
terms of energy of a system of particles.

The heat capacity An important technological question (particularly in
Phoenix!) is how much heat dQ must be provided to a
certain object to increase its temperature by dT.  The heat
capacity of the object is defined as CÕ = dQ /dT. Objects
with large heat capacities are ÒharderÓ to warm up than
objects with low heat capacities. The heat capacity depends
obviously on the amount of material. To obtain a quantity
that depends only on the type of material, one can define the
molar heat capacity C as the heat capacity of one mole of
the substance or the specific heat as the heat capacity per
unit mass. In principle, the heat capacity may depend on
temperature, so that the total heat absorbed to raise the
temperature from T1 to T2 is given by

Q =   
T 

2 

I 
T 

1 

C N ( T )     d T                        
(17)

In many instances, however, the heat capacity can be taken
as constant, and Eq. (17) becomes Q = CÕ (T2 - T1).

The change in temperature in an object depends not only on
the heat input dQ but also on the work dW, since dU = dQ
+ dW. Hence we must specify what happens with W when
we compute the heat capacity. Two forms of the heat
capacity are defined for simple systems: the heat capacity
at constant volume CV and the heat capacity at constant
pressure Cp. The heat capacity at constant volume is the
heat input needed for a unitary change in temperature while
keeping the volume of the object constant. In this case, W =
0, so that dQ = dU. We can thus write

C V   = 
1 
N 

  
d Q 
d T 

  =   
1 
N 

  
d U 
d T 

                    (18)

The heat capacity at constant pressure Cp is the heat input
needed for a unitary change in temperature while keeping
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the pressure on the object constant. It can be shown that Cp
> CV. In Fig. 5 we illustrate two systems where the same
heat input is applied.

11
11
11
11
11

00
00
00
00
00

   

dQ

   

dQ

   

dQ = dU

   

dQ = dU-dW

   

C

   

C

   

V

   

p

Figure 5 Cp versus CV.

In the system where the volume is kept constant, all the heat
goes into increasing the internal energy. When the volume is
allowed to expand, as in the case of constant pressure, part
of the heat is used up in the expansion work. Hence the
change in temperature is smaller for heat input at constant
pressure. This implies Cp > CV.

The heat capacity of an ideal gas
For an ideal gas, U  = 3/2NRT.  From Eq.(18) we obtain
immediately

C V   =   
d U 
d T 

  =   
3 
2 

R   .                    (19)

On the other hand, if the pressure is held constant, dQ = dU
- dW = dU + p dV. Using the equation of state of an ideal
gas, we obtain, for constant p, p dV = NR dT. Hence dQ =
dU + NR dT, so that we finally obtain

C p   = 
1 
N 

  
d Q 
d T 

  =   
d U 
d T 

+ R =  CV + R =   
5 
2 

R          (20)

The predictions from these expressions are compared with
real data in the table below. It can be seen that the agree-
ment is very good, indicating that the ideal gas approxima-
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tion is very good for He and Ne.

Cp
(cal /K¥mol)

CV
(cal /K¥mol)

3/2R
(cal /K¥mol)

5/2R
(cal /K¥mol)

He 5.04 3.01 2.98 4.98

Ne 4.97 3.02 2.98 4.98

The large difference between Cp and CV has its origin in the
significant expansion of a gas held at constant pressure while
heat is applied. On the other hand, this expansion is much
smaller for a solid object. Hence for a solid Cp and CV are
usually very similar. From the point of view of experiments,
Cp is much easier to measure, since it is very difficult to
keep the volume of a solid object constant as it is heated.
On the other hand, CV is much easier to calculate theoreti-
cally, because one need not deal with the thermal expansion
of the object. Fortunately, the expected similarity of Cp and
CV minimizes this problem.

