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Introduction Physics can be defined as the science of predicting the motion of
objects. A science is supposed to be quantitative: the goal of
physics is to predict the function x(t) that gives the position
of an object as a function of time. (More precisely, in a
three-dimensional space we need the three functions x(t),
y(t), and z(t) that determine the three coordinates of our
object) The possibility of a physical science is obvious from
our daily observation of regularities in the motion of objects.
We notice that an object under well-defined conditions will
always move in the same way. This knowledge is essential to
our interactions with Nature. In fact, our brain is so good at
predicting motion that it makes many decisions automati-
cally. Think about the complicated process of walking. How
much time do you spend planning the next step? Even
animals can do an excellent job at predicting motion. Just
watch the fascinating TV program  This is my dog. The claim
that physics is one of the most difficult subjects is therefore
ridiculous.

Elements of a
theory of motion

The mere existence of a position function x(t) does not
guarantee that the mathematical derivation of this function
will be simple. It could actually be so complicated that the
mathematical description of motion might become impossi-
ble.  On the other hand, we notice that many types of
motion in Nature are simple: we see circular waves in water,
we find that the orbits of the planets are elliptical, we realize
that a flying stone describes a parabola in air. These are
simple geometrical forms; it is reasonable to expect that the
mathematical theory of motion, at least for these examples,
will not be too complicated.

The mathematics of motion prediction: Kinematics
From a mathematical point of view, the problem of predict-
ing motion can be formulated as follows: what do we need to
now at time t0 to calculate the function x(t) at a later time
t1? A possible answer can be found in the well-known Taylor
expansion formula

phy 241 Men�ndez  2



Chapter 1

    

x(t1 ) = x(t0 ) + dx

dt t = t
0
(t1 − t0 ) + 1

2

d2x

dt2 t = t
0

(t1 − t0 )2 +

+ 1

3!

d3x

dt3 t = t
0

(t1 − t0 )3 + ... + 1

n!

dnx

dtn t = t
0

(t1 − t0 )n + . . .
    

(1)

which provides exactly what we need: the value of a function
at time t1 based on information for time to only: the func-
tion itself and all its time derivatives evaluated at time t0.
There is a catch, however: first of all, the type of functions
that can be expanded in a Taylor series is very limited,
because they must have well-defined derivatives to all orders.
We donÕt know yet whether the position function x(t) for all
kinds of motion will satisfy this restrictive condition.
Worse, we need an infinite amount of information to
predict motion with Eq. (1), because we must know the
function and all its derivatives at time to. LetÕs analyze the
physical meaning of those terms to see if we can understand
the origin of the problem.

The first term in Eq. (1), x(to), is the position of our object
at time t0. That we need this information makes perfect
sense: if we want to predict the motion of an object, we
need to know where it was at the initial time. If a tennis ball
is served in Wimbledon, it will land in Wimbledon. If it is
served in Roland Garros, it will land in Roland Garros. There
is no way we can tell the landing point if we donÕt know the
starting point, even if the trajectories of the two balls are
identical. 

The second term in Eq. (1), 
dx
dt t = t

0

/ v(t0 ) is the velocity at

time t0. That this quantity is also needed to predict motion
follows from our daily experience. We note that the trajecto-
ry of a flying object can be changed by changing the initial
velocity (the science of ballistics depends on this fact). We
also know that if an object is moving very fast it is easy to
anticipate where the object is going to be an instant later.
Hence from the present velocity, we know how to Òextrapo-
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lateÓ  into the future.

The third term in  Eq. (1) contains the factor
d 2 x 

d t 2 
t = t 

0 

/ 
d v 
d t t = t 

0 

/   a ( t 0 )  which is the acceleration  at the

initial time t0. Do we need this information? We certainly
do; however, there is a fundamental difference between
position and velocity on one side and acceleration on the
other side. Let us consider the case of an object near the
surface of the Earth (a ball, a stone, etc.) We know that we
can change the trajectory of the object by changing its initial
position and velocity. However, the same is not true for the
acceleration: no matter what acceleration the object has
while on our hands, the acceleration becomes 9.8 m/s2

(vertically down) the moment the object leaves our hands.
The position and velocity of the ball immediately after it is
released from our hands depends on the position and
velocity it had while still on our hands.  Its acceleration,
however, reverts ÒmagicallyÓ to 9.8 m/s2 no matter what its
value was while in our hands.  Moreover, the acceleration
remains at 9.8 m/s2 for the entire flight of our object. So it
appears that Nature takes care of the acceleration complete-
ly.

