
Chapter 4

Information Theory

4.1 Entropy and Mutual Information

Neural encoding and decoding focus on the question: ”What does the re-
sponse of a neuron tell us about a stimulus”. In this chapter we consider
a related but different question: ”How much does the neural response tell
us about a stimulus”. The techniques of information theory allow us to
answer this question in a quantitative manner. Furthermore, we can use
them to ask what forms of neural response are optimal for conveying in-
formation about natural stimuli.

Shannon invented information theory as a general framework for quan-
tifying the ability of a coding scheme or a communication channel (such
as the optic nerve) to convey information. It is assumed that the code in-
volves a number of symbols (such as neuronal responses), and that the
coding and transmission processes are stochastic and noisy. The quanti-
ties we consider in this chapter, the entropy and the mutual information,
depend on the probabilities with which these symbols, or combinations
of them, are used. Entropy is a measure of the theoretical capacity of a
code to convey information. Mutual information measures how much of
that capacity is actually used when the code is employed to describe a par-
ticular set of data. Communication channels, if they are noisy, have only
limited capacities to convey information. The techniques of information
theory are used to evaluate these limits and find coding schemes that sat-
urate them.

In neuroscience applications, the symbols we consider are neuronal re-
sponses, and the data sets they describe are stimulus characteristics. In the
most complete analyses, which are considered at the end of the chapter, the
neuronal response is characterized by a list of action potential firing times.
The symbols being analyzed in this case are sequences of action potentials.
Computing the entropy and mutual information for spike sequences can
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2 Information Theory

be difficult because the frequency of occurrence of many different spike
sequences must be determined. This typically requires a large amount of
data. For this reason, many information theory analyses use simplified
descriptions of the response of a neuron that reduce the number of possi-
ble ‘symbols’ (i.e. responses) that need to be considered. We discuss cases
in which the symbols consist of responses described by spike-count firing
rates. We also consider the extension to continuous-valued firing rates.
Because a reduced description of a spike train can carry no more informa-
tion than the full spike train itself, this approach provides a lower bound
on the actual information carried by the spike train.

Entropy

Entropy is a quantity that, roughly speaking, measures how ‘interesting’
or ‘surprising’ a set of responses is. Suppose that we are given a set of
neural responses. If each response is identical, or if only a few different
responses appear, we might conclude that this data set is relatively un-
interesting. A more interesting set might show a larger range of different
responses, perhaps in a highly irregular and unpredictable sequence. How
can we quantify this intuitive notion of an interesting set of responses?

We begin by characterizing the responses in terms of their spike-count fir-
ing rates, i.e. the number of spikes divided by the trial duration, which can
take a discrete set of different values. The methods we discuss are based
on the probabilities P[r] of observing a response with a spike-count rate
r. The most widely used measure of entropy, due to Shannon, expresses
the ‘surprise’ associated with seeing a response rate r as a function of the
probability of getting that response, h(P[r]), and quantifies the entropy as
the average of h(P[r]) over all possible responses. The function h(P[r]),surprise
which acts as a measure of surprise, is chosen to satisfy a number of con-
ditions. First, h(P[r]) should be a decreasing function of P[r] because low
probability responses are more surprising than high probability responses.
Further, the surprise measure for a response that consists of two indepen-
dent spike counts should be the sum of the measures for each spike count
separately. This assures that the entropy and information measures we
ultimately obtain will be additive for independent sources. Suppose we
record rates r1 and r2 from two neurons that respond independently of
each other. Because the responses are independent, the probability of get-
ting this pair of responses is the product of their individual probabilities,
P[r1]P[r2], so the additivity condition requires that

h(P[r1]P[r2]) = h(P[r1]) + h(P[r2]) . (4.1)

The logarithm is the only function that satisfies such an identity for all P.
Thus, it only remains to decide what base to use for the logarithm. By con-
vention, base 2 logarithms are used so that information can be compared
easily with results for binary systems. To indicate that the base 2 logarithm
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4.1 Entropy and Mutual Information 3

is being used, information is reported in units of ‘bits’, with

h(P[r]) = − log2 P[r] . (4.2)

The minus sign makes h a decreasing function of its argument as required.
Note that information is really a dimensionless number. The bit, like the
radian for angles, is not a dimensional unit but a reminder that a particular
system is being used.

