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Introduction In this brief chapter we review some elementary topics in
the physics of systems of particles with the idea of applying
these concepts to the study of systems with many particles,
where thermodynamic concepts such as temperature can be
defined.

The work-energy
theorem for a
system of particles.

Kinetic energy
Let us consider a system of particles, such as the one
depicted in Fig. 1. The particles inside the system interact
with each other via internal forces. According to NewtonÕs
third law, these are action-reaction pairs Fnm = -Fmn. There
are also external forces , produced on the system particles by
other particles outside the system. These forces are indicat-
ed as Fn. Of course, these forces also appear as action-
reaction pairs, but the reaction force acts on a particle
outside the system, so we need not worry about it for the
time being.
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Figure 1 A system of particles with internal and external
forces.

The kinetic energy of such a system of particles can be defined
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as

E k   =   
N 

3 
i = 1 

1 

2 m i v 2 
i = 1 

2 m 1 v 2 
1 + 1 

2 m 2 v 2 
2 + 1 

2 m 3 v 2 
3 +  ...  ,      

(1)

where N is the total number of particles. In the example of
Fig. 1, we have N = 4.

Work
The work done by the external forces is, by definition

W ext =   
N 

3 
i = 1 

I F i A d r i                           (2)

where the limits of integration (not indicated for simplicity)
represent the initial and final position of each particle. On
the other hand, if particles 1 and 2 undergo infinitesimal
displacements dr1 and dr1, the elementary work done by
their mutual force is F12⋅dr1 + F21⋅dr2. Using F12 = - F21, this
becomes F12⋅(dr1- dr2) = F12⋅dr12. So the total work by the
internal forces can be written as

W int   =   3 
all pairs

I F ij A d r ij                    (3)

Work-energy relationships
With the above definitions, the change in the kinetic energy
of the system equals the total work:

∆ E k =  W ext + W int                     (4)

This is the work-energy theorem for a system of particles. In
many cases of interest, the work can be written in terms of a
potential energy. For example, if the internal forces are
conservative, F12⋅dr12 = -dEp,12, etc., so that

W int   =   − ( E final
p , int   − E initial

p , int )  ,                (5)

where E p, int  is the total internal potential energy. For

example, for a system of charges Ep,int = 1 

4 π ε 
0 

3 
all pairs

q i q j 
r ij

 . We

can thus define the so-called proper energy U of the system
as
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U =  Ek   +  Ep , int   =   3 
all particles

1 

2 m i v 2 
i   + 3 

all pairs

E p , ij       (6)

In terms of the proper energy, the work-energy theorem Eq.
(4) becomes

∆ U =  W ext                         (7)

This is a very convenient expression for thermodynamic
considerations because it neatly separates ÒinsideÓ (left side
of the expression) from the outside world (right side of the
equation). If the external forces are also conservative, we can
also define a potential energy for them, in which case we can
introduce the total energy E as E = Ek + Ep,int + Ep,ext. With
this definition, the work energy-theorem becomes ∆E = 0,
expressing the familiar concept that the total energy is
conserved. However, this form of the energy theorem is not
as convenient for our purposes because it does not allow us
to isolate the system from the outside world. It also requires
the external forces to be conservative, something we cannot
guarantee.

From the above discussion we conclude that the most
convenient expression for the work-energy theorem in a
system of particles is given by Eq. (7).

The internal energy
Let us consider two balls at different temperatures. Our
intuitive notion of temperature (to be confirmed later in a
more rigorous way) associates higher temperature with
higher kinetic energy of the particles (atoms) that form the
system Òball.Ó Let us assume that the relative distance
between these atoms doesnÕt change much, so that the
internal potential energy remains constant. Can we say that
the hotter ball has a higher proper energy U? No! The colder
wall could be flying at a very high speed, whereas the hotter
ball could remain on the floor. It is clear that if we want the
energy U  to represent temperature in any form we must
subtract the translational kinetic energy of the system as a
whole (we also need to subtract the rotational kinetic
energy, but we will not worry about this technical point for
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now). The way to subtract the translational kinetic energy of
the system as a whole is to measure the kinetic energy
relative to the center of mass. We thus define the internal
energy as 

U int   =   E k , CM + E p , int ,                   (8)

where Ek,CM is the kinetic energy of the system measured
with respect to its center of mass. A well-known theorem in
mechanics shows that if the proper energy U is measured
relative to an arbitrary inertial system L, then the proper
energy and the internal energy are related by U  = Uint +
1/2M(vCM)2, where M is the total mass of the system and vCM
is the speed of the center of mass measured from the inertial
system L. This relationship makes it easy to transform the
energy from one system into the other.

From now on, we will use the internal energy U int as the
fundamental quantity for our energy considerations in
thermodynamic systems. In the next couple of chapters we
will refer so often to Uint that we will end up dropping the
subscript ÒintÓ and calling it simple Òenergy.Ó However, you
must keep in mind the meaning of the internal energy to
understand thermodynamics. In terms of the internal energy,
the work-energy theorem reads:

∆ U int   =   W ext                          (9)

which of course means that the internal energy of a system
is conserved if there is no external work done on it.
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Problems

1.  Consider a system of two particles with masses
m1 = 1.2 kg and m2 = 2.2 kg. The particles have
charges q1 = 1.5 × 10-3 C and q2 = 2.9 × 10-4 C.
Their initial positions are (x1 = 0.11 m, y1 = 0.15
m, z1 = 0.0 m) and (x2 = 0.81 m, y2 = 0.95 m, z2 =
0.0 m). Their initial speeds are v1 = 310 m/s and v2
= 250 m/s. At a later time, the particles are found in
positions (x1 = 0.07 m, y1 = 0.55 m, z1 = 0.0 m)
and (x2 = 0.91 m, y2 = 0.45 m, z2 = 0.0 m), with
speeds v1 = 280 m/s and v2 = 500 m/s.

a) What is the initial kinetic energy? What is the
final kinetic energy?
b) What is the initial internal potential energy?
What is the final internal potential energy?
c) What are the initial and final potential proper
energies U?
d) What are initial and final internal energies Uint?
e) What is the work Wint done by the internal forces
when the system goes from the initial to the final
state?
f) What is the external work W ext done on the
system when it goes from the initial to the final
state?
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