
Chapter 8

Plasticity and Learning

8.1 Introduction

Activity-dependent synaptic plasticity is widely believed to be the basic
phenomenon underlying learning and memory, and it is also thought to
play a crucial role in the development of neural circuits. To understand
the functional and behavioral significance of synaptic plasticity, we must
study how experience and training modify synapses, and how these mod-
ifications change patterns of neuronal firing to affect behavior. Experimen-
tal work has revealed ways in which neuronal activity can affect synaptic
strength, and experimentally inspired synaptic plasticity rules have been
applied to a wide variety of tasks including auto- and hetero-associative
memory, pattern recognition, storage and recall of temporal sequences,
and function approximation.

In 1949, Donald Hebb conjectured that if input from neuron A often con-
tributes to the firing of neuron B, the synapse from A to B should be
strengthened. Hebb suggested that such synaptic modification could pro- Hebb rule
duce neuronal assemblies that reflect the relationships experienced dur-
ing training. The Hebb rule forms the basis of much of the research done
on the role of synaptic plasticity in learning and memory. For example,
consider applying this rule to neurons that fire together during training
due to an association between a stimulus and a response. These neu-
rons would develop strong interconnections, and subsequent activation
of some of them by the stimulus could produce the synaptic drive needed
to activate the remaining neurons and generate the associated response.
Hebb’s original suggestion concerned increases in synaptic strength, but
it has been generalized to include decreases in strength arising from the
repeated failure of neuron A to be involved in the activation of neuron B.
General forms of the Hebb rule state that synapses change in proportion to
the correlation or covariance of the activities of the pre- and postsynaptic
neurons.

Draft: December 17, 2000 Theoretical Neuroscience

2 Plasticity and Learning

0

0.1

0.2

0.3

0.4

1
100

s
Hz

10
2

min
Hz

fie
ld

 p
ot

en
tia

l a
m

pl
itu

de
 (

m
V

)

t ime (min)
0 10 20 30 40

LTP
LTD

control level

depressed, partially
depotentiated level

potentiated level

Figure 8.1: LTP and LTD at the Schaffer collateral inputs to the CA1 region of a
rat hippocampal slice. The points show the amplitudes of field potentials evoked
by constant amplitude stimulation. At the time marked by the arrow (at time 5
minutes), stimulation at 100 Hz for 1 s caused a significant increase in the response
amplitude. Some of this increase decayed away following the stimulation, but
most of it remained over the following 15 min test period, indicating LTP. Next,
stimulation at 2 Hz was applied for 10 min (between times 20 and 30 minutes).
This reduced that amplitude of the response. After a transient dip, the response
amplitude remained at a reduced level approximately midway between the origi-
nal and post-LTP values, indicating LTD. The arrows at the right show the levels
initially (control), after LTP (potentiated), and after LTD (depressed, partially de-
potentiated). (Unpublished data of J Fitzpatrick and J Lisman.)

Experimental work in a number of brain regions including hippocampus,
neocortex, and cerebellum, has revealed activity-dependent processes that
can produce changes in the efficacies of synapses that persist for vary-
ing amounts of time. Figure 8.1 shows an example in which the data
points indicate amplitudes of field potentials evoked in the CA1 region
of a slice of rat hippocampus by stimulation of the Schaffer collateral af-
ferents. In experiments such as this, field potential amplitudes (or more
often slopes) are used as a measure of synaptic strength. In Figure 8.1,
high-frequency stimulation induced synaptic potentiation (an increase inpotentiation
strength), and then long-lasting, low-frequency stimulation resulted in
synaptic depression (a decrease in strength) that partially removed thedepression
effects of the previous potentiation. This is in accord with a generalized
Hebb rule because high-frequency presynaptic stimulation evokes a post-
synaptic response, whereas low-frequency stimulation does not. Changes
in synaptic strength involve both transient and long-lasting effects, as seen
in figure 8.1. The longest-lasting forms appear to require protein synthe-
sis. Changes that persist for tens of minutes or longer are generally called
long-term potentiation (LTP) and long-term depression (LTD). InhibitoryLTP and LTD
synapses can also display plasticity, but this has been less thoroughly in-
vestigated both experimentally and theoretically, and we focus on the plas-

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.1 Introduction 3

ticity of excitatory synapses in this chapter.

A wealth of data is available on the underlying cellular basis of activity-
dependent synaptic plasticity. The postsynaptic concentration of calcium
ions appears to play a critical role in the induction of both long-term poten-
tiation and depression. However, we will not consider mechanistic mod-
els. Rather, we study synaptic plasticity at a functional level, attempting
to relate the impact of synaptic plasticity on neurons and networks to the
basic rules governing its induction.

Studies of plasticity and learning involve analyzing how synapses are af-
fected by activity over the course of a training period. In this and the
following chapters, we consider three types of training procedures. In un-
supervised (or sometimes self-supervised) learning, a network responds unsupervised

learningto a series of inputs during training solely on the basis of its intrinsic con-
nections and dynamics. The network then self-organizes in a manner that
depends on the synaptic plasticity rule being applied and on the nature
of inputs presented during training. We consider unsupervised learning
in a more general setting called density estimation in chapter 10. In su-
pervised learning, which we consider in the last section of this chapter, a supervised

learningdesired set of input-output relationships is imposed on the network by a
‘teacher’ during training. Networks that perform particular tasks can be
constructed in this way by letting a modification rule adjust the synapses
until the desired computation emerges as a consequence of the training
process. This is an alternative to explicitly specifying the synaptic weights,
as was done in chapter 7. In this case, finding a biological plausible teach-
ing mechanism may not be a concern, if the scientific question being ad-
dressed is whether any weights can be found that allow a network to im-
plement a particular function. In more biologically plausible examples of
supervised learning, one network can act as the teacher for another net-
work. In chapter 9, we discuss a third form of learning, reinforcement
learning, that is somewhat intermediate between these cases. In reinforce- reinforcement

learningment learning, the network output is not constrained by a teacher, but
evaluative feedback on network performance is provided in the form of
reward or punishment. This can be used to control the synaptic modifica-
tion process. We will see that the same synaptic plasticity rule can be used
for different types of learning procedures.

In this chapter we focus on activity-dependent synaptic plasticity of the
Hebbian type, meaning plasticity based on correlations of pre- and post-
synaptic firing. To ensure stability and to obtain interesting results, we
must often augment Hebbian plasticity with more global forms of synaptic
modification that, for example, scale the strengths of all the synapses onto
a given neuron. These can have a major impact on the outcome of develop-
ment or learning. Non-Hebbian forms of synaptic plasticity, such as those non-Hebbian

plasticitythat modify synaptic strengths solely on the basis of pre- or postsynaptic
firing, are likely to play important roles in homeostatic, developmental,
and learning processes. Activity can also modify the intrinsic excitabil-
ity and response properties of neurons. Models of such intrinsic plasticity

Draft: December 17, 2000 Theoretical Neuroscience

4 Plasticity and Learning

show that neurons can be remarkably robust to external perturbations if
they adjust their conductances to maintain specified functional character-
istics. Intrinsic and synaptic plasticity can interact in interesting ways. For
example, shifts in intrinsic excitability can compensate for changes in the
level of input to a neuron caused by synaptic plasticity. It is likely that all
of these forms of plasticity, and many others, are important elements of
both the stability and adaptability of nervous systems.

In this chapter, we describe and analyze basic correlation- and covariance-
based synaptic plasticity rules in the context of unsupervised learning, and
discuss their extension to supervised learning. One running example is the
development of ocular dominance in single cells in primary visual cortex
and the ocular dominance stripes they collectively form.

Stability and Competition

Increasing synaptic strength in response to activity is a positive feedback
process. The activity that modifies synapses is reinforced by Hebbian plas-
ticity, which leads to more activity and further modification. Without ap-
propriate adjustments of the synaptic plasticity rules or the imposition of
constraints, Hebbian modification tends to produce uncontrolled growth
of synaptic strengths.

The easiest way to control synaptic strengthening is to impose an upper
limit on the value that a synaptic weight (defined as in chapter 7) can take.
Such an upper limit is supported by LTP experiments. Further, it makes
sense to prevent weights from changing sign, because the plasticity pro-
cesses we are modeling cannot change an excitatory synapse into an in-
hibitory synapse or vice versa. We therefore impose the constraint, which
we call a saturation constraint, that all excitatory synaptic weights must liesynaptic saturation
between zero and a maximum value wmax, which is a constant. The sim-
plest implementation of saturation is to set any weight that would cross
a saturation bound due to application of a plasticity rule to the limiting
value.

Uncontrolled growth is not the only problem associated with Hebbian
plasticity. Synapses are modified independently under a Hebbian rule,
which can have deleterious consequences. For example, all of the synaptic
weights may be driven to their maximum allowed values wmax, causing
the postsynaptic neuron to lose selectivity to different patterns of input.
The development of input selectivity typically requires competition be-
tween different synapses, so that some are forced to weaken when otherssynaptic

competition become strong. We discuss a variety of synaptic plasticity rules that intro-
duce competition between synapses. In some cases, the same mechanism
that leads to competition also stabilizes growth of the synaptic weights. In
other cases, it does not, and saturation constraints must also be imposed.

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.2 Synaptic Plasticity Rules 5

8.2 Synaptic Plasticity Rules

Rules for synaptic modification take the form of differential equations de-
scribing the rate of change of synaptic weights as a function of the pre-
and postsynaptic activity and other possible factors. In this section, we
give examples of such rules. In later sections, we discuss their computa-
tional implications.

In the models of plasticity we study, the activity of each neuron is de-
scribed by a continuous variable, not by a spike train. As in chapter 7, we
use the letter u to denote the presynaptic level of activity and v to denote
the postsynaptic activity. Normally, u and v represent the firing rates of
the pre- and postsynaptic neurons, in which case they should be restricted
to non-negative values. Sometimes, to simplify the analysis, we ignore
this constraint. An activity variable that takes both positive and nega-
tive values can be interpreted as the difference between a firing rate and
a fixed background rate, or between the firing rates of two neurons being
treated as a single unit. Finally, to avoid extraneous conversion factors in
our equations, we take u and v to be dimensionless measures of the cor-
responding neuronal firing rates or activities. For example, u and v could
be the firing rates of the pre- and postsynaptic neurons divided by their
maximum or average values.

In the first part of this chapter, we consider unsupervised learning as ap-
plied to a single postsynaptic neuron driven by Nu presynaptic inputs with
activities represented by ub for b = 1,2, . . . , Nu, or collectively by the vec-
tor u. Because we study unsupervised learning, the postsynaptic activity
v is evoked directly by the presynaptic activity u, not by an external agent.
We use a linear version of the firing-rate model discussed in chapter 7,

τr
dv

dt
= −v + w · u = −v +

Nu∑
b=1

wbub (8.1)

where τr is a time constant that controls the firing rate response dynam-
ics. Recall that wb is the synaptic weight that describes the strength of
the synapse from presynaptic neuron b to the postsynaptic neuron, and w
is the vector formed by all Nu synaptic weights. The individual synaptic w weight vector
weights can be either positive, representing excitation, or negative, rep-
resenting inhibition. Equation 8.1 does not include any nonlinear depen-
dence of the firing rate on the total synaptic input, not even rectification.
Using such a linear firing-rate model considerably simplifies the analysis
of synaptic plasticity. The restriction to non-negative v will either be im-
posed by hand, or sometimes it will be ignored to simplify the analysis.

The processes of synaptic plasticity are typically much slower than the
dynamics characterized by equation 8.1. If, in addition, the stimuli are
presented slowly enough to allow the network to attain its steady-state
activity during training, we can replace the dynamic equation 8.1 by

v = w · u , (8.2)

Draft: December 17, 2000 Theoretical Neuroscience

6 Plasticity and Learning

which sets v instantaneously to the asymptotic, steady-state value deter-
mined by equation 8.1. This is the equation we primarily use in our anal-
ysis of synaptic plasticity in unsupervised learning. Synaptic modifica-
tion is included in the model by specifying how the vector w changes as a
function of the pre- and postsynaptic levels of activity. The complex time-
course of plasticity seen in figure 8.1 is simplified by modeling only the
longer-lasting changes.

The Basic Hebb Rule

The simplest plasticity rule that follows the spirit of Hebb’s conjecture
takes the form

τw

dw
dt

= vu , (8.3)

which implies that simultaneous pre- and postsynaptic firing increases
synaptic strength. We call this the basic Hebb rule. If the activity variablesbasic Hebb rule
represent firing rates, the right side of this equation can be interpreted as
a measure of the probability that the pre- and postsynaptic neurons both
fire spikes during a small time interval. Here, τw is a time constant that
controls the rate at which the weights change.

Synaptic plasticity is generally modeled as a slow process that gradually
modifies synaptic weights over a time period during which the compo-
nents of u take a variety of different values. Each set of u values is called
an input pattern. The direct way to compute the weight changes induced
by a series of input patterns is to sum the small changes caused by each
of them separately. A convenient alternative is to average over all of the
different input patterns and compute the weight changes induced by this
average. As long as the synaptic weights change slowly enough, the aver-
aging method provides a good approximation of the weight changes pro-
duced by the set of input patterns.

In this chapter, we use angle brackets 〈 〉 to denote averages over the en-
semble of input patterns presented during training (which is a slightly dif-
ferent usage from earlier chapters). The Hebb rule of equation 8.3, when
averaged over the inputs used during training, becomesaveraged Hebb rule

τw

dw
dt

= 〈vu〉 . (8.4)

In unsupervised learning, v is determined by equation 8.2, and, if we re-
place v by w · u, we can rewrite the averaged plasticity rule (equation 8.4)
ascorrelation-based

rule

τw

dw
dt

= Q · w or τw

dwb

dt
=

Nu∑
b′=1

Qbb′wb′ (8.5)

where Q is the input correlation matrix given byQ input correlation
matrix

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.2 Synaptic Plasticity Rules 7

Q = 〈uu〉 or Qbb′ = 〈ubub′ 〉 . (8.6)

Equation 8.5 is called a correlation-based plasticity rule because of the
presence of the input correlation matrix.

