
Mathematical Appendix

The book assumes a familiarity with basic methods of linear algebra, dif-
ferential equations, and probability theory, as covered in standard texts.
This chapter describes the notation we use and briefly sketches highlights
of various techniques. The references provide further information.

Linear Algebra

An operation O on a quantity z is called linear if, applied to any two in-
stances z1 and z2, O(z1 + z2) = O(z1) + O(z2). In this section, we consider linear operator
linear operations on vectors and functions. We define a vector v as an ar- vector v
ray of N numbers (v1, v2, . . . , vN) or equivalantly va for a = 1,2, . . . , N,
which are called its components. These are sometimes listed in a single
N-row column

v =




v1
v2
...

vN


 . (1)

When necessary, we write component a of v as [v]a=va. We use 000 to denote zero vector 000
the vector with all its components equal to zero. Spatial vectors, which are
related to displacements in space, are a special case, and we donate them
by �v with components vx and vy in two-dimensional space or vx, vy, and spatial vector �v
vz in three-dimensional space.

The length or norm of v, |v|, when squared, can be written as a dot product norm

|v|2 = v · v =
N∑

a=1

v2
a = v2

1 + v2
2 + . . . + v2

N . (2)

The dot product of two different N-component vectors, v and u is, dot product

v · u =
N∑

a=1

vaua . (3)

Draft: December 17, 2000 Theoretical Neuroscience



2

Matrix multiplication is a basic linear operation on vectors. An Nr by Nc
matrix W is an array of Nr rows and Nc columnsmatrix W

W =




W11 W12 . . . W1Nc
W21 W22 . . . W2Nc

...
WNr1 WNr2 . . . WNrNc


 (4)

with elements Wab for a = 1, . . . , Nr and b = 1, . . . , Nc. In this text, multi-
plication of a vector by a matrix is written in the somewhat idiosyncratic
notation W · v. The dot implies multiplication and summation over a
shared index, as it does for the dot product. If W is an Nr by Nc matrix
and v is a Nc-component vector, W · v is an Nr-component vector with
componentsmatrix-vector

product

[W · v]a =
Nc∑

b=1

Wabvb . (5)

In conventional matrix notation, the product of a matrix and a vector is
written as Wv, but we prefer to use the dot notation to avoid frequent oc-
currences of matrix transposes (see below). We similarly denote a matrix
product as W · M. Matrices can only be multiplied in this way if the num-matrix product
ber of columns of W, Nc, is equal to the number of rows of M. Then, W · M
is a matrix with the same number of rows as W and the same number of
columns as M, and with elements

[W · M]ab =
Nc∑
c=1

Wac Mcb . (6)

A vector, written as in equation 1, is equivalent to a one-column, N-row
matrix, and the rules for various matrix operations can thus be applied to
vectors as well.

Square matrices are those for which Nr = Nc = N. An important squaresquare matrix
matrix is the identity matrix I with elementsidentity matrix

[I]ab = δab (7)

where the Kronecker delta is defined asKronecker delta

δab =
{

1 if a = b
0 otherwise .

(8)

Another important type of square matrix is the diagonal matrix, defineddiagonal matrix
by

W = diag(h1, h2, . . . , hN) =




h1 0 . . . 0
0 h2 . . . 0

...
0 0 . . . hN


 , (9)
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which has components Wab = haδab for some set of ha, a = 1,2, . . . , N.

The transpose of an Nr by Nc matrix W is an Nc by Nr matrix WT withtranspose
elements [WT]ab = Wba. The transpose of a column vector is a row vector,
vT = (v1v2 . . . vN). This is distinguished by the absence of commas from
(v1, v2, . . . , vN) which, for us, is a listing of the components of a column
vector. In the following table, we define a number of products involving
vectors and matrices. In the definitions, we provide our notation and the
corresponding expressions in terms of vector components and matrix ele-
ments. We also provide the conventional matrix notation for these quanti-
ties as well as the notation used by MATLAB, a computer software package
commonly used to perform these operations numerically. For the MAT-
LAB notation (which does not use bold or italic symbols), we denote two
column vectors by u and v, assuming they are defined within MATLAB by
instructions such as v =[v(1) v(2) . . . v(N)]’.

Quantity Definition Matrix MATLAB

norm |v|2 = v · v = ∑
a v2

a vTv v’∗v

dot product v · u = ∑
a vaua vTu v’∗u

outer product [vu]ab = vaub vuT v∗u’

matrix-vector product [W · v]a = ∑
b Wabvb Wv W∗v

vector-matrix product [v · W]a = ∑
b vbWba vTW v’∗W

quadratic form v · W · u = ∑
ab vaWabub vTWu v’∗W∗u

matrix-matrix product [W · M]ab = ∑
c Wac Mcb WM W∗M

Several important definitions for square matrices are:

Operation Notation Definition MATLAB

transpose WT WT
ab = Wba W’

inverse W−1 W · W−1 = I inv(W)

trace trW
∑

a Waa trace(W)

determinant det W see references det(W)

A square matrix only has an inverse if its determinant is nonzero. Square
matrices with certain properties are given special names:

Property Definition

symmetric WT = W or Wba = Wab

orthogonal WT = W−1 or WT · W = I

positive-definite v · W · v > 0 for all v 	= 000

Töplitz Wab = f (a − b)
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where f (a − b) is any function of the single variable a − b.

