
Chapter 10

Representational Learning

10.1 Introduction

The response selectivities of individual neurons, and the way they are dis-
tributed across neuronal populations, define how sensory information is
represented by neural activity in a particular brain region. Sensory in-
formation is typically represented in multiple regions, the visual system
being a prime example, with the nature of the representation shifting pro-
gressively along the sensory pathway. In previous chapters, we discuss
how such representations can be generated by neural circuitry and devel-
oped by activity-dependent plasticity. In this chapter, we study neural
representations from a computational perspective, asking what goals are
served by particular representations and how appropriate representations
might be developed on the basis of input statistics.

Constructing new representations of, or re-representing, sensory input is re-representation
important because sensory receptors often deliver information in a form
that is unsuitable for higher level cognitive tasks. For example, roughly
108 photoreceptors provide a pixelated description of the images that ap-
pear on our retinas. A list of the membrane potentials of each of these
photoreceptors is a bulky and awkward representation of the visual world
from which it is difficult to identify directly the underlying causes of vi-
sual images, such as the objects and people we typically see. Instead, the
information provided by photoreceptor outputs is processed in a series of
stages involving increasingly sophisticated representations of the visual
world. In this chapter, we consider how to specify and learn these more
complex and useful representations.

The key to constructing useful representations lies in determining the
structure of visual images and the constraints imposed on them by the
natural world. Images have causes, such as objects with given locations,
orientations, and scales, illuminated by particular lighting schemes, and
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2 Representational Learning

observed from particular viewing locations and directions. Because of this,
the set of possible pixelated activities arising from natural scenes is richly
structured. Sophisticated representations of images arise from ways of
characterizing this structure.

In this chapter, we discuss one approach to identifying the structure in
natural stimuli and using it as a basis for constructing useful and efficient
representations. The basic goal in the models we discuss is to determine
the causes that give rise to stimuli. These are assumed to be the sources of
structure in the sensory input data. Causal representations are appropriate
because inferences, decisions, and actions are typically based on underly-
ing causes. In more abstract terms, causes are the natural coordinates for
describing complex stimuli such as images. To account for the inevitable
variability that arises when considering natural stimuli, many of the mod-
els we discuss are probabilistic, specifying the probabilities that various
causes underlie particular stimuli.

Causal Models

Figure 10.1A provides a simple example of structured data that suggests
underlying causes. In this case, each input is characterized by a two com-
ponent vector u = (u1, u2). A collection of sample inputs that we wish toinput vector u
represent in terms of underlying causes is indicated by the 40 crosses in
figure 10.1A. These inputs are drawn from a probability density p[u] that
we call the input distribution. Clearly, there are two clusters of points ininput distribution

p[u] figure 10.1A, one centered near (0,1) and the other near (1,0). Many pro-
cesses can generate such clustered data. For example, u1 and u2 might
represent two characterizations of the voltage recorded on an extracellu-
lar electrode in response to an action potential. Interpreted in this way,
these data suggest that we are looking at spikes produced by two neurons
(called A and B), which are the underlying causes of the two clusters seen
in figure 10.1A. A more compact and causal description of the data can
be provided by a single output variable v that takes the value A or B forcause v

each data point, representing which of the two neurons was responsible
for this input. The variable v, which we associate with a cause, is some-
times called a hidden or latent variable because, although it underlies u,hidden or latent

variable its value cannot necessarily be determined unambiguously from u. For
example, it may be impossible to determine definitively the value of v for
an input u near the boundary between the two clusters in figure 10.1A.

The ultimate goal of a causal model is recognition, in which the model tellsrecognition
us something about the causes underlying a particular input. Recognition
can be either deterministic or probabilistic. In a causal model of the data
in figure 10.1A with deterministic recognition, the output v(u) = A or B isdeterministic

recognition the model’s estimate of which neuron produced the spike associated with
input u. In probabilistic recognition, the model estimates the probabilityprobabilistic

recognition that the spike with input data u was generated by either neuron A or neu-
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Figure 10.1: Clustering. A) Input data points drawn from the distribution p[u] are
indicated by the crosses. B) Initialization for a generative model. The means and
twice the standard deviations of the two Gaussians are indicated by the locations
and radii of the circles. The crosses show synthetic data, which are samples from
the distribution p[u;G ] of the generative model. C) Means, standard deviations,
and synthetic data points generated by the optimal generative model. The square
indicates a new input point that can be assigned to cluster A or B with probabilities
computed from the recognition model.

ron B. In either case, the output v is taken as the model’s re-representation
of the input.

We consider models that infer causes in an unsupervised manner. In
the example of figure 10.1A, this means that no indication is given about
which neuron fired which action potential. The only information available
is the statistical structure of the input data that is apparent in the figure. In
the absence of supervisory information or even reinforcement, causes are
judged by their ability to explain and reproduce, statistically, the inputs
they are designed to represent. This is achieved by constructing a gener-
ative model that can be used to create synthetic input data from assumed generative model
causes. The generative model has a number of parameters that we col-
lectively represent by G , and an overall structure or form that determines parameters G
how these parameters specify a distribution over the inputs. The param-
eters are adjusted until the distributions of synthetic and real inputs are
as similar as possible. If the final statistical match is good, the causes are
judged trustworthy, and the model can be used as a basis for recognition.

Generative Models

To illustrate the concept of a generative model, we construct one for the
data in figure 10.1A. We begin by specifying the proportions (also known
as mixing proportions) of action potentials that come from the two neu- mixing proportions
rons. These are written as P[v;G ] with v=A or B. P[v;G ], which is called
the prior distribution over causes, is the probability that a given spike is prior P[v;G ]
generated by neuron v in the absence of any knowledge about the input u
associated with that spike. This might reflect the fact that one of the neu-
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4 Representational Learning

rons has a higher firing rate than the other, for example. The two prior
probabilities represent two of the model parameters contained in the list
G , P[v;G ] = γv for v = A and B. These parameters are not independent
because they must sum to one. We start by assigning them random values
consistent with this constraint.

To continue the construction of the generative model, we need to assume
something about the distribution of u values arising from the action poten-
tials generated by each neuron. An examination of figure 10.1A suggests
that Gaussian distributions (with the same variance in both dimensions)
might be appropriate. We write the probability density of u values given
that neuron v fired as p[u|v;G ], and set it equal to a Gaussian distribu-generative

distribution
p[u|v;G ]

tion with a mean and variance that, initially, we guess. The parameter
list G now contains the prior probabilities for neurons A and B to fire,
γv, and the means and variances of the Gaussian distributions over u for
v = A and B, which we label gv and �v respectively. Note that we use
�v for the variance of cluster v, not its standard deviation, and also that
each cluster is characterized by a single variance because we only consider
circularly symmetric Gaussian distributions.

Figure 10.1B shows synthetic data points (crosses) generated by this
model. To create each point, we set v=A with probability P[v=A;G ] (or
otherwise set v=B) and then generated a point u randomly from the distri-
bution p[u|v;G ]. This generative model clearly has the capacity to create
a data distribution with two clusters similar to the one in figure 10.1A.
However, the values of the parameters G used in figure 10.1B are obvi-
ously inappropriate. They must be adjusted by a learning procedure that
matches, as accurately as possible, the distribution of synthetic data points
in figure 10.1B to the actual input distribution in figure 10.1A. We describe
how this is done in a following section. After optimization, as seen in fig-
ure 10.1C, synthetic data points generated by the model (crosses) overlap
well with the actual data points seen in figure 10.1A.

In summary, generative models are defined by a prior probability distri-
bution over causes, P[v;G ], and a generative distribution for inputs given
each particular cause, p[u|v;G ], which collectively depend on a list of pa-
rameters G . Sometimes, we consider inputs that are discrete, in which
case, following our convention for writing probabilities and probability
densities, the probability distribution for the inputs is written as P[u] and
the generative distribution as P[u|v;G ]. Alternatively, the causal vari-
ables can be continuous, and the generative model then has the prior
probability density p[v;G ]. Sometimes, the relationship between causes
and synthetic inputs in the generative model is deterministic rather than
being stochastic. This corresponds to setting p[u|v;G ] to a δ function,
p[u|v;G ] = δ(u − f(v;G )), where f is a vector of functions. Causes are
sometimes described by a vector v instead of a single variable v. A general
problem that arises in the example of figure 10.1 is determining the num-
ber of possible causes, i.e. the number of clusters. Probabilistic methods
can be used to make statistical inferences about the number of clusters in
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10.1 Introduction 5

the data, but they lie beyond the scope of this text.

The distribution of synthetic data points in figures 10.1B and 10.1C is de-
scribed by the density p[u;G ] that the generative model synthesizes an in-
put with the value u. This density can be computed from the prior P[v;G ]
and the conditional density p[u|v;G ] that define the generative model, marginal

distribution
p[u;G ]p[u;G ] =

∑
v

P[v;G ]p[u|v;G ] . (10.1)

The process of summing over all causes is called marginalization, and
p[u;G ] is called the marginal distribution over u. As in chapter 8, we
use the additional argument G to distinguish the distribution of synthetic
inputs produced by the generative model, p[u;G ], from the distribution of
actual inputs, p[u]. The process of adjusting the parameters G to make the
distributions of synthetic and real input data points match, corresponds to
making the marginal distribution p[u;G ] approximate, as closely as pos-
sible, the distribution p[u] from which the input data points are drawn.
Before we discuss the procedures used to adjusting the parameters of the
generative model to their optimal values, we describe how a model of
recognition can be constructed on the basis of the generative description.