The heat capacity of a solid object
In the previous paragraphs, we have been able to compute
the heat capacity for an ideal gas, whose internal energy is
purely kinetic. It appears that the calculation of the heat
capacity would be much more difficult for solid objects,
where the potential energy cannot be neglected.  On the
other hand, we learned in Chapter 2 that the average kinetic
energy of a harmonic oscillator equals the average potential
energy.  We also note that the motion of the atoms in a
solid objects can be decomposed into normal modes, each of
which satisfies the equation of motion of a simple harmonic
oscillator. For each of the normal modes, the kinetic energy
part of the internal energy is given, as in the ideal gas case,
by 3/2kT. But the average potential energy should also be
3/2kT , so that U = 3NkT = 3NRT. The corresponding heat
capacity is thus
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C V =   
1 
N 

d U 
d T 

=   3 R                       (23)

This is the so-called Dulong and Petite law . As seen in Fig.
?., the agreement with experimental data at room tempera-
ture is very good.

   

3R

Figure 6 The heat capacity of selected solids.

Notice that CV is predicted to be weakly dependent on
temperature at high temperatures, justifying the use of a
constant heat capacity for applications at room temperature.
On the other hand, the heat capacity is found to decrease
and approach zero at very low temperatures, in a complete
breakdown of the Dulong and Petite law. 

The observation of a heat capacity that approaches zero is
one of the most spectacular manifestations of quantum
mechanics. There is no classical explanation for this finding.
The quantum-mechanical explanation was first proposed by
Einstein. He proposed that the normal modes cannot absorb
arbitrarily small amounts of heat, but only multiple values of
hν, where ν is the frequency of the normal mode. Whenever
kT << hν, that particular normal mode is ÒfrozenÓ and does
not contribute to the heat capacity. As the temperature is
lowered, less and less normal modes can contribute, explain-
ing the drop in the heat capacity.
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Cycles
Engines and related machines have a working substance,
usually a gas, that undergoes repeated cycles, starting from a
certain set of parameters and returning to the same parame-
ters. Thus the study of cycles is very important from a
technological point of view. For a gas, a cycle can be repre-
sented in a x-y diagram, as indicated in Fig. ?, where the
pressure p is graphed as a function of the volume V.
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Figure 7 A cycle in a p-V diagram.

A representation in a p-V diagram has the advantage that
the area enclosed by the circle (shaded are in Fig. ?) is equal
to -W, the work delivered by the system for the entire cycle.
This is an immediate consequence of Eq. 12.

An important process is the so-called Carnot cycle, depicted
in Fig. 8.
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Figure 8 Diagram of a Carnot cycle in a p-V graph.

In a Carnot cycle, the gas is initially expanded
isothermically in the A→B segment. An isothermal process
is a process at constant temperature. In the B→C segment
the gas is expanded adiabatically, i,e., under the condition
that no heat is absorbed. The cycle is completed by an
isothermal compression (C→D) followed by an adiabatic
compression (D→A).

During the isothermal processes, the pressure is given by p =
NkT/V, with T constant. The same expression is valid for the
adiabatic process, but now T changes as a function of the
volume. To obtain the p-V dependence for an adiabatic
process, we notice that if dQ = 0, then dU = 3/2NR dT =
dW  = -p  dV . On the other hand, by differentiating the
equation of state pV = NRT we obtain

p  dV +  V  dp   =   N R d T   =   − 
2 
3 

p  dV          (24)

This can be rewritten as
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γ  p d V +  V d p   =   0                   (25)

where γ = Cp/CV = 5/3. Dividing by pV and integrating,

I 
d p 
p 

+   γ I 
d V 
V 

  =   constant                
(26)

This means ln p + γ ln V = const or

pV γ =   constant                         (27)
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Problems

1. (Alonso 15.3) The table below gives the pressure
in Nm-2 and the volume (in m3) for a gas at two
different temperatures. (a) For each case calculate
the product pV . (b) How does the product pV vary
if the temperature doesnÕt change? (c) At which
temperature is the product pV  larger? What
conclusion do you reach?  (d) Represent on a graph
the values of p against V at each temperature. These
lines are called isothermals.