For any real-valued function E(v) of a vector v, we can define the vector
derivative (which is sometimes called del) of E(v) as the vector ∇E(v) withdel operator ∇
components

[∇E(v)]a = ∂E(v)

∂va
. (10)

The derivative of E(v) in the direction u is thendirectional
derivative

lim
ε→0

(
E(v + εu) − E(v)

ε

)
= u · ∇E(v) . (11)

Eigenvectors and Eigenvalues

An eigenvector of a square matrix W is a non-zero vector e that satisfieseigenvector

W · e = λe (12)

for some number λ called the eigenvalue. Possible values of λ are deter-eigenvalue
mined by solving the polynomial equation

det(W − λI) = 0 . (13)

Typically, but not always, this has N solutions if W is an N by N matrix,
and these can be either real or complex. Complex eigenvalues come in
complex-conjugate pairs if W has real-valued elements. We use the index
µ to label the different eigenvalues and eigenvectors, λµ and eµ. Note that
µ identifies the eigenvector (and eigenvalue) to which we are referring; it
does not signify a component of the eigenvector eµ.

If e is an eigenvector, αe is also an eigenvector for any nonzero value of
α. We can use this freedom to normalize eigenvectors so that |e| = 1. If
two eigenvectors, say e1 and e2, have the same eigenvalues λ1 = λ2, they
are termed degenerate, Then, αe1 + βe2 is also an eigenvector with thedegeneracy
same eigenvalue, for any α and β that are not both zero. Apart from such
degeneracies, an N by N matrix can have at most N eigenvectors, although
some matrices have fewer. If W has N non-degenerate eigenvalues, the
eigenvectors e1, . . . ,eN are linearly independent, meaning that

∑
µ cµeµ =linear independence

000 only if the coefficients cµ = 0 for all µ. These eigenvectors can be used to
represent any N component vector v through the relation

v =
N∑

µ=1

cµeµ , (14)

with a unique set of coefficients cµ. They are thus said to form a basis.basis

The eigenvalues and eigenvectors of symmetric matrices (for which WT =
W) have special properties, and for the remainder of this section, we con-symmetric matrix
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sider this case. The eigenvalues of a symmetric matrix are real, and the
eigenvectors are real and orthogonal (or can be made orthogonal in the
case of degeneracy). This means that, if they are normalized to unit length,
the eigenvectors satisfy orthonormal

eigenvectors
eµ · eν = δµν . (15)

This can be derived by noting that, for a symmetric matrix W, eµ · W = W ·
eµ = λµeµ. Therefore, allowing the matrix to act in both directions we find
eν · W · eµ = λµeν · eµ = λνeν · eµ. If λµ 	= λν, this requires eν · eµ = 0. For
orthogonal and normalized (orthonormal) eigenvectors, the coefficients in
equation 14 take the values

cµ = v · eµ . (16)

Let E = (e1 e2 . . . eN) be an N by N matrix with columns formed from the
orthonormal eigenvectors of a symmetric matrix. From equation 15, this
satisfies [ET · E]µν = eµ · eν = δµν. Thus, ET = E−1, making E an orthogo-
nal matrix. E generates a transformation from the original matrix W to a
diagonal form, which is called matrix diagonalization, matrix

diagonalization
E−1 · W · E = ET · diag(λ1e1, . . . , λNeN) = diag(λ1, . . . , λN) . (17)

Conversely,

W = E · diag(λ1, . . . , λN) · E−1 . (18)

The transformation to and back from a diagonal form is extremely use-
ful because computations with diagonal matrices are easy. Defining L =
diag(λ1, . . . , λN) we find, for example, that

Wn = (E · L · E−1) · (E · L · E−1) · · · (E · L · E−1)

= E · Ln · E−1 = E · diag(λn
1 , . . . , λn

N) · E−1 . (19)

Indeed, for any function f that can be written as a power or expanded in
a power series (including, for example, exponentials and logarithms),

f (W) = E · diag( f (λ1), . . . , f (λN)) · E−1 . (20)

Functional Analogs

A function v(t) can be treated as if it were a vector with a continuous label. functions as vectors
In other words, the function value v(t) parameterized by the continuously
varying argument t takes the place of the component va labeled by the
integer-valued index a. In applying this analogy, sums over a for vectors
are replaced by integrals over t for functions,

∑
a → ∫

dt . For example, the
functional analog of the squared norm and dot product are∫

dt v2(t) and
∫

dt v(t)u(t) . (21)
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The analog of matrix multiplication for a function is the linear integral
operator linear integral

operator∫
dt′ W(t, t′)v(t′) (22)

with the function values W(t, t′) playing the role of the matrix elements
Wab. The analog of the identity matrix is the Dirac δ function δ(t − t′)
discussed at the end of this section. The analog of a diagonal matrix is a
function of two variables that is proportional to a δ function, W(t, t′) =
h(t)δ(t − t′), for any function h.