Recognition Models

Once the optimal generative model has been constructed, the culmination
of representational learning is recognition, in which new input data are
interpreted in terms of the causes established during training. In prob-
abilistic recognition models, this amounts to determining the probability
that cause v is associated with input u.

In the model of figure 10.1, and in many of the models discussed in this
chapter, recognition falls directly out of the generative model. The proba-
bility of cause v given input u is P[v|u;G ], which is the statistical inverse
of the distribution p[u|v;G ] that defines the generative model. P[v|u;G ]
is called the posterior distribution over causes or the recognition distribu-
tion. Using Bayes theorem, it can be expressed in terms of the distributions
that define the generative model as recognition

distribution
P[v|u;G ]P[v|u;G ] = p[u|v;G ]P[v;G ]

p[u;G ]
. (10.2)

In the example of figure 10.1, equation 10.2 can be used to determine that
the point indicated by the filled square in figure 10.1C has probability
P[v=A|u;G ] = 0.8 of being associated with neuron A and P[v=B|u;G ] =
0.2 of being associated with neuron B.

Although equation 10.2 provides a direct solution of the recognition prob- invertible and
non-invertible

models
lem, it is sometimes impractically difficult to compute the right side of
this equation. We call models in which the recognition distribution can be
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6 Representational Learning

computed from equation 10.2, invertible, and those in which it cannot be
computed tractably, non-invertible. In the latter case, recognition is based
on an approximate recognition distribution. That is, recognition is basedapproximate

recognition
distribution
Q[v;u,W ]

on a function Q[v;u,W ], expressed in terms of a set of parameters collec-
tively labeled W , that provides an approximation to the exact recognition
distribution P[v|u;G ]. Like generative models, approximate recognition
models can have different structures and parameters. In many cases, as
we discuss in the next section, the best approximation of the recognition
distribution comes from adjusting W through an optimization procedure.
Once this is done, Q[v;u,W ] provides the model’s estimate of the prob-
ability that input u is associated with cause v, performing the same role
that P[v|u;G ] does for invertible models.

The choice of a particular structure for a generative model reflects our no-
tions and prejudices, collectively referred to as heuristics, about the prop-
erties of the causes that underlie a set of input data. Usually, the heuristics
consist of biases toward certain types of representations, which are im-
posed through the choice of the prior distribution p[v;G ]. For example,
we may want the identified causes to be mutually independent (whichfactorial coding
leads to a factorial code) or sparse, or of lower dimension than the inputsparse coding
data. Many heuristics can be formalized using the information theoretic

dimensionality
reduction

ideas we discuss in chapter 4.

Once a causal model has been constructed, it is possible to check whether
the biases imposed by the prior distribution of the generative model have
actually been realized. This is done by examining the distribution of
causes produced by the recognition model in response to actual data. This
distribution should match the prior distribution over the causes, and thus
share its desired properties, such as mutual independence. If the prior dis-
tribution of the generative model does not match the actual distribution of
causes produced by the recognition model, this is an indication that the
desired heuristic does not apply accurately to the input data.

Expectation Maximization

There are various ways to adjust the parameters of a generative model to
optimize the match between the synthetic data it generates and the actual
input data. In this chapter (except for one case), we use a generalization
of an approach called expectation maximization or EM. The general the-EM
ory of EM is discussed in detail in the next section but, as an introduction
to the method, we apply it here to the example of figure 10.1. Recall that
the problem of optimizing the generative model in this case involves ad-
justing the mixing proportions, means, and variances of the two Gaussian
distributions until the clusters of synthetic data points in figure 10.1B and
C match the clusters of actual data points in figure 10.1A.

The parameters gv and �v for v=A and B of the Gaussian distributions
of the generative model should equal the means and variances of the data
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10.1 Introduction 7

points associated with each cluster in figure 10.1A. If we knew which clus-
ter each input point belonged to, it would be a simple matter to compute
these means and variances and construct the optimal generative model.
Similarly, we could set γv, the prior probability of a given spike being a
member of cluster v, equal to the fraction of data points assigned to that
cluster. Of course, we do know the cluster assignments of the input points;
that would amount to knowing the answer to the recognition problem.
However, we can make an informed guess about which point belongs to
which cluster on the basis of equation 10.2. In other words, the recog-
nition distribution P[v|u;G ] of equation 10.2 provides us with our best
current guess about the cluster assignment, and this can be used in place
of the actual knowledge about which neuron produces which spike. The
recognition distribution P[v|u;G ] is thus used to assign the data point u
to cluster v in a probabilistic manner.

In EM algorithm, the mean and variance of the Gaussian distribution cor-
responding to cause v are set equal to a weighted mean and variance of all
the data points, with the weight for point u equal to the current estimate
P[v|u;G ] of the probability that it belongs to cluster v. In this context, the
recognition probability P[v|u;G ] is also called the responsibility of v for u. responsibility
A similar argument is applied to the mixing proportions, resulting in the
equations

γv = 〈P[v|u;G ]〉 , gv = 〈P[v|u;G ]u〉
γv

, �v = 〈P[v|u;G ]|u − gv|2〉
2γv

.

(10.3)

The angle brackets indicate averages over all the input data points. The
factors of γv dividing the last two expressions correct for the fact that the
number of points in cluster v is only expected to be γv times the total num-
ber of input data points, whereas the full averages denoted by the brackets
involve dividing by the total number of data points.

The full EM algorithm consists of two phases that are applied in alterna-
tion. In the E (or expectation) phase, the responsibilities P[v|u;G ] are cal- E phase
culated from equation 10.2. In the M (or maximization) phase, the genera- M phase
tive parameters G are modified according to equation 10.3. The process of
determining the responsibilities and then averaging according to them re-
peats because the responsibilities change when G is modified. Figure 10.2
shows intermediate results at three different times during the running of
the EM procedure starting from the generative model in figure 10.1B and
resulting in the fit shown in figure 10.1C.

The EM procedure for optimizing the generative model in the example
of figure 10.1 makes intuitive sense, but it is not obvious that it will con-
verge to an optimal model. Indeed, the process appears circular because
the generative model defines the responsibilities used to construct itself.
However, there are rigorous theoretical arguments justifying its use, which
we discuss in the following section. These provide a framework for per-
forming unsupervised learning in a wide class of models.
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Figure 10.2: EM for clustering. Three iterations over the course of EM learning
of a generative model. The circles show the Gaussian distributions for clusters A
and B (labeled with the largest ‘A’ and ‘B’) as in figure 10.1B & C. The ‘trails’ be-
hind the centers of the circles plot the change in the mean since the last iteration.
The data from figure 10.1A are plotted using the small labels. Label ‘A’ is used
if P[v=A|u;G ] > 0.5 (and otherwise label ‘B’), with the font size proportional to
|P[v=A|u;G ] − 0.5|. This makes the fonts small in regions where the two distri-
butions overlap, even inside one of the circles. The assignment of labels for the
two Gaussians (i.e. which is ‘A’ and which ‘B’) is arbitrary, depending on initial
conditions.

10.2 Density Estimation

The process of matching the distribution p[u;G ] produced by the gen-
erative model to the actual input distribution p[u] is a form of density
estimation. This technique is discussed in chapter 8 in connection with thedensity estimation
Boltzmann machine. As mentioned in the introduction, the parameters G
of the generative model are fit to the training data by minimizing the dis-
crepancy between the probability density of the input data p[u] and the
marginal probability density of equation 10.1. This discrepancy is mea-
sured using the Kullback-Leibler divergence (chapter 4)

DKL(p[u], p[u;G ]) =
∫

du p[u] ln
p[u]

p[u;G ]

≈ − 〈
ln p[u;G ]

〉 + K (10.4)

where K is a term proportional to the entropy of the distribution p[u] that
is independent of G . In the second line, we have approximated the integral
over all u values weighted by p[u] by the average over input data points
generated from the distribution p[u]. We assume there are sufficient input
data to justify this approximation.

Equation 10.4 and the following discussion are similar to our treatment of
learning in the Boltzmann machine discussed in chapter 8. As in that case,
equation 10.4 implies that minimizing the discrepancy between p[u] and
p[u;G ] amounts to maximizing the log likelihood that the training data
could have been created by the generative model,log likelihood L(G )
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10.2 Density Estimation 9

L(G ) = 〈
ln p[u;G ]

〉
. (10.5)

Here L(G ) is the average log likelihood, and the method is known as max- maximum
likelihood density

estimation
imum likelihood density estimation. A theorem due to Shannon describes
circumstances under which the generative model that maximizes the like-
lihood over input data also provides the most efficient way of coding those
data, so density estimation is closely related to optimal coding.

