
Chapter 9

Classical Conditioning and
Reinforcement Learning

9.1 Introduction

The ability of animals to learn to take appropriate actions in response to
particular stimuli on the basis of associated rewards or punishments is a
focus of behavioral psychology. The field is traditionally separated into
classical (or Pavlovian) and instrumental (or operant) conditioning. In classical and

instrumental
conditioning

classical conditioning, the reinforcers (i.e. the rewards or punishments) are
delivered independently of any actions taken by the animal. In instrumen-
tal conditioning, the actions of the animal determine what reinforcement
is provided. Learning about stimuli or actions solely on the basis of the
rewards and punishments associated with them is called reinforcement
learning. As discussed in chapter 8, reinforcement learning is minimally reinforcement

learningsupervised because animals are not told explicitly what actions to take in
particular situations, but must work this out for themselves on the basis of
the reinforcement they receive.

We begin this chapter with a discussion of aspects of classical condition-
ing and the models that have been developed to account for them. We first
discuss various pairings of one or more stimuli with presentation or denial
of a reward and present a simple learning algorithm that summarizes the
results. We then present an algorithm, called temporal difference learning,
that leads to predictions of both the presence and timing of rewards deliv-
ered after a delay following stimulus presentation. Two neural systems,
the cerebellum and the midbrain dopamine system, have been particu-
larly well studied from the perspective of conditioning. The cerebellum
has been studied in association with eyeblink conditioning, a paradigm
in which animals learn to shut their eyes just in advance of disturbances
such as puffs of air that are signalled by cues. The midbrain dopaminergic

Draft: December 17, 2000 Theoretical Neuroscience



2 Classical Conditioning and Reinforcement Learning

system has been studied in association with reward learning. We focus on
the latter, together with a small fraction of the extensive behavioral data
on conditioning.

There are two broad classes of instrumental conditioning tasks. In the first
class, which we illustrate with an example of foraging by bees, the re-
inforcer is delivered immediately after the action is taken. This makes
learning relatively easy. In the second class, the reward or punishment
depends on an entire sequence of actions and is partly or wholly delayed
until the sequence is completed. Thus, learning the appropriate action atdelayed rewards
each step in the sequence must be based on future expectation, rather than
immediate receipt, of reward. This makes learning more difficult. Despite
the differences between classical and instrumental conditioning, we show
how to use the temporal difference model we discuss for classical condi-
tioning as the heart of a model of instrumental conditioning when rewards
are delayed.

For consistency with the literature on reinforcement learning, throughout
this chapter, the letter r is used to represent a reward rather than a firing
rate. Also, for convenience, we consider discrete actions such as a choice
between two alternatives, rather than a continuous range of actions. We
also consider trials that consist of a number of discrete events and use an
integer time variable t = 0,1,2, . . . to indicate steps during a trial. We
therefore also use discrete weight update rules (like those we discussed
for supervised learning in chapter 8) rather than learning rules described
by differential equations.

9.2 Classical Conditioning

Classical conditioning involves a wide range of different training and test-
ing procedures and a rich set of behavioral phenomena. The basic pro-
cedures and results we discuss are summarized in table 9.1. Rather than
going through the entries in the table at this point, we introduce a learning
algorithm that serves to summarize and structure these results.

In the classic Pavlovian experiment, dogs are repeatedly fed just after a
bell is rung. Subsequently, the dogs salivate whenever the bell sounds
as if they expect food to arrive. The food is called the unconditioned
stimulus. Dogs naturally salivate when they receive food, and salivationunconditioned

stimulus and
response

is thus called the unconditioned response. The bell is called the condi-
tioned stimulus because it only elicits salivation under the condition that

conditioned
stimulus and
response

there has been prior learning. The learned salivary response to the bell
is called the conditioned response. We do not use this terminology in the
following discussion. Instead, we treat those aspects of the conditioned re-
sponses that mark the animal’s expectation of the delivery of reward, and
build models of how these expectations are learned. We therefore refer to
stimuli, rewards, and expectation of reward.

Peter Dayan and L.F. Abbott Draft: December 17, 2000



9.2 Classical Conditioning 3

Paradigm Pre-Train Train Result
Pavlovian s → r s →‘r’
Extinction s → r s → · s →‘·’
Partial s → r s → · s → α‘r’
Blocking s1 → r s1+s2 → r s1 →‘r’ s2 →‘·’
Inhibitory s1+s2 → · s1 → r s1 →‘r’ s2 → −’r’
Overshadow s1+s2 → r s1 → α1‘r’ s2 → α2‘r’
Secondary s1 → r s2 → s1 s2 →‘r’

Table 9.1: Classical conditioning paradigms. The columns indicate the training
procedures and results, with some paradigms requiring a pre-training as well as
a training period. Both training and pre-training periods consist of a moderate
number of training trials. The arrows represent an association between one or
two stimuli (s, or s1 and s2) and either a reward (r) or the absence of a reward
(·). In Partial and Inhibitory conditioning, the two types of training trials that are
indicated are alternated. In the Result column, the arrows represent an association
between a stimulus and the expectation of a reward (‘r’) or no reward (‘·’). The
factors of α denote a partial or weakened expectation, and the minus sign indicates
the suppression of an expectation of reward.

Predicting Reward - The Rescorla-Wagner Rule

The Rescorla-Wagner rule (Rescorla and Wagner, 1972), which is a version
of the delta rule of chapter 8, provides a concise account of certain aspects
of classical conditioning. The rule is based on a simple linear prediction
of the award associated with a stimulus. We use a binary variable u to
represent the presence or absence of the stimulus (u = 1 if the stimulus
is present, u = 0 if it is absent). The expected reward, denoted by v, is stimulus u

expected reward vexpressed as this stimulus variable multiplied by a weight w,

weight w
v = wu . (9.1)

The value of the weight is established by a learning rule designed to min-
imize the expected squared error between the actual reward r and the
prediction v, 〈(r − v)2〉. The angle brackets indicate an average over the
presentations of the stimulus and reward, either or both of which may be
stochastic. As we saw in chapter 8, stochastic gradient descent in the form
of the delta rule is one way of minimizing this error. This results in the
trial-by-trial learning rule known as the Rescorla-Wagner rule, Rescorla-Wagner

rule
w → w + εδu with δ = r − v . (9.2)

Here ε is the learning rate, which can be interpreted in psychological terms
as the associability of the stimulus with the reward. The crucial term in
this learning rule is the prediction error, δ. In a later section, we interpret
the activity of dopaminergic cells in the ventral tegmental area (VTA) as
encoding a form of this prediction error. If ε is sufficiently small, the rule
changes w systematically until the average value of δ is zero, at which
point w fluctuates about the equilibrium value w = 〈ur〉.
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Figure 9.1: Acquisition and extinction curves for Pavlovian conditioning and par-
tial reinforcement as predicted by the Rescorla-Wagner model. The filled circles
show the time evolution of the weight w over 200 trials. In the first 100 trials, a re-
ward of r = 1 was paired with the stimulus, while in trials 100-200 no reward was
paired (r = 0). Open squares show the evolution of the weights when a reward of
r = 1 was paired with the stimulus randomly on 50% of the trials. In both cases,
ε = 0.05.

The filled circles in figure 9.1 show how learning progresses according to
the Rescorla-Wagner rule during Pavlovian conditioning and extinction.Pavlovian

conditioning
extinction

In this example, the stimulus and reward were both initially presented
on each trial, but later the reward was removed. The weight approaches
the asymptotic limit w = r exponentially during the rewarded phase of
training (conditioning), and exponentially decays to w = 0 during the un-
rewarded phase (extinction). Experimental learning curves are generally
more sigmoidal in shape. There are various ways to account for this dis-
crepancy, the simplest of which is to assume a nonlinear relationship be-
tween the expectation v and the behavior of the animal.