Whether or not the pre- and postsynaptic activity variables are restricted to
non-negative values, the basic Hebb rule is unstable. To show this, we con-
sider the square of the length of the weight vector, |w|2 = w · w = ∑

b w2
b.

Taking the dot product of equation 8.3 with w and noting that d|w|2/dt =
2w · dw/dt and that w · u = v, we find that τwd|w|2/dt = 2v2, which is al-
ways positive (except in the trivial case v = 0). Thus, the length of the
weight vector grows continuously when the rule 8.3 is applied. To avoid
unbounded growth, we must impose an upper saturation constraint. A
lower limit is also required if the activity variables are allowed to be nega-
tive. Even with saturation, the basic Hebb rule fails to induce competition
between different synapses.

Sometimes, we think of the presentation of patterns over discrete rather
than continuous time. In this case, the effect of equation 8.5, integrated
over a time T while ignoring the weight changes that occur during this
period, is approximated by making the replacement

w → w + T
τw

Q · w . (8.7)

The Covariance Rule

If, as in Hebb’s original conjecture, u and v are interpreted as represent-
ing firing rates (which must be positive), the basic Hebb rule only de-
scribes LTP. Experiments, such as the one shown in figure 8.1, indicate
that synapses can depress in strength if presynaptic activity is accompa-
nied by a low level of postsynaptic activity. High levels of postsynaptic
activity, on the other hand, produce potentiation. These results can be
modeled by a synaptic plasticity rule of the form

τw

dw
dt

= (v − θv)u (8.8)

where θv is a threshold that determines the level of postsynaptic activ- θv postsynaptic
thresholdity above which LTD switches to LTP. As an alternative to equation 8.8,

we can impose the threshold on the input rather than output activity and
write

τw

dw
dt

= v(u − θθθu) . (8.9)

Here θθθu is a vector of thresholds that determines the levels of presynaptic
activities above which LTD switches to LTP. It is also possible to combine θθθu presynaptic

thresholdthese two rules by subtracting thresholds from both the u and v terms, but

Draft: December 17, 2000 Theoretical Neuroscience

8 Plasticity and Learning

this has the undesirable feature of predicting LTP when pre- and postsy-
naptic activity levels are both low.

A convenient choice for the thresholds is the average value of the corre-
sponding variable over the training period. In other words, we set the
threshold in equation 8.8 to the average postsynaptic activity, θv = 〈v〉, or
the threshold vector in equation 8.9 to the average presynaptic activity vec-
tor, θθθu = 〈u〉. As we did for equation 8.5, we use the relation v = w · u and
average over training inputs to obtain an averaged form of the plasticity
rule. When the thresholds are set to their corresponding activity averages,
equations 8.8 and 8.9 both produce the same averaged rule,C input covariance

matrix
covariance rules τw

dw
dt

= C · w (8.10)

where C is the input covariance matrix,

C = 〈(u − 〈u〉)(u − 〈u〉)〉 = 〈uu〉 − 〈u〉〈u〉 = 〈(u − 〈u〉)u〉 . (8.11)

Because of the presence of the covariance matrix in equation 8.10, equa-
tions 8.8 and 8.9 are known as covariance rules.

Although they both average to give equation 8.10, the rules in equations
8.8 and 8.9 have their differences. Equation 8.8 only modifies synapses
with nonzero presynaptic activities. When v < θv, this produces an ef-
fect called homosynaptic depression. In contrast, equation 8.9 reduces thehomosynaptic and

heterosynaptic
depression

strengths of inactive synapses if v > 0. This is called heterosynaptic de-
pression. Note that the threshold in equation 8.8 must change as the
weights are modified to keep θv = 〈v〉, whereas the threshold in equa-
tion 8.9 is independent of the weights and does not need to change during
the training period to keep θθθu = 〈u〉.
Even though covariance rules include LTD, allowing weights to decrease,
they are unstable because of the same positive feedback that makes the
basic Hebb rule unstable. For either rule 8.8 with θv = 〈v〉 or rule 8.9 with
θθθu = 〈u〉, d|w|2/dt = 2v(v − 〈v〉). The time average of the right side of this
equation is proportional to the variance of the output, 〈v2〉 − 〈v〉2, which is
positive except in the trivial case when v is constant. The covariance rules,
like the Hebb rule, are non-competitive, but competition can be introduced
by allowing the thresholds to slide, as described below.

The BCM Rule

The covariance-based rule of equation 8.8 does not require any postsy-
naptic activity to produce LTD, and rule 8.9 can produce LTD without
presynaptic activity. Bienenstock, Cooper and Munro (1982), suggested an
alternative plasticity rule, for which there is experimental evidence, that
requires both pre- and postsynaptic activity to change a synaptic weight.
This rule, which is called the BCM rule, takes the formBCM rule

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.2 Synaptic Plasticity Rules 9

τw

dw
dt

= vu (v − θv) . (8.12)

As in equation 8.8, θv acts as a threshold on the postsynaptic activity that
determines whether synapses are strengthened or weakened.

If the threshold θv is held fixed, the BCM rule, like the basic Hebbian rule,
is unstable. Synaptic modification can be stabilized against unbounded
growth by allowing the threshold to vary. The critical condition for stabil-
ity is that θv must grow more rapidly than v if the output activity grows
large. In one instantiation of the BCM rule with a sliding threshold, θv sliding threshold
follows v2 according to the equation

τθ

dθv

dt
= v2 − θv (8.13)

where τθ sets the time scale for modification of the threshold. This is usu-
ally slower than the presentation of individual presynaptic patterns, but
faster than the rate at which the weights change, which is determined by
τw. With a sliding threshold, the BCM rule implements competition be-
tween synapses because strengthening some synapses increases the post-
synaptic firing rate, which raises the threshold and makes it more difficult
for other synapses to be strengthened or even to remain at their current
strengths.

Synaptic Normalization

The BCM rule stabilizes Hebbian plasticity by means of a sliding thresh-
old that reduces synaptic weights if the postsynaptic neuron becomes too
active. This amounts to using the postsynaptic activity as an indicator of
the strengths of synaptic weights. A more direct way to stabilize a Heb-
bian plasticity rule is to add terms that depend explicitly on the weights.
This typically leads to some form of weight normalization, the idea that
postsynaptic neurons can only support a fixed total synaptic weight, so
increases in some weights must be accompanied by decreases in others.

Normalization of synaptic weights involves imposing some sort of global
constraint. Two types of constraints are typically used. If the synaptic
weights are non-negative, their growth can be limited by holding the sum
of all the weights of the synapses onto a given postsynaptic neuron to a
constant value. An alternative, which also works for weights that can be
either positive or negative, is to constrain the sum of the squares of the
weights instead of their linear sum. In either case, the constraint can be
imposed either rigidly, requiring that it be satisfied at all times during a
training process, or dynamically, only requiring that it be satisfied asymp-
totically at the end of training. We discuss one example of each type; a
rigid scheme for imposing a constraint on the sum of synaptic weights and
a dynamic scheme for constraining the sum over their squares. Dynamic
constraints can be applied in the former case and rigid constraints in the

Draft: December 17, 2000 Theoretical Neuroscience

10 Plasticity and Learning

latter, but we restrict our discussion to two widely used schemes. We dis-
cuss synaptic normalization in connection with the basic Hebb rule, but
the results we present can be applied to covariance rules as well. Weight
normalization can drastically alter the outcome of a training procedure,
and different normalization methods may lead to different outcomes.

Subtractive Normalization

The sum over synaptic weights that is constrained by subtractive normal-
ization can be written as

∑
wb = n ·w where n is an Nu-dimensional vector

with all its components equal to one (as introduced in chapter 7). This sum
can be constrained by replacing equation 8.3 withHebb rule with

subtractive
normalization

τw

dw
dt

= vu − v(n · u)n
Nu

(8.14)

This rule imposes what is called subtractive normalization because the
same quantity is subtracted from the change to each weight whether that
weight is large or small. Subtractive normalization imposes the constraint
on the sum of weights rigidly because it does not allow the Hebbian term
to change n · w. To see this, we take the dot product of equation 8.14 with
n to obtain

τw

dn · w
dt

= vn · u
(

1 − n · n
Nu

)
= 0 . (8.15)

The last equality follows because n · n = Nu. Hebbian modification with
subtractive normalization is non-local in that it requires the value of the
sum of all weights, n · w to be available to the mechanism that modifies
any particular synapse. This scheme could conceivably be implemented
by some form of intracellular signaling system.

Subtractive normalization must be augmented by a saturation constraint
that prevents weights from becoming negative. If the rule 8.14 attempts
to drive any of the weights below zero, the saturation constraint prevents
this change. At this point, the rule is not applied to any saturated weights,
and its effect on the other weights is modified. Both modifications can be
achieved by setting the components of the vector n corresponding to any
saturated weights to zero and the factor of Nu in equation 8.14 equal to
the sum of the components of this modified n vector. Without any upper
saturation limit, this procedure often results in a final outcome in which
all weights but one have been set to zero. To avoid this, an upper satu-
ration limit is also typically imposed. Hebbian plasticity with subtractive
normalization is highly competitive because small weights are reduced by
a larger proportion of their sizes than large weights.

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.2 Synaptic Plasticity Rules 11

Multiplicative Normalization and the Oja Rule

A constraint on the sum of the squares of the synaptic weights can be im-
posed dynamically using a modification of the basic Hebb rule known as
the Oja rule (Oja, 1982), Oja rule

τw

dw
dt

= vu − αv2w (8.16)

where α is a positive constant. This rule only involves information that
is local to the synapse being modified, namely the pre- and postsynap-
tic activities and the local synaptic weight, but its form is based more on
theoretical arguments than on experimental data. The normalization it im-
poses is called multiplicative because the amount of modification induced
by the second term in equation 8.16 is proportional to w.

The stability of the Oja rule can be established by repeating the analysis of
changes in length of the weight vector presented above to find that

τw

d|w|2
dt

= 2v2(1 − α|w|2) . (8.17)

This indicates that |w|2 will relax over time to the value 1/α, which ob-
viously prevents the weights from growing without bound, proving sta-
bility. It also induces competition between the different weights because,
when one weight increases, the maintenance of a constant length for the
weight vector forces other weights to decrease.

Timing-Based Rules

Experiments have shown that the relative timing of pre- and postsynaptic
action potentials plays a critical role in determining the sign and ampli-
tude of the changes in synaptic efficacy produced by activity. Figure 8.2
shows examples from an intracellular recording of a pair of cortical pyra-
midal cells in a slice experiment, and from an in vivo experiment on retino-
tectal synapses in a Xenopus tadpole. Both experiments involve repeated
pairing of pre- and postsynaptic action potentials, and both show that the
relative timing of these spikes is critical in determining the amount and
type of synaptic modification that takes place. Synaptic plasticity only oc-
curs if the difference in the pre- and postsynaptic spike times falls within a
window of roughly ±50 ms. Within this window, the sign of the synaptic
modification depends on the order of stimulation. Presynaptic spikes that
precede postsynaptic action potentials produce LTP. Presynaptic spikes
that follow postsynaptic action potentials produce LTD. This is in accord
with Hebb’s original conjecture, because a synapse is strengthened only
when a presynaptic action potential precedes a postsynaptic action poten-
tial and can therefore be interpreted as contributing to it. When the order is
reversed and the presynaptic action potential could not have contributed

Draft: December 17, 2000 Theoretical Neuroscience

12 Plasticity and Learning

-50

(±100 ms)

0 25 50

100

110

120

130

140

90

80

70

ep
sp

 a
m

pl
itu

de
 (

%
 o

f c
on

tr
ol

)

BA

(+10 ms)

(-10 ms)

-100 50

90

60

30

0

-60

-30

pe
rc

en
t p

ot
en

tia
tio

n

1000

time (min) tpost - tpre (ms)

Figure 8.2: LTP and LTD produced by paired action potentials with various tim-
ings. A) The amplitude of excitatory postsynaptic potentials evoked by stimulation
of the presynaptic neuron plotted as a percentage of the amplitude prior to paired
stimulation. At the time indicated by the arrow, 50 to 75 paired stimulations of the
presynaptic and postsynaptic neurons were performed. For the traces marked by
open symbols, the presynaptic spike occurred either 10 or 100 ms before the postsy-
naptic neuron fired an action potential. The traces marked by solid symbols denote
the reverse ordering in which the presynaptic spike occurred either 10 or 100 ms
after the postsynaptic spike. Separations of 100 ms had no long-lasting effect. In
contrast, the 10 ms delays produced effects that built up to a maximum over a 10
to 20 minute period and lasted for the duration of the experiment. Pairing a presy-
naptic action potential with a postsynaptic action potential 10 ms later produced
LTP, while the reverse ordering generated LTD. B) LTP and LTD of retinotectal
synapses recorded in vivo in Xenopus tadpoles. The percent change in synaptic
strength produced by multiple pairs of action potentials is plotted as a function of
their time difference. The filled symbols correspond to extracellular stimulation
of the postsynaptic neuron and the open symbols to intracellular stimulation. The
H function in equation 8.18 is proportional to the solid curve. (A adapted from
Markram et al., 1997; B adapted from Zhang et al., 1998.)

to the postsynaptic response, the synapse is weakened. The maximum
amount of synaptic modification occurs when the paired spikes are sepa-
rated by only a few ms, and the evoked plasticity decreases to zero as this
separation increases.