Theory of EM

Although stochastic gradient ascent can be used to adjust the parameters
of the generative model to maximize the likelihood in equation 10.5 (as
it was for the Boltzmann machine), the EM algorithm discussed in the
introduction is an alternative procedure that is often more efficient. We
already applied this algorithm, on intuitive grounds, to the example of
figure 10.1, but we now present a more general and rigorous discussion.
This is based on the connection of EM with maximization of the function F (Q ,G )

F (Q,G ) =
〈∑

v

Q[v;u] ln
p[v,u;G ]
Q[v;u]

〉
(10.6)

where joint distribution
p[v,u;G ]

p[v,u;G ] = p[u|v;G ]P[v;G ] = P[v|u;G ]p[u;G ] (10.7)

is the joint probability distribution over both causes and inputs specified
by the model. In equation 10.6, Q[v;u] is any non-negative function of the
discrete argument v and continuous input u that satisfies∑

v

Q[v;u] = 1 (10.8)

for all u. Although, in principle, Q[v;u] can be any function, we consider
it to be an approximate recognition distribution. For some non-invertible
models, we express Q in terms of a set of parameters W and write it as
Q[v;u,W ].

F is a useful quantity because, by a rearrangement of terms, it can be
written as the difference of the average log likelihood and the average
Kullback-Leibler divergence between Q[v;u] and p[v|u;G ]. This is done
by substituting the second equality of equation 10.7 into equation 10.6 and
using 10.8 and the definition of the Kullback-Leibler divergence to obtain

F (Q,G ) =
〈∑

v

Q[v;u]
(

ln p[u;G ] + ln
P[v|u;G ]
Q[v;u]

)〉

= 〈
ln p[u;G ]

〉 −
〈∑

v

Q[v;u]
(

ln
Q[v;u]

P[v|u;G ]

)〉

= L(G ) − 〈
DKL(Q[v;u], P[v|u;G ])

〉
. (10.9)
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10 Representational Learning

Because the Kullback-Leibler divergence is never negative,

L(G ) ≥ F (Q,G ) , (10.10)

and because DKL = 0 only if the two distributions being compared are
identical, this inequality is saturated, becoming an equality, only if

Q[v;u] = P[v|u;G ] . (10.11)

The negative of F is related to an important quantity in statistical physics
called the free energy.free energy −F

Expressions 10.9, 10.10, and 10.11 are critical to the operation of EM. The
two phases of EM are concerned with separately maximizing (or at least
increasing) F with respect to its two arguments. When F increases, this
increases a lower bound on the log likelihood of the input data (equation
10.10). In the M phase, F is increased with respect to G , keeping Q con-
stant. For the generative model of figure 10.1, it is possible to maximize
F with respect to G in a single step, through equation 10.3. For other
generative models, this may require multiple steps that perform gradient
ascent on F . In the E phase, F is increased with respect to Q, keeping G
constant. From equation 10.9, we see that increasing F by changing Q is
equivalent to reducing the average Kullback-Leibler divergence between
Q[v;u] and P[v|u;G ]. The E phase can proceed in at least three possible
ways, depending on the nature of the generative model being considered.
We discuss these separately.

Invertible Models

If the causal model being considered is invertible, the E step of EM sim-
ply consists of solving equation 10.2 for the recognition distribution, and
setting Q equal to the resulting P[v|u;G ] as in equation 10.11. This max-
imizes F with respect to Q by setting the Kullback-Leibler term to zero,
and it makes the function F equal to L(G ), the average log likelihood of
the data points. However, the EM algorithm for maximizing F is not ex-
actly the same as likelihood maximization. This is because the function Q
is held constant during the M phase while the parameters G are modified.
Although F is equal to L at the beginning of the M phase, exact equality
ceases to be true as soon as G is modified, making P[v|u;G ] different from
Q. F is equal to L(G ) again only after the update of Q during the follow-
ing E phase. At this point, L(G ) must have increased since the last E phase,
because F has increased. This shows that the log likelihood increases
monotonically during EM until the process converges, even though EM
is not identical to likelihood maximization. One advantage of EM over
likelihood maximization through gradient methods is that this monotonic-
ity holds even if the successive changes to G are large. Thus, large steps
toward the maximum can be taken during each M cycle of modification.
Of course, the log likelihood may have multiple maxima, in which case
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10.2 Density Estimation 11

neither gradient ascent nor EM is guaranteed to find the globally optimal
solution. Also, the process of maximizing a function one coordinate at
a time (which is called coordinate ascent) is subject to local maxima that
other optimization methods avoid (we encounter an example of this later
in the chapter).

For the example of figure 10.1, the joint probability over causes and inputs
is

p[v,u;G ] = γv

2π�v

exp
(
−|u − gv|2

2�v

)
, (10.12)

and thus

F =
〈∑

v

Q[v;u]
(

ln
( γv

2π

)
− ln�v − |u − gv|2

2�v

− ln Q[v;u]
)〉

. (10.13)

The E phase amounts to computing P[v|u;G ] from equation 10.2 and set-
ting Q equal to it, as in equation 10.11. The M phase involves maximizing
F with respect to G for this Q. We leave it as an exercise for the reader
to show that maximizing equation 10.13 with respect to the parameters γv

(taking into account the constraint
∑

v γv =1), gv, and �v leads to the rules
of equation 10.3.

Non-Invertible Deterministic Models

If the generative model is non-invertible, the E phase of the EM algorithm
is more complex than simply setting Q equal to P[v|u;G ], because it is not
practical to compute the recognition distribution exactly. The steps taken
during the E phase depend on whether the approximation to the inverse
of the model is deterministic or probabilistic, although the basic argument
is the same in either case.

The recognition process based on a deterministic approximation results in
a prediction v(u) of the cause underlying input u. In terms of the function
F , this amounts to retaining only the single term v = v(u) in the sum in
equation 10.6, and for this single term Q[v(u);u] = 1. Thus, in this case
F is a functional of the function v(u), and a function of the parameters G ,
given by

F (Q,G ) = F (v(u),G ) = 〈ln P[v(u),u;G ]〉 . (10.14)

The M phase of EM consists, as always, of maximizing this expression
with respect to G . During the E phase we try to find the function v(u)

that maximizes F . Because v is varied during the optimization procedure,
the approach is sometimes called a variational method. The E and M steps variational method
make intuitive sense; we are finding the input-output relationship that
maximizes the probability that the generative model would have simulta-
neously produced the cause v(u) and the input u.
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12 Representational Learning

The approximation that the recognition model is deterministic can be
rather drastic, making it difficult, in the case of visual representations for
example, to account for psychophysical aspects of sensory processing. We
also encounter a case later in the chapter where this approximation re-
quires us to introduce constraints on G .

Non-Invertible Probabilistic Models

The alternative to using a deterministic approximate recognition model is
to treat Q[v;u] as a full probability distribution over v for each input ex-
ample u. In this case, we choose a specific functional form for Q, expressed
in terms of a set of parameters collectively labeled W . Thus, we write the
approximate recognition distribution as Q[v;u,W ]. F can now be treated
as a function of W , rather than of Q, so we write it as F (W ,G ). As in all
cases, the M phase of EM consists of maximizing F(W ,G ) with respect to
G . The E phase now consists of maximizing F(W ,G ) with respect to W .
This has the effect of making Q[v;u,W ] as similar as possible to P[v|u;G ],
in the sense that the KL divergence between them, averaged over the input
data, is minimized (see equation 10.9).

Because each E and M step separately increases the value of F , the EM
algorithm is guaranteed to converge to at least a local maximum of F (ex-
cept in the rare cases that coordinate ascent induces extra local maxima).
In general, this does not correspond to a local maximum of the likelihood
function, because Q is not exactly equal to the actual recognition distribu-
tion (that is, F is only guaranteed to be a lower bound on L(G )). Never-
theless, a good generative model should be obtained if the lower bound is
tight.

It is not necessary to maximize F(W ,G ) completely with respect to W
and then G during successive E and M phases. Instead, gradient ascent
steps that modify W and G by small amounts can be taken in alternation,
in which case the E and M phases effectively overlap.

10.3 Causal Models for Density Estimation

In this section, we present a number of models in which representational
learning is achieved through density estimation. The mixture of Gaus-
sians and factor analysis models that we discuss are examples of invertible
generative models with probabilistic recognition. Principal components
analysis is a limiting case of factor analysis with deterministic recogni-
tion. We consider two other models with deterministic recognition, in-
dependent components analysis, which is invertible, and sparse coding,
which is non-invertible. Our final example, the Helmholtz machine, is
non-invertible with probabilistic recognition. The Boltzmann machine,
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discussed in chapters 7 and 8, is an additional example that is closely re-
lated to the causal models discussed here. We summarize and interpret
general properties of representations derived from causal models at the
end of the chapter. The table in the appendix summarizes the generative
and recognition distributions and the learning rules for all the models we
discuss.