The Rescorla-Wagner rule also accounts for aspects of the phenomenon of
partial reinforcement, in which a reward is only associated with a stimuluspartial

reinforcement on a random fraction of trials (table 9.1). Behavioral measures of the ulti-
mate association of the reward with the stimulus in these cases indicate
that it is weaker than when the reward is always presented. This is ex-
pected from the delta rule, because the ultimate steady-state average value
of w = 〈ur〉 is smaller than r in this case. The open squares in figure 9.1
show what happens to the weight when the reward is associated with the
stimulus 50% of the time. After an initial rise from zero, the weight varies
randomly around an average value of 0.5.

To account for experiments in which more than one stimulus is used in
association with a reward, the Rescorla-Wagner rule must be extended to
include multiple stimuli. This is done by introducing a vector of binary
variables u, with each of its components representing the presence or ab-stimulus vector u
sence of a given stimulus, together with a vector of weights w. The ex-weight vector w
pected reward is then the sum of each stimulus parameter multiplied by
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9.2 Classical Conditioning 5

its corresponding weight, written compactly as a dot product,

v = w · u . (9.3)

Minimizing the prediction error by stochastic gradient decent in this case
gives the delta learning rule delta rule

w → w + εδu with δ = r − v . (9.4)

Various classical conditioning experiments probe the way that predic-
tions are shared between multiple stimuli (see table 9.1). Blocking is the blocking
paradigm that first led to the suggestion of the delta rule in connection
with classical conditioning. In blocking, two stimuli are presented to-
gether with the reward, but only after an association has already devel-
oped for one stimulus by itself. In other words, during the pre-training
period, a stimulus is associated with a reward as in Pavlovian condition-
ing. Then, during the training period, a second stimulus is present along
with the first in association with the same reward. In this case, the pre-
existing association of the first stimulus with the reward blocks an asso-
ciation from forming between the second stimulus and the reward. Thus,
after training, a conditioned response is only evoked by the first stimulus,
not by the second. This follows from the vector form of the delta rule,
because training with the first stimulus makes w1 = r. When the second
stimulus is presented along with the first, its weight starts out at w2 = 0,
but the prediction of reward v = w1u1 + w2u2 is still equal to r. This makes
δ = 0, so no further weight modification occurs.

A standard way to induce inhibitory conditioning is to use trials in which inhibitory
conditioningone stimulus is shown in conjunction with the reward in alternation with

trials in which that stimulus and an additional stimulus are presented in
the absence of reward. In this case, the second stimulus becomes a con-
ditioned inhibitor, predicting the absence of reward. This can be demon-
strated by presenting a third stimulus that also predicts reward, in con-
junction with the inhibitory stimulus, and showing that the net prediction
of reward is reduced. It can also be demonstrated by showing that subse-
quent learning of an positive association between the inhibitory stimulus
and reward is slowed. Inhibition emerges naturally from the delta rule.
Trials in which the first stimulus is associated with a reward result in a
positive value of w1. Over trials in which both stimuli are presented to-
gether, the net prediction v = w1 + w2 comes to be 0, so w2 is forced to be
negative.

A further example of the interaction between stimuli is overshadowing. overshadowing
If two stimuli are presented together during training, the prediction of
reward is shared between them. After application of the delta rule, v =
w1 + w2 = r. However, the prediction is often shared unequally, as if one
stimulus is more salient than the other. Overshadowing can be encom-
passed by generalizing the delta rule so that the two stimuli have differ-
ent learning rates (different values of ε), reflecting unequal associabilities.
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6 Classical Conditioning and Reinforcement Learning

Weight modification stops when 〈δ〉 = 0, at which point the faster growing
weight will be larger than the slower growing weight. Various, more sub-
tle, effects come from having different and modifiable associabilities, but
they lie beyond the scope of our account.

The Rescorla-Wagner rule, binary stimulus parameters, and linear reward
prediction are obviously gross simplifications of animal learning behav-
ior. Yet they summarize and unify an impressive amount of classical con-
ditioning data and are useful, provided their shortcomings are fully ap-
preciated. As a reminder of this, we point out one experiment, namely
secondary conditioning, that cannot be encompassed within this scheme.
Secondary conditioning involves the association of one stimulus with a re-secondary

conditioning ward, followed by an association of a second stimulus with the first stim-
ulus (table 9.1). This causes the second stimulus to evoke expectation of
a reward with which it has never been paired (although if pairings of the
two stimuli without the reward are repeated too many times, the result
is extinction of the association of both stimuli with the reward). The delta
rule cannot account for the positive expectation associated with the second
stimulus. Indeed, because the reward does not appear when the second
stimulus is presented, the delta rule would cause w2 to become negative.
In other words, in this case, the delta rule would predict inhibitory, not
secondary, conditioning. Secondary conditioning is particularly impor-
tant, because it lies at the heart of our solution to the problem of delayed
rewards in instrumental conditioning tasks.

Secondary conditioning raises the important issue of keeping track of the
time within a trial in which stimuli and rewards are present. This is evi-
dent because a positive association with the second stimulus is only reli-
ably established if it precedes the first stimulus in the trials in which they
are paired. If the two stimuli are presented simultaneous, the result may
indeed be inhibitory rather than secondary conditioning.

Predicting Future Reward – Temporal Difference Learning

We measure time within a trial using a discrete time variable t, which falls
in the range 0 ≤ t ≤ T. The stimulus u(t), the prediction v(t), and the
reward r(t) are all expressed as functions of t.

In addition to associating stimuli with rewards and punishments, animals
can learn to predict the future time within a trial at which a reinforcer will
be delivered. We might therefore be tempted to interpret v(t) as the re-
ward predicted to be delivered at time step t. However, Sutton and Barto
(1990) suggested an alternative interpretation of v(t) that provides a bet-
ter match to psychological and neurobiological data, and suggests how
animals might use their predictions to optimize behavior in the face of
delayed rewards. The suggestion is that the variable v(t) should be in-
terpreted as a prediction of the total future reward expected from time t
onward to the end of the trial, namelytotal future reward
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9.2 Classical Conditioning 7

〈
T−t∑
τ=0

r(t + τ)

〉
. (9.5)

The brackets denote an average over trials. This quantity is useful for op-
timization, because it summarizes the total expected worth of the current
state. To compute v(t), we generalize the linear relationship used for clas-
sical conditioning, equation 9.3. For the case of a single time-dependent
stimulus u(t), we write

v(t) =
t∑

τ=0

w(τ)u(t − τ) . (9.6)

This is just a discrete time version of the sort of linear filter used in chapters
1 and 2.

Arranging for v(t) to predict the total future reward would appear to re-
quire a simple alteration of the delta rule we have discussed previously,

w(τ) → w(τ) + εδ(t)u(t − τ) , (9.7)

with δ(t) being the difference between the actual and predicted total future
reward, δ(t) = ∑

r(t + τ) − v(t). However, there is a problem with apply-
ing this rule in a stochastic gradient descent algorithm. Computation of
δ(t) requires knowledge of the total future reward on a given trial. Al-
though r(t) is known at this time, the succeeding r(t+1), r(t+2) . . . have
yet to be experienced, making it impossible to calculate δ(t). A possible
solution is suggested by the recursive formula

T−t∑
τ=0

r(t + τ) = r(t) +
T−t−1∑
τ=0

r(t+1+τ) . (9.8)

The temporal difference model of prediction is based on the observation
that v(t+1) provides an approximation of the trial-average value of the
last term in equation 9.8,

v(t+1) ≈
〈

T−t−1∑
τ=0

r(t+1+τ)

〉
. (9.9)

Substituting this approximation into the original expression for δ gives the
temporal difference learning rule temporal difference

rule
w(τ) → w(τ) + εδ(t)u(t−τ) with δ(t) = r(t) + v(t+1) − v(t) . (9.10)

The name of the rule comes from the term v(t+1) − v(t), which is the dif-
ference between two successive estimates. δ(t) is usually called the tempo-
ral difference error. There is an extensive body of theory showing circum-
stances under which this rule converges to make the correct predictions.