If the acceleration of an object is determined by Nature at
all times, then Eq. (1) is not needed: the solution to our
problem is readily obtained by integrating the equation
d v 
d t 

= a ( t ) ,  from which the velocity v(t) is given by

v(t ) = v(t0 ) +
t

I
t
0

a(t ') dt'                   
(2)

Next we obtain the position from

x(t1 ) = v(t0 ) +
t
1

I
t
0

v(t) dt                   
(3)

For example, in the case of a falling object, taking x as the
vertical displacement (positive direction upward), we have
a(t) = -g, with g = 9.8 m/s2. Thus Eq. (2) gives v(t) = v(to)-
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g(t-t0), which we can plug into Eq. (3) to obtain the familiar
expression x(t1) = x(t0) + v(t0)(t1-t0) - 1/2g(t1-t0)2.

Of course, so far we have only shown that there is a case in
which the acceleration is completely determined by Nature.
Our analysis does not demonstrate that this will be always
so. On the other hand, if motion in Nature can be under-
stood from a simple and unified theory, the free fall case we
just discussed should be a special application of a more
general principle. We therefore assume that Nature deter-
mines accelerations and that the solution to our problem is
given by Eq. (2) and Eq. (3).  Ultimately, our assumptions
will have to be verified by experiments.

If acceleration is the central quantity that determines the
motion of an object, we need a set of rules to obtain the
acceleration. These rules are NewtonÕs laws.

How Nature
determines
acceleration:
Dynamics

The key idea is the observation that accelerations are related
to interactions. The ÒmagicÓ number 9.8 m/s2 for the accelera-
tion at the surface of the Earth depends on the interaction
between the Earth and our object. If the object is placed on
the Moon, its acceleration is different. So weÕll assume that
the interactions between different objects in Nature is what causes their
accelerations. Consistent with this idea, we can state that the
acceleration will be zero if the interactions vanish. This
almost trivial statement is NewtonÕs first law.

NewtonÕs First Law
A free object (no interactions) moves with constant velocity (zero
acceleration).

Trivial as it may seem in our context, this law runs against
some intuitive ideas. Suppose that you kick a chair so that
it acquires a initial horizontal velocity of 2 m/s. You know
that the chair will not slide forever at 2 m/s: it will eventually
stop. If you want the chair to move at a constant velocity,
you must push on it. Hence it appears that an interaction is
required to keep something moving at constant velocity, in
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direct violation of NewtonÕs First Law. The first to challenge
this Òcommon senseÓ belief was Galileo Galilei, who is the
true father of the First Law. Galileo accepted the obvious
fact that objects set into motion and left unattended will
eventually stop, but decided to analyze the reason why they
stop. Suppose that you drop some oil on the floor and give
your chair the same kick. Now youÕll see that it travels much
further. This suggests that your object stops because there is
an interaction (friction) with the floor.  GalileoÕs insight was
to extrapolate this conclusion to an ideal situation where
there is absolutely no friction, that is, no interactions: then
the velocity would not change at all, and the acceleration
would be zero. This is precisely the statement made by the
First Law. The reason why the First Law appears to fail in
everyday situations is that for it to be true the interactions
must vanish completely. In real situations, there are always
residual interactions in the form of friction, air drag, etc., so
that the acceleration is not exactly zero. We will never be
able to set up an experiment in which the First Law is
obeyed exactly, because it is practically impossible to
eliminate absolutely all forms of interactions between
objects. However, we do see good approximate examples: an
ice-skater keeps her initial velocity for a long time, our car
tends to slip on icy roads, etc. In all cases, we find that the
more we eliminate the interactions, the closer our experi-
mental results are to the predictions of the First Law. This is
why we strongly believe in the correctness of this law, even
though we have never seen an ÒexactÓ example, and we donÕt
expect to ever see one.