All of the vector and matrix operations and properties defined above have
functional analogs. Of particular importance are the functional inversefunctional inverse
(which is not equivalent to an inverse function) that satisfies∫

dt′′ W−1(t, t′′)W(t′′, t′) = δ(t − t′) , (23)

and the analog of the Töplitz matrix, which is a linear integral operator
that is translationally invariant and thus can be written astranslation

invariance
W(t, t′) = K(t − t′) . (24)

The linear integral operator then takes the form of a linear filter,linear filter ∫
dt′ K(t − t′)v(t′) =

∫
dτ K(τ)v(t − τ) (25)

where we have made the replacement t′ → t − τ.

The δ Function

Despite its name, the Dirac δ function is not a properly defined function,
but rather the limit of a sequence of functions. In this limit, the δ function
approaches zero everywhere except where its argument is zero, and there
it grows without bound. The infinite height and infinitesimal width of this
function are matched so that its integral is one. Thus,∫

dt δ(t) = 1 (26)

provided only that the limits of integration surround the point t=0 (oth-
erwise the integral is zero). The integral of the product of a δ function with
any continuous function f is∫

dt′ δ(t − t′) f (t′) = f (t) (27)

for any value of t contained within the integration interval (if t is not
within this interval, the integral is zero). These two identities normally

Peter Dayan and L.F. Abbott Draft: December 17, 2000



7

provide enough information to use the δ function in calculations despite
its unwieldy definition.

The sequence of functions used to construct the δ function as a limit is not
unique. In essence, any function that integrates to one and has a single
peak that gets continually narrower and taller as the limit is taken can be
used. For example, the δ function can be expressed as the limit of a square
pulse

δ(t) = lim
�t→0

{
1/�t if −�t/2 < t < �t/2
0 otherwise (28)

or a Gaussian function

δ(t) = lim
�t→0

1√
2π�t

exp

[
−1

2

(
t

�t

)2
]

. (29)

It is most often expressed as δ function
definition

δ(t) = 1
2π

∫ ∞

−∞
dω exp(iωt) . (30)

This underlies the inverse Fourier transform, as discussed below.

Eigenfunctions

The functional analog of the eigenvector (equation 12) is the eigenfunction
e(t) that satisfies ∫

dt′ W(t, t′)e(t′) = λe(t) . (31)

For translationally invariant integral operators, W(t, t′) = K(t − t′), the
eigenfunctions are complex exponentials,∫

dt′ K(t − t′)exp(iωt′) =
(∫

dτ K(τ)exp(−iωτ)

)
exp(iωt) , (32)

as can be seen by making the change of variables τ = t − t′. Here i = √−1,
and the complex exponential is defined by the identity complex

exponential
exp(iωt) = cos(ωt) + i sin(ωt) . (33)

Comparing equations 31 and 32, we see that the eigenvalue for this eigen-
function is

λ(ω) =
∫

dτ K(τ)exp(−iωτ) . (34)

In this case, the continuous label ω takes the place of the discrete label µ

used to identify the different eigenvalues of a matrix.
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A functional analog of expanding a vector using eigenvectors as a basis
(equation 14) is the inverse Fourier transform, which expresses a function
in an expansion using complex exponential eigenfunctions as a basis. The
analog of equation 16 for determining the coefficient functions of this ex-
pansion is the Fourier transform.

Fourier Transforms

As outlined in the previous section, Fourier transforms provide a useful
representation for functions when they are acted upon by translation in-
variant linear operators.

The Fourier transform of a function f (t) is a complex function of a real
argument ω given byFourier transform

f̃ (ω) =
∫ ∞

−∞
dt f (t)exp(iωt) . (35)

The Fourier transform f̃ (ω) provides a complete description of the original
function f (t) because it can be inverted through,inverse Fourier

transform

f (t) = 1
2π

∫ ∞

−∞
dω f̃ (ω)exp(−iωt) . (36)

This provides an inverse because

1
2π

∫ ∞

−∞
dω exp(−iωt)

∫ ∞

−∞
dt′ f (t′)exp(iωt′) (37)

=
∫ ∞

−∞
dt′ f (t′)

1
2π

∫ ∞

−∞
dω exp(iω(t′ − t)) =

∫ ∞

−∞
dt′ f (t′)δ(t′ − t) = f (t)

by the definition of the δ function in equation 30. The function f (t) has to
satisfy regularity conditions called the Dirichlet conditions for the inver-
sion of the Fourier transform to be exact.