Figure 9.2 shows what happens when the temporal difference rule is ap-
plied during a training period in which a stimulus appears at time t = 100,
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Figure 9.2: Learning to predict a reward. A) The surface plot shows the prediction
error δ(t) as a function of time within a trial, across trials. In the early trials, the
peak error occurs at the time of the reward (t = 200), while in later trials it occurs at
the time of the stimulus (t = 100). (B) The rows show the stimulus u(t), the reward
r(t), the prediction v(t), the temporal difference between predictions �v(t − 1) =
v(t)−v(t −1), and the full temporal difference error δ(t −1) = r(t −1)+�v(t −1).
The reward is presented over a short interval, and the prediction v sums the total
reward. The left column shows the behavior before training, and the right column
after training. �v(t − 1) and δ(t − 1) are plotted instead of �v(t) and δ(t) because
the latter quantities cannot be computed until time t + 1 when v(t + 1) is available.

and a reward is given for a short interval around t = 200. Initially, w(τ) = 0
for all τ. Figure 9.2A shows that the temporal difference error starts off be-
ing non-zero only at the time of the reward, t = 200, and then, over trials,
moves backward in time, eventually stabilizing around the time of the
stimulus, where it takes the value 2. This is equal to the (integrated) to-
tal reward provided over the course of each trial. Figure 9.2B shows the
behavior during a trial of a number of variables before and after learn-
ing. After learning, the prediction v(t) is 2 from the time the stimulus is
first presented (t = 100) until the time the reward starts to be delivered.
Thus, the temporal difference prediction error has a spike at t = 99. This
spike persists, because u(t) = 0 for t < 100. The temporal difference term
�v(t) is negative around t = 200, exactly compensating for the delivery of
reward, and so making δ = 0.

As the peak in δ moves backwards from the time of the reward to the time
of the stimulus, weights w(τ) for τ = 100,99, . . . successively grow. This
gradually extends the prediction of future reward, v(t), from an initial
transient at the time of the stimulus, to a broad plateau extending from
the time of the stimulus to the time of the reward. Eventually, v predicts
the correct total future reward from the time of the stimulus onward, and
predicts the time of the reward delivery by dropping to zero when the re-
ward is delivered. The exact shape of the ridge of activity that movesfrom
t = 200 to t = 100 over the course of trials is sensitive to a number of fac-
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9.2 Classical Conditioning 9

tors, including the learning rate, and the exact form of the linear filter of
equation 9.6.

Unlike the delta rule, the temporal difference rule provides an account of
secondary conditioning. Suppose an association between stimulus s1 and
a future reward has been established, as in figure 9.2. When, as indicated
in table 9.1, a second stimulus, s2, is introduced before the first stimulus,
the positive spike in δ(t) at the time that s1 is presented drives an increase
in the value of the weight associated with s2 and thus establishes a posi-
tive association between the second stimulus and the reward. This exactly
mirrors the primary learning process for s1 described above. Of course, be-
cause the reward is not presented in these trials, there is a negative spike in
δ(t) at the time of the reward itself, and ultimately the association between
both s1 and s2 and the reward extinguishes.

Dopamine and Predictions of Reward

The prediction error δ plays an essential role in both the Rescorla-Wagner
and temporal difference learning rules, and we might hope to find a neural
signal that represents this quantity. One suggestion is that the activity of
dopaminergic neurons in the ventral tegmental area (VTA) in the midbrain ventral tegmental

area VTAplays this role.

There is substantial evidence that dopamine is involved in reward learn- dopamine
ing. Drugs of addiction, such as cocaine and amphetamines, act partly
by increasing the longevity of the dopamine that is released onto target
structures such as the nucleus accumbens. Other drugs, such as morphine
and heroin, also affect the dopamine system. Further, dopamine deliv-
ery is important in self-stimulation experiments. Rats will compulsively
press levers that cause current to be delivered through electrodes into var-
ious areas of their brains. One of the most effective self-stimulation sites
is the medial forebrain ascending bundle, which is an axonal pathway.
Stimulating this pathway is likely to cause increased delivery of dopamine
to the nucleus accumbens because the bundle contains many fibers from
dopaminergic cells in the VTA projecting to the nucleus accumbens.

In a series of studies by Schultz and his colleagues (Schultz, 1998), mon-
keys were trained through instrumental conditioning to respond to stimuli
such as lights and sounds to obtain food and drink rewards. The activi-
ties of cells in the VTA were recorded while the monkeys learned these
tasks. Figure 9.3A shows histograms of the mean activities of dopamine
cells over the course of learning in one example. The figure is based on
a reaction time task in which the monkey keeps a finger resting on a key
until a light comes on. The monkey then has to release the key and press
another one to get a fruit juice reward. The reward is delivered a short
time after the second key is pressed. The upper plot shows the response
of the cells in early trials. The cells respond vigorously to the reward, but
barely fire above baseline to the light. The lower plot shows the response
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Figure 9.3: Activity of dopaminergic neurons in the VTA for a monkey perform-
ing a reaction time task. A) Histograms show the number of spikes per second
for various time bins accumulated across trials and either time-locked to the light
stimulus (left panels) or the reward (right panels) at the time marked zero. The top
row is for early trials before the behavior is established. The bottom row is for late
trials, when the monkey expects the reward on the basis of the light. B) Activity
of dopamine neurons with and without reward delivery. The top row shows the
normal behavior of the cells when reward is delivered. The bottom row shows the
result of not delivering an expected reward. The basal firing rate of dopamine cells
is rather low, but the inhibition at the time the reward would have been given is
evident. (Adapted from Schultz, 1998.)

after a moderate amount of training. Now, the cell responds to the light,
but not to the reward. The responses show a distinct similarity to the plots
of δ(t) in figure 9.2.

The similarity between the responses of the dopaminergic neurons and
the quantity δ(t) suggests that their activity provides a prediction error
for reward, i.e. an ongoing difference between the amount of reward that
is delivered and the amount that is expected. Figure 9.3B provides further
evidence for this interpretation. It shows the activity of dopamine cells in a
similar task to that of figure 9.3A. The top row of this figure shows normal
performance, and is just like the bottom row of figure 9.3A. The bottom
row shows what happens when the monkey is expecting reward, but it is
not delivered. In this case, the cell’s activity is inhibited below baseline at
just the time it would have been activated by the reward in the original
trials. This is in agreement with the prediction error interpretation of this
activity.

Something similar to the temporal difference learning rule could be real-
ized in a neural system if the dopamine signal representing δ acts to gate
and regulate the plasticity associated with learning. We discuss this possi-
bility further in a later section.

9.3 Static Action Choice

In classical conditioning experiments, rewards are directly associated with
stimuli. In more natural settings, rewards and punishments are associated
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9.3 Static Action Choice 11

with the actions an animal takes. Animals develop policies, or plans of policy
action, that increase reward. In studying how this might be done, we con-
sider two different cases. In static action choice, the reward or punishment
immediately follows the action taken. In sequential action choice, reward
may be delayed until several actions are completed.