T = 27¡C T = 130¡C
p(N/m2) V(m3) p(N/m2) V(m3)

0.81 × 106 2.43 1.85 × 106 1.41
1.30 × 106 1.51 2.19 × 106 1.20
1.74 × 106 1.13 2.46 × 106 1.07
2.05 × 106 0.96 2.94 × 106 0.89
2.56 × 106 0.77 3.14 × 106 0.83

2. (Alonso 15.4) The table below gives the values of
the pressure and volume of a gas at different
temperatures. (a) Calculate the value of the product
pV for each temperature. (b) Plot the values of pV
as a function of temperature. (c) Does pV vary
linearly with temperature? (d) Extend the graph
until it intersects the temperature axis and estimate
the value of that temperature. Is it possible to cool
the gas below that temperature?  (e) Write the
equation that relates pV with T that satisfies this
data.

Temperature (¡C) p(Pa) V(m3)
210 4.3 × 105 0.85
120 2.8 × 105 1.06
0 1.5 × 105 1.38
-80 1.0 × 105 1.45
-120 0.84 × 105 1.35

3. (Alonso 15.7)  An air bubble with a volume of 10
cm3 is formed in the water 40 m below the surface
of a lake. If the temperature of the bubble remains
the same as the bubble rises, determine the volume

of the bubble just before it reaches the surface of
the lake. Recall that one atmosphere = 1.0 × 105

Pa.

4. (Alonso 15.5) Find the internal energy of one
mole of an ideal gas at 0¡C. Does it depend on the
nature of the gas? Why?

5. (Alonso 15.16) Compute the average speed of (a)
helium atoms at 20 K, (b) nitrogen molecules at 27
¡C, and (c) mercury atoms at 100 ¡C.

6. (Alonso 15.17) (a) Show that atmospheric
pressure varies with height h according to ln (p/p0) =
-Mgh/RT, where M is the effective molar mass of air.
Assume that the temperature is independent of
height, which is not correct. (b) Estimate the
pressure at the summit of Mt. McKinley, whose
height is 6.19 × 103 m, if the air temperature is 0¡
C.

7. (Alonso 15.18) Repeat the previous problem,
assuming that the atmospheric pressure decreases
linearly with height according to T = T0 -αh, where
α  is constant, and verify that the atmospheric
pressure is ln (p/p0) = (Mg/Rα) ln (1-αh/T0). Find
the limiting value when α → 0.

8.  The specific heat of nitrogen (in kcal/ kg K) in
the temperature range 300 K ² T ² 5000 is given
by the expression

c(T) = 0.096 -63.7/T + 3.83 × 104/T2.
a) Compare this expression with the predictions for
an ideal gas.
b) Compute the amount of heat required to raise
the temperature of 0.100 kg of N2 from 500 K to
2500 K. Use 1 cal = 4.184 J

9.  Two moles of helium at 250 K are expanded
adiabatically from a volume of 1.5 L to 4.50 L.
a) What are the final pressure and temperature of
the gas?
b) What is the change in internal energy of the gas?

10. (Callen) For a particular gaseous system it has
been determined that the internal energy is given by
U = 2.5 pV + constant. The system is initially in the
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state p = 0.2 MPa (mega-Pascals), V  = 0.01 m3;
designated as point A in the figure. The system is
taken through the cycle of three processes (A→ B,
B→ C, and C→ D) shown in the figure. Calculate Q
and W for each of the three processes. Calculate Q
and W for a process from A to B along the parabola
p = 105 + 109 × (V-0.02)2.
(Answer: WBC = 7 × 103 J; QBC = -9.5 × 103 J)

   

V (m  )

  
 P

  
(M

P
a)

   

3

   

0.01
   

0.02
   

0.03

   

0.1

   

0.2

   

0.3

   

0.4

   

0.5

   

A
   

B

   

C

11. Show that when a system undergoes a cycle, the
work delivered by the system is given by the area
enclosed by the lines that define the cycle in a p-V
diagram.
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