Expression (4.2) quantifies the surprise or unpredictability associated with
a particular response. Shannon’s entropy is just this measure averaged entropy
over all responses

H = −
∑

r

P[r] log2 P[r] . (4.3)

In the sum that determines the entropy, the factor h = − log2 P[r] is mul-
tiplied by the probability that the response with rate r occurs. Responses
with extremely low probabilities may contribute little to the total entropy,
despite having large h values, because they occur so rarely. In the limit
when P[r] → 0, h → ∞, but an event that does not occur does not con-
tribute to the entropy because the problematic expression −0 log2 0 is eval-
uated as −ε log2 ε in the limit ε → 0 and is zero. Very high probability re-
sponses also contribute little because they have h ≈ 0. The responses that
contribute most to the entropy have high enough probabilities so that they
appear with a fair frequency, but not high enough to make h too small.

Computing the entropy in some simple cases helps provide a feel for what
it measures. First, imagine the least interesting situation, when a neuron
responds every time by firing at the same rate. In this case, all of the prob-
abilities P[r] are zero, except for one of them which is one. This means that
every term in the sum of equation (4.3) is zero because either P[r] = 0 or
log2 1 = 0. Thus, a set of identical responses has zero entropy. Next, imag-
ine that the the neuron responds in only two possible ways, either with
rate r+ or r−. In this case, there are only two nonzero terms in equation
(4.3), and, using the fact that P[r−] = 1 − P[r+], the entropy is

H = −(1 − P[r+]) log2(1 − P[r+]) − P[r+] log2 P[r+] . (4.4)

This entropy, plotted in figure 4.1A, takes its maximum value of one bit
when P[r−] = P[r+] = 1/2. Thus, a code consisting of two equally likely
responses has one bit of entropy.

Mutual Information

To convey information about a set of stimuli, neural responses must be
different for different stimuli. Entropy is a measure of response variabil-
ity, but it does not tell us anything about the source of that variability. A
neuron can only provide information about a stimulus if its response vari-
ability is correlated with changes in that stimulus, rather than being purely
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Figure 4.1: A) The entropy of a binary code. P[r+] is the probability of a response
at rate r+ P[r−] = 1 − P[r+] is the probability of the other response, r−. The entropy
is maximum when P[r−] = P[r+] = 1/2. B) The mutual information for a binary
encoding of a binary stimulus. PX is the probability of an incorrect response being
evoked. The plot only shows PX ≤ 1/2 because values of PX > 1/2 correspond
to an encoding in which the relationship between the two responses and the two
stimuli is reversed and the error probability is 1 − PX.

random or correlated with other unrelated factors. One way to determine
whether response variability is correlated with stimulus variability is to
compare the responses obtained using a different stimulus on every trial
with those measured in trials involving repeated presentations of the same
stimulus. Responses that are informative about the identity of the stimu-
lus should exhibit larger variability for trials involving different stimuli
than for trials that use the same stimulus repetitively. Mutual information
is an entropy-based measure related to this idea.

The mutual information is the difference between the total response en-
tropy and the average response entropy on trials that involve repetitive
presentation of the same stimulus. Subtracting the entropy when the stim-
ulus does not change removes from the total entropy the contribution from
response variability that is not associated with the identity of the stimulus.
When the responses are characterized by a spike-count rate, the total re-
sponse entropy is given by equation 4.3. The entropy of the responses
evoked by repeated presentations of a given stimulus s is computed us-
ing the conditional probability P[r|s], the probability of a response at rate
r given that stimulus s was presented, instead of the response probability
P[r] in equation 4.3. The entropy of the responses to a given stimulus is
thus

Hs = −
∑

r

P[r|s] log2 P[r|s] . (4.5)

If we average this quantity over all the stimuli, we obtain a quantity called
the noise entropynoise entropy
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4.1 Entropy and Mutual Information 5

Hnoise =
∑

s

P[s]Hs = −
∑
s,r

P[s]P[r|s] log2 P[r|s] . (4.6)

This is the entropy associated with that part of the response variability that
is not due to changes in the stimulus, but arises from other sources. The
mutual information is obtained by subtracting the noise entropy from the
full response entropy, which from equations 4.3 and 4.6 gives mutual information