The convolution of two functions f and g is the integralconvolution

h(t) =
∫ ∞

−∞
dτ f (τ)g(t − τ) . (38)

This is sometimes denoted by h = f ∗ g. Note that the operation of mul-
tiplying a function by a linear filter and integrating, as in equation 25, is
a convolution. Fourier transforms are useful for dealing with convolu-
tions because the Fourier transform of a convolution is the product of the
Fourier transforms of the two functions being convolved,

h̃(ω) = f̃ (ω)g̃(ω) . (39)

Peter Dayan and L.F. Abbott Draft: December 17, 2000



9

To show this, we note that

h̃(ω) =
∫ ∞

−∞
dt exp(iωt)

∫ ∞

−∞
dτ f (τ)g(t − τ) (40)

=
∫ ∞

−∞
dτ f (τ)exp(iωτ)

∫ ∞

−∞
dt g(t − τ)exp(iω(t − τ))

=
∫ ∞

−∞
dτ f (τ)exp(iωτ)

∫ ∞

−∞
dt′ g(t′)exp(iωt′) where t′ = t − τ ,

which is equivalent to equation 39. A related result is Parseval’s theorem, Parseval’s theorem∫ ∞

−∞
dt f (t)2 = 1

2π

∫ ∞

−∞
dω | f̃ (ω)|2 . (41)

If f (t) is periodic, with period T (which means that f (t + T)= f (t) for all periodic function
t), it can be represented by a Fourier series rather than a Fourier integral. Fourier series
That is

f (t) =
∞∑

k=−∞
f̃k exp(−i2πkt/T) (42)

where f̃k is given by:

f̃k = 1
T

∫ T

0
dt f (t)exp(i2πkt/T) . (43)

As in the case of Fourier transforms, regularity conditions have to hold for
the series to converge and to be exactly invertible. The Fourier series has
properties similar to Fourier transforms, including a convolution theorem
and a version of Parseval’s theorem. The real and imaginary parts of a
Fourier series are often separated giving the alternative form

f (t) = f̃0 +
∞∑

k=1

(
f̃ c
k cos(2πkt/T) + f̃ s

k sin(2πkt/T)
)

(44)

with

f̃0 = 1
T

∫ T

0
dt f (t) , f̃ c

k = 2
T

∫ T

0
dt f (t) cos(2πkt/T) ,

f̃ s
k = 2

T

∫ T

0
dt f (t) sin(2πkt/T) . (45)

When computed numerically, a Fourier transform is typically based on
a certain number, Nt, of samples of the function, fn = f (nδ) for n =
0,1, . . . Nt − 1. The discrete Fourier transform of these samples is then discrete Fourier

transformused as an approximation of the continuous Fourier transform. The dis-
crete Fourier transform is defined as

f̃m =
Nt−1∑
n=0

fn exp (i2πnm/Nt) . (46)
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Note that f̃Nt+m = f̃m. An approximation of the continuous Fourier trans-
form is provided by the relation f̃ (2πm/(Ntδ))≈δ f̃m. The inverse discrete
Fourier transform is

fn = 1
Nt

Nt−1∑
m=0

f̃m exp (−i2πmn/Nt) . (47)

This equation implies a periodic continuation of fn outside the range
0≤ n< Nt, so that fn+Nt = fn for all n. Consult the references for an analysis
of the properties of the discrete Fourier transform and the quality of its ap-
proximation to the continuous Fourier transform. Note in particular that
there is a difference between the discrete-time Fourier transform, which is
the Fourier transform of a signal that is inherently discrete i.e. is only de-
fined at discrete points) and the discrete Fourier transform, given above,
which is based on a finite number of samples of an underlying continu-
ous function. If f (t) is band-limited, meaning that f̃ (ω)=0 for |ω| > π/δ,
the sampling theorem states that f (t) is completely determined by regularsampling theorem
samples spaced at intervals 1/δ.

Fourier transforms of functions of more than one variable involve a direct
extension of the equations given above to multi-dimensional integrals. For
example,

f̃ (ωx, ωy) =
∫

dx
∫

dy f (x, y)exp(i(ωxx + ωy y)). (48)

The properties of multi-dimensional transforms are similar to those of one-
dimensional transforms.

Finding Extrema and Lagrange Multipliers

An operation frequently encountered in the text is minimizing a quadratic
form. In terms of vectors, this typically amounts to finding the matrix W
that makes the product W · v closest to another vector u when averaged
over a number of presentations of v and u. The function to be minimized
is the average squared error 〈|u − W · v|2〉, where the brackets denote aver-
aging over all the different samples v and u. Taking the derivative of this
expression with respect to W gives the equationminimization of

quadratic form

W · 〈vv〉 = 〈uv〉 or
N∑

c=1

Wac〈vcvb〉 = 〈uavb〉 . (49)

Many variants of this equation, solved by a number of techniques, appear
in the text.