Mixture of Gaussians

The model applied in the introduction to the data in figure 10.1A is a
mixture of Gaussians model. That example involves two causes and two
Gaussian distributions, but we now generalize this to Nv causes, each as-
sociated with a separate Gaussian distribution. The model is defined by
the probability distributions

P[v;G ] = γv and p[u|v;G ] = N (u;gv,�v) (10.15)

where v takes Nv values representing the different causes and, for an Nu

component input vector,

N (u;g,�) = 1
(2π�)Nu/2 exp

(
−|u − g|2

2�

)
(10.16)

is a Gaussian distribution with mean g and variances for the individual
components equal to �. The function F (Q,G ) for this model is given
by an expression similar to equation 10.13 (with slightly different factors if
Nu �= 2), leading to the M-phase learning rules given in the appendix. Once
the generative model has been optimized, the recognition distribution is
constructed from equation 10.2 as

P[v|u;G ] = γvN (u;gv,�v)∑
v′ γv′N (u;gv′ ,�v′ )

. (10.17)

K-Means Algorithm

A special case of mixture of Gaussians can be derived in the limit that the
variances of the Gaussians are equal and tend toward 0, �v = � → 0. We
discuss this limit for two clusters as in figure 10.1. When � is extremely
small, the recognition distribution P[v|u;G ] of equation 10.17 degenerates
because it takes essentially two values, 0 or 1, depending on whether u is
closer to one cluster or the other. This provides a hard, rather than a prob-
abilistic or soft, classification of u. In the degenerate case, EM consists of
choosing two random values for the centers of the two cluster distribu-
tions, finding all the inputs u that are closest to a given center gv, and then
moving gv to the average of these points. This is called the K-means al-
gorithm (with K = 2 for two clusters). The mixing proportions γv do not
play an important role for the K-means algorithm. New input points are
recognized as belonging to the clusters to which they are closest.
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14 Representational Learning

Factor Analysis

The causes in the mixture of Gaussians model are discrete. Factor analysis
uses a continuous vector of causes, v, drawn from a Gaussian distribution.
As in the mixture of Gaussians model, the distribution over inputs given a
cause is Gaussian. However, the mean of this Gaussian is a linear function
of v, rather than a parameter of the model. We assume that the distribu-
tion p[u] has zero mean (non-zero means can be accommodated simply by
shifting the input data). Then, the defining distributions for factor analysis
are

p[v;G ] = N (v;000,1) and p[u|v;G ] = N (u;G · v,���) (10.18)

where, the extension of equation 10.16 expressed in terms of the mean g
and covariance matrix ��� is

N (u;g,���) = 1
((2π)Nu |det���|)1/2 exp

(
−1

2
(u − g) ·���−1 · (u − g)

)
.

(10.19)

The expression |det���| indicates the absolute value of the determinant of
���. In factor analysis, ��� is taken to be diagonal, ��� = diag(�1, . . . ,�Nu )

(see the Mathematical Appendix), with all the diagonal elements nonzero,
so its inverse is simply ���−1 = diag(1/�1, . . . ,1/�Nu ) and |det���| =
�1�2 . . .�Nu .

According to equation 10.18, the individual components of v are mutu-
ally independent. Furthermore, because ��� is diagonal, any correlations
between the components of u must arise from the mean values G · v of the
generative distribution. The model requires v to have fewer dimensions
than u (Nv < Nu). In terms of heuristics, factor analysis seeks a relatively
small number of independent causes that account, in a linear manner, for
collective Gaussian structure in the inputs.

The recognition distribution for factor analysis has the Gaussian form

p[v|u;G ] = N (v;W · u,���) (10.20)

where expressions for W and ��� are given in the appendix. These do not
depend on the input u, so factor analysis involves a linear relation between
the input and the mean of the recognition distribution. EM, as applied
to an invertible model, can be used to adjust G = (G,���) on the basis of
the input data. The resulting learning rules are given in the table in the
appendix.

In this case, we can understand the goal of density estimation in an addi-
tional way. By direct calculation, as in equation 10.1, the marginal distri-
bution for u is

p[u;G ] = N (u;000,G · GT +���) (10.21)
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10.3 Causal Models for Density Estimation 15

where [GT]ab = [G]ba and [G · GT]ab = ∑
c GacGbc (see the Mathematical

Appendix). Maximum likelihood density estimation requires determining
the G that makes G · GT +��� match, as closely as possible, the covariance
matrix of the input distribution.

Principal Components Analysis

In the same way that setting the parameters �v to zero in the mixture of
Gaussians model leads to the K-means algorithm, setting all the variances
in factor analysis to zero leads to another well-known method, principal
components analysis (which is also discussed in chapter 8). To see this,
consider the case of a single factor. This means that v is a single number,
and that the mean of the distribution p[u|v;G ] is vg, where the vector g
replaces the matrix G of the general case. The elements of the diagonal
matrix ��� are set to a single variance �, which we shrink to zero.

As � → 0, the Gaussian distribution p[u|v;G ] in equation 10.18 ap-
proaches a δ function (see the Mathematical Appendix), and it can only
generate the single vector u(v) = vg from cause v. Similarly, the recogni-
tion distribution of equation 10.20 becomes a δ function, making the recog-
nition process deterministic with v(u) = W · u given by the mean of the
recognition distribution of equation 10.20. Using the expression for W in
the appendix in the limit � → 0, we find

v(u) = g · u
|g|2 . (10.22)

This is the result of the E phase of EM. In the M phase, we maximize

F (v(u),G ) = 〈
ln p[v(u),u;G ]

〉 = K − Nu ln�

2
−

〈
v2(u)

2
+ |u − gv(u)|2

2�

〉
(10.23)

with respect to g, without changing the expression for v(u). Here, K is
a term independent of g and �. In this expression, the only term that
depends on g is proportional to |u − gv(u)|2. Minimizing this in the M
phase produces a new value of g given by

g = 〈v(u)u〉
〈v2(u)〉 . (10.24)

This only depends on the covariance matrix of the input distribution, as
does the more general form given in the appendix. Under EM, equa-
tions 10.22 and 10.24 are alternated until convergence.

For principal components analysis, we can say more about the value of
g at convergence. We consider the case |g|2 = 1 because we can always
multiply g and divide v(u) by the same factor to make this true without
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16 Representational Learning

affecting the dominant term in F (v(u),G ) as � → 0. Then, the g that
maximizes this dominant term must minimize

〈|u − g(g · u)|2〉 = 〈|u|2 − (g · u)2〉 . (10.25)

Here, we have used expression 10.22 for v(u). Minimizing 10.25 with re-
spect to g, subject to the constraint |g|2 = 1, gives the result that g is the
eigenvector of the covariance matrix 〈uu〉 with maximum eigenvalue. This
is just the principal component vector and is equivalent to finding the vec-
tor of unit length with the largest possible average projection onto u.

The argument we have given shows that principal components analysis is
a degenerate form of factor analysis. This is also true if more than one fac-
tor is considered, although maximizing F only constrains the projections
G · u and therefore only forces G to represent the principal components
subspace of the data. The same subspace emerges from full factor analysis
provided that the variances of all the factors are equal, even when they are
nonzero.

Figure 10.3 illustrates an important difference between factor analysis and
principal components analysis. In this figure, u is a three-component input
vector, u = (u1, u2, u3). Samples of input data were generated on the basis
of a ‘true’ cause, vtrue according to

ub = vtrue + εb (10.26)

where εb represents noise on component b of the input. Input data points
were generated from this equation by chosing a value of vtrue from a Gaus-
sian distribution with mean 0 and variance 1, and values of εb from inde-
pendent Gaussian distributions with zero means. The variances of the
distributions for εb, b = 1,2,3, were all are equal to 0.25 in figures 10.3A &
B. However, in figures 10.3C & D, the variance for ε3 is much larger (equal
to 9). We can think of this as representing the effect of a noisy sensor for
this component of the input vector. The graphs plot the mean of the value
of the cause v extraced from sample inputs by factor analysis, or the ac-
tual value of v for principal components analysis, as a function of the true
value vtrue used to generate the data. Perfect extraction of the underlying
cause would find v = vtrue. Here, perfect extraction is impossible because
of the noise, and the absolute scale of v is arbitrary. Thus, the best we can
expect is v values that are scattered but lie along a straight line when plot-
ted as a function of vtrue. When the input components are equally variable
(figure 10.3A& B), this is exactly what happens for both factor and princi-
pal components analysis. However, when u3 is much more variable than
the other components, principal components analysis (figure 10.3D) is se-
duced by the extra variance and finds a cause v that does not correspond
to vtrue. By contrast, factor analysis (figure 10.3C) is only affected by the co-
variance between the input components and not by their individual vari-
ances (which are absorbed into ���), so the cause it finds is not significantly
perturbed (merely somewhat degraded) by the added sensor noise.
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Figure 10.3: Factor analysis and principal components analysis applied to 500
samples noisy input reflecting a single underlying cause vtrue. For A B, 〈uiuj〉 =
1 + 0.25δij, while for C & D, one sensor is corrupted by independent noise with
standard deviation 3 rather than 0.5. The plots compare the true cause vtrue with
the cause v inferred by the model.

In chapter 8, we noted that principal components analysis maximizes the
mutual information between the input and output under the assumption
of a linear Gaussian model. This property, and the fact that principal
components analysis minimizes the reconstruction error of equation 10.25,
have themselves been suggested as goals for representational learning. We
have now shown how they are also related to density estimation.

Both principal components analysis and factor analysis produce a marginal
distribution p[u;G ] that is Gaussian. If the actual input distribution p[u]
is non-Gaussian, the best that these models can do is to match the mean
and covariance of p[u]; they will fail to match higher-order moments. If
the input is whitened to increase coding efficiency, as discussed in chap-
ter 4, so that the covariance matrix 〈uu〉 is equal the identity matrix, neither
method will extract any structure at all from the input data. By contrast,
the generative models discussed in the following sections produce non-
Gaussian marginal distributions and attempt to account for structure in
the input data beyond merely the mean and covariance.