Im = H − Hnoise = −
∑

r

P[r] log2 P[r] +
∑
s,r

P[s]P[r|s] log2 P[r|s] . (4.7)

The probability of a response r is related to the conditional probability
P[r|s] and the probability P[s] that stimulus s is presented by the identity
(chapter 3)

P[r] =
∑

s

P[s]P[r|s] . (4.8)

Using this, and writing the difference of the two logarithms in equation 4.7
as the logarithm of the ratio of their arguments, we can rewrite the mutual
information as

Im =
∑
s,r

P[s]P[r|s] log2

(
P[r|s]
P[r]

)
. (4.9)

Recall from chapter 3 that,

P[r, s] = P[s]P[r|s] = P[r]P[s|r] (4.10)

where P[r, s] is the joint probability of stimulus s appearing and response
r being evoked. Equation 4.10 can be used to derive yet another form for
the mutual information

Im =
∑
s,r

P[r, s] log2

(
P[r, s]

P[r]P[s]

)
. (4.11)

This equation reveals that the mutual information is symmetric with re-
spect to interchange of s and r, which means that the mutual information
that a set of responses conveys about a set of stimuli is identical to the mu-
tual information that the set of stimuli conveys about the responses. To see
this explicitly, we apply equation 4.10 again to write

Im = −
∑

s

P[s] log2 P[s] +
∑
s,r

P[r]P[s|r] log2 P[s|r] . (4.12)

This result is the same as equation 4.7 except that the roles of the stimu-
lus and the response have been interchanged. Equation 4.12 shows how
response variability limits the ability of a spike train to carry information.
The second term on the right side, which is negative, is the average uncer-
tainty about the identity of the stimulus given the response, and reduces
the total stimulus entropy represented by the first term.
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6 Information Theory

To provide some concrete examples, we compute the mutual information
for a few simple cases. First, suppose that the responses of the neuron
are completely unaffected by the identity of the stimulus. In this case,
P[r|s] = P[r], and from equation 4.9 it follows immediately that Im = 0. At
the other extreme, suppose that each stimulus s produces a unique and
distinct response rs. Then, P[rs]= P[s] and P[r|s]=1 if r= rs and P[r|s]=0
otherwise. This causes the sum over r in equation 4.9 to collapse to just
one term, and the mutual information becomes

Im =
∑

s

P[s] log2

(
1

P[rs]

)
= −

∑
s

P[s] log2 P[s] . (4.13)

The last expression, which follows from the fact that P[rs] = P[s], is the en-
tropy of the stimulus. Thus, with no variability and a one-to-one map from
stimulus to response, the mutual information is equal to the full stimulus
entropy.

Finally, imagine that there are only two possible stimulus values, which
we label + and −, and that the neuron responds with just two rates, r+ and
r−. We associate the response r+ with the + stimulus, and the response r−
with the − stimulus, but the encoding is not perfect. The probability of an
incorrect response is PX, meaning that for the correct responses P[r+|+] =
P[r−|−] = 1 − PX, and for the incorrect responses P[r+|−] = P[r−|+] = PX.
We assume that the two stimuli are presented with equal probability so
that P[r+] = P[r−] = 1/2 which, from equation 4.4, makes the full response
entropy one bit. The noise entropy is −(1 − PX) log2(1 − PX) − PX log2 PX.
Thus, the mutual information is

Im = 1 + (1 − PX) log2(1 − PX) + PX log2 PX . (4.14)

This is plotted in figure 4.1B. When the encoding is error free (PX = 0),
the mutual information is one bit, which is equal to both the full response
entropy and the stimulus entropy. When the encoding is random (PX =
1/2), the mutual information goes to zero.

It is instructive to consider this example from the perspective of decoding.
We can think of the neuron as being a communication channel that reports
noisily on the stimulus. From this perspective, we want to know the prob-
ability that a + was presented given that the response r+ was recorded. By
Bayes theorem, this is P[+|r+] = P[r+|+]P[+]/P[r+] = 1 − PX. Before the
response is recorded, the prior expectation was that + and − were equally
likely. If the response r+ is recorded, this expectation changes to 1 − PX.
The mutual information measures the corresponding reduction in uncer-
tainty, or equivalently, the tightening of the posterior distribution due to
the response.