As an example of static action choice, we consider bees foraging among
flowers in search of nectar. We model an experiment in which single bees
forage under controlled conditions among blue and yellow colored arti- foraging
ficial flowers (small dishes of sugar water sitting on colored cards). In
actual experiments, the bees learn within a single session (involving visits
to 40 artificial flowers) about the reward characteristics of the yellow and
blue flowers. All else being equal, they preferentially land on the color
of flower that delivers more reward. This preference is maintained over
multiple sessions. However, if the reward characteristics of the flowers
are interchanged, the bees quickly swap their preferences.

We treat a simplified version of the problem, ignoring the spatial aspects of
sampling, and assuming that a model bee is faced with repeated choices
between two different flowers. If the bee chooses the blue flower on a
trial, it receives a quantity of nectar rb drawn from a probability density
p[rb]. If it chooses the yellow flower, it receives a quantity ry, drawn from
a probability density p[ry]. The task of choosing between the flowers is a
form of stochastic two-armed bandit problem (named after slot machines), two-armed bandit
and is formally equivalent to many instrumental conditioning tasks.

The model bee has a stochastic policy, which means that it chooses blue stochastic policy
and yellow flowers with probabilities that we write as P[b] and P[y] re-
spectively. A convenient way to parameterize these probabilities is to use
the softmax distribution softmax

P[b] = exp(βmb)

exp(βmb) + exp(βmy)
P[y] = exp(βmy)

exp(βmb) + exp(βmy)
(9.11)

Here, mb and my are parameters, known as action values, that are ad- action values m
justed by one of the learning processes described below. Note that
P[b] + P[y] = 1, corresponding to the fact that the model bee invariably
makes one of the two choices. Note that P[b] = σ(β(mb − my)) where
σ(m) = 1/(1 + exp(−m)) is the standard sigmoid function, which grows
monotonically from zero to one as m varies from −∞ to ∞. P[y] is sim-
ilarly a sigmoid function of β(my − mb). The parameters mb and my de-
termine the frequency at which blue and yellow flowers are visited. Their
values must be adjusted during the learning process on the basis of the
reward provided.

The parameter β determines the variability of the bee’s actions and ex-
erts a strong influence over exploration. For large β, the probability of
an action rises rapidly to one, or falls rapidly to zero, as the difference be-
tween the action values increases or decreases. This makes the bee’s action
choice almost a deterministic function of the m variables. If β is small, the
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12 Classical Conditioning and Reinforcement Learning

softmax probability approaches one or zero more slowly, and the bee’s ac-
tions are more variable and random. Thus, β controls the balance between
exploration (small β) and exploitation (large β). The choice of whether
to explore to determine if the current policy can be improved, or to ex-
ploit the available resources on the basis of the current policy, is known
as the exploration-exploitation dilemma. Exploration is clearly critical, be-exploration-

exploitation
dilemma

cause the bee must sample from the two colors of flowers to determine
which is better, and keep sampling to make sure that the reward condi-
tions have not changed. But exploration is costly, because the bee has to
sample flower it believes to be less beneficial, to check if this is really the
case. Some algorithms adjust β over trials, but we will not consider this
possibility.

There are only two possible actions in the example we study, but the exten-
sion to multiple actions, a = 1,2, . . . , Na, is straightforward. In this case, a
vector m of parameters controls the decision process, and the probabilityaction value

vector m P[a] of choosing action a is

P[a] = exp(βma)∑Na
a′=1 exp(βma′ )

. (9.12)

We consider two simple methods of solving the bee foraging task. In the
first method, called the indirect actor, the bee learns to estimate the ex-
pected nectar volumes provided by each flower using a delta rule. It then
bases its action choice on these estimates. In the second method, called
the direct actor, the choice of actions is based directly on maximizing the
expected average reward.

The Indirect Actor

One course for the bee to follow is to learn the average nectar volumes
provided by each type of flower and base its action choice on these. This is
called an indirect actor scheme, because the policy is mediated indirectlyindirect actor
by the expected volumes. Here, this means setting the action values to

mb = 〈rb〉 and my = 〈ry〉 . (9.13)

In our discussion of classical conditioning, we saw that the Rescorla-
Wagner or delta rule develops weights that approximate the average value
of a reward, just as required for equation 9.13. Thus if the bee chooses a
blue flower on a trial and receives nectar volume rb, it should update mb
according to the prediction error by

mb → mb + εδ with δ = rb − mb , (9.14)

and leave my unchanged. If it lands on a yellow flower, my is changed to
my + εδ with δ = ry − my, and mb is unchanged. If the probability densities
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Figure 9.4: The indirect actor. Rewards were 〈rb〉 = 1, 〈ry〉 = 2 for the first 100
flower visits, and 〈rb〉 = 2, 〈ry〉 = 1 for the second 100 flower visits. Nectar was de-
livered stochastically on half the flowers of each type. A) Values of mb (solid) and
my (dashed) as a function of visits for β = 1. Because a fixed value of ε = 0.1 was
used, the weights do not converge perfectly to the corresponding average reward,
but they fluctuates around these values. B-D) Cumulative visits to blue (solid)
and yellow (dashed) flowers. B) When β = 1, learning is slow, but ultimately the
change to the optimal flower color is made reliably. C;D) When β = 50, sometimes
the bee performs well (C), and other times it performs poorly (D).

of reward p[rb] and p[ry] change slowly relative to the learning rate, mb
and my will track 〈rb〉 and 〈ry〉 respectively.

Figure 9.4 shows the performance of the indirect actor on the two-flower
foraging task. Figure 9.4A shows the course of weight change due to the
delta rule in one example run. Figures 9.4B-D indicate the quality of the
action choice by showing cumulative sums of the number of visits to blue
and yellow flowers in three different runs. For ideal performance in this
task, the dashed line should have slope 1 until trial 100 and 0 thereafter,
and the solid line would show the reverse behavior, close to what is seen
in figure 9.4C. This reflects the consistent choice of the optimal flower in
both halves of the trial. A value of β = 1 (figure 9.4B) allows for continu-
ous exploration, but at the cost of slow learning. When β = 50 (figure 9.4C
& D), the tendency to exploit sometimes leads to good performance (fig-
ure 9.4C), but other times, the associated reluctance to explore causes the
policy to perform poorly (figure 9.4D).

Figure 9.5A shows action choices of real bumble bees in a foraging exper-
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Figure 9.5: Foraging in bumble bees. A) The mean preference of five real bumble
bees for blue flowers over 30 trials involving 40 flower visits. There is a rapid
switch of flower preference following the interchange of characteristics after trial
15. Here, ε = 3/10 and β = 23/8. B) Concave subjective utility function mapping
nectar volume (in µl) to the subjective utility. The circle shows the average utility
of the variable flowers, and the star shows the utility of the constant flowers. C)
The preference of a single model bee on the same task as the bumble bees. (Data
in A from Real, 1991; B & C adapted from Montague et al., 1995.)

iment. This experiment was designed to test risk aversion in the bees, so
the blue and yellow flowers differed in the reliability rather than the quan-
tity of their nectar delivery. For the first 15 trials (each involving 40 visits
to flowers), blue flowers always provided 2 µl of nectar, whereas 1

3 of the
yellow flowers provided 6 µl, and 2

3 provided nothing (note that the mean
reward is the same for the two flower types). Between trials 15 and 16, the
delivery characteristics of the flowers were swapped. Figure 9.5A shows
the average performance of five bees on this task in terms of their percent-
age visits to the blue flowers across trials. They exhibit a strong preference
for the constant flower type and switch this preference within only a few
visits to the flowers when the contingencies change.