Simulating the spike-timing dependence of synaptic plasticity requires a
spiking model. However, an approximate model can be constructed on the
basis of firing rates. The effect of pre- and postsynaptic timing can be in-
cluded in a synaptic modification rule by including a temporal difference
τ between the times when the firing rates of the pre- and postsynaptic neu-
rons are evaluated. A function H(τ) determines the rate of synaptic mod-
ification that occurs due to postsynaptic activity separated in time from
presynaptic activity by an interval τ. The total rate of synaptic modifica-
tion is determined by integrating over all time differences τ. If we assume
that the rate of synaptic modification is proportional to the product of the

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.3 Unsupervised Learning 13

pre- and postsynaptic rates, as it is for a Hebbian rule, the rate of change
of the synaptic weights at time t is given by timing-based rule

τw

dw
dt

=
∫ ∞

0
dτ (H(τ)v(t)u(t − τ) + H(−τ)v(t − τ)u(t)) . (8.18)

If H(τ) is positive for positive τ and negative for negative τ, the first term
on the right side of this equation represents LTP and the second LTD. The
solid curve in figure 8.2B is an example of such an H function. The tem-
poral asymmetry of H has a dramatic effect on synaptic weight changes
because it causes them to depend on the temporal order of the activity
during training. Among other things, this allows synaptic weights to store
information about temporal sequences.

Rules in which synaptic plasticity is based on the relative timing of pre-
and postsynaptic action potentials still require saturation constraints for
stability, but they can generate competition between synapses without fur-
ther constraints or modifications, at least in nonlinear, spike-based mod-
els. This is because different synapses compete for control of the timing of
postsynaptic spikes. Synapses that are able to evoke postsynaptic spikes
rapidly get strengthened. These synapses then exert a more powerful in-
fluence on the timing of postsynaptic spikes, and they tend to generate
spikes at times that lead to the weakening of other synapses less capable
of controlling spike timing.

8.3 Unsupervised Learning

We now consider the computational properties of the different synaptic
modification rules we have introduced, in the context of unsupervised
learning. Unsupervised learning provides a model for the effects of ac-
tivity on developing neural circuits and the effects of experience on ma-
ture networks. We separate the discussion of unsupervised learning into
cases involving a single postsynaptic neuron and cases in which there are
multiple postsynaptic neurons.

Single Postsynaptic Neuron

Equation 8.5, which shows the consequence of averaging the basic Hebb
rule over all the presynaptic training patterns, is a linear equation for w.
Provided that we ignore any constraints on w, it can be analyzed using
standard techniques for solving differential equations (see chapter 7 and
the Mathematical Appendix). In particular, we use the method of matrix
diagonalization, which involves expressing w in terms of the eigenvectors
of Q. These are denoted by eµ with µ = 1,2, · · · , Nu, and they satisfy
Q · eµ = λµeµ. For correlation or covariance matrices, all the eigenvalues,

Draft: December 17, 2000 Theoretical Neuroscience

14 Plasticity and Learning

λµ for all µ, are real and non-negative, and, for convenience, we order
them so that λ1 ≥ λ2 ≥ . . . ≥ λNu .

Any Nu-dimensional vector can be represented using the eigenvectors as
a basis, so we can write

w(t) =
Nu∑

µ=1

cµ(t)eµ (8.19)

where the coefficients are equal to the dot products of the eigenvectors
with w. For example, at time zero cµ(0) = w(0) · eµ. Writing w as a sum
of eigenvectors turns matrix multiplication into ordinary multiplication,
making calculations easier. Substituting the expansion 8.19 into 8.5 and
following the procedure presented in chapter 7 for isolating uncoupled
equations for the coefficients, we find that cµ(t) = cµ(0)exp(λµt/τw). Go-
ing back to equation 8.19, this means that

w(t) =
Nu∑

µ=1

exp
(

λµt
τw

)(
w(0) · eµ

)
eµ . (8.20)

The exponential factors in 8.20 all grow over time, because the eigenval-
ues λµ are positive for all µ values. For large t, the term with the largest
value of λµ (assuming it is unique) becomes much larger than any of the
other terms and dominates the sum for w. This largest eigenvalue has the
label µ = 1, and its corresponding eigenvector e1 is called the principal
eigenvector. Thus, for large t, w ∝ e1 to a good approximation, providedprincipal

eigenvector that w(0) · e1 �= 0. After training, the response to an arbitrary input vector
u is well-approximated by

v ∝ e1 · u . (8.21)

Because the dot product corresponds to a projection of one vector onto an-
other, Hebbian plasticity can be interpreted as producing an output pro-
portional to the projection of the input vector onto the principal eigenvec-
tor of the correlation matrix of the inputs used during training. We discuss
the significance of this result in the next section.

The proportionality sign in equation 8.21 hides the large factor exp(λ1t/τw),
which is a result of the positive feedback inherent in Hebbian plasticity.
One way to limit growth of the weight vector in equation 8.5 is to im-
pose a saturation constraint. This can have significant effects on the out-
come of Hebbian modification, including, in some cases, preventing the
weight vector from ending up proportional to the principal eigenvector.
Figure 8.3 shows examples of the Hebbian development of the weights
in a case with just two inputs. For the correlation matrix used in this ex-
ample, the principal eigenvector is e1 = (1,−1)/

√
2, so an analysis that

ignored saturation would predict that one weight would increase while
the other decreases. Which weight moves in which direction is controlled
by the initial conditions. Given the constraints, this would suggest that

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.3 Unsupervised Learning 15

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

1

w1/wmax

w
2/

w
m

ax

0.8

Figure 8.3: Hebbian weight dynamics with saturation. The correlation matrix of
the input vectors had diagonal elements equal to 1 and off-diagonal elements of
-0.4. The principal eigenvector, e1 = (1,−1)/

√
2, dominates the dynamics if the

initial values of the weights are small enough (below and the the left of the dashed
lines). This makes the weight vector move to the corners (wmax,0) or (0,wmax).
However, starting the weights with larger values (between the dashed lines) allows
saturation to occur at the corner (wmax,wmax). (Adapted from MacKay and Miller,
1990.)

(wmax,0) and (0,wmax) are the most likely final configurations. This anal-
ysis only gives the correct answer for the regions in figure 8.3 below or
to the left of the dashed lines. Between the dashed lines, the final state is
w = (wmax,wmax) because the weights hit the saturation boundary before
the exponential growth is large enough to allow the principal eigenvector
to dominate.

Another way to eliminate the large exponential factor in the weights is to
use the Oja rule, 8.16, instead of the basic Hebb rule. The weight vector
generated by the Oja rule, in the example we have discussed, approaches
w = e1/(α)1/2 as t → ∞. In other words, the Oja rule gives a weight vector
that is parallel to the principal eigenvector, but normalized to a length of
1/(α)1/2 rather than growing without bound.

Finally, we examine the effect of including a subtractive constraint, as in
equation 8.14. Averaging equation 8.14 over the training inputs, we find averaged Hebb rule

with subtractive
constraintτw

dw
dt

= Q · w − (w · Q · n)n
Nu

. (8.22)

If we once again express w as a sum of eigenvectors of Q, we find that
the growth of each coefficient in this sum is unaffected by the extra term
in equation 8.22 provided that eµ · n = 0. However, if eµ · n �= 0, the extra
term modifies the growth. In our discussion of ocular dominance, we con-
sider a case in which the principal eigenvector of the correlation matrix is

Draft: December 17, 2000 Theoretical Neuroscience

16 Plasticity and Learning

proportional to n. In this case, Q · e1 − (e1 · Q · n)n/N = 0 so the projection
in the direction of the principal eigenvector is unaffected by the synaptic
plasticity rule. Further, eµ · n = 0 for µ ≥ 2 because the eigenvectors of the
correlation matrix are mutually orthogonal, which implies that the evolu-
tion of the remaining eigenvectors is unaffected by the constraint. As a
result,

w(t) = (w(0) · e1)e1 +
Nu∑

µ=2

exp
(

λµt
τw

)(
w(0) · eµ

)
eµ . (8.23)

Thus, ignoring the effects of any saturation constraints, the synaptic
weight matrix tends to become parallel to the eigenvector with the second
largest eigenvalue as t → ∞.

In summary, if weight growth is limited by some form of multiplicative
normalization, as in the Oja rule, the configuration of synaptic weights
produced by Hebbian modification will typically be proportional to the
principal eigenvector of the input correlation matrix. When subtractive
normalization is used and the principal eigenvector is proportional to n,
the eigenvector with the next largest eigenvalue provides an estimate of
the configuration of final weights, again up to a proportionality factor. If,
however, saturation constraints are used, as they must be in a subtractive
scheme, this can invalidate the results of a simplified analysis based solely
on these eigenvectors (as in figure 8.3). Nevertheless, we base our analysis
of the Hebbian development of ocular dominance, and cortical maps in
a later section on an analysis of the eigenvectors of the input correlation
matrix. We present simulation results to verify that this analysis is not
invalidated by the constraints imposed in the full models.

Principal Component Projection

If applied for a long enough time, both the basic Hebb rule (equation 8.3)
and the Oja rule (equation 8.16) generate weight vectors that are parallel to
the principal eigenvector of the correlation matrix of the inputs used dur-
ing training. Figure 8.4A provides a geometric picture of the significance
of this result. In this example, the basic Hebb rule was applied to a unit
described by equation 8.2 with two inputs (Nu = 2). The constraint of pos-
itive u and v has been dropped to simplify the discussion. The inputs used
during the training period were chosen from a two-dimensional Gaussian
distribution with unequal variances, resulting in the elliptical distribution
of points seen in the figure. The initial weight vector w(0) was chosen ran-
domly. The two-dimensional weight vector produced by a Hebbian rule is
proportional to the principal eigenvector of the input correlation matrix.
The line in figure 8.4A indicates the direction along which the final w lies,
with the u1 and u2 axes used to represent w1 and w2 as well. The weight
vector points in the direction along which the cloud of input points has the
largest variance, a result with interesting implications.

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.3 Unsupervised Learning 17

2

-2

2

-2

A

u1,w1

u2,w2
B C

0 1 2 3 4
0

1

2

3

4

0 1 2 3 40

1

2

3

4

u1,w1 u1,w1

u 2
,w

2

u 2
,w

2

Figure 8.4: Unsupervised Hebbian learning and principal component analysis.
The axes in these figures are used to represent the components of both u and w. A)
The filled circles show the inputs u = (u1, u2) used during a training period while a
Hebbian plasticity rule was applied. After training, the vector of synaptic weights
was aligned parallel to the solid line. B) Correlation-based modification with non-
zero mean input. Input vectors were generated as in A except that the distribution
was shifted to produce an average value 〈u〉 = (2,2). After a training period dur-
ing which a Hebbian plasticity rule was applied, the synaptic weight vector was
aligned parallel to the solid line. C) Covariance-based modification. Points from
the same distribution as in B were used while a covariance-based Hebbian rule
was applied. The weight vector becomes aligned with the solid line.

Any unit that obeys equation 8.2 characterizes the state of its Nu inputs by
a single number v, which is proportional to the projection of u onto the
weight vector w. Intuition suggests, and a technique known as principal
component analysis (PCA) formalizes, that this projection is often the op- PCA principal

component analysistimal choice if a set of vectors is to be represented by, and reconstructed
from, a set of single numbers. An information theoretic interpretation of
this projection direction is also possible. The entropy of a Gaussian dis-
tributed random variable with variance σ2 grows with increasing variance
as log2 σ. If the input statistics and output noise are Gaussian, maximizing
the variance of v by a Hebbian rule thus maximizes the amount of infor-
mation v carries about u. In chapter 10, we further consider the compu-
tational significance of finding the direction of maximum variance in the
input data set, and we discuss the relationship between this and general
techniques for extracting structure from input statistics.

Figure 8.4B shows the consequence of applying correlational Hebbian
plasticity when the average activities of the inputs are not zero, as is in-
evitable if real firing rates are employed. In this example, correlation-
based Hebbian modification aligns the weight vector parallel to a line
from the origin to the point 〈u〉. This clearly fails to capture the essence
of the distribution of inputs. Figure 8.4C shows the result of applying a
covariance-based Hebbian modification instead. Now the weight vector is
aligned with the cloud of data points because this rule finds the direction
of the principal eigenvector of the covariance matrix C of equation 8.11
rather the correlation matrix Q.

Draft: December 17, 2000 Theoretical Neuroscience

18 Plasticity and Learning

Hebbian Development of Ocular Dominance

The input to neurons in the adult primary visual cortex of many mam-
malian species tends to favor one eye over the other, a phenomenon
known as ocular dominance. This is especially true for neurons in layerocular dominance
4, which receives extensive innervation from the LGN. Neurons domi-
nated by one eye or the other occupy different patches of cortex, and ar-
eas with left- or right-eye ocular dominance alternate across the cortex in
fairly regular bands, forming a cortical map. The patterns of connectionscortical map
that give rise to neuronal selectivities and cortical maps are established
during development by both activity-independent and activity-dependent
processes. A conventional view is that activity-independent mechanisms
control the initial targeting of axons, determine the appropriate layer for
them to innervate, and establish a coarse topographic order in their pro-
jections. Other activity-independent and activity-dependent mechanisms
then refine this order and help to create and preserve neuronal selectivi-
ties and cortical maps. Although the relative roles of activity-independent
and activity-dependent processes in cortical development are the subject
of extensive debate, developmental models based on activity-dependent
plasticity rules have played an important role in suggesting key experi-
ments and successfully predicting their outcomes. A detailed analysis of
the more complex pattern-forming models that have been proposed is be-
yond the scope of this book. Instead, in this and later sections, we give
a brief overview of the different approaches and results that have been
obtained.