Often, when a function f (v) has to be minimized or maximized with re-
spect to a vector v there is an additional constraint on v that requires an-
other function g(v) to be held constant. The standard way of dealing with
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this situation is to find the extrema of the function f (v) + λg(v) where λ is
a free parameter called a Lagrange multiplier. Once this is done, the value Lagrange

multiplierof λ is determined by requiring g(v) to take the required constant value.
This procedure can appear a bit mysterious when first encountered, so we
provide a rather extended discussion.

The condition that characterizes an extreme value of the function f (v) is
that small changes �v (with components �va) in the vector v should not
change the value of the function, to first order in �v. This results in the
condition

N∑
a=1

fa�va = 0 (50)

where we use the notation

fa = [∇ f ]a = ∂f
∂va

(51)

to make the equations more compact. Without a constraint, equation 50
must be satisfied for all �v, which can only occur if each term in the sum
vanishes separately. Thus, we find the usual condition for an extremum

fa = ∂f
∂va

= 0 (52)

for all a. However, with a constraint such as g(v) = constant, equation
50 does not have to hold for all possible �v, only for those that satisfy the
constraint. The condition on �v imposed by the constraint is that it cannot
change the value of g, to first order in �v. Therefore,

N∑
a=1

ga�va = 0 (53)

with the same notation for the derivative used for g as for f .

The most obvious way to deal with the constraint equation 53 is to solve
for one of the components of �v, say �vc, writing

�vc = − 1
gc

∑
a 	=c

ga�va . (54)

Then, we substitute this expression into equation 50 to obtain

∑
a 	=c

fa�va − fc

gc

∑
a 	=c

ga�va = 0 . (55)

Because we have eliminated the constraint, this equation must be satisfied
for all values of the remaining components of �v, those with a 	= c, and
thus we find

fa − fc

gc
ga = 0 (56)
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for all a 	= c. The derivatives of f and g are functions of v, so these equa-
tions can be solved to determine where the extremum point is located.

In the above derivation, we have singled out component c for special treat-
ment. We have no way of knowing until we get to the end of the calcula-
tion whether the particular c we chose leads to a simple or a complex set of
final equations. The clever idea of the Lagrange multiplier is to notice that
the whole problem is symmetric with respect to the different components
of �v. Choosing one c value, as we did above, breaks this symmetry and
often complicates the algebra. To introduce the Lagrange multiplier we
simply define it as

λ = − fc

gc
. (57)

With this notation, the final set of equations can be written as

fa + λga = 0 . (58)

Before we had to say that these equations only held for a 	= c because c was
treated differently. Now, however, notice that the above equation when a
is set to c is algebraically equivalent to the definition of equation 57. Thus,
we can say that equation 58 applies for all a, and this provides a symmetric
formulation of the problem of finding an extremum that often results in
simpler algebra.

The final realization is that equation 58 for all a is precisely what we would
have derived if we had set out in the first place to find an extremum of the
function f (v) + λg(v) and forgot about the constraint entirely. Of course
this lunch is not completely free. From equation 58, we derive a set of
extremum points parameterized by the undetermined variable λ. To fix
λ, we must substitute this family of solutions back into g(v) and find the
value of λ that satisfies the constraint that g(v) equals the specified con-
stant. This provides the solution to the constrained problem.

Differential Equations

The most general differential equation we consider takes the form

dv
dt

= f(v) (59)

where v(t) is an N-component vector of time-dependent variables, and
f is a vector of functions of v. Unless it is unstable, allowing the abso-
lute value of one or more of the components of v to grow without bound,
this type of equation has three classes of solutions. For one class, called
fixed points, v(t) approaches a time-independent vector v∞ (v(t) → v∞)fixed point
as t → ∞. In a second class of solutions, called limit cycles, v(t) becomeslimit cycle
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periodic at large times and repeats itself indefinitely. For the third class
of solutions, the chaotic ones, v(t) never repeats itself but the trajectory ofchaos
the system lies in a limited subspace of the total space of allowed configu-
rations called a strange attractor. Chaotic solutions are extremely sensitive strange attractor
to initial conditions.

We focus most of our analysis on fixed-point solutions. For v∞ to be a
time-independent solution of equation 59, which is also called an equilib-
rium point, we must have f(v∞) = 0. General solutions of equation 59 equilibrium point
when f is nonlinear cannot be constructed, but we can use linear tech-
niques to study the behavior of v near a fixed point v∞. If f is linear, the
techniques we use and solutions we obtain as approximations in the non-
linear case are exact. Near the fixed point v∞, we write

v(t) = v∞ + εεε(t) (60)

and consider the case when all the components of the vector εεε are small.
Then, we can expand f in a Taylor series, Taylor series

f(v(t)) ≈ f(v∞) + J · εεε(t) = J · εεε(t) (61)

where J is the called the Jacobian matrix and has elements Jacobian matrix

Jab = ∂fa(v)

∂vb

∣∣∣∣
v=v∞

. (62)

In the second equality of equation 61, we have used the fact that f(v∞) = 0.