NewtonÕs Second Law
Having discussed the case of no interactions, we must now
tackle the more interesting case of non-vanishing interac-
tions.  How do we determine the acceleration when interac-
tions are present? Our experience with the acceleration of
gravity seems to indicate that all we need is a list of accelera-
tions for different interacting objects.  For example, the
acceleration of an object near the Earth is 9.8 m/s2, the
acceleration of an object on the Moon is 1.6 m/s2, etc. 
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Unfortunately, things are much more complicated. On the
one hand, the acceleration produced by the interaction
between objects is not always the same. The acceleration of a
stone at the surface of the Earth is indeed 9.8 m/s2, but if
the stone is at a height of 10,000 km the acceleration is
much less. A more serious problem is that in cases where the
interactions appear to be the same, different objects have
different accelerations.  Consider for example the case of a
professional tennis player. His service is so precise, that it is
reasonable to assume that for every service the interaction
between the racket and the ball is essentially the same.
Accordingly, the motion of the tennis ball is very much the
same every time the player serves the ball.  However,
imagine that somebody  puts some lead in the center of one
of the balls. If the player were to hit this ball in exactly the
same way he hits normal balls, the ball would move very
differently.  The player hits the ball the same way he hits
other balls, the interaction racket-ball is the same, but the
acceleration of the lead ball will be very different.  It appears
that the acceleration of an object depends not only on its interactions
with other objects but on some property of the object itself. In order
to take this into account, we introduce two new concepts:
force and mass.

¥ Force is a vectorial quantity that measures the
strength of the interaction between objects. The
total force acting upon an object is the vector
sum of all individual forces that act on this
object.

¥ Mass  is a scalar quantity that measures the
inertia of an object, defined as its ability to
ÒresistÓ acceleration when subject to a force.

NewtonÕs second law states that the acceleration a of an
object is given by

a =  
F
m

,                         (4)

where F is the total (or net) force acting upon the object 
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and m the mass of the object.

Eq. (4) is probably the most important equation in physics.
It gives the acceleration of an object in terms of the force
acting on it and the mass of the object.  It is not at all clear,
however, how we are supposed to use it, because we still
donÕt know what the forces are and we donÕt have a quanti-
tative definition of mass that we can use to measure masses.
The usual definition of mass as Òamount of matterÓ is not
specific enough.  WeÕll address these serious problems below.
For the time being, letÕs make sure that Eq. (4)  at least
makes sense.  The equation implies that the acceleration is
proportional to the force.  This is in agreement with our
intuitive concept of force. Suppose that you go to the
parking lot, put your car in neutral and push on it.  Your car
will accelerate, and you can measure this acceleration.  Next
you ask a friend to help you push the car and measure the
acceleration again. YouÕll find that the acceleration has
roughly doubled. This is in agreement with Eq. (4), if the
force F in that equation is understood as the net force acting
on our object, that is, as the sum of the individual forces
exerted on it. Additional evidence that the acceleration is
proportional to the sum of all forces can be obtained from
an experiment as in Figure 1, where we  drag a box by
applying two forces as indicated.
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Figure 1 The acceleration produced by two forces is in the
direction of the vector sum of the forces.

  The direction of the resulting acceleration coincides with
the direction of the vectorial sum of the forces.  This
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observation is sometimes called principle of superposition.
The other important feature of Eq. (4) is that the accelera-
tion is expected to be inversely proportional to the mass.
This also agrees with experience.  Consider for example the
experiment of  Figure 2.  Different masses of some material,
say wood, are attached to identical springs.  If the spring is
stretched by the same amount, it is reasonable to assume
that the initial force exerted by the springs on the masses is
the same.  Yet if one mass is twice the size of the other,  we
obtain different velocities when we let go.  The initial slope
of the velocity versus time curve for the smaller mass is
exactly two times larger than the slope corresponding to the
larger mass.  But this slope is the acceleration, so that we
verify the Second Law: If the force doesnÕt change, an
increase in the mass by a certain factor leads to a decrease
in the acceleration by the same factor.
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Figure 2 The velocity versus time curve for a mass
attached to a stretched spring (left) and for two
masses equal to the first mass attached to an
identical spring (right). The two springs are
initially stretched by the same amount.