Sparse Coding

The prior distributions in factor analysis and principal components analy-
sis are Gaussian and, if the model is sucessful, the distribution of v values
in response to input should also be Gaussian. If we attempt to relate such
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Figure 10.4: Sparse distributions. A) Log frequency distribution for the activity
of a macaque IT cell in response to video images. The number of times that vari-
ous numbers of spikes appeared in a spike-counting window is plotted against the
number of spikes. The size of the window was adjusted so that, on average, there
were two spikes per window. B) Three distributions p[v] = exp(g(v)): double ex-
ponential (g(v) = −|v|, solid, kurtosis 3); Cauchy (g(v) = − ln(1 + v2), dashed,
kurtosis infinite); and Gaussian (g(v) = −v2/2, dotted, kurtosis 0). C) The log-
arithms of the same three distributions. (A adapted from Baddeley et al., 1998.)

causal variables to the activities of cortical neurons, we find a discrepancy,
because the activity distributions of cortical cells in response to natural
inputs are not Gaussian. Figure 10.4A shows an example of the distribu-
tion of the numbers of spikes counted within a particular time window for
a neuron in the infero-temporal (IT) area of the macaque brain recorded
while a monkey freely viewed television shows. The distribution is close
to being exponential. This means that the neurons are most likely to fire
small numbers of spikes in the counting interval, but that they can occa-
sionally fire a large number of spikes. Neurons in primary visual cortex
exhibit similar patterns of activity in response to natural scenes.

Distributions that generate values for the components of v close to zero
most of the time, but occassionally far from zero, are called sparse. Sparsesparse distributions
distributions are defined as being more likely than Gaussians of the same
mean and variance to generate values near zero and also more likely to
generate values far from zero. These occasional high values can convey
substantial information. Distributions with this character are also called
heavy-tailed. Figures 10.4B and C compare two sparse distributions to a
Gaussian distribution.

Sparseness has been defined in a variety of different ways. Sparseness
of a distribution is sometimes linked to a high value of a measure called
kurtosis. Kurtosis of a distribution p[v] is defined askurtosis

k =
∫

dv p[v](v − v)4(∫
dv p[v](v − v)2

)2 − 3 with v =
∫

dv p[v]v , (10.27)

and it takes the value zero for a Gaussian distribution. Positive val-
ues of k are taken to imply sparse distributions, which are also called
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super-Gaussian or leptokurtotic. Distributions with k < 0 are called sub-
Gaussian or platykurtotic. This is a slightly different definition of sparse-
ness from being heavy-tailed.

A sparse representation over a large population of neurons might more
naturally be defined as one in which each input is encoded by a small
number of the neurons in the population. Unfortunately, identifying this
form of sparseness experimentally is difficult.

Unlike factor analysis and principal components analysis, sparse coding
does not stress minimizing the number of representing units (i.e. compo-
nents of v). Indeed, sparse representations may require large numbers of
units (though not necessarily). This is not a disadvantage when these mod-
els are applied to the visual system because representations in visual areas
are greatly expanded at various steps along the pathway. For example,
there are around 40 cells in primary visual cortex for each cell in the visual
thalamus. Downstream processing can benefit greatly from sparse rep-
resentations, because, for one thing, they minimize interference between
different patterns of input.

Factor analysis and principal components analysis do not generate sparse
representations because they have Gaussian priors. The mixture of Gaus-
sians model is extremely sparse because each input is represented by a
single cause (although the same cause could be deemed responsible for
every input). This may be reasonable for relatively simple input patterns,
but for complex stimuli such as images, we seek something between these
extremes. Olshausen and Field (1996, 1997) suggested such a model by
considering a nonlinear version of factor analysis. In this model, the dis-
tribution of u given v is a Gaussian with a diagonal covariance matrix, as
for factor analysis, but the prior distribution over causes is sparse. Defined
in terms of a function g(v) (as in figure 10.4),

p[v;G ] ∝
Nv∏

a=1

exp(g(va)) and p[u|v;G ] = N (u;G · v,���) . (10.28)

The prior p[v;G ] should be normalized so that its integral over v is one,
but we omit the normalization factor to simplify the equations.

Because it is a product, the prior p[v;G ] in equation 10.28 makes the com-
ponents of v mutually independent. If we took g(v) = −v2, p[v;G ] would
be Gaussian (dotted lines in figures 10.4B & C), and the model would per-
form factor analysis. An example of a function that provides a sparse
prior is g(v) = −α|v|. This generates a double exponential distribution
(solid lines in figures 10.4B & C) similar to the activity distribution in fig- double exponential

distributionure 10.4A. Another commonly used form is

g(v) = − ln(β2 + v2) (10.29)

with β a constant, which generates a Cauchy distribution (dashed lines in Cauchy
distributionfigures 10.4B & C).
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For g(v) such as equation 10.29, it is difficult to compute the recogni-
tion distribution p[v|u;G ] exactly. This makes the sparse model non-
invertible. Olshausen and Field chose a deterministic approximate recog-
nition model. Thus, EM consists of finding v(u) during the E phase, and
using it to adjust the parameters G during the M phase. To simplify the
discussion, we make the covariance matrix proportional to the identity
matrix, ��� = �I. The function to be maximized is then

F (v(u),G ) =
〈
− 1

2�
|u − G · v(u)|2 +

Nv∑
a=1

g(va(u))

〉
+ K (10.30)

where K is a term that is independent of G and v. For convenience in
discussing the EM procedure, we further take � = 1 and do not allow it to
vary. Similarly, we assume that β in equation 10.29 is predetermined and
held fixed. Then, G consists only of the matrix G.

The E phase of EM involves maximizing F with respect to v(u) for every
u. This leads to the conditions (for all a)

Nu∑
b=1

[u − G · v(u)]bGba + g′(va) = 0 . (10.31)

The prime on g(va) indicates a derivative. One way to solve this equation
is to let v evolve over time according to the equation

τv
dva

dt
=

Nu∑
b=1

[u − G · v(u)]bGba + g′(va) (10.32)

where τv is an appropriate time constant. This equation changes v so that
it asymptotically approaches a value v = v(u) that satisfies equation 10.31
and makes the right side of equation 10.32 zero. We assume that the evo-
lution of v according to equation 10.32 is carried out long enough during
the E phase for this to happen. This process is only guaranteed to find a
local, not a global, maximum of F , and it is not guaranteed to find the
same local maximum on each iteration.

Equation 10.32 resembles the equation used in chapter 7 for a firing-rate
network model. The term

∑
b ubGba, which can be written in vector form

as GT · u, acts as the total input arising from units with activities u fed
through a feedforward coupling matrix GT. The term −∑

b[G · v]bGba can
be interpreted as a recurrent coupling of the v units through the matrix
−GT · G. Finally, the term g′(va) plays the same role as the term −va that
would appear in the rate equations of chapter 7. If g′(v) �= −v, this can be
interpreted as a modified form of firing-rate dynamics. Figure 10.5 shows
the resulting network. The feedback connections from the v units to the
input units that determine the mean of the generative distribution, G · v
(equation 10.28), are also shown in this figure.

After v(u) has been determined during the E phase of EM, a delta rule
(chapter 8) is used during the M phase to modify G and improve the gen-
erative model. The full learning rule is given in the appendix. The delta
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Figure 10.5: A network for sparse coding. This network reproduces equa-
tion (10.32) using recurrent weights −GT · G in the v layer and weights connecting
the input units to this layer that are given by the transpose of the matrix G. The
reverse connections from the v layer to the input layer indicate how the mean of
the recognition distribution is computed.

rule follows from maximizing F (v(u),G ) with respect to G. A complica-
tion arises here because the matrix G always appears multiplied by v. This
means that the bias toward small values of va imposed by the prior can be
effectively neutralized by scaling up G. This complication results from the
approximation of deterministic recognition. To prevent the weights from
growing without bound, constraints are applied on the lengths of the gen-
erative weights for each cause,

∑
b G2

ba, to encourage the variances of all
the different va to be approximately equal (see the appendix). Further, it
is conventional to pre-condition the inputs before learning by whitening
them so that 〈u〉 = 0 and 〈uu〉 = I. This typically makes learning faster,
and it also ensures that the network is forced to find statistical structure
beyond second order that would escape simpler methods such as factor
analysis or principal components analysis. In the case that the input is cre-
ated by sampling (e.g. pixelating an image), more sophisticated forms of
pre-conditioning can be used to remove the resulting artifacts.