To apply the foraging model we have been discussing to the experiment
shown in figure 9.5A, we need to model the risk avoidance exhibited by
the bees, that is, their reluctance to choose the unreliable flower. One way
to do this is to assume that the bees base their policy on the subjective
utility function of the nectar volume shown in figure 9.5B, rather than onsubjective utility
the nectar volume itself. Because the function is concave, the mean utility
of the unreliable flowers is less than that of the reliable flowers. Figure 9.5C
shows that the choices of the model bee match quite well those of the real
bees. The model bee is less variable than the actual bees (even more than
it appears, because the curve in 9.5A is averaged over five bees), perhaps
because the model bees are not sampling from a two-dimensional array of
flowers.
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The Direct Actor

An alternative to basing action choice on average rewards is to choose
action values directly to maximize the average expected reward. The ex- direct actor
pected reward per trial is given in terms of the action values and average
rewards per flower by

〈r〉 = P[b]〈rb〉 + P[y]〈ry〉 . (9.15)

This can be maximized by stochastic gradient ascent. To see how this is
done, we take the derivative of 〈r〉 with respect to mb,

∂〈r〉
∂mb

= β
(
P[b]P[y]〈rb〉 − P[y]P[b]〈ry〉

)
. (9.16)

In deriving this result, we have used the fact that

∂P[b]
∂mb

= βP[b]P[y] and
∂P[y]
∂mb

= −βP[y]P[b] . (9.17)

Using the relation P[y] = 1 − P[b], we can rewrite equation 9.16 as

∂〈r〉
∂mb

= βP[b](1 − P[b])〈rb〉 − βP[y]P[b]〈ry〉 . (9.18)

Furthermore, we can include an arbitrary parameter r in both these terms,
because it cancels out. Thus,

∂〈r〉
∂mb

= βP[b](1 − P[b]) (〈rb〉 − r) − βP[y]P[b]
(〈ry〉 − r

)
. (9.19)

A similar expression applies to ∂〈r〉/∂my except that the blue and yellow
labels are interchanged.

In stochastic gradient ascent, the changes in the parameter mb are de-
termined such that, averaged over trials, they end up proportional to
∂〈r〉/∂mb. We can derive a stochastic gradient ascent rule for mb from equa-
tion 9.19 in two steps. First, we interpret the two terms on the right hand
side as changes associated with the choice of blue and yellow flowers re-
spectively. This accounts for the factors P[b] and P[y] respectively. Second,
we note that over trials in which blue is selected, rb − r averages to 〈rb〉− r,
and over trials in which yellow is selected, ry − r averages to 〈ry〉− r. Thus,
if we change mb according to

mb → mb + ε(1 − P[b])(rb − r) if b is selected

mb → mb − εP[b] (ry − r) if y is selected,

the average change in mb is proportional to ∂〈r〉/∂mb. Note that mb is
changed even when the bee chooses the yellow flower. We can summa-
rize this learning rule as

mb → mb + ε(δab − P[b])(ra − r) (9.20)
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Figure 9.6: The direct actor. The statistics of the delivery of reward are the same
as in figure 9.4, and ε = 0.1, r = 1.5, and β = 1. The evolution of the weights and
cumulative choices of flower type (with yellow dashed and blue solid) are shown
for two sample sessions, one with good performance (A & B) and one with poor
performance (C & D).

where a is the action selected (either b or y) and δab is the Kronecker delta,
δab = 1 if a = b and δab = 0 if a = y. Similarly, the rule for my is

my → my + ε(δay − P[y])(ra − r) (9.21)

The learning rule of equations 9.20 and 9.21 performs stochastic gradient
ascent on the average reward, whatever the value of r̄. Different values
of r̄ lead to different variances of the stochastic gradient terms, and thus
different speeds of learning. A natural value for r̄ is the mean reward
under the specified policy or some estimate of this quantity.

Figure 9.6 shows the consequences of using the direct actor in the stochas-
tic foraging task shown figure 9.4. Two sample sessions are shown with
widely differing levels of performance. Compared to the indirect actor,
initial learning is quite slow, and the behavior after the reward character-
istics of the flowers are interchanged can be poor. Explicit control of the
trade-off between exploration and exploitation is difficult, because the ac-
tion values can scale up to compensate for different values of β. Despite its
comparatively poor performance in this task, the direct actor is important
because it is used later as a model for how action choice can be separated
from action evaluation.

Peter Dayan and L.F. Abbott Draft: December 17, 2000



9.4 Sequential Action Choice 17

B C

A

enter

0

5
2

0

Figure 9.7: The maze task. The rat enters the maze from the bottom and has to
move forward. Upon reaching one of the end points (the shaded boxes), it receives
the number of food pellets indicated and the trial ends. Decision points are A, B,
and C.

The direct actor learning rule can be extended to multiple actions, a =
1,2, . . . , Na, by using the multidimensional form of the softmax distribu-
tion (equation 9.12). In this case, when action a is taken, ma′ for all values
of a′ is updated according to

ma′ → ma′ + ε
(
δaa′ − P[a′]

)
(ra − r̄) . (9.22)

9.4 Sequential Action Choice

In the previous section, we considered ways that animals might learn
to choose actions on the basis of immediate information about the con-
sequences of those actions. A significant complication that arises when
reward is based on a sequence of actions is illustrated by the maze task
shown in figure 9.7. In this example, a hungry rat has to move through a
maze, starting from point A, without retracing its steps. When it reaches
one of the shaded boxes, it receives the associated number of food pellets
and is removed from the maze. The rat then starts again at A. The task
is to optimize the total reward, which in this case entails moving left at A
and right at B. It is assumed that the animal starts knowing nothing about
the structure of the maze or about the rewards.

If the rat started from point B or point C, it could learn to move right
or left (respectively) using the methods of the previous section, because
it experiences an immediate consequence of its actions in the delivery or
non-delivery of food. The difficulty arises because neither action at the
actual starting point, A, leads directly to a reward. For example, if the rat
goes left at A and also goes left at B, it has to figure out that the former
choice was good but the latter bad. This is a typical problem in tasks that
involve delayed rewards. The reward for going left at A is delayed until
after the rat also goes right at B.

There is an extensive body of theory in engineering, called dynamic
programming, as to how systems of any sort can come to select appro- dynamic

programming
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18 Classical Conditioning and Reinforcement Learning

priate actions in optimizing control problems similar to (and substantially
more complicated than) the maze task. An important method on which
we focus is called policy iteration. Our reinforcement learning version ofpolicy iteration
policy iteration maintains and improves a stochastic policy, which deter-
mines the actions at each decision point (i.e. left or right turns at A, B, or C)
through action values and the softmax distribution of equation 9.12. Policy
iteration involves two elements. One, called the critic, uses temporal dif-critic
ference learning to estimate the total future reward that is expected when
starting from A, B, or C, when the current policy is followed. The other el-
ement, called the actor, maintains and improves the policy. Adjustment ofactor
the action values at point A is based on predictions of the expected future
rewards associated with points B and C that are provided by the critic. In
effect, the rat learns the appropriate action at A using the same methods of
static action choice that allow it to learn the appropriate actions at B and
C. However, rather than using an immediate reward as the reinforcement
signal, it uses the expectations about future reward that are provided by
the critic.

The Maze Task

As we mentioned when discussing the direct actor, a stochastic policy is a
way of assigning a probability distribution over actions (in this case choos-
ing to turn either left or right) to each location (A, B, or C). The location
is specified by a variable u that takes the values A, B, or C, and a two-
component action value vector m(u) is associated with each location. The
components of the action vector m(u) control the probability of taking a
left or a right turn at u.