Using the approximation of equation 61, equation 59 becomes

dεεε
dt

= J · εεε . (63)

The temporal evolution of v(t) is best understood by expanding εεε in the
basis provided by the eigenvectors of J. Assuming that J is real and has N
linearly independent eigenvectors e1, . . . ,eN with different eigenvalues
λ1, . . . , λN , we write

εεε(t) =
N∑

µ=1

cµ(t)eµ . (64)

Substituting this into equation 63, we find that the coefficients must satisfy

dcµ

dt
= λµcµ . (65)

This produces the solution

εεε(t) =
N∑

µ=1

cµ(0)exp(λµt)eµ (66)
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where εεε(0) = ∑
µ cµ(0)eµ. The individual terms in the sum on the right

side of equation 66 are called modes. This solution is exact for equation 63, modes
but is only a valid approximation when applied to equation 59 if εεε is small.
Note that the different coefficients cµ evolve over time independently of
each other. This does not require the eigenvectors to be orthogonal. If the
eigenvalues and eigenvectors are complex, v(t) will nonetheless remain
real if v(0) is real, because the complex parts of the conjugate pairs can-
cel appropriately. Expression 66 is not the correct solution if some of the
eigenvalues are equal. The reader should consult the references for the
solution in this case.

Equation 66 determines how the evolution of v(t) in the neighborhood of
v∞ depends on the eigenvalues of J. If we write λµ = αµ + iωµ,

exp(λµt) = exp(αµt)
(
cos(ωµt) + i sin(ωµt)

)
. (67)

This implies that modes with real eigenvalues (ωµ = 0) evolve exponen-
tially over time, and modes with complex eigenvalues (ωµ 	= 0) oscillate
with a frequency ωµ. Recall that the eigenvalues are always real if J is
a symmetric matrix. Modes with negative real eigenvalues (αµ < 0 and
ωµ = 0) decay exponentially to zero, while those with positive real eigen-
values (αµ > 0 and ωµ = 0) grow exponentially. Similarly, the oscillations
for modes with complex eigenvalues are damped exponentially to zero if
the real part of the eigenvalue is negative (αµ < 0 and ωµ 	= 0) and grow
exponentially if the real part is positive (αµ > 0 and ωµ 	= 0).

Stability of the fixed point v∞ requires the real parts of all the eigenval-
ues to be negative (αµ < 0 for all µ). In this case, the point v∞ is a stable
fixed-point attractor of the system, meaning that v(t) will approach v∞ if itattractor
starts from any point in the neighborhood of v∞. If any real part is positive
(αµ > 0 for any µ), the fixed point is unstable. Almost any v(t) initially inunstable fixed point
the neighborhood of v∞ will move away from that neighborhood. If f is
linear, the exponential growth of |v(t) − v∞| never stops in this case. For
a nonlinear f , equation 66 only determines what happens in the neighbor-
hood of v∞, and the system may ultimately find a stable attractor away
from v∞, either a fixed point, a limit cycle, or a chaotic attractor. In all
these cases, the mode for which the real part of λµ takes the largest value
dominates the dynamics as t → ∞. If this real part is equal to zero, the
fixed point is called marginally stable.marginal stability

As mentioned previously, the analysis presented above as an approxima-
tion for nonlinear differential equations near a fixed point is exact if the
original equation is linear. In the text, we frequently encounter linear equa-
tions of the form

τ
dv

dt
= v∞ − v . (68)

This can be solved by setting z = v − v∞, rewriting the equation as dz/z =
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−dt/τ and integrating both sides

τ

∫ z(t)

z(0)

dz′ 1
z′ = ln

(
z(t)
z(0)

)
= − t

τ
. (69)

This gives z(t) = z(0)exp(−t/τ) or

v(t) = v∞ + (v(0) − v∞)exp(−t/τ) . (70)

In some cases, we consider discrete rather than continuous dynamics de-
fined over discrete steps n = 1,2, . . . through a difference rather than a
differential equation. Linearization about equilibrium points can be used
to analyze nonlinear difference equations as well as differential equations,
and this reveals similar classes of behavior. We illustrate difference equa-
tions by analyzing a linear case, difference equation

v(n + 1) = v(n) + W · v(n) . (71)

The strategy for solving this equation is similar to that for solving differ-
ential equations. Assuming W has a complete set of linearly independent
eigenvectors e1, . . . ,eN with different eigenvalues λ1, . . . , λN , the modes
separate, and the general solution is

v(n) =
N∑

µ=1

cµ(1 + λµ)neµ (72)

where v(0) = ∑
µ cµeµ. This has characteristics similar to equation 66.