The mutual information is related to a measure used in statistics called
the Kullback-Leibler (KL) divergence. The KL divergence between oneKL divergence
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4.1 Entropy and Mutual Information 7

probability distribution P[r] and another distribution Q[r] is

DKL(P, Q) =
∑

r

P[r] log2

(
P[r]
Q[r]

)
. (4.15)

The KL divergence has a property normally associated with a distance
measure, DKL(P, Q) ≥ 0 with equality if and only if P= Q (proven in ap-
pendix A). However, unlike a distance, it is not symmetric with respect to
interchange of P and Q. Comparing the definition 4.15 with equation 4.11,
we see that the mutual information is the KL divergence between the dis-
tributions P[r, s] and P[r]P[s]. If the stimulus and the response were inde-
pendent of each other, P[r, s] would be equal to P[r]P[s]. Thus, the mutual
information is the KL divergence between the actual probability distribu-
tion P[r, s], and the value it would take if the stimulus and response were
independent. The fact that DKL ≥ 0 proves that the mutual information
cannot be negative. In addition, it can never be larger than either the full
response entropy or the entropy of the stimulus set.

Entropy and Mutual Information for Continuous Variables

Up to now we have characterized neural responses using discrete spike-
count rates. As in chapter 3, it is often convenient to treat these rates in-
stead as continuous variables. There is a complication associated with en-
tropies that are defined in terms of continuous response variables. If we
could measure the value of a continuously defined firing rate with unlim-
ited accuracy, it would be possible to convey an infinite amount of infor-
mation using the endless sequence of decimal digits of this single variable.
Of course, practical considerations always limit the accuracy with which a
firing rate can be measured or conveyed.

To define the entropy associated with a continuous measure of a neural
response, we must include some limit on the measurement accuracy. The
effects of this limit typically cancel in computations of mutual information
because these involve taking differences between two entropies. In this
section, we show how entropy and mutual information are computed for
responses characterized by continuous firing rates. For completeness, we
also treat the stimulus parameter s as a continuous variable. This means
that the probability P[s] is replaced by the probability density p[s], and
sums over s are replaced by integrals.

For a continuously defined firing rate, the probability of the firing rate
lying in the range between r and r +	r, for small 	r, is expressed in terms
of a probability density as p[r]	r. Summing over discrete bins of size 	r
we find, by analogy with equation (4.3),

H = −
∑

p[r]	r log2(p[r]	r) (4.16)

= −
∑

p[r]	r log2 p[r] − log2 	r .
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To extract the last term we have expressed the logarithm of a product as
the sum of two logarithms and used the fact the the sum of the response
probabilities is one. We would now like to take the limit 	r → 0 but we
cannot because the log2 	r term diverges in this limit. This divergence
reflects the fact that a continuous variable measured with perfect accuracy
has infinite entropy. However, for reasonable (i.e. Riemann integrable)
p[r], everything works out fine for the first term because the sum becomes
an integral in the limit 	r → 0. In this limit, we can writecontinuous entropy

lim
	r→0

{
H + log2 	r

} = −
∫

dr p[r] log2 p[r] . (4.17)

	r is best thought of as a limit on the resolution with which the firing
rate can be measured. Unless this limit is known, the entropy of a prob-
ability density for a continuous variable can only be determined up to an
additive constant. However, if two entropies computed with the same res-
olution are subtracted, the troublesome term involving 	r cancels and we
can proceed without knowing its precise value. All of the cases where we
use equation 4.17 are of this form. The integral on the right side of equa-
tion 4.17 is sometimes called the differential entropy.

The noise entropy, for a continuous variable like the firing rate, can be
written in a manner similar to the response entropy 4.17, except that the
conditional probability density p[r|s] is usedcontinuous noise

entropy
lim

	r→0

{
Hnoise + log2 	r

} = −
∫

ds
∫

dr p[s]p[r|s] log2 p[r|s] . (4.18)

The mutual information is the difference between the expression in equa-
tion 4.17 and 4.18,continuous mutual

information
Im =

∫
ds

∫
dr p[s]p[r|s] log2

(
p[r|s]
p[r]

)
. (4.19)

Note that the factor of log2 	r has canceled in the expression for the mu-
tual information because both entropies were evaluated at the same reso-
lution.