What about the gravitational case discussed earlier, where
the acceleration seems to be independent of the masses of
the objects? This does  not necessarily contradict Eq. (4). If
the gravitational force itself turns out to be proportional to
the mass (remember F = mg), the dependence on the mass
cancels out in Eq. (4).
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Eq. (4) is  written very often as

F = ma                                (5)

This is obviously equivalent to a = F /m. Conceptually,
however, this version of Eq. (4) is somewhat misleading
because it looks like an expression to calculate the force,
while our idea is to use the force to calculate the accelera-
tion.  

NewtonÕs third law
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Figure 3 Any object can be considered as being composed of
two or more parts.  Applying the second law to the
different parts should give consistent results.

Figure 3 shows a possible problem with Eq. (4).  Suppose
that we apply a certain force F on a rigid, extended object of
mass m.  According to the second law, the acceleration of
the object is a = F/m.  On the other hand, the second law
should also be true if we apply it to different parts of this
object.  Consider the left half of the object, which we call B .
Clearly, the force F is not applied on B,  so that the motion
of B  must be caused by a force  FBA  produced by A.  On
the other hand, the motion of A is due to force F and to a
possible force FAB produced on A  by B.   We donÕt know if
there is such a force, but, on the other hand, there is no
reason to assume that B exerts no influence on A, so that we
include it, Òjust in caseÓ.  According to the second law, the
accelerations of the two parts are given by
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aA =
F + FAB

m A

                       
(6)

and

aB =
FBA

m B

                           
(7)

where mA  and mB are the masses of parts A and B, respec-
tively.  Combining these two equations we find that F + FAB
+ FBA = mAaA  + mBaB.  But all parts of the object move
together, so that a = aA = aB.  Using this fact, and mA + mB
= m, we easily (see Problem 1) come to the conclusion that
FAB + FBA = 0, or  FAB = - FBA.  Since this result must be
true for the Second law to be consistent, Newton elevated it
to the status of law. This Third NewtonÕs Law can be
expressed in words as follows: If an object A exerts a force FBA on
an object B, then object B exerts a force FAB = -FBA  on object A.

These pairs of equal and opposite forces are frequently called
action and reaction pairs.  The Third Law itself is frequently
called the Law of Action and Reaction.  Notice that, usually,
equal and opposite forces cancel out.  In this case, however,
each component of these pairs is applied on a different object,
so that when we write NewtonÕs Second Law for a given
object, only one of the components of the pair appears. This
is clearly the case above in Eqs. (6) and (7). 

NewtonÕs Third law has some remarkable implications.
If a truck collides with a motorcycle,  NewtonÕs Third law
tells us that the force exerted by the motorcycle on the
truck is equal to the force exerted by the truck on the
motorcycle.  This sounds strange, but it makes sense.  Since
the mass of the motorcycle is much less than the mass of the
truck, the acceleration of the motorcycle will be much larger
than the acceleration of the truck, even though the forces on
both objects are equal in magnitude.
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Mass versus Weight
With the first and second laws, we have the desired connec-
tion between interactions and accelerations.  Clearly, the
second law will play a fundamental role in our studies of
motion.  However, we still donÕt know how to apply it,
because we donÕt know how to measure the mass of an
object and we donÕt know how or where to find the force
between objects.