Applying the sparse coding model to inputs coming from the pixel intensi-
ties of small square patches of monochrome photographs of natural scenes
leads to selectivities that resemble those of cortical simple cells. Before
studying this result, we need to specify how the selectivities of generative
models, such as the sparse coding model, are defined. The selectivities of
sensory neurons are typically described by receptive fields, as in chapter
2. For a causal model, one definition of a receptive field for unit a is the set
of inputs u for which va is likely to take large values. However, it may be
impossible to construct receptive field by averaging over these inputs in
nonlinear models, such as sparse coding models. Furthermore, generative
models are most naturally characterized by projective fields rather than projective field
receptive fields. The projective field associated with a particular cause va

can be defined as the set of inputs that it frequently generates. This con-
sists of all the u values for which P[u|va;G ] is sufficiently large when va

is large. For the model of figure 10.1, the projective fields are simply the
circles in figure 10.1C. It is important to remember that projective fields
can be quite different from receptive fields.
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Figure 10.6: Projective and receptive fields for a sparse coding network with
Nu = Nv = 144. A) Projective fields Gab with a indexing representational units
(the components of v), and b indexing input units u on a 12 × 12 pixel grid. Each
box represents a different a value, and the b values are represented within the box
by the corresponding input location. Weights are represented by the gray-scale
level with gray indicating 0. B) The relationship between projective and receptive
fields. The left panel shows the projective field of one of the units in A. The middle
and right panels show its receptive field mapped using inputs generated by dots
and gratings respectively. (Adapted from Olshausen and Field, 1997.)
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Projective fields for the Olshausen and Field model trained on natural
scenes are shown in figure 10.6A, with one picture for each component
of v. In this case, the projective field for va is simply the matrix elements
Gab plotted for all b values. In figure 10.6A, the index b is plotted over
a two-dimensional grid representing the location of the input ub within
the visual field. The projective fields form a Gabor-like representation for
images, covering a variety of spatial scales and orientations. The resem-
blance of this representation to the receptive fields of simple cells in pri-
mary visual cortex is quite striking, although these are the projective not
the receptive fields of the model. Unfortunately, there is no simple form
for the receptive fields of the v units. Figure 10.6B compares the projective
field of one unit to receptive fields determined by presenting either dots
or gratings as inputs and recording the responses. The responses to the
dots directly determine the receptive field, while responses to the gratings
directly determine the Fourier transform of the receptive field. Differences
between the receptive fields calculated on the basis of these two types of
input are evident in the figure. In particular, the receptive field computed
from gratings shows more spatial structure than the one mapped by dots.
Nevertheless, both show a resemblance to the projective field and to a typ-
ical simple-cell receptive field.

In a generative model, projective fields are associated with the causes
underlying the visual images presented during training. The fact that
the causes extracted by the sparse coding model resemble Gabor patches
within the visual field is somewhat strange from this perspective. It is diffi-
cult to conceive of images as arising from such low level causes, instead of
causes couched in terms of objects within the images, for example. From
the perspective of good representation, causes that are more like objects
and less like Gabor patches would be more useful. To put this another way,
although the prior distribution over causes biased them toward mutual in-
dependence, the causes produced by the recognition model in response to
natural images are not actually independent. This is due to the structure
in images arising from more complex objects than bars and gratings. It is
unlikely that this high-order structure can be extracted by a model with
only one set of causes. It is more natural to think of causes in a hierarchi-
cal manner, with causes at a higher level accounting for structure in the
causes at a lower level. The multiple representations in areas along the vi-
sual pathway suggests such a hierarchical scheme, but the corresponding
models are still in the rudimentary stages of development.

Independent Components Analysis

As for the case of the mixtures of Gaussians model and factor analysis, an
interesting model emerges from sparse coding as � → 0. In this limit, the
generative distribution (equation 10.28) approaches a δ function and al-
ways generates u(v) = G · v. Under the additional restriction that there are
as many causes as inputs, the approximation we used for the sparse cod-
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ing model of making the recognition distribution deterministic becomes
exact, and the recognition distribution that maximizes F is

Q [v;u] = |det W|−1δ(u − W−1 · v) (10.33)

where W = G−1 is the matrix inverse of the generative weight ma-
trix. The factor |det W| comes from the normalization condition on Q,∫

dv Q(v;u) = 1. At the maximum with respect to Q, the function F is

F (Q ,G ) =
〈
− 1

2�
|u − G · W · u|2 +

∑
a

g ([W · u]a)

〉
+ ln |det W| + K

(10.34)

where K is independent of G. Under the conventional EM procedure, we
would maximize this expression with respect to G, keeping W fixed. How-
ever, the normal procedure fails in this case, because the minimum of the
right side of equation 10.34 occurs at G = W−1, and W is being held fixed
so G cannot change. This is an anomaly of coordinate ascent in this partic-
ular limit.

Fortunately, it is easy to fix this problem, because we know that W = G−1

provides an exact inversion of the generative model. Therefore, instead of
holding W fixed during the M phase of an EM procedure, we keep W =
G−1 at all times as we change G. This sets F equal to the average log
likelihood, and the process of optimizing with respect to G is equivalent
to likelihood maximization. Because W = G−1, maximizing with respect
to W is equivalent to maximizing with respect to G, and it turns out that
this is easier to do. Therefore, we set W = G−1 in equation 10.34, which
causes the first term to vanish, and write the remaining terms as the log
likelihood expressed as a function of W instead of G,

L(W) =
〈∑

a

g ([W · u]a)

〉
+ ln |det W| + K . (10.35)

Direct stochastic gradient ascent on this log likelihood can be performed
using the update rule

Wab → Wab + ε
([

W−1]
ba + g′(va)ub

)
(10.36)

where ε is a small learning rate parameter, and we have used the fact that
∂ ln |det W|/∂Wab = [W−1]ba.

The update rule of equation 10.36 can be simplified by using a clever
trick. Because WTW is a positive definite matrix (see the Mathematical
Appendix), the weight change can be multiplied by WTW without affect-
ing the fixed points of the update rule. This means that the alternative
learning rule

Wab → Wab + ε
(
Wab − g′(va) [v · W]b

)
(10.37)
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10.3 Causal Models for Density Estimation 25

has the same potential final weight matrices as equation 10.36. This is
called a natural gradient rule, and it avoids the matrix inversion of W as
well as providing faster convergence. Equation 10.37 can be interpreted as
the sum of an anti-decay term that forces W away from zero, and a gen-
eralized type of anti-Hebbian term. The choice of prior p[v] ∝ 1/ cosh(v)

makes g′(v) = − tanh(v) and produces the rule

Wab → Wab + ε
(
[W]ba − tanh(va) [v · W]b

)
. (10.38)

This algorithm is called independent components analysis. Just as the
sparse coding network is a nonlinear generalization of factor analysis, in-
dependent components analysis is a nonlinear generalization of principal
components analysis that attempts to account for non-Gaussian features of
the input distribution. The generative model is based on the assumption
that u = G · v. Some other technical conditions must be satisfied for in-
dependent components analysis to extract reasonable causes, specifically
the prior distributions over causes p[v] ∝ exp(g(v)) must be non-Gaussian
and, at least to the extent of being correctly super- or sub-Gaussian, must
faithfully reflect the actual distribution over causes. The particular form
p[v] ∝ 1/ cosh(v) is super-Gaussian, and thus generates a sparse prior.
There are variants of independent components analysis in which the prior
distributions are adaptive.

The independent components algorithm was suggested by Bell and Se-
jnowski (1995) from the different perspective of maximizing the mutual
information between u and v when va(u) = f ([W · u]a), with a particular,
monotonically increasing nonlinear function f . Maximizing the mutual
information in this context requires maximizing the entropy of the distri-
bution over v. This, in turn, requires the components of v to be as indepen-
dent as possible because redundancy between them reduces the entropy.
In the case that f (v) = g′(v), the expression for the entropy is the same as
that for the log likelihood L(W) in equation 10.35, up to constant factors,
so maximizing the entropy and performing maximum likelihood density
estimation are identical.

An advantage of independent components analysis over other sparse cod-
ing algorithms is that, because the recognition model is an exact inverse
of the generative model, receptive as well as projective fields can be con-
structed. Just as the projective field for va can be represented by the matrix
elements Gab for all b values, the receptive field is given by Wab for all b.

To illustrate independent components analysis, figure 10.7 shows an (ad-
mittedly bizarre) example of its application to the sounds created by tap-
ping a tooth while adjusting the shape of the mouth to reproduce a tune
by Beethoven. The input, sampled at 8 kHz, has the spectrogram shown
in figure 10.7A. In this example, we have some idea about likely causes.
For example, the plots in figures 10.7B & C show high- and low-frequency
tooth taps, although other causes arise from the imperfect recording con-
ditions. A close variant of the independent components analysis method
described above was used to extract Nv = 100 independent components.
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Figure 10.7: Independent components of tooth-tapping sounds. A) Spectrogram
of the input. B & C) Waveforms for high- and low-frequency notes. The mouth
acts as a damped resonant cavity in the generation of these tones. D, E, & F) Three
independent components calculated on the basis of 1/80 s samples taken from the
input at random times. The graphs show the receptive fields (from W) for three
output units. D is reported as being sensitive to the sound of an air-conditioner. E
& F extract tooth taps of different frequencies. G, H, & I) The associated projective
fields (from G), showing the input activity associated with the causes in D, E, & F.
(Adapted from Bell and Sejnowski, 1996.)

Figure 10.7D, E, & F show the receptive fields of three of these components.
The last two extract particular frequencies in the input. Figure 10.7G, H, &
I show projective fields. Note that the projective fields are much smoother
than the receptive fields.

Bell and Sejnowski (1997) also used visual input data similar to those used
in the example of figure 10.6, along with the prior p[v] ∝ 1/ cosh(v), and
found that independent components analysis extracts Gabor-like receptive
fields similar to the projective fields shown in figure 10.6A.