In chapter 3, we described the Fisher information as a local measure of
how tightly the responses determine the stimulus. The Fisher informa-
tion is local because it depends on the expected curvature of the likelihood
P[r|s] (typically for the responses of many cells) evaluated at the true stim-
ulus value. The mutual information is a global measure in the sense that
it depends on the average overall uncertainty in the decoding distribution
P[s|r], including values of s both close and far from the true stimulus. If
the decoding distribution P[s|r] has a single peak about the true stimulus,
the Fisher information and the mutual information are closely related. In
particular, for large numbers of neurons, the maximum likelihood estima-
tor tends to have a Gaussian distribution, as discussed in chapter 3. In this
case, the mutual information between stimulus and response is essentially,
up to an additive constant, the logarithm of the Fisher information.
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4.2 Information and Entropy Maximization 9

4.2 Information and Entropy Maximization

Entropy and mutual information are useful quantities for characterizing
the nature and efficiency of neural encoding and selectivity. Often, in ad-
dition to such characterizations, we seek to understand the computational
implications of an observed response selectivity. For example, we might
ask whether neural responses to natural stimuli are optimized to convey as
much information as possible. This hypothesis can be tested by computing
the response characteristics that maximize the mutual information con-
veyed about naturally occurring stimuli and comparing the results with
responses observed experimentally.

Because the mutual information is the full response entropy minus the
noise entropy, maximizing the information involves a compromise. We
must make the response entropy as large as possible without allowing the
noise entropy to get too big. If the noise entropy is small, which means
that the mutual information is limited by the resolution with which the
response can be read out rather than by extraneous sources of noise, max-
imizing the response entropy, subject to an appropriate constraint, maxi-
mizes the mutual information to a good approximation. We therefore be-
gin our discussion by studying how response entropy can be maximized.
Later in the discussion, we will consider the effects of noise entropy.

Constraints play a crucial role in this analysis. We have already seen that
the theoretical information carrying capacity associated with a continuous
firing rate is limited only by the resolution with which the firing rate can be
defined. Even with a finite resolution, a firing rate could convey an infinite
amount of information if it could take arbitrarily high values. Thus, we
must impose some constraint that limits the firing rate to a realistic range.
Possible constraints include limiting the maximum allowed firing rate or
holding the average firing rate or its variance fixed.

Entropy Maximization for a Single Neuron

To maximize the response entropy we must find a probability density p[r]
that makes the integral in equation 4.17 as large as possible while satis-
fying whatever constraints we impose. During the maximization process,
the resolution 	r is held fixed, so the log2 	r term remains constant, and
it can be ignored. As a result, it will not generally appear in the following
equations. One constraint that always applies in entropy maximization is
that the integral of the probability density must be one. Suppose that the
neuron in question has a maximum firing rate of rmax. Then, the integrals
in question extend from 0 to rmax. To find the p[r] producing the maximum
entropy, we must maximize

−
∫ rmax

0
dr p[r] log2 p[r] (4.20)
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10 Information Theory

subject to the constraint ∫ rmax

0
dr p[r] = 1 . (4.21)

The result is that the probability density that maximizes the entropy sub-
ject to this constraint is a constant,

p[r] = 1
rmax

, (4.22)

independent of r. The entropy for this probability density is

H = log2 rmax − log2 	r = log2

( rmax

	r

)
. (4.23)

Note that the factor 	r, expressing the resolution for firing rates makes the
argument of the logarithm dimensionless.