You might think that measuring masses is not really a
problem. Once we define the mass of one liter of water as 1
kg, the only thing we need to do is compare the weight of
other objects with the weight of our liter of water.  For
example, if a certain amount of lead weighs twice the weight
of our liter of water, we might say that the mass of lead is 2
kg.  This works because we assume that the weight of an
object is given by mg.  However, this is an experimental
statement about the gravitational law, whose accuracy we
donÕt know for sure.  If a certain amount of lead weighs
slightly more than our liter of water, it could be that this is
simply due to the fact that the Earth attracts lead with a
slightly stronger intensity than it attracts water.  In fact,
these deviations from the gravitational law have received
widespread attention of a late as some papers claimed to
have evidence for it.  It is apparent that our definition of
mass must be independent of the specific form of the
natural forces, so that a definition in terms of weight, while
practical, is not acceptable.  The masses we were talking
about when we introduced NewtonÕs second law measure the
ÒreluctanceÓ of an object to move under an applied force
(inertia). Hence they are sometimes called inertial masses.
They need not have anything to do with the strength of the
attraction by the Earth!  In fact, it is a most surprising fact
that the gravitational interaction does depend on the inertial
masses.  This doesnÕt happen for other interactions.  Electric
forces, for example, depend on the electric charges.  They are
independent of the mass of the charged objects.

There is a way to measure masses - based on NewtonÕs
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Second and Third Laws - that is independent of the nature
of the forces between objects.  Suppose that two masses mA
and mB experience a collision.  LetÕs assume that we carefully
eliminate all ÒexternalÓ forces, so that the only possible
forces are those exerted by one object on the other object.
According to NewtonÕs third law, these forces are equal and
opposite.  Combining NewtonÕs Second and Third laws, we
obtain

m AaA = FAB = −FBA =  − m B aB           (8)

If we watch these two objects for a time Æt , we can measure
the change  in their velocities produced by the acceleration.
These changes are ÆvA  = a A ∆ t and ∆vB = aB∆ t. If we
multiply both sides of  Eq (8)  by  Æt, we obtain

m A∆v A = −m B ∆v B                  (9)

This can be used to measure masses: once we know one
mass, say mA, that we define arbitrarily (such as 1 kg = mass
of 1 liter of water) we make it collide with an unknown mass
and measure the change in velocity of the two masses.  Then
we can use Eq.(9) to determine the unknown mass.
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Finding the force
We now have all ingredients in place to calculate the
accelerations from the forces, except that we donÕt know
how to find the force between objects!  Imagine you are
Isaac Newton trying to ÒsellÓ your three laws to an skeptical
scientific audience.  Somebody is bound to complain: ÒYou
are asking us to use your three laws to calculate the
acceleration, but you give us no clue on how we are sup-
posed to find the forces! The only thing we can do with your
laws is measure the acceleration and calculate the force using
F = ma!  As far as we can tell, your laws might even  be
right, but they are useless when it comes to calculating
accelerations.Ó  Of course, Newton himself had worried
about this.  He solved the problem (in part) with an
astonishing discovery: he found the gravitational force
between objects.  This was his second fundamental contribu-
tion to physics. (Historically, the way Newton discovered
the gravitational law and his three dynamical laws was much
more complicated.  It was a trial and error approximation in
which he found parts of his three laws, parts of the gravita-
tion law, invented calculus in-between, made some silly
mistakes, and finally was able to formulate his ideas as a
coherent whole.).

NewtonÕs gravitational force between two objects of masses
m1 and m2 separated by a distance r is given by F =

Gm
1
m

2

r2 .

With this very simple expression, combined with this three
dynamics laws, Newton was able to explain all known
gravitational phenomena. The complicated motion of
planets, the weight of the objects near the surface of the
earth, the tides, and an impressive list of other natural
phenomena can be explained on the basis of that simple
expression for the gravitational force between objects. The
fact that such an expression exists lends enormous credibility
to NewtonÕs approach, for it is unthinkable that such a
simple mathematical description could be found on the basis
of a wrong theory. This is the artistic/religious component of
science: if you find a very simple and mathematically
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appealing explanation for a physical phenomenon, more
often than not you will have found the right answer.
Conversely, if your explanation is mathematically too
complicated, your approach is likely to be mistaken. (Avoid
excessive boldness, though: exceptions abound).
Forces in Nature
A further confirmation of the usefulness of the Newtonian
concept of force was the discovery of the form of the
electric interaction between a charge q1 and a charge q2
separated by a distance r, which is given by CoulombÕs law
F = K e 

q 
1 
q 

2 

r 2  Again, the observation that electrical phenomena
can be explained in terms of this simple force lends additio
al credibility to NewtonÕs dynamics.