As an example of a developmental model of ocular dominance at the sin-
gle neuron level, we consider the highly simplified case of a layer 4 cell
that receives input from just two LGN afferents. One afferent is associ-
ated with the right eye and has activity uR, and the other is from the left
eye with activity uL. Two synaptic weights w = (wR,wL) describe the
strengths of these projections, and the output activity v is determined by
equation 8.2,

v = wRuR + wLuL . (8.24)

The weights in this model are constrained to non-negative values. Initially,
the weights for the right- and left-eye inputs are set to approximately equal
values. Ocular dominance arises when one of the weights is pushed to
zero while the other remains positive.

We can estimate the results of a Hebbian developmental process by con-
sidering the input correlation matrix. We assume that the two eyes are
equivalent, so the correlation matrix of the right- and left-eye inputs takes
the form

Q = 〈uu〉 =
(〈uRuR〉 〈uRuL〉

〈uLuR〉 〈uLuL〉
)

=
(

qS qD
qD qS

)
. (8.25)

The subscripts S and D denote same- and different-eye correlations. The

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.3 Unsupervised Learning 19

eigenvectors are e1 = (1,1)/
√

2 and e2 = (1,−1)/
√

2 for this correlation
matrix, and their eigenvalues are λ1 = qS + qD and λ2 = qS − qD.

If the right- and left-eye weights evolve according to equation 8.5, it is
straightforward to show that the eigenvector combinations w+ = wR + wL
and w− = wR − wL obey the uncoupled equations

τw

dw+
dt

= (qS + qD)w+ and τw

dw−
dt

= (qS − qD)w− . (8.26)

Positive correlations between the two eyes are likely to exist (qD > 0) af-
ter eye opening has occurred. This means that qS + qD > qS − qD, so, ac-
cording to equations 8.26, w+ grows more rapidly than w−. Equivalently,
e1 = (1,1)/

√
2 is the principal eigenvector. The basic Hebbian rule thus

predicts a final weight vector proportional to e1, which implies equal in-
nervation from both eyes. This is not the observed outcome.

Figure 8.3 suggests that, for some initial weight configurations, satura-
tion could ensure that the final configuration of weights is (wmax,0) or
(0,wmax), reflecting ocular dominance, rather than (wmax,wmax) as the
eigenvector analysis would suggest. However, this result would require
the initial weights to be substantially unequal. To obtain a more ro-
bust prediction of ocular dominance, we can use the Hebbian rule with
subtractive normalization, equation 8.14. This completely eliminates the
growth of the weight vector in the direction of e1 (i.e. the increase of
w+) because, in this case, e1 is proportional to n. On the other hand,
it has no effect on growth in the direction e2 (i.e. the growth of w−) be-
cause e2 · n = 0. Thus, with subtractive normalization, the weight vector
grows parallel (or anti-parallel) to the direction e2 = (1,−1)/

√
2. The di-

rection of this growth depends on initial conditions through the value of
w(0) · e2 = (wR(0) − wL(0))/

√
2. If this is positive, wR will increase and

wL will decrease, and if it is negative wL will increase and wR will de-
crease. Eventually, the decreasing weight will hit the saturation limit of
zero, and the other weight will stop increasing due to the normalization
constraint. At this point, total dominance by one eye or the other has been
achieved. This simple model shows that ocular dominance can arise from
Hebbian plasticity if there is sufficient competition between the growth of
the left- and right-eye weights.

Hebbian Development of Orientation Selectivity

Hebbian models can also account for the development of the orientation
selectivity displayed by neurons in primary visual cortex. The model of
Hubel and Wiesel for generating an orientation-selective simple cell re-
sponse by summing linear arrays of alternating ON and OFF LGN inputs
was presented in chapter 2. The necessary pattern of LGN inputs can arise
from Hebbian plasticity on the basis of correlations between the responses
of different LGN cells and competition between ON and OFF units. Such

Draft: December 17, 2000 Theoretical Neuroscience

20 Plasticity and Learning

Figure 8.5: Different cortical receptive fields arising from a correlation-based de-
velopmental model. White and black regions correspond to areas in the visual field
where ON-center cells (white regions) or OFF-center (black regions) LGN cells ex-
cite the cortical neuron being modeled. (Adapted from Miller, 1994.)

a model can be constructed by considering a simple cell receiving input
from ON-center and OFF-center cells of the LGN and applying Hebbian
plasticity, subject to appropriate constraints, to the feedforward weights of
the model.

As in the case of ocular dominance, the development of orientation selec-
tivity can be analyzed on the basis of properties of the correlation matrix
driving Hebbian development. However, constraints must be taken into
account and, in this case, the nonlinearities introduced by the constraints
play a significant role. For this reason, we do not analyze this model math-
ematically, but simply present simulation results.

Neurons in primary visual cortex only receive afferents from LGN cells
centered over a finite region of the visual space. This anatomical con-
straint can be included in developmental models by introducing what is
called an arbor function. The arbor function, which is often taken to bearbor function
Gaussian, characterizes the density of innervation from different visual lo-
cations to the cell being modeled. As a simplification, this density is not al-
tered during the Hebbian developmental process, but that the strengths of
synapses within the arbor are modified by the Hebbian rule. The outcome
is oriented receptive fields of a limited spatial extent. Figure 8.5 shows the
weights resulting from a simulation of receptive-field development using
a large array of ON- and OFF-center LGN afferents. This illustrates a vari-
ety of oriented receptive field structures that can arise through a Hebbian
developmental rule.

Temporal Hebbian Rules and Trace Learning

Temporal Hebbian rules exhibit a phenomenon called trace learning, be-trace learning
cause the changes to a synapse depend on a history or trace of the past
activity across the synapse. Integrating equation 8.18 from t = 0 to a large
final time t = T, assuming that w = 0 initially, and shifting the integration

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.3 Unsupervised Learning 21

variable, we can approximate the final result of this temporal plasticity
rule as

w = 1
τw

∫ T

0
dt v(t)

∫ ∞

−∞
dτ H(τ)u(t − τ) . (8.27)

The approximation comes from ignoring both small contributions asso-
ciated with the end points of the integral and the change in v produced
during training by the modification of w. Equation 8.27 shows that tem-
porally dependent Hebbian plasticity depends on the correlation between
the postsynaptic activity and the presynaptic activity temporally filtered
by the function H.

Equation 8.27 (with a suitably chosen H) can be used to model the de-
velopment of invariant responses. Neurons in infero-temporal cortex, for
example, can respond selectively to particular objects independent of their
location within a wide receptive field. The idea underlying the application
of equation 8.27 is that objects persist in the visual environment for char-
acteristic lengths of time, while moving across the retina. If the plastic-
ity rule in equation 8.27 filters presynaptic activity over this characteristic
time scale, it tends to strengthen the synapses from the presynaptic units
that are active for all the positions adopted by the object while it persists.
As a result, the response of the postsynaptic cell comes to be independent
of the position of the object, and position-invariant responses are gener-
ated.

Multiple Postsynaptic Neurons

To study the effect of plasticity on multiple neurons, we introduce the
network of figure 8.6 in which Nv output neurons receive input from Nu

feedforward connections and from recurrent interconnections. A vector v
represents the activities of the multiple output units, and the feedforward
synaptic connections are described by a matrix W with the element Wab W feedforward

weight matrixgiving the strength and sign of the synapse from input unit b to output
unit a.

It is important that different output neurons in a multi-unit network be
selective for different aspects of the input, or else their responses will be
completely redundant. For the case of a single cell, competition between
different synapses could be used to ensure that synapse-specific plasticity
rules did not make the same modifications to all of the synapses onto a
postsynaptic neuron. For multiple output networks, fixed or plastic linear
or nonlinear recurrent interactions can be used to ensure that the units do
not all develop the same selectivity.

Draft: December 17, 2000 Theoretical Neuroscience

22 Plasticity and Learning

output v

input u

W

M

u1 u2 u3 uNu

Figure 8.6: A network with multiple output units driven by feedforward synapses
with weights W, and interconnected by recurrent synapses with weights M.

Fixed Linear Recurrent Connections

We first consider the case of linear recurrent connections from output cell a′
to output cell a described by element Maa′ of the matrix M. As in chapter 7,M recurrent

weight matrix the output activity is determined by

τr
dv
dt

= −v + W · u + M · v . (8.28)

The steady-state output activity vector is then

v = W · u + M · v . (8.29)

Provided that the real parts of the eigenvalues of M are less than 1, equa-
tion 8.29 can be solved by defining the matrix inverse K=(I − M)−1, whereK effective

recurrent
interactions

I is the identity matrix, yielding

v = K · W · u . (8.30)

With fixed recurrent weights M and plastic feedforward weights W, the
effect of averaging Hebbian modifications over the training inputs is

τw

dW
dt

= 〈vu〉 = K · W · Q (8.31)

where Q = 〈uu〉 is the input autocorrelation matrix. Equation 8.31 has the
same form as the single unit equation 8.5, except that both K and Q affect
the growth of W.

We illustrate the effect of fixed recurrent interactions using a model of the
Hebbian development of ocular dominance. In the single-cell version of
this model considered in a previous section, the ultimate ocular preference
of the output cell depends on the initial conditions of its synaptic weights.
A multiple-output version of the model without any recurrent connections
would therefore generate a random pattern of selectivities across the cor-
tex if it started with random weights. Figure 8.7B shows that ocular domi-
nance is actually organized in a highly structured cortical map. Such struc-
ture can arise in the context of Hebbian development of the feedforward
weights if we include a fixed intracortical connection matrix M.

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.3 Unsupervised Learning 23

A

uL uR

B

Figure 8.7: The development of ocular dominance in a Hebbian model. A) The
simplified model in which right- and left- eye inputs from a single retinal location
drive an array of cortical neurons. B) Ocular dominance maps. The upper panel
shows an area of cat primary visual cortex radioactively labeled to distinguish re-
gions activated by one eye or the other. The light and dark areas along the cortical
regions at the top and bottom indicate alternating right- and left-eye innervation.
The central region is white matter where fibers are not segregated by ocular domi-
nance. The lower panel shows the pattern of innervation for a 512 unit model after
Hebbian development. White and black regions denote units dominated by right-
and left-eye projections respectively. (B data of S LeVay adapted from Nicholls et
al. 1992.)

We consider a highly simplified model of the development of ocular domi-
nance maps including only a single direction across the cortex and a single
point in the visual field. Figure 8.7A shows the simplified model, which
has only two input activities, uR and uL, with the correlation matrix of
equation 8.25, connected to multiple output units through weight vectors
wR and wL. The output units are connected to each other through weights
M, so v = wRuR + wLuL + M · v. The index a denoting the identity of a
given output unit also represents its cortical location. This linking of a to
locations and distances across the cortical surface allows us to interpret the
results of the model in terms of a cortical map.

Writing w+ = wR +wL and w− = wR −wL, the equivalent of equation 8.26
is

τw

dw+
dt

= (qS + qD)K · w+ τw

dw−
dt

= (qS − qD)K · w− (8.32)

As in the single-cell case we discussed, subtractive normalization, which
holds the value of w+ fixed while leaving the growth of w− unaffected,
eliminates the tendency for the cortical cells to become binocular. In this
case, only the equation for w− is relevant, and its growth is dominated by
the principal eigenvector of K. The components of w− determine whether
a particular region of the cortex is dominated by the right eye (if they are
positive) or the left eye (if they are negative). Oscillations in sign of the
components of this principal eigenvector translate into oscillations in ocu-
lar preference across the cortex, also known as ocular dominance stripes.

We assume that the connections between the output neurons are trans-

Draft: December 17, 2000 Theoretical Neuroscience

24 Plasticity and Learning

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-1

-0.5

0

0.5

1

0 20 40 60
0

0.2

0.4

0.6

cortical distance (mm) k (1/mm)

K, e K
~

A B

Figure 8.8: Hypothesized K function. A) The solid line is K given by the differ-
ence of two Gaussian functions. We have plotted this as a function of the distance
between the cortical locations corresponding to the indices a and a′. The dotted
line is the principal eigenvector plotted on the same scale. B) The Fourier trans-
form K̃ of K. This is also given by the difference of two Gaussians. As in A, we
use cortical distance units and plot K̃ in terms of the the spatial frequency k rather
than the integer index µ.

lation invariant, so that Kaa′ = K(|a − a′|) only depends on the separation
between the cortical cells a and a′. We also use a convenient trick to remove
edge effects, which is to impose periodic boundary conditions, requiring
the activities of the units with a = 0 and a = Nv to be identical. This means
that all the input and output units have equivalent neighbors, a reasonable
model of a patch of the cortex away from regional boundaries. Actually,
edge effects can impose important constraints on the overall structure of
maps such as that of ocular dominance stripes, but we do not analyze this
here. In the case of periodic boundary conditions, the eigenvectors of K
have the form

eµ
a = cos

(
2πµa

Nv

− φ

)
(8.33)

for µ = 0,1,2, . . . , Nv/2. The eigenvalues are given by the discrete Fourier
transform K̃(µ) of K(|a − a′|) (see the Mathematical Appendix). The phase
φ is arbitrary. The principal eigenvector is the eigenfunction from equa-
tion 8.33 with its µ value chosen to maximize the Fourier transform K̃(µ),
which is real and non-negative in the case we consider. The functions K
and K̃ in figure 8.8 are each the difference of two Gaussian functions. K̃
has been plotted as a function of the spatial frequency k = 2πµ/(Nvd),
where d is the cortical distance between location a and a + 1. The value of
µ to be used in equation 8.33, corresponding to the principal eigenvector,
is determined by the k value of the maximum of the curve in figure 8.8B.

The oscillations in sign of the principal eigenvector, which is indicated by
the dotted line in figure 8.8A, generate an alternating pattern of left- and
right-eye innervation resembling the ocular dominance maps seen in pri-
mary visual cortex (upper panel figure 8.7B). The lower panel of figure

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.3 Unsupervised Learning 25

8.7B shows the result of a simulation of Hebbian development of an ocu-
lar dominance map for a one-dimensional line across cortex consisting of
512 units. In this simulation, constraints that limit the growth of synaptic
weights have been included, but these do not dramatically alter the con-
clusions of our analysis.