The immediate reward provided when action a is taken at location u is
written as ra(u). This takes the values 0, 2, or 5 depending on the values
of u and a. The predicted future reward expected at location u is given by
v(u) = w(u). This is an estimate of the total award that the rat expects to
receive, on average, if it starts at the point u and follows its current policy
through to the end of the maze. The average is taken over the stochastic
choices of actions specified by the policy. In this case, the expected reward
is simply equal to the weight. The learning procedure consists of two sep-
arate steps: policy evaluation, in which w(u) is adjusted to improve the
predictions of future reward, and policy improvement, in which m(u) is
adjusted to increase the total reward.

Policy Evaluation

In policy evaluation, the rat keeps its policy fixed (i.e. keeps all the m(u)

fixed) and uses temporal difference learning to determine the expected
total future reward starting from each location. Suppose that, initially, the
rat has no preference for turning left or right, that is, m(u) = 0 for all u, so
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Figure 9.8: Policy evaluation. The thin lines show the course of learning of the
weights w(A), w(B) and w(C) over trials through the maze in figure 9.7 using a
random unbiased policy (m(u) = 0). Here ε = 0.5, so learning is fast but noisy. The
dashed lines show the correct weight values from equation 9.23. The thick lines are
running averages of the weight values.

the probability of left and right turns is 1/2 at all locations. By inspection
of the possible places the rat can go, we find that the values of the states
are

v(B) = 1
2
(0 + 5) = 2.5 , v(C) = 1

2
(0 + 2) = 1 , and

v(A) = 1
2
(v(B) + v(C)) = 1.75 .

(9.23)

These values are the average total future rewards that will be received
during exploration of the maze when actions are chosen using the random
policy. The temporal difference learning rule of equation 9.10 can be used
to learn them. If the rat chooses action a at location u and ends up at
location u′, the temporal difference rule modifies the weight w(u) by critic learning rule

w(u) → w(u) + εδ with δ = ra(u) + v(u′) − v(u) . (9.24)

Here, a location index u substitutes for the time index t, and we only as-
sociate a single weight w(u) with each state rather than a whole temporal
kernel (this is equivalent to only using τ =0 in equation 9.10). Figure 9.8
shows the result of applying the temporal difference rule to the maze task
of figure 9.7. After a fairly short adjustment period, the weights w(u) (and
thus the predictions v(u)) fluctuate around the correct values for this pol-
icy, as given by equation 9.23. The size of the fluctuations could be reduced
by making ε smaller, but at the expense of increasing the learning time.

In our earlier description of temporal difference learning, we included
the possibility that the reward delivery might be stochastic. Here, that
stochasticity is the result of a policy that makes use of the information
provided by the critic. In the appendix, we discuss a Monte-Carlo inter-
pretation of the terms in the temporal difference learning rule that justifies
using its use.

Draft: December 17, 2000 Theoretical Neuroscience



20 Classical Conditioning and Reinforcement Learning

Policy Improvement

In policy improvement, the expected total future rewards at the different
locations are used as surrogate immediate rewards. Suppose the rat takes
action a at location u and moves to location u′. The expected worth to
the rat of that action is the sum of the actual reward received and the re-
wards that are expected to follow, which is ra(u) + v(u′). The direct actor
scheme of equation 9.22 uses the difference ra − r̄ between a sample of the
worth of the action (ra) and a reinforcement comparison term (r̄), which
might be the average value over all the actions that can be taken. Policy
improvement uses ra(u) + v(u′) as the equivalent of the sampled worth
of the action, and v(u) as the average value across all actions that can be
taken at u. The difference between these is δ = ra(u) + v(u′) − v(u), which
is exactly the same term as in policy evaluation (equation 9.24). The policy
improvement or actor learning rule is thenactor learning rule

ma′ (u) → ma′ (u) + ε
(
δaa′ − P[a′;u]

)
δ (9.25)

for all a′, where P[a′;u] is the probability of taking action a′ at location u
given by the softmax distribution of equation 9.11 or 9.12 with action value
ma′ (u).

To look at this more concretely, consider the temporal difference error
starting from location u=A, using the true values of the locations given by
equation 9.23 (i.e. assuming that policy evaluation is perfect). Depending
on the action, δ takes the two values

δ = 0 + v(B) − v(A) = 0.75 for a left turn
δ = 0 + v(C) − v(A)= − 0.75 for a right turn.

The learning rule of equation 9.25 increases the probability that the action
with δ > 0 is taken and decreases the probability that the action with δ < 0
is taken. This increases the chance that the rat makes the correct turn (left)
at A in the maze of figure 9.7.

As the policy changes, the values, and therefore the temporal difference
terms, change as well. However, because the values of all locations can
only increase if we choose better actions at those locations, this form of
policy improvement inevitably leads to higher values and better actions.
This monotonic improvement (or at least non-worsening) of the expected
future rewards at all locations is proved formally in the dynamic program-
ming theory of policy iteration for a class of problems called Markov de-Markov decision

problems cision problems (which includes the maze task), as discussed in the ap-
pendix.

Strictly speaking, policy evaluation should be complete before a policy
is improved. It is also most straightforward to improve the policy com-
pletely before it is re-evaluated. A convenient (though not provably cor-
rect) alternative is to interleave partial policy evaluation and policy im-
provement steps. This is called the actor-critic algorithm. Figure 9.9 showsactor-critic

algorithm
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Figure 9.9: Actor-critic learning. The three curves show P[L;u] for the three start-
ing locations u = A, B, and C in the maze of figure 9.7. These rapidly converge
to their optimal values, representing left turns and A and C and a right turn at B.
Here, ε = 0.5 and β = 1.

the result of applying this algorithm to the maze task. The plots show the
development over trials of the probability of choosing to go left, P[L;u],
for all the three locations. The model rat quickly learns to go left at lo-
cation A and right at B. Learning at location C is slow because the rat
learns quickly that it is not worth going to C at all, so it rarely gets to try
the actions there. The algorithm makes an implicit choice of exploration
strategy.

Generalizations of Actor-Critic Learning

The full actor-critic model for solving sequential action tasks includes
three generalizations of the maze learner that we have presented. The first
involves additional information that may be available at the different loca-
tions. If, for example, sensory information is available at a location u, we
associate a state vector u(u) with that location. The vector u(u) parame- state vector u
terizes whatever information is available at location u that might help the
animal decide which action to take. For example, the state vector might
represent a faint scent of food that the rat might detect in the maze task.
When a state vector is available, the most straightforward generalization is
to use the linear form v(u) = w · u(u) to define the value at location u. The
learning rule for the critic (equation 9.24) is then generalized to include the
information provided by the state vector,

w → w + εδu(u) , (9.26)

with δ given given as in equation 9.24. The maze task we discussed could
be formulated in this way using what is called a unary representation, unary

representationu(A) = (1,0,0), u(B) = (0,1,0), and u(C) = (0,0,1).

We must also modify the actor learning rule to make use of the information
provided by the state vector. This is done by generalizing the action value
vector m to a matrix M, called an action matrix. M has as many columns action matrix M
as there are components of u and as many rows as there are actions. Given
input u, action a is chosen at location u with the softmax probability of
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equation 9.12, but using component a of the action value vector

m = M · u(u) or ma =
∑

b

Mabub(u) . (9.27)

In this case, the learning rule 9.25 must be generalized to specify how to
change elements of the action matrix when action a is chosen at location
u with state vector u(u), leading to location u′. A rule similar to equa-
tion 9.25 is appropriate, except that the change in M depends on the state
vector u,three-term

covariance rule
Ma′b → Ma′b + ε

(
δaa′ − P[a′;u]

)
δub(u) (9.28)

for all a′, with δ given again as in equation 9.24. This is called a three-term
covariance learning rule.