A significant discovery  over the last three centuries is that
the number of fundamental interactions in Nature is limited:
in addition to the gravitational and electric interaction there is
the magnetic interaction, the strong interaction (which holds
together the positively charged protons in the nuclei of
atoms), and the weak interaction (responsible for some
radioactive decay phenomena). The realization that there
were only a few interactions lead to an intriguing idea: could
it be that there is in fact a single interaction, which depend-
ing on the experimental conditions manifests itself as one or
the other of the known fundamental forces? This started the
search for a Òunification theory,Ó which, as you can see, is
motivated again by an almost religious belief in simplicity
and beauty. The first great triumph in the search for
unification was accomplished last century by Maxwell: his
famous equations effectively unify the electric and magnetic
interactions. We now use the expression Òelectromagnetic
interaction.Ó The second fundamental unification step was
accomplished by Salam, Glashow, and Weinberg, who
received the 1979 Nobel Prize for showing that the electro-
magnetic and weak interactions are manifestations of a
fundamental ÒelectroweakÓ interaction. Further Òunifica-
tionÓ progress may depend on you!
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Solutions to the
force equation

Once the force relevant to the problem is known, the task of
the physicist is to find the position function x(t) given the
initial position x(0) and the initial velocity v(0) . This
solution can be given as an analytical expression, such as x(t)
=  A sinωt, or in numerical form, i.e., as a table listing the
values x(ti) for selected times ti. The advantage of analytical
expressions is that they allow the calculation of the position
at any desired time. By contrast, if that desired time is not
in the list of values ti of the table listing the numerical
solution, the best we can do is interpolate between the
closest values ti-1 and ti. Of course, if the separation between
the successive times  ti-1 and ti is very small, the error
incurred will also be small. In other words, the numerical
solution can be made as accurate as desired by calculating
the position at many closely spaced times ti. This alternative,
which requires many computations, was impractical in
NewtonÕs times.  He had to invent calculus and limit himself
to problems with analytical solutions. The power of todayÕs
personal computers makes it feasible and sometimes
convenient to use a numerical approach, as you will find out
in this course.

The advantage of the numerical approach is that it can
handle problems for which there are no analytical solutions,
such as the motion of three interacting bodies. On the other
hand, the distinction between analytical and numerical
solutions is not as clear-cut as the above discussion seems to
imply. Consider the above example x(t) = A sinωt. When
your calculator computes the value of the sine function for a
certain angle, it makes a numerical approximation, since the
exact value is given by an infinite series which of course cannot
be summed up.

Numerical solutions
The basic idea of the numerical approach is to divide the
interval between the initial time t0 and the final time t1 into
very small intervals of duration ∆t. (The intervals need not
be equal. For simplicity, however, we will assume they are).
For very small intervals ∆t we obtain:
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v(t + ∆t) = v(t) +
t + ∆t

I
t

a(t') dt� v(t) + a(t)∆t,        
(10)

where we have used the definition of integral to drive the
last approximate relation. Similarly,

x(t + ∆t)� x(t) + v(t)∆t       (11)

Equations (10) and (11) together with NewtonÕs second law,
Eq. (4) constitute the basis for a numerical solution of the
equations of motion.  On a personal computer, this can be
most easily achieved by using a spreadsheet program.

The biggest practical problem is the selection of an appropri-
ate value of ∆t, small enough to preserve accuracy and large
enough to avoid unnecessary computations. Professional
physicists can write computer programs that adjust the value
of ∆t to the specific conditions of the system: when the
object moves slowly, the time interval grows, when the
object speeds up, the interval decreases, so that there is no
loss of accuracy. We will not be that fancy in this course.
We will just guess a good value of ∆t and modify it later if
we are not satisfied with the result. Since the computer will
do all calculations, there is little added pain in trying
different values of the time interval.
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SPREADSHEET PHYSICS