The Helmholtz Machine

The Helmholtz machine was designed to accommodate hierarchical ar-
chitectures that construct complex multilayer representations. The model
involves two interacting networks, one with parameters G that is driven
in the top-down direction to implement the generative model, and the
other, with parameters W , driven bottom-up to implement the recogni-
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v

u
GW

Figure 10.8: Network for the Helmholtz machine. In the bottom-up network,
representational units v are driven by inputs u through feedforward weights W.
In the top-down network, the inputs are driven by the v units through feedback
weights G.

tion model. The parameters are determined by a modified EM algorithm
that results in roughly symmetric updates for the two networks.

We consider a simple, two-layer, nonlinear Helmholtz machine with bi-
nary units, so that ub and va for all b and a take the values 0 or 1. For this
model,

P[v;G ] =
∏

a

(
f (ga)

)va
(
1 − f (ga)

)1−va (10.39)

P[u|v;G ] =
∏

b

(
f
(
hb + [G · v]b

))ub
(
1 − f

(
hb + [G · v]b

))1−ub (10.40)

where ga is a generative bias weight for output a that controls how fre-
quently va = 1, hb is the generative bias weight for ub, and f (g) = 1/(1 +
exp(−g)) is the standard sigmoid function. The generative model is thus
parameterized by G = (g,h,G). According to these distributions, the
components of v are mutually independent, and the components of u are
independent given a fixed value of v.

The generative model is non-invertible in this case, so an approximate
recognition distribution must be constructed. This uses a similar form as
equation 10.40, only using the bottom-up weights W and biases w

Q[v;u,W ] =
∏

a

(
f
(
wa + [W · u]a

))va
(
1 − f

(
wa + [W · u]a

))1−va
. (10.41)

The parameter list for the recognition model is W = (w,W). This distri-
bution is only an approximate inverse of the generative model because it
implies that the components of v are independent when, in fact, given a
particular input u, they are conditionally dependent, due to the way they
can interact in equation 10.40 to generate u.

The EM algorithm for this non-invertible model would consist of alter-
nately maximizing the function F given by

F (W ,G ) =
〈∑

v

Q[v;u,W ] ln
P[v,u;G ]

Q[v;u,W ]

〉
(10.42)

with respect to the parameters W and G . For the M phase of the
Helmholtz machine, this is exactly what is done. However, during the
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E phase, maximizing with respect to W is problematic because the func-
tion Q[v;u,W ] appears in two places in the expression for F . This also
makes the learning rule during the E phase take a different form from that
of the M phase rule. Instead, the Helmholtz machine uses a simpler and
more symmetric approximation to EM.

The approximation to EM used by the Helmholtz machine is constructed
by re-expressing F from equation 10.9, explicitly writing out the average
over input data and then the expression for the Kullback-Leibler diver-
gence,

F (W ,G ) = L(G ) −
∑

u

P[u]DKL(Q[v;u,W ], P[v|u;G ]) (10.43)

= L(G ) −
∑

u

P[u]
∑

v

Q[v;u,W ] ln
(

Q[v;u,W ]
P[v|u;G ]

)
.

This is the function that is maximized with respect to G during the M
phase for the Helmholtz machine. However, the E phase is not based on
maximizing equation 10.43 with respect to W . Instead, an approximate F
function that we call F̃ is used. This is constructed by using P[u;G ] as
an approximation for P[u] and DKL(P[v|u;G ], Q[v;u,W ]) as an approxi-
mation for DKL(Q[v;u,W ], P[v|u;G ]) in equation 10.43. These are likely
to be good approximations if the generative and approximate recognition
models are accurate. Thus, we write

F̃ (W ,G ) = L(G ) −
∑

u

P[u;G ]DKL(P[v|u;G ], Q[v;u,W ]) (10.44)

= L(G ) −
∑

u

P[u;G ]
∑

v

P[v|u;G ] ln
(

P[v|u;G ]
Q[v;u,W ]

)
.

and maximize this, rather than F , with respect to W during the E phase.
This amounts to averaging the ‘flipped’ Kullback-Leibler divergence over
samples of u created by the generative model, rather than real data sam-
ples. The advantage of making these approximations is that the E and M
phases become highly symmetric, as can be seen by examining the second
equalities in equations 10.43 and 10.44.

Learning in the Helmholtz machine proceeds using stochastic sampling to
replace the weighted sums in equations 10.43 and 10.44. In the M phase,
an input u from P[u] is presented, and a sample v is drawn from the cur-
rent recognition distribution Q[v;u,W ]. Then, the generative weights G
are changed according to the discrepancy between u and the generative or
top-down prediction f(h + G · v) of u (see the appendix). Thus, the gener-
ative model is trained to make u more likely to be generated by the cause
v associated with it by the recognition model. In the E phase, samples of
both v and u are drawn from the generative model distributions P[v;G ]
and P[u|v;G ], and the recognition parameters W are changed according
to the discrepancy between the sampled cause v, and the recognition or
bottom-up prediction f(w + W · u) of v (see the appendix). The rationale
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for this is that the v that was used by the generative model to create u is a
good choice for its cause in the recognition model.

The two phases of learning are sometimes called wake and sleep because wake-sleep
algorithmlearning in the first phase is driven by real inputs u from the environment,

while learning in the second phase is driven by values v and u ‘fantasized’
by the generative model. This terminology is based on slightly different
principles from the wake and sleep phases of the Boltzmann machine dis-
cussed in chapter 8. The sleep phase is only an approximation of the actual
E phase, and general conditions under which learning converges appro-
priately are not known.

10.4 Discussion

Because of the widespread significance of coding, transmitting, storing,
and decoding visual images such as photographs and movies, substan-
tial effort has been devoted to understanding the structure of this class
of inputs. As a result, visual images provide an ideal testing ground for
representational learning algorithms, allowing us to go beyond evaluating
the representations they produce solely in terms of the log likelihood and
qualitative similarities with cortical receptive fields.

Most modern image (and auditory) processing techniques are based on
multi-resolution decompositions. In such decompositions, images are rep-
resented by the activity of a population of units with systematically vary-
ing spatial frequency preferences and different orientations, centered at
various locations on the image. The outputs of the representational units
are generated by filters (typically linear) that act as receptive fields and are
partially localized in both space and spatial frequency. The filters usually
have similar underlying forms, but they are cast at different spatial scales
and centered at different locations for the different units. Systematic ver-
sions of such representations, in forms such as wavelets, are important
signal processing tools, and there is an extensive body of theory about
their representational and coding qualities. Representation of sensory in-
formation in separated frequency bands at different spatial locations has
significant psychophysical consequences as well.

The projective fields of the units in the sparse coding network shown in
figure 10.6 suggest that they construct something like a multi-resolution
decomposition of inputs, with multiple spatial scales, locations, and orien-
tations. Thus, multi-resolution analysis gives us a way to put into sharper
focus the issues arising from models such as sparse coding and indepen-
dent components analysis. After a brief review of multi-resolution de-
compositions, we use them to consider d properties of representational
learning from the perspective of information transmission and sparseness,
overcompleteness, and residual dependencies between inferred causes.
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Figure 10.9: Multi-resolution filtering. A) Vertical and horizontal filters (left)
and their Fourier transforms (right) that are used at multiple positions and spa-
tial scales to generate a multi-resolution representation. The rows of the matrix W
are displayed here in grey-scale on a two-dimensional grid representing the loca-
tion of the corresponding input. B) Log frequency distribution of the outputs of the
highest spatial frequency filters (solid line) compared with a Gaussian distribution
with the same mean and variance (dashed line) and the distribution of pixel val-
ues for the image shown in figure 10.10A (dot-dashed line). The pixel values of the
image were rescaled to fit into the range. (Adapted from Simoncelli and Freeman,
1995; Karasaridis and Simoncelli, 1996 & 1997.)

Multi-resolution decomposition

Many multi-resolution decompositions, with a variety of computational
and representational properties, can be expressed as linear transforma-
tions v = W · u where the rows of W describe filters, such as those illus-
trated in figure 10.9A. Figure 10.10 shows the result of applying multi-
resolution filters, constructed by scaling and shifting the filters shown in
figure 10.9A, to the photograph in figure 10.10A. Vertical and horizontal
filters similar to those in figure 10.9A, but with different sizes, produce
the decomposition shown in figures 10.10B-D and F-H when translated
across the image. The greyscale indicates the output generated by plac-
ing the different filters over the corresponding points on the image. These
outputs, plus the low-pass image in figure 10.10E and an extra high-pass
image that is not shown, can be used to reconstruct the whole photograph
almost perfectly through a generative process that is the inverse of the
recognition process.

Coding

One reason for using multi-resolution decompositions is that they offer
efficient ways of encoding visual images. The raw values of input pix-
els provide an inefficient encoding of images. This is illustrated by the
dot-dashed line in figure 10.9B, which shows that the distribution over the
values of the input pixels of the image in figure 10.10A is approximately
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Figure 10.10: Multi-resolution image decomposition. A gray-scale image is de-
composed using the pair of vertical and horizontal filters shown in figure 10.9. A)
The original image. B, C, & D) The outputs of successively higher spatial frequency
vertically oriented filters translated across the image. E) The image after passage
through a low-pass filter. F, G, & H) The outputs of successively higher spatial
frequency horizontally oriented filters translated across the image.

flat or uniform. Up to the usual additive constants related to the precision
with which filter outputs are encoded, the contribution to the coding cost
from a single unit is the entropy of the probability distribution of its out-
put. The distribution over pixel intensities is flat, which is the maximum
entropy distribution for a variable with a fixed range. Encoding the indi-
vidual pixel values therefore incurs the maximum possible coding cost.