We can speculate about the biophysical significance of the three-term co-
variance rule by interpreting δaa′ as the output of cell a′ when action a is
chosen (which has mean value is P[a′;u]) and interpreting u as the input
to that cell. Compared with the Hebbian covariance rules studied in chap-
ter 8, learning is gated by a third term, the reinforcement signal δ. It has
been suggested that the dorsal striatum, which is part of the basal ganglia,dorsal striatum

basal ganglia is involved in the selection and sequencing of actions. Terminals of axons
projecting from the substantia nigra pars compacta release dopamine onto
synapses within the striatum, suggesting that they might play such a gat-
ing role. The activity of these dopamine neurons is similar to that of the
VTA neurons discussed previously as a possible substrate for δ.

The second generalization is to the case that rewards and punishments re-
ceived soon after an action are more important than rewards and punish-
ments received later. One natural way to accommodate this is a technique
called exponential discounting. In computing the expected future reward,discounting
this amounts to multiplying a reward that will be received τ time steps
after a given action by a factor γτ , where 0≤γ≤1 is the discounting factor.
The smaller γ, the stronger the effect, i.e. the less important are tempo-
rally distant rewards. Discounting has a major influence on the optimal
behavior in problems for which there are many steps to a goal. Expo-
nential discounting can be accommodated within the temporal difference
framework by changing the prediction error δ to

δ = ra(u) + γv(u′) − v(u) , (9.29)

which is then used in the learning rules of equations 9.26 and 9.28.

In computing the amount to change a weight or action value, we defined
the worth of an action as the sum of the immediate reward delivered and
the estimate of the future reward arising from the next state. A final gen-
eralization of actor-critic learning comes from basing the learning rules on
the sum of the next two immediate rewards delivered and the estimate of
the future reward from the next state but one, or the next three immediate
rewards and the estimate from the next state but two, and so on. As in
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discounting, we can use a factor λ to weight how strongly the expected
future rewards from temporally distant points in the trial affect learning.
Suppose that u(t) = u(u(t)) is the state vector used at time step t of a
trial. Such generalized temporal difference learning can be achieved by
computing new state vectors, defined by the recursive relation

ũ(t) = ũ(t−1) + (1 − λ)(u(t) − ũ(t−1)) (9.30)

and using them instead of the original state vectors u in equations 9.26 and
9.28. The resulting learning rule is called the TD(λ) rule. Use of this rule TD(λ) rule
with an appropriate value of λ can significantly speed up learning.

Learning the Water Maze

As an example of generalized reinforcement learning, we consider the wa-
ter maze task. This is a navigation problem in which rats are placed in a
large pool of milky water and have to swim around until they find a small
platform that is submerged slightly below the surface of the water. The
opaqueness of the water prevents them from seeing the platform directly,
and their natural aversion to water (although they are competent swim-
mers) motivates them to find the platform. After several trials, the rats
learn the location of the platform and swim directly to it when placed in
the water.

Figure 9.10A shows the structure of the model, with the state vector u
providing input to the critic and a collection of 8 possible actions for the
actor, which are expressed as compass directions. The components of u
represent the activity of hippocampal place cells (which are discussed in
chapter 1). Figure 9.10B shows the activation of one of the input units as
a function of spatial position in the pool. The activity, like that of a place
cell, is spatially restricted.

During training, each trial consists of starting the model rat from a ran-
dom location at the outside of the maze and letting it run until it finds
the platform indicated by a small circle in the lower part of figure 9.10C.
At that point a reward of 1 is provided. The reward is discounted with
γ = 0.9975 to model the incentive for the rat to find the goal as quickly
as possible. Figure 9.10C indicates the course of learning (trials 1, 5 and
20) of the expected future reward as a function of location (upper figures)
and the policy (lower figures with arrows). The lower figures also show
sample paths taken by the rat (lower figures with wiggly lines). The final
value function (at trial 20) is rather inaccurate, but, nevertheless, the pol-
icy learned is broadly correct, and the paths to the platform are quite short
and direct.

Judged by measures such as path length, initial learning proceeds in the
model in a manner comparable to that of actual rats. Figure 9.11A shows
the average performance of 12 real rats in running the water maze on four
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Figure 9.10: Reinforcement learning model of a rat solving a simple water maze
task in a 2 m diameter circular pool. A) There are 493 place cell inputs and 8 actions.
The rat moves at 0.3 m/s and reflects off the walls of the maze if it hits them. B)
Gaussian place field for a single input cell with width σ = 0.16 m. The centers
of the place fields for different cells are uniformly distributed across the pool. C)
Upper: The development of the value function v as a function of the location in the
pool over the first 20 trials, starting from v=0 everywhere . Lower arrow plots: The
action with the highest probability for each location in the maze. Lower path plots:
Actual paths taken by the model rat from random starting points to the platform,
indicated by a small circle. A slight modification of the actor learning rule was
used to enforce generalization between spatially similar actions. (Adapted from
Foster et al., 2000.)

trials per day to a platform at a fixed location, starting from randomly
chosen initial locations. The performance of the rats rapidly improves
and levels off by about the sixth day. When the platform is moved on the
eighth day, in what is called reversal training, the initial latency is long, be-
cause the rats search near the old platform position. However, they rapidly
learn the new location. Figure 9.11B shows the performance of the model
on the same task (though judged by path lengths rather than latencies).
Initial learning is equally quick, with near perfect paths by the sixth day.
However, performance during reversal training is poor, because the model
has trouble forgetting the previous location of the platform. The rats are
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Figure 9.11: Comparison of rats and the model in the water maze task. A) Average
latencies of 12 rats in getting to a fixed platform in the water maze, using four trials
per day. On the 8th day, the platform was moved to a new location, which is called
reversal. B) Average path length from 1000 simulations of the model performing
the same task. Initial learning matches that of the rats, but performance is worse
following reversal. (Adapted from from Foster et al., 2000.)

clearly better at handling this transition. Nevertheless the model shows
something of the power of a primitive, but general, learning method.

9.5 Chapter Summary

We discussed reinforcement learning models for classical and instrumen-
tal conditioning, interpreting the former in terms of learning predictions
about total future rewards and the latter in terms of optimization of those
rewards. We introduced the Rescorla-Wagner or delta learning rule for
classical conditioning, together with its temporal difference extension, and
indirect and direct actor rules for instrumental conditioning given imme-
diate rewards. Finally, we presented the actor-critic version of the dynamic
programming technique of policy iteration, evaluating policies using tem-
poral difference learning and improving them using the direct actor learn-
ing rule, based on surrogate immediate rewards from the evaluation step.
In the appendix, we show more precisely how temporal difference learn-
ing can be seen as a Monte-Carlo technique for performing policy iteration.

Appendix

Markov Decision Problems

Markov decision problems offer a simple formalism for describing tasks
such as the maze. A Markov decision problem is comprised of states, ac-
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tions, transitions, and rewards. The states, labeled by u, are what we called
locations in the maze task, and the actions, labeled by a, are the analogs of
the choices of directions to run. In the maze, each action taken at state
u led uniquely and deterministically to a new state u′. Markov decision
problems generalize this to include the possibility that the transitions from
u due to action a may be stochastic, leading to state u′ with a transition
probability P[u′|u; a].

∑
u′ P[u′|u; a] = 1 for all u and a, because the animal

has to end up somewhere. There can be absorbing states (like the shaded
boxes in figure 9.7), which are u for which P[u|u; a] = 1 for all actions a, i.e.absorbing state
there is no escape for the animal from these locations. Finally, the rewards
r can depend both on the state u and the action executed a, and they might
be stochastic. We write 〈ra(u)〉 for the mean reward in this case. For con-
venience, we only consider Markov chains that are finite (finite numbers
of actions and states), absorbing, (the animal always ends up in one of the
absorbing states), and in which the rewards are bounded. We also require
that 〈ra(u)〉=0 for all actions a at all absorbing states. The crucial Markov
property is that, given the state at the current time step, the distributionMarkov property
over future states and rewards is independent of the past states.