A Spreadsheet is a popular type of program that consists in a two- (or three-) dimensional array of cell
labeled with letters (columns) and numbers (rows). Each cell has a unique label: A3, B2, etc. (Mos
programs will also let you name cells. For example, you could name a cell ÒmassÓ and enter there th
value of the mass of your object). The program lets you perform operations with the entries in differen
cells and store the result in the cell of your choice. We would like to set up a spreadsheet to calculat
x(t+∆t) = x(t) + v(t)∆t and v(t+∆t) = v(t)+a(t)∆t in a step-by-step fashion.  Suppose that the object is 
mass m = 2.0 kg  attached to a spring of constant K = 0.5 N/m, so that the force is given by F = -Kx
Let us take the time interval ∆t as 0.1 s.  The initial time is t = 0s. Suppose that at this time, the objec
is at x(0) = 3.0 m and has a velocity v(0) = 0.0 m/s. Our spreadsheet could look as follows:

A B C D

1 0.1 2.0 0.5

2 0.0 3.0 0.0 -$C$1*B2/$B$1

3 +A2+$A$1 +B2+C2*$A$1 +C2+D2*$A$1 -$C$1*B3/$B$1

4 A3+$A$1 B3+C3*$A$1 C3+D3*$A$1 -$C$1*B4/$B$1

We have entered ∆t in cell A1, m in cell B1 and K in cell C1. In the second row we enter the initia
conditions: t=0  in A2, x(0) = 3.0 m in B2, and v(0) = 0.0 m/s in C3. In cell D2 we have entered 
formula. (Note that when you enter a formula in a cell, what you usually see in the cell is the result o
the formula. The formula itself is usually displayed in a special cell at the top of the screen.) Becaus
spreadsheets also accept normal text in a cell, the program must have a way to distinguish between 
formula and a word. This is usually accomplished with the following convention: if you start you
expression with a Ò-Ò or Ò+Ó sign, the program understands you are typing a formula. The formula w
entered in D2 tells the program to multiply whatever it finds in cell C1 times B2 and divide by th
quantity in cell B1 (WeÕll explain the $ signs below). The initial minus sign is equivalent to multiplyin
by (-1). What we have entered in D2 is clearly  -Kx(0)/m, which is the acceleration at t = 0.
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SPREADSHEET PHYSICS (continuation)

Now consider the formulas in the third and fourth rows. In column A, the formulas give the
successive times. In columns B and C, youÕll recognize the approximate expressions for the
position and velocities at a certain time in terms of the position and velocity at an earlier time. In
column D we see formulas giving the acceleration at the corresponding times in column A. At this
point, you may wonder what is the usefulness of the spreadsheet: do you have to type the formulas
for every time you want to compute? If the answer were yes, you might as well compute the
positions and velocities with your pocket calculator. Enter one of the most powerful features of
spreadsheet programs. Once you type the formulas in row 3, you can COPY them to the rows below. The
program automatically upgrades the references. 
When you copy the formula containing A2 to the row below, the formula is automatically changed
by the program so that A2 becomes A3. This is exactly what you want. Sometimes, however, you
want the program not to upgrade the reference. This is what you accomplish by adding $ signs.
(Not all programs use $ signs for this, but all of them have this feature. Look it up in the manual
of your spreadsheet under ÒabsoluteÓ references). For example, when you copy the formula in A3
to A4, you get A3+A1. If you copy this formula down, you get A4+A1. If you copy the new
formula to the row below, you get A5+A1, etc. It is clear that by copying the formulas in row 3 to
the 100 rows below it, you can compute the position and velocity at 100 different times. This can
done with a couple of keystrokes or mouse clicks.
Most modern spreadsheet programs will let you graph your results. This usually consists in
invoking the graph feature and selecting the columns you want as x and y axis.

Analytical solutions
When the force is a function of time only, the solution to
the equations of motion is straightforward. From Eq. (4), we
easily obtain the acceleration as a function of time. This
function is plugged into Eq. (2) to obtain the velocity as a
function of time. Finally, the position as a function of time
is obtained from Eq. (3) by using the velocity as a function
of time computed in the previous step.