Competitive Hebbian Learning

Linear recurrent connections can only produce a limited amount of differ-
entiation among network neurons, because they only induce fairly weak
competition between output units. As detailed in chapter 7, recurrent
connections can lead to much stronger competition if the interactions are
nonlinear. nonlinear

competition
One form of nonlinear competition represents the effect of cortical process-
ing in two somewhat abstract stages. One stage, modeling the effects of
long-range inhibition, involves competition among all the cortical cells for
feedforward input in a scheme related to that used in chapter 2 for contrast
saturation. The second stage, modeling shorter range excitation, involves
cooperation in which neurons that receive feedforward input excite their
neighbors.

In the first stage, the feedforward input for unit a, and that for all the other
units, is fed through a nonlinear function to generate a competitive mea-
sure of the local excitation generated at location a,

za =
(∑

b Wabub
)δ

∑
a′

(∑
b Wa′bub

)δ
. (8.34)

The activities and weights are all assumed to be positive. The parameter
δ controls the degree of competition among units. For large δ, only the
largest feedforward input survives. The case of δ = 1 is closely related to
the linear recurrent connections of the previous section.

In the cooperative stage, the local excitation of equation 8.34 is distributed
across the cortex by the recurrent connections, so that the final level of
activity in unit a is

va =
∑

a′
Maa′ za′ . (8.35)

This ensures that the localized excitation characterized by za is spread
across a local neighborhood of the cortex, rather than being concentrated
entirely at location a. In this scheme, the recurrent connections are usually
purely excitatory and fairly short-range, because the effect of longer range
inhibition has been modeled by the competition.

Using the outputs of equation 8.35 in conjunction with a Hebbian rule for
the feedforward weights is called competitive Hebbian learning. The com- competitive

Hebbian learning
Draft: December 17, 2000 Theoretical Neuroscience

26 Plasticity and Learning

left input b right input b input b L R

ou
tp

ut
 a

ou
tp

ut
 a

ou
tp

ut
 a

A B C
WL WR WR �WL

Figure 8.9: Ocular dominance patterns from a competitive Hebbian model. A)
Final stable weights Wab plotted as a function of a and b, showing the relative
strengths and topography of the connections from left- and right-eye inputs. White
represents a large positive value. B) The difference in the connections between
right- and left- inputs. C) Difference in the connections summed across all the in-
puts b to each cortical cell a showing the net ocularity for each cell. The model used
here has 100 input units for each eye and for the output layer, and a coarse initial
topography was assumed. Circular (toroidal) boundary conditions were imposed
to avoid edge effects. The input activity patterns during training represented sin-
gle Gaussian illuminations in both eyes centered on a randomly chosen input unit
b, with a larger magnitude for one eye (chosen randomly) than for the other. The
recurrent weights M took the form of a Gaussian.

petition between neurons implemented by this scheme does not ensure
competition among the synapses onto a given neuron, so some mechanism
such as a normalization constraint is still required. Most importantly, the
outcome of training cannot be analyzed simply by considering eigenvec-
tors of the covariance or correlation matrix because the activation process
is nonlinear. Rather, higher-order statistics of the input distribution are
important. Nonlinear competition can lead to differentiation of the output
units and the removal of redundancy beyond the second order.

An example of the use of competitive Hebbian learning is shown in fig-
ure 8.9, in the form of a one-dimensional cortical map of ocular domi-
nance with inputs arising from LGN neurons with receptive fields cover-
ing an extended region of the visual field (rather than the single location
of our simpler model). This example uses competitive Hebbian plastic-
ity with non-dynamic multiplicative weight normalization. Two weight
matrices, WR and WL, corresponding to right- and left-eye inputs, char-
acterize the connectivity of the model. These are shown separately in fig-
ure 8.9A, which illustrates that the cortical cells develop retinotopically
ordered receptive fields and segregate into alternating patches dominated
by one eye or the other. The ocular dominance pattern is easier to see
in figure 8.9B, which shows the difference between the right- and left-eye
weights, WR − WL, and 8.9C which shows the net ocularity of the total
input to each output neuron of the model (

∑
b[WR − WL]ab, for each a). It

is possible to analyze the structure shown in figure 8.9 and reveal the pre-
cise effect of the competition (i.e. the effect of changing the competition

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.3 Unsupervised Learning 27

parameter δ in equation 8.34). Such an analysis shows, for example, that
subtractive normalization of the synaptic weight is not necessary to ensure
the robust development of ocular dominance as it is in the non-competitive
case.

Feature-Based Models

Models of cortical map formation can get extremely complex when mul-
tiple neuronal selectivities such as retinotopic location, ocular dominance
and orientation preference are considered simultaneously. To deal with
this, a class of more abstract models, called competitive feature-based
models, has been developed. These use a general approach similar to feature-based

modelsthe competitive Hebbian models discussed in the previous section. These
models are further from the biophysical reality of neuronal firing rates and
synaptic strengths, but they provide a compact description of map devel-
opment.

Feature-based models characterize neurons and their inputs by their se-
lectivities rather than by their synaptic weights. The idea, evident from
figure 8.9, is that the receptive field of cortical cell a for the weights shown
in figure 8.9A (at the end point of development) can be characterized by
just two numbers. One, the ocularity, ζa, is shown in the right hand plot
of figure 8.9C, and is the summed difference of the connections from the
left and right eyes to cortical unit a. The other, xa, is the mean topographic
location in the input of cell a. For many developmental models, the stim-
uli used during training, although involving the activities of a whole set
of input units, can also be characterized abstractly using the same small
number of feature parameters.

The matrix element Wab in a feature-based model is equal to the variable
characterizing the selectivity on neuron a to the feature parameter b. Thus,
in a one-dimensional model of topography and ocular dominance, Wa1 =
xa, Wa2 = ζa. Similarly, the inputs are considered in terms of the same
feature parameters and are expressed as u = (x, ζ). Nu is equal to the
number of parameters being used to characterize the stimulus (here, Nu =
2). In the case of figure 8.9, the inputs are drawn from a distribution in
which x is chosen randomly between 1 and 100, and ζ takes a fixed positive
or negative value with equal probability. The description of the model is
completed by specifying the feature-based equivalent of how a particular
input activates the cortical cells, and how this leads to plasticity in the
feature-based weights W.

The response of a selective neuron depends on how closely the stimulus
matches the characteristics of its preferred stimulus. The weights Wab de-
termine the preferred stimulus features, and thus we assume that the ac-
tivation of neuron a is high if the components of the input ub match the
components of Wab. A convenient way to achieve this is to express the
activation for unit a as exp(−∑

b(ub − Wab)
2/(2σ2

b)), which has its max-
imum at ub = Wab for all b, and falls off as a Gaussian function for less
perfect matches of the stimulus to the selectivity of the cell. The param-

Draft: December 17, 2000 Theoretical Neuroscience

28 Plasticity and Learning

eter σb determines how selective the neuron is to characteristic b of the
stimulus.

The Gaussian expression for the activation of neuron a is not used directly
to determine its level of activity. Rather, as in the case of competitive Heb-
bian learning, we introduce a competitive activity variable for cortical site
a,

za = exp
(−∑

b(ub − Wab)
2/(2σ2

b)
)

∑
a′ exp

(−∑
b(ub − Wa′b)2/(2σ2

b)
) . (8.36)

In addition, some cooperative mechanism must be included to keep the
maps smooth, which means that nearby neurons should, as far as possi-
ble, have similar selectivities. The two algorithms we discuss, the self-
organizing map and the elastic net, differ in how they introduce this sec-
ond element.

The self-organizing map spreads the activity defined by equation 8.36 toself-organizing map
nearby cortical sites through equation 8.35, va = ∑

a′ Maa′ za′ . This gives
cortical cells a and a′ similar selectivities if they are nearby, because va and
va′ are related through local recurrent connections. Hebbian development
of the selectivities characterized by W is then generated by an activity de-
pendent rule. In general, Hebbian plasticity adjusts the weights of acti-
vated units so that they become more responsive to and selective for the
input patterns that excite them. Feature-based models achieve the same
thing by modifying the selectivities Wab so they more closely match the
input parameters ub when output unit a is activated by u. In the case of
the self-organized map, this is achieved through the averaged rulefeature-based

learning rule

τw

dWab

dt
= 〈va(ub − Wab)〉 . (8.37)

The other feature-based algorithm, the elastic net, sets the activity of unitelastic net
a to the result of equation 8.36, va = za, which generates competition.
Smoothness of the map is ensured not by spreading this activity, as in the
self-organizing map, but by including an additional term in the plastic-
ity rule that tends to make nearby selectivities the same. The elastic net
modification rule iselastic net rule

τw

dWab

dt
= 〈va(ub − Wab)〉 + β

∑
a′ neighbor of a

(Wa′b − Wab) (8.38)

where the sum is over all points a′ that are neighbors of a, and β is a pa-
rameter that controls the degree of smoothness in the map. The elastic net
makes Wab similar to Wa′b, if a and a′ are nearby on the cortex, by reducing
(Wa′b − Wab)

2.

Figure 8.10A shows the results of an optical imaging experiment that re-
veals how ocularity and orientation selectivity are arranged across a re-
gion of the primary visual cortex of a macaque monkey. The dark lines

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.3 Unsupervised Learning 29

boundaries
pinwheels ocular dominancelinear zones
A B

Figure 8.10: Orientation domains and ocular dominance. A) Contour map show-
ing iso-orientation contours (grey lines) and the boundaries of ocular dominance
stripes (black lines) in a 1.7 × 1.7 mm patch of macaque primary visual cortex. Iso-
orientation contours are drawn at intervals of 11.25◦. Pinwheels are singularities in
the orientation map where all the orientations meet, and linear zones are extended
patches over which the iso-orientation contours are parallel. B) Ocular dominance
and orientation map produced by the elastic net model. The significance of the
lines is the same as in A, except that the darker grey lines show orientation pref-
erences of 0◦. (A adapted from Obermayer and Blasdel, 1993; B from Erwin et al.,
1995.)

show the boundaries of the ocular dominance stripes. The lighter lines
show iso-orientation contours, i.e. locations where the preferred orienta-
tions are roughly constant and indicate, by the regions they enclose, that
neighborhoods of cells favor similar orientations. They also show how
these neighborhoods are arranged with respect to each other and with
respect to the ocular dominance stripes. There are singularities, called
pinwheels, in the orientation map where regions with different orienta-
tion preferences meet at a point. These tend to occur near the centers of
the ocular dominance stripes. There are also linear zones where the iso-
orientation domains run parallel to each other. These tend to occur at, and
run perpendicular to, the boundaries of the ocular dominance stripes.

Figure 8.10B shows the result of an elastic net model plotted in the
same form as the macaque map of figure 8.10A. The similarity is evi-
dent and striking. Here, 5 input feature dimensions were incorporated
u = (x, y, o, e cos θ, e sin θ), two (x, y) for topographic location, one o for
ocularity, and two (e cos θ, e sin θ) for the direction and strength of orien-
tation. The self-organizing map can produce almost identical results, and
non-competitive and competitive Hebbian developmental algorithms can
also lead to structures like this.

Draft: December 17, 2000 Theoretical Neuroscience

30 Plasticity and Learning

Anti-Hebbian Modification

We previously alluded to the problem of redundancy among multiple out-
put neurons that can arise from feedforward Hebbian modification. The
Oja rule of equation 8.16 for multiple output units, which takes the form

τw

dWab

dt
= vaub − αv2

aWab , (8.39)

provides a good illustration of this problem. In the absence of recurrent
connections, this rule sets each row of the feedforward weight matrix to
the principal eigenvector of the input correlation matrix, making each out-
put unit respond identically.

One way to reduce redundancy in a linear model is to make the linear
recurrent interactions of equation 8.29 plastic rather than fixed, using anplastic recurrent

synapses anti-Hebbian modification rule. As the name implies, anti-Hebbian plas-
anti-Hebbian
plasticity

ticity causes synapses to decrease (rather than increase) in strength when
there is simultaneous pre- and postsynaptic activity. The recurrent interac-
tions arising from an anti-Hebbian rule can prevent the output units from
representing the same eigenvector. This occurs because the recurrent inter-
actions tend to make the different output units less correlated by canceling
the effects of common feedforward input. Anti-Hebbian modification is
believed to be the predominant form of plasticity at synapses from paral-
lel fibers to Purkinje cells in the cerebellum, although this may be a special
case because Purkinje cells inhibit rather than excite their targets. A basic
anti-Hebbian rule for Maa′ can be created simply by changing the sign on
the right side of equation 8.3. However, just as Hebbian plasticity tends to
make weights increase without bound, anti-Hebbian modification tends
to make them decrease, and for reasons of stability, it is necessary to use

τM
dM
dt

= −vv + βM or τM
dMaa′

dt
= −vava′ + βMaa′ (8.40)

to modify the off-diagonal components of M (the diagonal components
are defined to be zero). Here, β is a positive constant. For suitably chosen
β and τM, the combination of rules 8.39 and 8.40 produces a stable configu-
ration in which the rows of the weight matrix W are different eigenvectors
of the correlation matrix Q, and all the elements of the recurrent weight
matrix M are zero.

Goodall (1960) proposed an alternative scheme for decorrelating different
output units. In his model, the feedforward weights W are kept constant,
while the recurrent weights adapt according to the anti-Hebbian ruleGoodall rule

τM
dM
dt

= −(W · u)v + I − M (8.41)

The minus sign in the term −(W · u)v embodies the anti-Hebbian modifi-
cation. This term is non-local, because the change in the weight of a given

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.3 Unsupervised Learning 31

synapse depends on the total feedforward input to the postsynaptic neu-
ron, not merely on the input at that particular synapse (recall that v �= W ·u
in this case because of the recurrent connections). The term I − M prevents
the weights from going to zero by forcing them toward the identity matrix
I. Unlike 8.40, this rule requires the existence of autapses, synapses that a
neuron makes onto itself (i.e. the diagonal elements of M are not zero).