The Bellman Equation

The task for a system or animal facing a Markov decision problem, starting
in state u at time 0, is to choose a policy, denoted by M, that maximizes the
expected total future reward

v∗(u) = max
M

〈 ∞∑
t=0

ra(t)(u(t))

〉
u,M

(9.31)

where u(0) = u, actions a(t) are determined (either deterministically or
stochastically) on the basis of the state u(t) according to policy M, and
the notation 〈〉u,M implies taking an expectation over the actions and the
states to which they lead, starting at state u and using policy M.

The trouble with the sum in equation 9.31 is that the action a(0) at time
0 affects not only 〈ra(0)(u(0))〉, but, by influencing the state of the sys-
tem, also the subsequent rewards. It would seem that the animal would
have to consider optimizing whole sequences of actions, the number of
which grows exponentially with time. Bellman’s (1957) insight was that
the Markov property effectively solves this problem. He rewrote equa-
tion 9.31 to separate the first and subsequent terms, and used a recursive
principle for the latter. The Bellman equation is

v∗(u) = max
a

{
〈ra(u)〉 +

∑
u′

P[u′|u; a]v∗(u′)

}
(9.32)

This says that maximizing reward at u requires choosing the action a that
maximizes the sum of the mean immediate reward 〈ra(u)〉 and the average
of the largest possible values of all the states u′ to which a can lead the
system, weighted by their probabilities.
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Policy Iteration

The actor-critic algorithm is a form of a dynamic programming technique
called policy iteration. Policy iteration involves interleaved steps of policy
evaluation (the role of the critic) and policy improvement (the role of the
actor). Evaluation of policy M requires working out the values for all states
u. We call these values vM(u), to reflect explicitly their dependence on the
policy. Each values is analogous to the quantity in 9.5. Using the same
argument that led to the Bellman equation, we can derive the recursive
formula

vM(u) =
∑

a

PM[a;u]

{
〈ra(u)〉 +

∑
u′

P[u′|u; a]vM(u′)

}
(9.33)

Equation 9.33 for all states u is a set of linear equations, that can be
solved by matrix inversion. Reinforcement learning can be interpreted as
a stochastic Monte-Carlo method for performing this operation (Barto and
Duff, 1994).

Temporal difference learning uses an approximate Monte-Carlo method to Monte-Carlo
methodevaluate the right side of equation 9.33, and uses the difference between

this approximation and the estimate of vM(u) as the prediction error. The
first idea underlying the method is that ra(u) + vM(u′) is a sample whose
mean is exactly the right side of equation 9.33. The second idea is boot-
strapping, using the current estimate v(u′) in place of vM(u′) in this sam-
ple. Thus ra(u) + v(u′) is used as a sampled approximation to vM(u), and

δ(t) = ra(u) + v(u′) − v(u) (9.34)

is used as a sampled approximation to the discrepancy vM(u) − v(u)

which is an appropriate error measure for training v(u) to equal vM(u).
Evaluating and improving policies from such samples without learning
P[u′|u; a] and 〈ra(u)〉 directly is called an asynchronous, model-free, ap-
proach to policy evaluation. It is possible to guarantee the convergence of
the estimate v to its true value vM under a set of conditions discussed in
the texts mentioned in the annotated bibliography.

The other half of policy iteration is policy improvement. This normally
works by finding an action a∗ that maximizes the expression in the curly
brackets in equation 9.33 and making the new PM[a∗;u]=1. One can show
that the new policy will be uniformly better than the old policy, making the
expected long-term reward at every state no smaller than the old policy,
or equally large, if it is already optimal. Further, because the number of
different policies is finite, policy iteration is bound to converge.

Performing policy improvement like this requires knowledge of the tran-
sition probabilities and mean rewards. Reinforcement learning again
uses an asynchronous, model-free approach to policy improvement, us-
ing Monte-Carlo samples. First, note that any policy M′ that improves the
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average value

∑
a

PM′[u; a]

{
〈ra(u)〉 +

∑
u′

P[u′|u; a]vM(u′)

}
. (9.35)

for every state u is guaranteed to be a better policy. The idea for a single
state u is to treat equation 9.35 rather like equation 9.15, except replacing
the average immediate reward 〈ra〉 there by an effective average immedi-
ate reward 〈ra(u)〉 + ∑

u′ P[u′|u; a]vM(u′) to take long term as well as cur-
rent reward into account. By the same reasoning as above, ra(u) + v(u′)
is used as an approximate Monte-Carlo sample of the effective immediate
reward, and v(u) as the equivalent of the reinforcement comparison term
r̄. This leads directly to the actor learning rule of equation 9.25.

Note that there is an interaction between the stochasticity in the rein-
forcement learning versions of policy evaluation and policy improvement.
This means that it is not known whether the two together are guaranteed
to converge. One could perform temporal difference policy evaluation
(which can be proven to converge) until convergence before attempting
policy improvement, and this would be sure to work.

9.6 Annotated Bibliography

Dickinson (1980); Mackintosh (1983); Shanks (1995) review animal and
human conditioning behavior, including alternatives to Rescorla & Wag-
ner’s (1972) rule. Gallistel (1990); Gallistel & Gibbon (2000) discuss as-
pects of conditioning, in particular to do with timing, that we have omit-
ted.

Our description of the temporal difference model of classical condition-
ing in this chapter is based on Sutton (1988); Sutton & Barto (1990). The
treatment of static action choice comes from Narendra & Thatachar (1989)
and Williams (1992), and of action choice in the face of delayed rewards
and the link to dynamic programming from Barto, Sutton & Anderson
(1983); Watkins (1989); Barto, Sutton & Watkins (1989); Bertsekas & Tsit-
siklis (1996); Sutton & Barto (1998). Bertsekas & Tsitsiklis (1996); Sutton
& Barto (1998) describe some of the substantial theory of temporal dif-
ference learning that has been developed. Dynamic programming as a
computational tool of ethology is elucidated by Mangel & Clark (1988).

Schultz (1998) reviews the data on the activity of primate dopamine cells
during appetitive conditioning tasks, together with the psychological and
pharmacological rationale for studying these cells. The link with temporal
difference learning was made by Montague, Dayan & Sejnowski (1996);
Friston et al. (1994); Houk et al. (1995). Houk et al. (1995) review the
basal ganglia from a variety of perspectives. Wickens (1993) provides a
theoretically motivated treatment. The model of Montague et al. (1995)
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for Real’s (1991) experiments in bumble bee foraging was based on Ham-
mer’s (1993) description of an octopaminergic neuron in honey bees that
appears to play, for olfactory conditioning, a somewhat similar role to the
primate dopaminergic cells.

The kernel representation of the weight between a stimulus and reward
can be seen as a form of a serial compound stimulus (Kehoe, 1977) or a
spectral timing model (Grossberg & Schmajuk, 1989). Grossberg and col-
leagues (see Grossberg, 1982, 1987 & 1988) have developed a sophisticated
mathematical model of conditioning, including aspects of opponent pro-
cessing (Konorksi, 1967; Solomon & Corbit, 1974), which puts prediction
of the absence of reward (or the presence of punishment) on a more equal
footing with prediction of the presence of reward, and develops aspects
of how animals pay differing amounts of attention to stimuli. There are
many other biologically inspired models of conditioning, particularly of
the cerebellum (e.g. Gluck et al., 1990; Gabriel & Moore, 1990; Raymond
et al., 1996; Mauk & Donegan, 1997).
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