By contrast, the solid line in figure 10.9B shows the distribution of the
outputs of the finest scale vertically and horizontally tuned filters (fig-
ures 10.10D & H) in response to figure 10.10A. The filter outputs have a
sparse distribution similar to the double exponential distribution in fig-
ure 10.4B. This distribution has significantly lower entropy than the uni-
form distribution, so the filter outputs provide a more efficient encoding
than pixel values.

In making these statements about the distributions of activities, we are
equating the output distribution of a filter applied at many locations on
a single image with the output distribution of a filter applied at a fixed
location on many images. This assumes spatial translational invariance of
the ensemble of visual images.

Images represented by multi-resolution filters can be further compressed
by retaining only approximate values of the filter outputs. This is called
lossy coding and may consist of reporting filter outputs as integer multi- lossy coding
ples of a basic unit. Making the multi-resolution code for an image lossy
by coarsely quantizing the outputs of the highest spatial frequency filters
generally has quite minimal perceptual consequences while saving sub-
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stantial coding cost (because these outputs are most numerous). This fact
illustrates the important point that trying to build generative models of
all aspects of visual images may be unnecessarily difficult, because only
certain aspects of images are actually relevant. Unfortunately, abstract
principles are unlikely to tell us what information in the input can safely
be discarded independent of details of how the representations are to be
used.

Overcomplete Representations

Sparse representations often have more output units than input units.
Such representations, called overcomplete, are the subject of substantial
work in multi-resolution theory. Many reasons have been suggested for
overcompleteness, although none obviously emerges from the require-
ment of fitting good probabilistic models to input data.

One interesting idea comes from the notion that the task of manipulat-
ing representations should be invariant to the groups of symmetry trans-
formations of the input, which, for images, include rotation, translation,
and scaling. Complete representations are minimal, and so do not densely
sample orientations. This means that the operations required to manipu-
late images of objects presented at angles not directly represented by the
filters are different from those required at the represented angles (such as
horizontal and vertical for the example of figure 10.9). When a represen-
tation is overcomplete in such a way that different orientations are rep-
resented roughly equally, as in primary visual cortex, the computational
operations required to manipulate images are more uniform as a function
of image orientation. Similar ideas apply across scale, so that the opera-
tions required to manipulate large and small images of the same object (as
if viewed from near or far) are likewise similar. It is impossible to generate
representations that satisfy all these constraints perfectly.

In more realistic models that include noise, other rationales for overcom-
pleteness come from considering population codes, in which many units
redundantly report information about closely related quantities so that un-
certainty can be reduced. Despite the ubiquity of overcomplete population
codes in the brain, there are few representational learning models that pro-
duce them satisfactorarily. The coordinated representations required to
construct population codes are often incompatible with other heuristics
such as factorial or sparse coding.

Interdependent Causes

One of the failings of multi-resolution decompositions for coding is that
the outputs are not mutually independent. This makes encoding each of
the redundant filter outputs wasteful. Figure 10.11 illustrates such an in-
terdependence by showing the conditional distribution for the output vc of
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Figure 10.11: A) Gray-scale plot of the conditional distribution of the output of a
filter at the finest spatial scale (vc) given the output of a courser filter (vp) with the
same position and orientation (using the picture in figure 10.10A as input data).
Each column is separately normalized. The plot has a characteristic bow-tie shape.
B) The same data plotted as the conditional distribution of ln |vc| given ln |vp|.
(Adapted from Simoncelli and Adelson, 1990; Simoncelli and Schwartz, 1999.)

a horizontally tuned filter at a fine scale, given the output vp of a horizon-
tally tuned unit at the next coarser scale. The plots show gray-scale values
of the conditional probability density p[vc|vp]. The mean of this distribu-
tion is roughly 0, but there is a clear correlation between the magnitude of
|vp| and the variance of vc. This means that structure in the image is coor-
dinated across different spatial scales, so that high outputs from a coarse
scale filter are typically accompanied by substantial output (of one sign or
the other) at a finer scale. Following Simoncelli (1997), we plot the condi-
tional distribution of ln |vc| given ln |vp| in figure 10.11B. For small values
of ln |vp|, the distribution of ln |vc| is flat, but for larger values of ln |vp| the
growth in the value of |vc| is clear.

The interdependence shown in figure 10.11 suggests a failing of sparse
coding to which we have alluded before. Although the prior distribution
for sparse coding stipulates independent causes, the causes identified as
underlying real images are not independent. The dependence apparent in
figure 10.11 can be removed by a nonlinear transformation in which the
outputs of the units normalize each other (similar to the model introduced
to explain contrast saturation in chapter 2). This transformation can lead to
more compact codes for images. However, the general problem suggests
that something is amiss with the heuristic of seeking independent causes
for representations early in the visual pathway.

The most important dependencies as far as casual models are concerned
are those induced by the presence in images of objects with large-scale co-
ordinated structure. Finding and building models of these dependencies
is the goal for more sophisticated and hierarchical representational learn-
ing schemes aimed ultimately at object recognition within complex visual
scenes.
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10.5 Chapter Summary

We have presented a systematic treatment of exact and approximate max-
imum likelihood density estimation as a way of fitting probabilistic gener-
ative models and thereby performing representational learning. Recogni-
tion models, which are the statistical inverses of generative models, spec-
ify the causes underlying an input and play a crucial role in learning. We
discussed the expectation maximization (EM) algorithm applied to invert-
ible and non-invertible models, including the use of deterministic and
probabilistic approximate recognition models and a lower bound to the
log likelihood.

We presented a variety of models for continuous inputs with discrete, con-
tinuous, or vector-valued causes. These include mixture of Gaussians, K-
means, factor analysis, principal components analysis, sparse coding, and
independent components analysis. We also described the Helmholtz ma-
chines and discussed general issues of multi-resolution representation and
coding.
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10.7 Annotated Bibliography

The literature on unsupervised representational learning models is ex-
tensive. Recent reviews, from which we have borrowed, include Hin-
ton (1989); Bishop (1995); Hinton & Ghahramani (1997); and Becker &
Plumbley (1996), which also describes unsupervised learning methods
such as IMAX (Becker & Hinton (1992)) that find statistical structure in
the inputs directly rather than through causal models (see also projection
pursuit, Huber, 1985). The field of belief networks or graphical statistical
models (Pearl (1988); Lauritzen (1996); Jordan (1998)) provides an even
more general framework for probabilistic generative models. Apart from
Barlow (1961; 1989), early inspiration for unsupervised learning models
came from Uttley (1979) and Marr (1970) and the adaptive resonance the-
ory (ART) of Carpenter & Grossberg (see 1991).

Analysis by synthesis (e.g. Neisser, 1967), to which generative and recog-
nition models are closely related, was developed in a statistical context
by Grenander (1995), and was suggested by Mumford (1994) as a way
of understanding hierarchical neural processing. Suggestions by MacKay
(1956); Pece (1992); Kawato, et al., (1993); Rao & Ballard (1997) can be seen
in a similar light.

Nowlan (1991) introduced the mixtures of Gaussians architecture into neu-
ral networks. Mixture models are commonplace in statistics and are de-
scribed by Titterington et al. (1985).

Factor analysis is described by Everitt (1984), and some of the differences
and similarities between factor analysis and principal components analy-
sis are brought out by Jolliffe (1986); Tipping & Bishop (1999); Roweis &
Ghahramani (1999). Rubin & Thayer (1982) discuss the use of EM for factor
analysis. Roweis (1998) discusses EM for principal components analysis.

Neal & Hinton (1998) describe F and its role in the EM algorithm (Baum,
et al., 1970; Dempsteret al., 1977). EM is closely related to mean field meth-
ods in physics, as discussed by Jordan et al. (1996); Saul & Jordan (2000).
Hinton & Zemel (1994); Zemel (1994) used F for unsupervised learning
in a backpropagation network called the autoencoder and related their re-
sults to minimum description length coding (Risannen, 1989). Hinton et
al. (1995); Dayan et al. (1995) use F in the Helmholtz machine and the
associated wake-sleep algorithm.

Olshausen & Field (1996) suggest the sparse coding network based on
Field’s (1994) general analysis of sparse representations, and Olshausen
(1996) develops some of the links to density estimation. Independent com-
ponents analysis (ICA) was introduced as a problem by Herault & Jutten
(1986). The version of ICA algorithm that we described is due to Bell &
Sejnowski (1995); Roth & Baram (1996), using the natural gradient trick
of Amari (1999), and the derivation we used is due to Mackay (1996).
Pearlmutter & Parga (1996) and Olshausen (1996) also derive maximum
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likelihood interpretations of ICA. Multi-resolution decompositions were
introduced into computer vision by Witkin (1983); Burt & Adelson (1983),
and wavelet analysis is reviewed in Daubechies (1992); Simoncelli et al.
(1992); Mallat (1998).
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