If the Goodall plasticity rule converges and stops changing M, the right
side of equation 8.41 must vanish on average, which requires (using the
definition of K)

〈(W · u)v〉 = I − M = K−1 . (8.42)

Multiplying both sides by K we find, using equation 8.30,

〈(K · W · u)v〉 = 〈vv〉 = I . (8.43)

This means that the outputs are decorrelated and also indicates histogram
equalization in the sense, discussed in chapter 4, that all the elements of v
have the same variance. Indeed, the Goodall algorithm can be used to im-
plement the decorrelation and whitening discussed in chapter 4. Because
the anti-Hebbian and Goodall rules are based on linear models, they are
only capable of removing second-order redundancy, meaning redundancy
characterized by the covariance matrix. In chapter 10, we consider models
that are based on eliminating higher orders of redundancy as well.

Timing-Based Plasticity and Prediction

Temporal Hebbian rules have been used in the context of multi-unit net-
works to store information about temporal sequences. To illustrate this,
we consider a network with the architecture of figure 8.6. We study the
effect of time-dependent synaptic plasticity, as given by equation 8.18, on
the recurrent synapses of the model, leaving the feedforward synapses
constant. Suppose that, before training, the average response of output
unit a to a stimulus characterized by a parameter s is given by the tuning
curve fa(s), which reaches its maximum for the optimal stimulus s = sa.
Different neurons have different optimal stimulus values, as depicted by
the dashed and thin solid curves in figure 8.11A. We now examine what
happens when the plasticity rule 8.18 is applied throughout a training pe-
riod during which the stimulus being presented is an increasing function
of time. Such a stimulus excites the different neurons in the network se-
quentially. For example, the neuron with sa = −2 is active before the neu-
ron with sa = 0, which in turn is active before the neuron with sa = 2. If
the stimulus changes rapidly enough, the interval between the firing of
the neuron with sa = −2 and that with sa = 0 will fall within the win-
dow for LTP depicted in figure 8.2B. This means that a synapse from the
neuron with sa = −2 to the sa = 0 neuron will be strengthened. On the
other hand, because the neuron with sa = 2 fires after the sa = 0 neuron, a

Draft: December 17, 2000 Theoretical Neuroscience

32 Plasticity and Learning

A
1.2

1.0

0.8

0.6

0.4

0.2

0.0
-4 -2 0 2 4

s

v

0 5 10 15
lap number

4

3

2

1

0

-1

-2

pl
ac

e
fie

ld
 l

oc
at

io
n

(c
m

)B

Figure 8.11: A) Predicted and experimental shift of place fields. A) Shift in a neu-
ronal firing-rate tuning curve caused by repeated exposure to a time-dependent
stimulus during training. The dashed curves and thin solid curve indicate the
initial response tuning curves of a network of interconnected neurons. The thick
solid curve is the response tuning curve of the neuron that initially had the thin
solid tuning curve after a training period involving a time-dependent stimulus.
The tuning curve increased in amplitude, broadened, and shifted as a result of
temporally asymmetric Hebbian plasticity. The shift shown corresponds to a stim-
ulus with a positive rate of change, that is, one that moved rightward on this plot
as a function of time. The corresponding shift in the tuning curve is to the left. The
shift has been calculated using more neurons and tuning curves than are shown
in this plot. B) Location of place field centers while a rat traversed laps around a
closed track (zero is defined as the average center location across the whole exper-
iment). Over sequential laps, the place fields expanded (not shown) and shifted
backward relative to the direction the rat moved. (B from Mehta et al., 1997.)

synapse from it to the sa = 0 neuron will be weakened by the temporally
asymmetric plasticity rule of equation 8.18.

The effect of this type of modification on the tuning curve in the middle of
the array (the thin solid curve in figure 8.11A centered at s = 0) is shown
by the thick solid curve in figure 8.11A. After the training period, the neu-
ron with sa = 0 receives strengthened input from the sa = −2 neuron and
weakened input from the neuron with sa = 2. This broadens and shifts the
tuning curve of the neuron with sa = 0 to lower stimulus values. The left-
ward shift seen in figure 8.11A is a result of the temporal character of the
plasticity rule and the temporal evolution of the stimulus during training.
Note that the shift is in the direction opposite to the motion of the stimu-
lus during training. This backward shift has an interesting interpretation.
If the same time-dependent stimulus is presented again after training, the
neuron with sa = 0 will respond earlier than it did prior to training. The
responses of other neurons will shift in a similar manner; we just chose the
neuron with sa = 0 as a representative example. Thus, the training experi-
ence causes neurons to develop responses that predict the behavior of the
stimulus.

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.4 Supervised Learning 33

Enlargements and backward shifts of neural response tuning curves simi-
lar to those predicted from temporally asymmetric LTP and LTD induction
have been seen in recordings of hippocampal place cells in rats. Figure
8.11B shows the average location of place fields recorded while a rat ran
repeated laps around a closed track. Over time, the place field shifted
backward along the track relative to the direction the rat moved.

8.4 Supervised Learning

In unsupervised learning, inputs are imposed during a training period,
and the output is determined by the network dynamics using the current
values of the weights. This means that the network and plasticity rule
must uncover patterns and regularities in the input data (such as the di-
rection of maximal variance) by themselves. In supervised learning, both
a set of inputs and the corresponding desired outputs are imposed during
training, so the network is essentially given the answer.

Two basic problems addressed in supervised learning are storage, which
means learning the relationship between the input and output patterns
provided during training, and generalization, which means being able to
provide appropriate outputs for inputs that were not presented during
training, but are similar to those that were. The main task we consider
within the context of supervised learning is function approximation (or
regression), in which the output of a network unit is trained to approxi-
mate a specified function of the input. We also consider classification of
inputs into two categories. Understanding generalization in such settings
has been a major focus of theoretical investigations in statistics and com-
puter science but lies outside the scope of our discussion.

Supervised Hebbian Learning

In supervised learning, a set of paired inputs and output samples, um and
vm for m = 1 . . . NS, is presented during training. For a feedforward net-
work, an averaged Hebbian plasticity rule for supervised learning can be
obtained from equation 8.4 by averaging across all the input-output pairs,

τw

dw
dt

= 〈vu〉 = 1
NS

NS∑
m=1

vmum . (8.44)

Note that this is similar to the unsupervised Hebbian learning case, except
that the output vm is imposed on the network rather than being deter-
mined by it. This has the consequence that the input-input correlation is
replaced by the input-output cross-correlation 〈vu〉. cross-correlation

Unless the cross-correlation is zero, equation 8.44 never stops changing
the synaptic weights. The methods introduced to stabilize Hebbian modi-

Draft: December 17, 2000 Theoretical Neuroscience

34 Plasticity and Learning

fication in the case of unsupervised learning can be applied to supervised
learning as well. However, stabilization is easier in the supervised case,
because the right side of equation 8.44 does not depend on w. Therefore,
the growth is only linear, rather than exponential, in time, making a sim-
ple multiplicative synaptic weight decay term sufficient for stability. This
is introduced by writing the supervised learning rule assupervised learning

with decay

τw

dw
dt

= 〈vu〉 − αw , (8.45)

for some positive constant α. Asymptotically, equation 8.45 makes w =
〈vu〉/α, that is, the weights become proportional to the input-output cross-
correlation.

We have discussed supervised Hebbian learning in the case of a single out-
put unit, but the results can obviously be generalized to multiple outputs
as well.

Classification and The Perceptron

The perceptron is a nonlinear map that classifies inputs into one of twoperceptron
categories. It thus acts as a binary classifier. To make the model consistentbinary classifier
when units are connected together in a network, we also require the in-
puts to be binary. We can think of the two possible states as representing
units that are either active or inactive. As such, we would naturally assign
them the values 1 and 0. However, the analysis is simpler while producing
similar results if, instead, we require the inputs ua and output v to take the
two values +1 and −1.

The output of the perceptron is based on a modification of the linear rule
of equation 8.2 to

v =
{ +1 if w · u − γ ≥ 0

−1 if w · u − γ < 0 .
(8.46)

The threshold γ thus determines the dividing line between values of w · u
that generate +1 and −1 outputs. The supervised learning task for the
perceptron is to place each of NS input patterns um into one of two classes
designated by the binary output vm. How well the perceptron performs
this task depends on the nature of the classification. The weight vector and
threshold define a subspace (called a hyperplane) of dimension Nu −1 (the
subspace perpendicular to w) that cuts the Nu-dimensional space of input
vectors into two regions. It is only possible for a perceptron to classify
inputs perfectly if a hyperplane exists that divides the input space into one
half-space containing all the inputs corresponding to v = +1, and another
half-space containing all those for v = −1. This condition is called linear
separability. An instructive case to consider is when each component oflinear separability
each input vector and the associated output values are chosen randomly
and independently with equal probabilities of being +1 and −1. For large

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.4 Supervised Learning 35

Nu, the maximum number of random associations that can be described
by a perceptron in this case is 2Nu.

For linearly separable inputs, a set of weights exists that allows the per-
ceptron to perform perfectly. However, this does not mean that a Hebbian
modification rule can construct such weights. A Hebbian rule based on
equation 8.45 with α = Nu/NS constructs the weight vector

w = 1
Nu

NS∑
m=1

vmum . (8.47)

To see how well such weights allow the perceptron to perform, we com-
pute the output generated by one input vector, un, chosen from the train-
ing set. For this example, we set γ = 0. Nonzero threshold values are
considered later in the chapter.

With γ = 0, the value of v for input un is determined solely by the sign of
w · un. Using the weights of equation 8.47, we find

w · un = 1
Nu

(
vnun · un +

∑
m �=n

vmum · un

)
. (8.48)

If we set
∑

m �=n vmum · un/Nu = ηn (where the superscript is again a label
not a power) and note that 12 = (−1)2 = 1 so vnun · un/Nu = vn, we can
write

w · un = vn + ηn . (8.49)

Substituting this expression into equation 8.46 to determine the output of
the perceptron for the input un, we see that the term ηn acts as a source of
noise, interfering with the ability of the perceptron to generate the correct
answer v=vn.

We can think of ηn as a sample drawn from a probability distribution of η

values. Consider the case when all the components of um and vm for all m
are chosen randomly with equal probabilities of being +1 or −1. Including
the dot product, the right side of the expression Nuη

n = ∑
m �=n vmum · un

that defines ηn is the sum of (NS − 1)Nu terms, each of which is equally
likely to be either +1 or −1. For large Nu and NS, the central limit theorem
(see the Mathematical Appendix) tells us that the distribution of η values is
Gaussian with zero mean and variance (NS −1)/Nu. This suggests that the
perceptron with Hebbian weights should work well if the number of input
patterns being learned is significantly less than the number of input vector
components. We can make this more precise by noting from equations 8.46
with γ = 0 and equation 8.49 that, for vn = +1, the perceptron will give the
correct answer if −1 < ηn < ∞. Similarly, for vn = −1, the perceptron will
give the correct answer if −∞ < ηn < 1. If vn has probability one half
of taking either value, the probability of the perceptron giving the correct
answer is one half the integral of the Gaussian distribution from −1 to ∞

Draft: December 17, 2000 Theoretical Neuroscience

36 Plasticity and Learning

Nu
0 2 4 6 8 10

0.5

0.6

0.7

0.8

0.9

1

pr
ob

ab
ili

ty
 c

or
re

ct

NS -1

Figure 8.12: Percentage of correct responses for a perceptron with a Hebbian
weight vector for a random binary input-output map. As the ratio of the number
of inputs, Nu, to one less than the number of input vectors being learned, NS − 1,
grows, the percentage of correct responses goes to one. When this ratio is small,
the percentage of correct responses approaches the chance level of 1/2.

plus one half its integral from −∞ to 1. Combining these two terms we
find

P[correct] =
√

Nu

2π(NS − 1)

∫ 1

−∞
dη exp

(
− Nuη

2

2(NS − 1)

)
. (8.50)

This result is plotted in figure 8.12, which shows that the Hebbian percep-
tron performs fairly well if NS − 1 is less than about 0.2Nu. It is possible for
the perceptron to perform considerably better than this if a non-Hebbian
weight vector is used. We return to this in a later section.

Function Approximation

In chapter 1, we studied examples in which the firing rate of a neuron was
given by a function of a stimulus parameter, namely the response tuning
curve. When such a relationship exists, we can think of the neuronal fir-
ing rate as representing the function. Populations of neurons (labeled by
an index b = 1,2, . . . , Nu) that respond to a stimulus value s, by firing at
average rates fb(s) can similarly represent an entire set of functions. How-
ever, a function h(s) that is not equal to any of the single neuron tuning
curves can only be represented by combining the responses of a number
of units. This can be done using the network shown in figure 8.13. The
average steady-state activity level of the output unit in this network, in
response to stimulus value s, is given by equation 8.2,function

approximation

v(s) = w · u = w · f(s) =
N∑

b=1

wb fb(s) . (8.51)

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.4 Supervised Learning 37

s

v(s) = w � f(s) � h(s)

u = f(s)

Figure 8.13: A network for representing functions. The value of an input variable
s is encoded by the activity of a population of neurons with tuning curves f(s).
This activity drives an output neuron through a vector of weights w to create an
output activity v that approximates the function h(s).

Note that we have replaced u by f(s) where f(s) is the vector with compo-
nents fb(s). The network presented in chapter 7 that performs coordinate
transformation is an example of this type of function approximation.