Equation 4.22 is the basis of a signal processing technique called histogramhistogram
equalization equalization. Applied to neural responses, this is a procedure for tailoring

the neuronal selectivity so that p[r] = 1/rmax in response to a set of stimuli
over which the entropy is to be maximized. Suppose a neuron responds
to a stimulus characterized by the parameter s by firing at a rate r= f (s),
where f (s) is the response tuning curve. For small 	s, the probability
that the continuous stimulus variable falls in the range between s and s +
	s is given in terms of the stimulus probability density by p[s]	s. This
produces a response that falls in the range between f (s + 	s) and f (s).
If the response probability density takes its optimal value, p[r] = 1/rmax,
the probability that the response falls within this range is | f (s + 	s) −
f (s)|/rmax. Setting these two probabilities equal to each other, we find that
| f (s + 	s) − f (s)|/rmax = p[s]	s. Consider the case of a monotonically
increasing response so that f (s + 	s) > f (s) for positive 	s. Then, in the
limit 	s → 0, the condition becomes

df
ds

= rmax p[s] (4.24)

which has the solution

f (s) = rmax

∫ s

smin

ds′ p[s′] (4.25)

where smin is the minimum value of s, which is assumed to generate no
response. Thus, entropy maximization requires that the tuning curve of
the responding neuron be proportional to the integral of the probability
density of the stimulus.

Laughlin (1981) has provided evidence that responses of the large monopo-
lar cell (LMC) in the visual system of the fly satisfy the entropy maximiz-
ing condition. The LMC responds to contrast, and Laughlin measured the
probability distribution of contrasts of natural scenes in habitats where the
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Figure 4.2: Contrast response of the fly LMC (data points) compared to the in-
tegral of the natural contrast probability distribution (solid curve). The relative
response is the amplitude of the membrane potential fluctuation produced by the
onset of a light or dark image with a given level of contrast divided by the max-
imum response. Contrast is defined relative to the background level of illumina-
tion, Ib, as (I − Ib)/Ib. (Adapted from Laughlin, 1981.)

flies he studied live. The solid curve in figure 4.2 is the integral of this mea-
sured distribution. The data points in figure 4.2 are LMC responses as a
function of contrast. These responses are measured as membrane poten-
tial fluctuation amplitudes, not as firing rates, but the analysis presented
above applies equally to this case. As figure 4.2 indicates, the response
tuning curve as a function of contrast is very close to the integrated prob-
ability density, suggesting that the LMC is using a maximum entropy en-
coding.

Even though neurons have maximum firing rates, the constraint r ≤ rmax
may not always be the factor that limits the entropy. For example, the aver-
age firing rate of the neuron may be constrained to values much less than
rmax, or the variance of the firing rate might be constrained. The reader is
invited to show that the entropy maximizing probability density if the av-
erage firing rate is constrained to a fixed value is an exponential. A related
calculation shows that the probability density that maximizes the entropy
subject to constraints on the firing rate and its variance is a Gaussian.

Populations of Neurons

When a population of neurons encodes a stimulus, optimizing their indi-
vidual response properties will not necessarily lead to an optimized popu-
lation response. Optimizing individual responses could result in a highly
redundant population representation in which different neurons encode
the same information. Entropy maximization for a population requires
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that the neurons convey independent pieces of information, i.e. they must
have different response selectivities. Let the vector r with components ra

for a = 1,2, . . . , N denote the firing rates for a population of N neurons,
measured with resolution 	r. If p[r] is the probability of evoking a pop-
ulation response characterized by the vector r, the entropy for the entire
population response is

H = −
∫

dr p[r] log2 p[r] − N log2 	r . (4.26)

Along with the full population entropy of Equation 4.26, we can also con-
sider the entropy associated with individual neurons within the popula-
tion. If p[ra] = ∫ ∏

b �=a drb p[r] is the probability density for response ra

from neuron a, its entropy is

Ha = −
∫

dra p[ra] log2 p[ra] − log2 	r = −
∫

dr p[r] log2 p[ra] − log2 	r .

(4.27)

The true population entropy can never be greater than the sum of these
individual neuron entropies over the entire population,

H ≤
∑

a

Ha . (4.28)

To prove this, we note that the difference between the full entropy and the
sum of individual neuron entropies is

∑
a

Ha − H =
∫

dr p[r] log2

(
p[r]∏

a pa[ra]

)
≥ 0 . (4.29)

The inequality follows from the fact that the middle expression is the KL
divergence between the probability distributions p[r] and

∏
a p[ra], and a

KL divergence is always non-negative. Equality holds only if

p[r] =
∏

a

p[ra] , (4.30)

i.e. the responses of the neurons are statistically independent. Thus, the
full response entropy is never greater than the sum of the entropies of
the individual neurons in the population, and it reaches the limiting value
when equation 4.30 is satisfied. A code that satisfies this condition is calledfactorial code
a factorial code because the probability factorizes into a product of single
neuron probabilities. The entropy difference in equation 4.29 has been
suggested as a measure of redundancy. When the population response
probability density factorizes, this implies that the individual neurons re-
spond independently.