Writing λµ = αµ + iωµ, mode µ is oscillatory if ωµ 	= 0. In the discrete
case, stability of the system is controlled by the magnitude

|1 + λµ|2 = (
1 + αµ

)2 + (
ωµ

)2
. (73)

If this is greater than one for any value of µ, |v(n)| → ∞ as n → ∞. If it is
less than one for all µ, v(n) → 000 in this limit.

Electrical Circuits

Biophysical models of single cells involve equivalent circuits composed
of resistors, capacitors, and voltage and current sources. We review here
basic results for such circuits. Figures 1A & B show the standard symbols
for resistors and capacitors, and define the relevant voltages and currents.
A resistor (figure 1A) satisfies Ohm’s law, which states that the voltage
VR = V1 − V2 across a resistance R carrying a current IR is Ohm’s law

VR = IRR . (74)
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R C

IR IC

V1 V1

V2 V2
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V

I1

R1

Ie

I2

R2

C

I2

R2

I1 R1
V1 V2

D
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Figure 1: Electrical circuit elements and resistor circuits. A) Current IR flows
through a resistance R producing a voltage drop V1 − V2 = VR. B) Charge ±QC

is stored across a capacitance C leading to a voltage VC = V1 − V2 and a current
IC. C) Series resistor circuit called a voltage divider. D) Parallel resistor circuit. Ie

represents an external current source. The lined triangle symbol at the bottom of
the circuits in C & D represents an electrical ground, which is defined to be at zero
voltage.

Resistance is measured in ohms (�) defined as the resistance through
which one ampere of current causes a voltage drop of one volt (1 V = 1
A × 1 �).

A capacitor (figure 1B) stores charge across an insulating medium, and the
voltage across it VC = V1 − V2 is related to the charge it stores QC by

CVC = QC (75)

where C is the capacitance. Electrical current cannot cross the insulating
medium, but charges can be redistributed on each side of the capacitor,
which leads to the flow of current. We can take a time derivative of both
sides of equation 75 and use the fact that current is equal to the rate of
change of charge, IC = dQC/dt, to obtain the basic voltage-current rela-
tionship for a capacitor,V-I relation for

capacitor

C
dVC

dt
= IC . (76)

Capacitance is measured in units of farads (F) defined as the capacitance
for which one ampere of current causes a voltage change of one volt per
second (1 F × 1 V/s = 1 A).

The voltages at different points in a circuit and the currents flowing
through various circuit elements can be computed using equations 74 and
76 and rules called Kirchoff’s laws. These state that: 1) voltage differencesKirchoff’s laws
around any closed loop in a circuit must sum to zero, and 2) the sum of
all the currents entering any point in a circuit must be zero. Applying
the second of these rules to the circuit in figure 1C, we find that I1 = I2.
Ohm’s law tells us that V1 − V2 = I1R1 and V2 = I2R2. Solving these gives
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V1 = I1(R1 + R2), which tells us that resistors arranged in series add, and
V2 = V1R2/(R1 + R2), which is why this circuit is called a voltage divider.

In the circuit of figure 1D, we have added an external source passing the
current Ie. For this circuit, Kirchoff’s and Ohm’s laws tells us that Ie =
I1 + I2 = V/R1 + V/R2. This indicates how resistors add in parallel, V =
IeR1R2/(R1 + R2).

Next, we consider the electrical circuit in figure 2A, in which a resistor and
capacitor are connected together. Kirkoff’s laws require that IC + IR = 0.
Putting this together with equations 74 and 76, we find

C
dV
dt

= IC = −IR = −V
R

. (77)

Solving this, gives

V(t) = V(0)exp(−t/RC) (78)

showing the exponential decay (with time constant τ = RC) of the initial
voltage V(0) as the charge on the capacitor leaks out through the resistor.

R C R C

V V
IR IC IR IC

Ie

E

A B

Figure 2: RC circuits. A) Current IC = −IR flows in the resistor-capacitor circuit
as the stored charge is released. B) Simple passive membrane model including a
potential E and current source Ie. As in figure 1, the lined triangles represent a
ground or point of zero voltage.

Figure 2B includes two extra components needed to build a simple model
neuron, the voltage source E and the current source Ie. Using Kirchoff’s
laws, Ie − IC − IR = 0, and the equation for the voltage V is

C
dV
dt

= E − V
R

+ Ie . (79)

If Ie is constant, the solution of this equation is

V(t) = V∞ + (V(0) − V∞)exp(−t/τ) (80)

where V∞ = E + RIe and τ = RC. This shows exponential relaxation from
the initial potential V(0) to the equilibrium potential V∞ at a rate governed
by the time constant τ of the circuit.
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For the case Ie = I cos(ωt), once an initial transient has decayed to zero,
we find

V(t) = E + RI cos(ωt − φ)√
1 + ω2τ2

(81)

where tan(φ) = ωτ. Equation 81 shows that the cell membrane acts as a
low pass filter, because the higher the frequency ω of the input current, the
more the attenuation of the oscillations of the potential due to the factor
1/

√
1 + ω2τ2. The phase shift φ is an increasing function of frequency that

approaches π/2 as ω → ∞.