Unfortunately, forces is Nature are not always known as a
function of time. In fact, most fundamental forces in nature
depend on the velocity or the position of the particle. This
creates a problem: in order to calculate the position as a
function of time, we need to compute the force. But in
order to be able to compute the force we must know the
position as a function of time! To illustrate this difficulty,
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letÕs consider the case of a mass attached to a spring, which
we just solved numerically. The force is given by F= -Kx, so
that Eqs.  (2) and(3) become

v(t) = v(0) −
K
m

t

I
0

x(t') dt'                  
(12)

and

x(t) = x(0) +
t

I
0

v(t') dt'                      
(13)

It is quite clear that these equations are coupled. When you
have a system of couple algebraic equations, such as x + 3y =
8, x - y = 3, the usual approach is to use one of the equa-
tions to express one of the unknowns in terms of the other,
(for example, x = y + 3) and substitute this expression into
the remaining equation, which then becomes an equation
with only one unknown. The same approach can be used
here. However, the presence of the integrals poses a serious
problem. To eliminate the integrals, we differentiate the
equations and use the fundamental theorem of calculus. We
then obtain

d v 
d t 

= − 
K 
m 

x ( t ) ,                             (14)

and

dx
dt

=  v(t)                                  (15)

Now we can easily eliminate v(t) by differentiating Eq. (15)
one more time and substituting into Eq. (14). We finally
obtain

d2 x

dt2 =  −
K
m

x(t)                         
(16)

This is a differential equation. Stated in words, the solution to
our spring problem is a function with the following property:
its second time derivative is proportional to minus the
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function itself. Notice that Eq. (16) is simply a = F/m. Hence
the differential equation relevant to any problem is NewtonÕs second
law. 

When the force is a function of time only, the differential
equation can be trivially integrated, as discussed above.
When the force is a function of the position or the velocity,
as in Eq. (16), we must use the mathematical theory of
differential equations to solve our problem. Note that the
distinction does not arise if we are solving the problem numerically: we
can always use the expressions in Eq. (10) and (11), because
at every instant we are simultaneously calculating time,
position, and velocity.

When solving differential equations, mathematicians and
physicists take somewhat different approaches. For a
mathematician, its is important a) to discover a systematic
approach to solving these equations, and b) to demonstrate
that the solution found is unique. A physicist is usually
happy if she finds a solution, no matter how the solution is
found. She might even cheat by performing an experiment
and watching the solution in real life. This might help in
guessing what function might be the mathematical solution
to the differential equation. A mathematician would
undoubtedly find this approach disgusting. Also, physicists
worry much less about the uniqueness of the solutions. Very
often, they know in advance that there must be only one
solution to the problem. For example, under well defined
initial conditions a projectile will fly with a well-defined
trajectory. So you know that if you find a solution to the
equations of motion, this must be the solution. If we were to
find that there are two possible solutions to the problem,
this would probably mean that NewtonÕs law are wrong, for
these things donÕt happen in Nature. Since we have little
doubt concerning NewtonÕs equations, we donÕt worry very
much about the uniqueness of the solutions we find.
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Problems

1. Show that in Fig. 3 FAB = -FBA by requiring that
the acceleration of all parts of the object be the
same and using mA + mB = m.

2.  Set up a spreadsheet to solve numerically (donÕt
use the exact solution!) the problem of a mass m
attached to a spring of constant K . Choose any
value you want for these parameters. Also, select
whatever initial conditions you like. Experiment
with different values of ∆ t until you find a
reasonable one. Use the graphic capabilities of your
spreadsheet to plot the position and the velocity as
a function of time. These functions should look like
sines or cosines; use this to assess how good your ∆t
is.

3. a) Show (analytically) that using the approxima-
tions x(t+∆t) = x(t) + v(t)∆t and v(t+∆t) = v(t) +
a(t)∆t in the previous problem, the total energy is
not conserved exactly from one step to the next,
but with an error given by

∆ E   =   
K 
m 

E � ∆ t � 
2 

.

Discuss.

b) Show that the above expression leads to an
exponential increase of the total energy, with an
exponent given approximately by K∆t/m.  Compare
with numerical calculations done with your
spreadsheet. (Hint: This is a difficult problem.
DonÕt expect to solve it in five minutes.)
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