Combining this result with the results of the previous section, we con-
clude that the maximum population response entropy can be achieved
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by satisfying two conditions. First, the individual neurons must respond
independently, i.e. p[r] = ∏

a p[ra] must factorize. Second, they must allfactorization
have response probabilities that are optimal for whatever constraints are
imposed, for example flat, exponential, or Gaussian. If the same con-
straint is imposed on every neuron, the second condition implies that
every neuron must have the same response probability density. In other
words p[ra] must be the same for all a values, a property called probability
equalization. This does not imply that all the neurons respond identically probability

equalizationto every stimulus. Indeed, the conditional probabilities p[ra|s] must be dif-
ferent for different neurons if they are to act independently. We proceed
by considering factorization and probability equalization as general prin-
ciples of entropy maximization, without imposing explicit constraints.

Exact factorization and probability equalization are difficult to achieve,
especially if the form of the neural response is restricted. These goals are
likely to be impossible to achieve, for example, if the neural responses are
modeled as having a linear relation to the stimulus. A more modest goal
is to require that the lowest order moments of the population response
probability distribution match those of a fully factorized and equalized
distribution. If the individual response probability distributions are equal,
the average firing rates and firing rate variances will be the same for all
neurons, 〈ra〉 = 〈r〉 and 〈(ra − 〈r〉)2〉 = σ2

r for all a. The covariance matrix
for a factorized and probability equalized population distribution is thus
proportional to the identity matrix,

Qab =
∫

dr p[r](ra − 〈r〉)(rb − 〈r〉) = σ2
r δab . (4.31)

Finding response distributions that satisfy only the decorrelation and vari- decorrelation and
variance

equalization
ance equalization condition of equation 4.31 is usually tractable. In the fol-
lowing examples, we will restrict ourselves to this easier task. This max-
imizes the entropy only if the statistics of the responses are Gaussian, but
it is a reasonable procedure even in a non-Gaussian case, because it typi-
cally reduces the redundancy in the population code and spreads the load
of information transmission equally among the neurons.

Application to Retinal Ganglion Cell Receptive Fields

Entropy and information maximization have been used to explain proper-
ties of visual receptive fields in the retina, LGN, and primary visual cor-
tex. The basic assumption is that these receptive fields serve to maximize
the amount of information that the associated neural responses convey
about natural visual scenes in the presence of noise. Information theoret-
ical analyses are sensitive to the statistical properties of the stimuli being
represented, so the statistics of natural scenes play an important role in
these studies. Natural scenes exhibit substantial spatial and temporal re-
dundancy. Maximizing the information conveyed requires removing this
redundancy from the neural responses.

Draft: December 17, 2000 Theoretical Neuroscience



14 Information Theory

It should be kept in mind that the information maximization approach
sets limited goals and requires strong assumptions about the nature of the
constraints relevant to the nervous system. In addition, the approach only
analyzes the representational properties of neural responses and ignores
the computational goals of the visual system, such as object recognition
or target tracking. Finally, maximizing other measures of performance,
different from the mutual information, may give similar results. Never-
theless, the principal of information maximization is quite successful at
accounting for properties of receptive fields early in the visual pathway.

In chapter 2, a visual image was defined by a contrast function s(x, y, t)
with an average value over trials of zero. For the calculations we present
here, it is more convenient to express the x and y coordinates for locations
on the viewing screen in terms of a single vector �x = (x, y), or sometimes
�y = (x, y). Using this notation, the linear estimate of the response of a
visual neuron discussed in chapter 2 can be written as

L(t) =
∫ ∞

0
dτ

∫
d�x D(�x, τ)s(�x, t − τ) . (4.32)

If the space-time receptive field D(�x, τ) is separable, D(�x, τ) = Ds(�x)Dt(τ)

and we can rewrite L(t) as the product of integrals involving temporal
and spatial filters. To keep the notation simple, we assume that the stimu-
lus can also be separated, so that s(�x, t) = ss(�x)st(t). Then, L(t) = LsLt(t)
where

Ls =
∫

d�x Ds(�x)ss(�x) (4.33)

and

Lt(t) =
∫ ∞

0
dτ Dt(τ)st(t − τ) . (4.34)

In the following, we analyze the spatial and temporal components, Ds and
Dt, separately by considering the information carrying capacity of Ls and
Lt. We study the spatial receptive fields of retinal ganglion cells in this sec-
tion, and the temporal response properties of LGN cells in the next. Later,
we discuss the application of information maximization ideas to primary
visual cortex.