Probability Theory

Probability distributions and densities are discussed extensively in the
text. Here, we present a slightly more formal treatment. At the heart of
probability theory lie two sets; a sample space, � and a measure. We be-sample space

probability measure gin by considering the simplest case in which the sample space is finite. In
this case, each element ω of the full sample space � can be thought of as
one of the possible outcomes of a random process, for example one results
of rolling five dice. The measure assigns a number γω to each outcome ω,
and these must satisfy 0 ≤ γω ≤ 1 and

∑
ω γω = 1.

We are primarily interested in random variables (which are infamouslyrandom variable
neither random nor variable). A random variable is a mapping from a
random outcome ω to a space such as the space of integers. An example is
the number of ones that appear when five dice are rolled. Typically, a capi-
tal letter, such as S, is used for the random variable, and the corresponding
lower case letter, s in this case, is used for a particular value it might take.
The probability that S takes the value s is then written as P[S = s]. In the
text, we typically shorten this to P[s], but here we keep the full notation
(except in the following table). P[S = s] is determined by the measures of
the events for which S = s and takes the value

P[S = s] =
∑

ω with
S(ω)= s

γω . (82)

The notation S(ω) refers to the value of S generated by the random event
labeled by ω, and the sum is over all events for which S(ω) = s.

Some key statistics for discrete random variables include:

Quantity Definition Alias

mean 〈s〉=∑
s P[s]s s, E [S]

variance var(S) = 〈s2〉 − 〈s〉2 =∑
s P[s]s2 − 〈s〉2 σ2

s , V [S]

covariance 〈s1s2〉−〈s1〉〈s2〉=∑
s1s2

P[s1, s2]s1s2−〈s1〉〈s2〉 cov(S1, S2)
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where S1 and S2 are two random variables defined over the same sample
space. This links the two random variables, in that

P[S1 = s1, S2 = s2] =
∑

ω with
S1(ω)= s1,
S2(ω)= s2

γω , (83)

and provides a basis for them to be correlated. Means are additive,

〈s1 + s2〉 = 〈s1〉 + 〈s2〉 , (84)

but other quantities are typically not, for example

var(S1 + S2) = var(S1) + var(S2) + 2cov(S1, S2) . (85)

Two random variables are independent if P[S1 = s1, S2 = s2] = P[S1 = independence
s1]P[S2 =s2] for all s1 and s2. If S1 and S2 are independent, cov(S1, S2) = 0,
but the converse is not generally true.

Sample spaces can be infinite or uncountable. In the latter case, there are continuous
random variabletechnical complications that are discussed in the references, but all the

sums in the expressions for discrete sample spaces turn into integrals. Un-
der suitable regularity conditions, a continuous random variable S, which
is a mapping from a sample space to a continuous space such as the real
numbers, has a probability density function p[s] defined by probability density

p[s] = lim
�s→0

(
P[s ≤ S ≤ s + �s]

�s

)
. (86)

Quantities such as the mean and variance of a continuous random variable
are defined as for a discrete random variable but involve integrals over
probability densities rather than sums over probabilities.

Some commonly used discrete and continuous distributions are:

Name Range of s Probability Mean Variance

Bernoulli 0 or 1 ps(1 − p)1−s p p(1 − p)

Poisson positive integer αs exp(−α)/s! α α

Exponential s > 0 α exp(−αs) 1/α 1/α2

Gaussian −∞ < s < ∞ N [s; g,�] g �

Cauchy −∞ < s < ∞ β

π((s−α)2+β2)
α ∞

where

N (s; g,�) = 1√
2π�

exp
(
− (s − g)2

2�

)
. (87)

Here, we use � to denote the variance of the Gaussian distribution, which
is more often written as σ2. The Cauchy distribution has such heavy tails
that the integral defining its variance does not converge.
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The Gaussian distribution is particularly important because of the central
limit theorem. Consider m continuous random variables S1, S2, S3, . . . Smcentral limit

theorem that are independent and have identical distributions with finite mean g
and variance σ2. Defining

zm = 1
m

m∑
k=1

Sk , (88)

the central limit theorem states that, under rather general conditions,

lim
m→∞ P

[√
m(zm − g)

σ
≤ s

]
= 1√

2π

∫ s

−∞
dz exp(−z2/2) (89)

for every s. This means that, for large m, zm should be approximately
Gaussian distributed with mean g and variance σ2/m.
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