In equation 8.51, the input tuning curves f(s) act as a basis for representing
the output function h(s), and for this reason they are called basis functions. basis functions
Different sets of basis functions can be used to represent a given set of out-
put functions. A set of basis functions that can represent any member of a
class of functions using a linear sum, as in equation 8.51, is called complete
for this class. For the sets of complete functions typically used in mathe- completeness
matics, such as the sines and cosines used in a Fourier series, the weights in
equation 8.51 are unique. When neural tuning curves are used to expand a
function, the weights tend not to be unique, and the set of input functions
is called overcomplete. In this chapter, we assume that the basis functions overcomplete
are held fixed, and only the weights are adjusted to improve output per-
formance, although it is interesting to consider methods for learning the
best basis functions for a particular application. One way of doing this is
by applying backpropagation, which develops the basis functions guided
by the output errors of the network. Other methods, which we consider in
chapter 10, involve unsupervised learning.

Suppose that the function-representation network of figure 8.13 is pro-
vided a sequence of NS sample stimuli sm for m = 1,2, . . . , NS, and the
corresponding function values h(sm) during a training period. To make
v(sm) match h(sm) as closely as possible for all m, we minimize the error

E = 1
2NS

NS∑
m=1

(
h(sm) − v(sm)

)2 = 1
2

〈
(h(s) − w · f(s))2

〉
. (8.52)

We have made the replacement v(s) = w · f(s) in this equation and have
used the bracket notation for the average over the training inputs. Equa-
tions for the weights that minimize this error, called the normal equations, normal equations
are obtained by setting its derivative with respect to the weights to zero,

Draft: December 17, 2000 Theoretical Neuroscience

38 Plasticity and Learning

yielding the condition

〈f(s)f(s)〉 · w = 〈f(s)h(s)〉 . (8.53)

The supervised Hebbian rule of equation 8.45, applied in this case, ulti-
mately sets the weight vector to w = 〈f(s)h(s)〉/α. These weights must
satisfy the normal equations 8.53 if they are to optimize function approx-
imation. There are two circumstances under which this occurs. The obvi-
ous one is when the input units are orthogonal across the training stimuli,
〈f(s)f(s)〉 = I. In this case, the normal equations are satisfied with α = 1.
However, this condition is unlikely to hold for most sets of input tuning
curves. An alternative possibility is that, for all pairs of stimuli sm and sm′

in the training set,

f(sm) · f(sm′
) = cδmm′ (8.54)

for some constant c. This is called a tight frame condition. If it is satisfied,tight frame
the weights given by a supervised Hebbian learning with decay can satisfy
the normal equations. To see this, we insert the weights w = 〈f(s)h(s)〉/α
into equation 8.53 and use 8.54 to obtain

〈f(s)f(s)〉 · w = 〈f(s)f(s)〉 · 〈f(s)h(s)〉
α

= 1
αN2

S

∑
mm′

f(sm)f(sm) · f(sm′
)h(sm′

)

= c
αN2

S

∑
m

f(sm)h(sm) = c
αNS

〈f(s)h(s)〉 . (8.55)

This shows that the normal equations are satisfied for α = c/NS. Thus,
we have shown two ways that supervised Hebbian learning can solve the
function approximation problem, but both require special conditions on
the basis functions f(s). A more general scheme, discussed below, involves
using an error-correcting rule.

Supervised Error-Correcting Rules

An essential limitation of supervised Hebbian rules is that synaptic mod-
ification does not depend on the actual performance of the network. An
alternative learning strategy is to start with an initial guess for the weights,
compare the output v in response to input um with the desired output vm,
and change the weights to improve the performance. Two important error-
correcting modification rules are the perceptron rule, which applies to bi-
nary classification, and the delta rule, which can be applied to function
approximation and many other problems.

The Perceptron Learning Rule

Suppose that the perceptron of equation 8.46 incorrectly classifies an input
pattern um. If the output is v(um) = −1 when vm = 1, the weight vector

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.4 Supervised Learning 39

should be modified to make w · um − γ larger. Similarly, if v(um) = 1 when
vm = −1, w · um − γ should be decreased. A plasticity rule that performs
such an adjustment is the perceptron learning rule, perceptron

learning rule
w → w + εw

2
(
vm − v(um)

)
um γ → γ − εw

2
(vm − v(um)) (8.56)

Here, and in subsequent sections in this chapter, we use discrete updates
for the weights (indicated by the →) rather than the differential equations
used up to this point. This is due to the discrete nature of the presentation
of the training patterns. Here, εw determines the modification rate and is
analogous to 1/τw. In equation 8.56, we have assumed that the threshold
γ is also plastic. The learning rule for γ is inverted compared with that for
the weights, because γ enters equation 8.46 with a minus sign.

To verify that the perceptron learning rule makes appropriate weight ad-
justments, we note that it implies that

(
w · um − γ

) → (
w · um − γ

) + εw

2
(vm − v(um))

(|um|2 + 1
)
. (8.57)

This result shows that if vm = 1 and v(um) = −1, the weight change in-
creases w · um − γ. If vm = −1 and v(um) = 1, w · um − γ is decreased. This
is exactly what is needed to compensate for the error. Note that the per-
ceptron learning rule does not modify the weights if the output is correct.

To learn a set of input pattern classifications, the perceptron learning rule is
applied to each one sequentially. For fixed εw, the perceptron learning rule
of equation 8.56 is guaranteed to find a set of weights w and threshold γ

that solve any linearly separable problem. This is proved in the appendix.

The Delta Rule

The perceptron learning rule is designed for binary outputs. The function
approximation task with the error function E of equation 8.52 can also be
solved using an error correcting scheme. A simple but extremely useful
version of this is the gradient descent procedure, which modifies w ac- gradient descent
cording to

w → w − εw∇wE or wb → wb − εw

∂E
∂wb

(8.58)

where ∇wE is the vector with components ∂E/∂wb. This rule is sensible be-
cause −∇wE points in the direction along which E decreases most rapidly.
This process tends to reduce E because, to first order in εw

E(w − εw∇wE) = E(w) − εw |∇wE|2 ≤ E(w) . (8.59)

Note that, if εw is too large, or w is very near to a point where ∇wE(w) = 000,
then E can increase. We will take εw to be small, and ignore this concern.

Draft: December 17, 2000 Theoretical Neuroscience

40 Plasticity and Learning

-10 0 10
-1.5

-1

-0.5

0

0.5

1

1.5

s
-10 0 10

-1.5

-1

-0.5

0

0.5

1

1.5

s
-10 0 10

-1.5

-1

-0.5

0

0.5

1

1.5

s

A B C

v

Figure 8.14: Eleven input neurons with Gaussian tuning curves drive an out-
put neuron to approximate a sine function. The input tuning curves are fb(s) =
exp[−0.5(s − sb)

2] with sb = −10,−8,−6, . . . ,8,10. A delta plasticity rule was
used to set the weights. Sample points were chosen randomly in the range be-
tween -10 and 10. The firing rate of the output neuron is plotted as a solid curve
and the sinusoidal target function as a dashed curve. A) The firing rate of the out-
put neuron when random weights in the range between -1 and 1 were used. B)
The output firing rate after weight modification using the delta rule for 20 sample
points. C) The output firing rate after weight modification using the delta rule for
100 sample points.

Thus, E decreases until w is close to a minumum. If E has many min-
ima, gradient descent will find only one of them (a local minimum), and
not necessarily the one with the lowest value of E (the global minimum).
In the case of linear function approximation using basis functions, as in
equation 8.51, gradient descent finds a value of w that satisfies the normal
equations, and therefore constructs an optimal function approximator, be-
cause there are no non-global minima.

For function approximation, the error E in equation 8.52 is an average over
a set of examples. As for the perceptron learning rule of equation 8.56, it is
possible to present randomly chosen input output pairs sm and h(sm), and
change w according to −∇w(h(sm) − v(sm))2/2. Using ∇wv = u = f, this
produces what is called the delta rule,delta rule

w → w + εw(h(sm) − v(sm))f(sm) . (8.60)

The procedure of applying the delta rule to each pattern sequentially is
called stochastic gradient descent, and it is particularly useful because it
allows learning to take place continuously while sample inputs are pre-
sented. There are more efficient methods of searching for minima of func-
tions than stochastic gradient descent, but many of them are complicatedstochastic gradient

decent to implement. The weights w will typically not completely settle down to
fixed values during the training period for a fixed value of εw. However,
their averages will tend to satisfy the normal equations.

Figure 8.14 shows the result of modifying an initially random set of
weights using the delta rule. Ultimately, an array of input neurons with

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.4 Supervised Learning 41

Gaussian tuning curves drives an output neuron that quite accurately rep-
resents a sine function. The difference between figures 8.14B and C illus-
trates the difference between storage and generalization. Figure 8.14B is
based on 20 pairs of training inputs and outputs, while figure 8.14C in-
volves 100 pairs. It is clear that v(s) in figure 8.14B does not match the
sine function very well, at least for values of s that were not in the training
set, while v(s) in figure 8.14C provides a good approximation of the sine
function for all s values. The ability of the network to approximate the
function h(s) for stimulus values not presented during training depends
in a complicated way on its smoothness and the number and smoothness
of the basis functions f(s).

It is not obvious how the delta rule of equation 8.60 could be imple-
mented biophysically, because the network has to compute the difference
h(s)f(sm) − v(sm)f(sm). One possibility is that the two terms h(sm)f(sm)

and v(sm)f(sm) could be computed in separate phases. First, the output
of the network is clamped to the desired value h(sm) and Hebbian plas-
ticity is applied. Then, the network runs freely to generate v(sm) and
anti-Hebbian modifications are made. In the next section, we discuss a
particular example of this in the case of the Boltzmann machine, and we
show how learning rules intended for supervised learning can sometimes
be used for unsupervised learning as well.

Contrastive Hebbian Learning

In chapter 7, we presented the Boltzmann machine, which is a stochastic
network with binary units. One of the key innovations associated with the
Boltzmann machine is a synaptic modification rule that has a sound foun-
dation in probability theory. We start by describing the case of supervised
learning, although the underlying theory is similar for both supervised
and unsupervised learning with the Boltzmann machine.

We first consider a Boltzmann machine with only feedforward weights W
connecting u to v. Given an input u, an output v is computed by setting
each component va to one with probability F(

∑
b Wabub) (and zero other-

wise) where F(I) = 1/(1+exp(−I)). This is the Gibbs sampling procedure
discussed in chapter 7 applied to the feedforward Boltzmann machine. Be-
cause there are no recurrent connections, the states of the output units are
independent, and they can all be sampled simultaneously. Analogous to
the discussion in chapter 7, this procedure gives rise to a conditional prob-
ability distribution P[v|u;W] for v given u that can be written as

P[v|u;W] = exp(−E(u,v))

Z(u)
with Z(u) =

∑
v

exp(−E(u,v)) (8.61)

where E(u,v) = −v · W · u.

Supervised learning in deterministic networks involves the development
of a relationship between inputs u and outputs v that matches, as closely as

Draft: December 17, 2000 Theoretical Neuroscience

42 Plasticity and Learning

possible, a set of samples (um,vm) for m = 1,2, . . . , NS. An analogous task
for a stochastic network is to match the distribution P[v|u;W] as closely
as possible to a probability distribution P[v|u] associated with the sam-
ples (um,vm). This is done by adjusting the feedforward weight matrix
W. Note that we are using the argument W to distinguish between two
different distributions, P[u|v], which is provided externally and generates
the sample data, and P[u|v;W], which is the distribution generated by the
Boltzmann machine with weights W. The idea of constructing networks
that reproduce probability distributions inferred from sample data is cen-
tral to the problem of density estimation covered more fully in chapter 10.density estimation

The natural measure for determining how well the distribution generated
by the network P[v|u;W] matches the sampled distribution P[v|u] for a
particular input u is the Kullback-Leibler divergence,

DKL(P[v|u], P[v|u;W]) =
∑

v

P[v|u] ln
(

P[v|u]
P[v|u;W]

)

= −
∑

v

P[v|u] ln (P[v|u;W]) + K , (8.62)

where K is a term that is proportional to the entropy of the distribution
P[v|u] (see chapter 4). We do not write out this term explicitly because it
does not depend on the feedforward weight matrix, so it does not affect
the learning rule used to modify W. As in chapter 7, we have, for conve-
nience, used natural rather than base 2 logarithms in the definition of the
Kullback-Leibler divergence.

To estimate, from the samples, how well P[v|u;W] matches P[v|u] across
the different values of u, we average the Kullback-Leibler divergence over
all of the input samples um. We also use the sample outputs vm to pro-
vide a stochastic approximation of the sum over all v in equation 8.62 with
weighting factor P[v|u]. Using brackets to denote the average over sam-
ples, this results in the measure

〈DKL(P[v|u], P[v|u;W])〉 = − 1
NS

NS∑
m=1

ln
(
P[vm|um;W]

) + 〈K〉 (8.63)

for comparing P[v|u;W] and P[v|u]. Each logarithmic term in the sum
on the right side of this equation is the negative of the logarithm of the
probability that a sample output vm would have been drawn from the
distribution P[v|um;W], when in fact it is drawn from P[v|um]. A conse-
quence of this approximate equality is that finding the network distribu-
tion P[v|um;W] that best matches P[v|um] (in the sense of minimizing the
Kullback-Leibler divergence) is equivalent to maximizing the conditional
likelihood that the sample vm could have been drawn from P[v|um;W].likelihood

maximization
A learning rule that is equivalent to stochastic gradient ascent of the log
likelihood can be derived by changing the weights by an amount propor-
tion to the derivative of the logarithmic term in equation 8.63 with respect

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.4 Supervised Learning 43

to the weight being changed. In a stochastic gradient ascent scheme, the
change in the weight matrix after sample m is presented only depends on
the log likelihood for that sample, so we only need to take the derivative
with respect to Wab of the corresponding term in equation 8.63,

∂ ln P[vm|um;W]
∂Wab

= ∂

∂Wab

(
−E(um,vm) − ln Z(um)

)

= vm
a um

b −
∑

v

P[v|um;W]vaum
b . (8.64)

This derivative has a simple form for the Boltzmann machine because of
equation 8.61.

Before we derive the stochastic gradient ascent learning rule, we need to
evaluate the sum over v in the last term of the bottom line of equation
8.64. For Boltzmann machines with recurrent connections like the ones we
discuss below, this average cannot be calculated tractably. However, be-
cause the learning rule is used repeatedly, it can be estimated by stochastic
sampling. In other words, we approximate the average over v by a sin-
gle instance of a particular output v(um) generated by the Boltzmann ma-
chine in response to the input um. Making this replacement and setting
the change in the weight matrix proportional to the derivative in equation
8.64, we obtain the learning rule supervised

learning for W
Wab → Wab + εw

(
vm

a um
b − va(um)um

b

)
. (8.65)

Equation 8.65 is identical in form to the perceptron learning rule of equa-
tion 8.56, except that v(um) is computed from the input um by Gibbs sam-
pling rather than by a deterministic rule. As discussed at the end of the
previous section, equation 8.65 can also be interpreted as the difference
of Hebbian and anti-Hebbian terms. The Hebbian term vm

a um
b is based on

the sample input um and output vm. The anti-Hebbian term −va(um)um
b

involves the product of the sample input um with an output v(um) gener-
ated by the Boltzmann machine in response to this input, rather than the
sample output vm. In other words, while vm is provided externally, v(um)

is obtained by Gibbs sampling using the input um and the current val-
ues of the network weights. The overall learning rule is sometimes called
a contrastive Hebbian rule because it depends on the difference between contrastive

Hebbian ruleHebbian and anti-Hebbian terms.

Supervised learning for the Boltzmann machine is run in two phases, both
of which use a sample input um. The first phase, sometimes called the
wake phase, involves Hebbian plasticity between sample inputs and out- wake phase
puts. The dynamics of the Boltzmann machine play no role during this
phase. The second phase, called the sleep phase, consists of the network sleep phase
‘dreaming’ (i.e. internally generating) v(um) in response to um based on the
current weights W. Then, anti-Hebbian learning based on um and v(um)

is applied to the weight matrix. Gibbs sampling is typically used to gen-
erate v(um) from um. It is also possible to use the mean field method we

Draft: December 17, 2000 Theoretical Neuroscience

44 Plasticity and Learning

discussed in chapter 7 to approximate the average over the distribution
P[v|um;W] in equation 8.64.

Supervised learning can also be implemented in a Boltzmann machine
with recurrent connections. When the output units are connected by a
symmetric recurrent weight matrix M (with Maa = 0), the energy function
is

E(u,v) = −v · W · u − 1
2

v · M · v . (8.66)

Everything that has been described thus far applies to this case, except
that the output v(um) for the sample input um must now be computed by
repeated Gibbs sampling using F(

∑
b Wabum

b + ∑
a′ Maa′va′) for the proba-

bility that va = 1 (see chapter 7). Repeated sampling is required to assure
that the network relaxes to the equilibrium distribution of equation 8.61.
Modification of the feedforward weight Wab then proceeds as in equa-
tion 8.65. The contrastive Hebbian modification rule for recurrent weight
Maa′ is similarly given bysupervised

learning for M
Maa′ → Maa′ + εm

(
vm

a vm
a′ − va(um)va′ (um)

)
. (8.67)

The Boltzmann machine was originally introduced in the context of un-
supervised rather than supervised learning. In the supervised case, we
tried to make the distribution P[v|u;W] match the probability distribu-
tion P[v|u] that generates the samples pairs (um,vm). In the unsupervised
case, no output sample vm is provided, and instead we try to make the
network generate a probability distribution over u that matches the dis-
tribution P[u] from which the samples um are drawn. As we discuss in
chapter 10, a common goal of probabilistic unsupervised learning is to
generate network distributions that match the distributions of input data.

In addition to the distribution of equation 8.61 for v given a specific input
u, the energy function of the Boltzmann machine can be used to define a
distribution over both u and v defined by

P[u,v;W] = exp(−E(u,v))

Z
with Z =

∑
u,v

exp(−E(u,v)) . (8.68)

This can be used to construct a distribution for u alone by summing over
the possible values of v,

P[u;W] =
∑

v

P[u,v;W] = 1
Z

∑
v

exp(−E(u,v)) . (8.69)

The goal of unsupervised learning for the Boltzmann machine is to make
this distribution match, as closely as possible, the distribution of inputs
P[u].

The derivation of an unsupervised learning rule for a feedforward Boltz-
mann machine proceeds very much like the derivation we presented for

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.5 Chapter Summary 45

the supervised case. The equivalent of equation 8.64 is

∂ ln P[um;W]
∂Wab

=
∑

v

P[v|um;W]vaum
b −

∑
u,v

P[u,v;W]vaub . (8.70)

In this case, both terms must be evaluated by Gibbs sampling. The wake
phase Hebbian term requires a stochastic output v(um), which is calcu-
lated from the sample input um just as it was for the anti-Hebbian term
in equation 8.65. However, the sleep phase anti-Hebbian term in this case
requires both an input u and an output v generated by the network. These
are computed using a Gibbs sampling procedure in which both input and
output states are stochastically generated through repeated Gibbs sam-
pling. A randomly chosen component va is set to one with probability
F(

∑
b Wabub) (or zero otherwise), and a random component ub is set to one

with probability F(
∑

a vaWab) (or zero otherwise). Note that this corre-
sponds to having the input units drive the output units in a feedforward
manner through the weights W and having the output units drive the in-
put units in a reversed manner using feedback weights with the same val-
ues. Once the network has settled to equilibrium through repeated Gibbs
sampling of this sort, and the stochastic inputs and outputs have been
generated, the full learning rule is unsupervised

learning for W
Wab → Wab + εw

(
va(um)um

b − vaub
)
. (8.71)

The unsupervised learning rule can be extended to include recurrent con-
nections by following the same general procedure.

8.5 Chapter Summary

We presented a variety of forms of Hebbian synaptic plasticity ranging
from the basic Hebb rule to rules that involve multiplicative and subtrac-
tive normalization, a constant or sliding thresholds, and spike-timing ef-
fects. Two important features in synaptic plasticity were emphasized, sta-
bility and competition. We showed how the effects of unsupervised Heb-
bian learning could be estimated by computing the principal eigenvector
of the correlation matrix of the inputs used during training. Unsuper-
vised Hebbian learning could be interpreted as a process that produces
weights that project the input vector onto the direction of maximal vari-
ance in the training data set. In some cases, this requires an extension
from correlation-based to covariance-based rules. We used the principal
eigenvector approach to analyze Hebbian models of the development of
ocular dominance and its associated map in primary visual cortex. Plas-
ticity rules based on the dependence of synaptic modification on spike
timing were shown to implement temporal sequence and trace learning.

Forcing multiple outputs to have different selectivities requires them to be
connected, either through fixed weights or by weights that are themselves

Draft: December 17, 2000 Theoretical Neuroscience

46 Plasticity and Learning

plastic. In the latter case, anti-Hebbian plasticity can ensure decorrelation
of multiple output units. We also considered the role of competition and
cooperation in models of activity-dependent development and described
two examples of feature-based models, the self-organizing map and the
elastic net.

Finally, we considered supervised learning applied to binary classifica-
tion and function approximation, using supervised Hebbian learning, the
perceptron learning rule, and gradient descent learning through the delta
rule. We also treated contrastive Hebbian learning for the Boltzmann ma-
chine, involving Hebbian and anti-Hebbian updates in different phases.

8.6 Appendix

Convergence of the Perceptron Learning Rule

For convenience, we take εw = 1 and start the perceptron learning rule
with w = 000 and γ = 0. Then, under presentation of the sample m, the
changes in the weights and threshold are given by

�w = 1
2
(vm − v(um))um and �γ = −1

2
(vm − v(um)) . (8.72)

Given a finite, linearly separable problem, there must be a set of weights
w∗ and a threshold γ∗ that are normalized (|w∗|2 + (γ∗)2 = 1) and allow
the perceptron to categorize correctly, for which we require the condition
(w∗ · um − γ∗)vm > δ for some δ > 0 and for all m.

Consider the cosine of the angle between the current weights and thresh-
old w, γ and the solution w∗, γ∗

�(w, γ) = w · w∗ + γγ∗√|w|2 + (γ)2
= ψ(w, γ)

|w, γ| , (8.73)

to introduce some compact notation. Because it is a cosine, � must lie
between −1 and 1. The perceptron convergence theorem shows the per-
ceptron learning rule must lead to a solution of the categorization problem
or else � would grow larger than one, which is impossible.

To show this, we consider the change in ψ due to one step of perceptron
learning during which w and γ are modified because the current weights
generated the wrong response. When an incorrect response is generated
v(um) = −vm, so (vm − v(um))/2 = vm, and thus

�ψ = (w∗ · um − γ∗)vm > δ . (8.74)

The inequality follows from the condition imposed on w∗ and γ∗ as pro-
viding a solution of the categorization problem. Assuming that ψ is ini-
tially positive and iterating this result over n steps in which the weights

Peter Dayan and L.F. Abbott Draft: December 17, 2000

8.7 Annotated Bibliography 47

change, we find that

ψ(w, γ) ≥ nδ . (8.75)

Similarly, over one learning step in which some change is made

�|w, γ|2 = 2(w · um − γ)vm + |um|2 + 1 . (8.76)

The first term on the right side is always negative when an error is made
and, if we define D to be the maximum value of |um|2 over all the training
samples, we find

�|w, γ|2 < D + 1 . (8.77)

After n non-trivial learning iterations (iterations in which the weights and
threshold are modified) starting from |w, γ|2 = 0, we therefore have

|w, γ|2 < n(D + 1) (8.78)

Putting together equations 8.75 and 8.78, we find after n non-trivial train-
ing steps

�(w, γ) >
nδ√

n(D + 1)
. (8.79)

To ensure that �(w, γ) ≤ 1, we must have n ≤ (D + 1)/δ2. Therefore, after
a finite number of weight changes, the perceptron learning rule must stop
changing the weights, and the perceptron must classify all the patterns
correctly.

8.7 Annotated Bibliography

Hebb’s (1949) original proposal about learning set the stage for many of
the subsequent investigations. We followed the treatments of Hebbian,
BCM, anti-Hebbian and trace learning of Goodall (1960); Sejnowski (1977);
Bienenstock, Cooper & Munro (1982); Oja (1982); Földiák (1989; 1991);
Leen (1991); Atick & Redlich (1993); Wallis & Baddeley (1997); exten-
sive coverage of these and related analyses can be found in Hertz et al.
(1991). We followed Miller & MacKay (1994); Miller (1996b) in the analy-
sis of weight constraints and normalization. Jolliffe (1986) treats principal
components analysis theoretically; see also chapter 10; Intrator & Cooper
(1992) treats BCM from the statistical perspective of projection pursuit
(Huber, 1985).

Sejnowski (1999) comments on the relationship between Hebb’s sugges-
tions and recent experimental data and theoretical studies on temporal
sensitivity in Hebbian plasticity (see Levy & Steward, 1983; Blum & Ab-
bott, 1996; Kempter et al., 1999; Song et al., 2000).

Draft: December 17, 2000 Theoretical Neuroscience

48 Plasticity and Learning

Descriptions of relevant data on the patterns of responsivity across cor-
tical areas and the development of these patterns include Hubener et al.
(1997); Yuste & Sur (1999); Weliky (2000); Price & Willshaw (2000) offers
a broad-based, theoretically informed review. There are various recent ex-
perimental challenges to plasticity-based models (e.g. Crair et al., 1998;
Crowley & Katz, 1999). Neural pattern formation mechanisms involv-
ing chemical matching, which are likely important at least for establish-
ing coarse maps, are reviewed from a theoretical perspective in Goodhill
& Richards (1999). The use of learning algorithms to account for corti-
cal maps is reviewed in Erwin et al. (1995), Miller (1996a) and Swindale
(1996). The underlying mathematical basis of some rules is closely related
to Turing (1952)’s reaction diffusion theory of morphogenesis; others are
motivated on the basis of minimizing quantitities such as wire length in
cortex. We described Hebbian models for the development of ocular dom-
inance and orientation selectivity due to Linsker (1986); Miller et al. (1989)
and Miller (1994); a competitive Hebbian model closely related to that of
Goodhill (1993) and Piepenbrock & Obermayer (1999); a self-organizing
map model related to that of Obermayer et al. (1992); and the elastic net
(Durbin & Willshaw, 1987) model of Durbin & Mitchison (1990); Good-
hill & Willshaw (1990); Erwin et al. (1995). The first feature-based models
were called noise models (see Swindale, 1996).

The perceptron learning rule is due to Rosenblatt (1958); see Minsky &
Papert (1969). The delta rule was introduced by Widrow & Hoff (1960; see
also Widrow & Stearns, 1985) and independently arose in various other
fields. The widely used backpropagation algorithm is a form of delta rule
learning that works in a larger class of networks. O’Reilly (1996) suggests
a more biologically plausible implementation.

Supervised learning for classification and function approximation, and its
ties to Bayesian and frequentist statistical theory, are reviewed in Duda
& Hart, 1973; Kearns & Vazirani, 1994; Bishop, 1995. Poggio and col-
leagues have explored basis function models of various representational
and learning phenomena (see Poggio, 1990). Tight frames are discussed in
Daubechies et al. (1986) and applied to visual receptive fields by Salinas &
Abbott (2000).

Contrastive Hebbian learning is due to Hinton & Sejnowski (1986). See
Hinton (2000) for discussion of the particlar Boltzmann machine without
recurrent connections, and for an alternative learning rule.

Peter Dayan and L.F. Abbott Draft: December 17, 2000