To derive appropriately optimal spatial filters, we consider an array of
retinal ganglion cells with receptive fields covering a small patch of the
retina. We assume that the statistics of the input are spatially (and tem-
porally) stationary or translation invariant. This means that all locations
and directions in space (and all times), at least within the patch we con-
sider, are equivalent. This equivalence allows us to give all of the receptive
fields the same spatial structure, with the receptive fields of different cells
merely being shifted to different points within the visual field. As a result,
we write the spatial kernel describing a retinal ganglion cell with receptive
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4.2 Information and Entropy Maximization 15

field centered at the point �a as Ds(�x − �a). The linear response of this cell is
then

Ls(�a) =
∫

d�x Ds(�x − �a)ss(�x) . (4.35)

Note that we are labeling the neurons by the locations �a of the centers of
their receptive fields rather than by an integer index such as i. This is a
convenient labeling scheme that allows sums over neurons to be replaced
by sums over parameters describing their receptive fields. The vectors
�a for the different neurons take on discrete values corresponding to the
different neurons in the population. If many neurons are being considered,
these discrete vectors may fill the range of receptive field locations quite
densely. In this case, it is reasonable to approximate the large but discrete
set of �a values, with a vector �a that is allowed to vary continuously. In
other words, as an approximation, we proceed as if there were a neuron
corresponding to every continuous value of �a. This allows us to treat L(�a)
as a function of �a and to replace sums over neurons with integrals over
�a. In the case we are considering, the receptive fields of retinal ganglion
cells cover the retina densely, with many receptive fields overlapping each
point on the retina, so the replacement of discrete sums over neurons with
continuous integrals over �a is quite accurate.

The Whitening Filter

We will not attempt a complete entropy maximization for the case of reti-
nal ganglion cells, but rather will follow the approximate procedure of
setting the correlation matrix between different neurons within the pop-
ulation proportional to the identity matrix (equation 4.31). The relevant
correlation, in this case, is the average over all stimuli of the product of the
linear responses of two cells, one with receptive field centered at �a and the
other at �b,

QLL(�a, �b) = 〈Ls(�a)Ls(�b)〉 =
∫

d�xd�y Ds(�x − �a)Ds(�y − �b)〈ss(�x)ss(�y)〉 .

(4.36)

The average here, denoted by angle brackets, is not over trials but over the
set of natural scenes for which we believe the receptive field is optimized.
By analogy with equation 4.31, decorrelation and variance equalization of
the different retinal ganglion cells, when �a and �b are taken to be continuous
variables, require that we set this correlation function proportional to a δ

function,

QLL(�a, �b) = σ2
Lδ(�a − �b) . (4.37)

This is the continuous variable analog of making a discrete correlation ma-
trix proportional to the identity matrix (equation 4.31). The δ function with
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vector arguments is only non-zero when all of the components of �a and �b
are identical.

The quantity 〈ss(�x)ss(�y)〉 in equation 4.36 is the correlation function of the
stimulus averaged over natural scenes. Our assumption of homogeneity
implies that this quantity is only a function of the vector difference �x − �y
(actually, if all directions are equivalent, it is only a function of the magni-
tude |�x − �y|), and we write it as

Qss(�x − �y) = 〈ss(�x)ss(�y)〉 . (4.38)

To determine the form of the receptive field filter that is optimal, we must
solve equation 4.37 for Ds. This is done by expressing Ds and Qss in terms
of their Fourier transforms D̃s and Q̃ss,

Ds(�x − �a) = 1
4π2

∫
d�k exp

(
−i�k · (�x − �a)

)
D̃s(�k) (4.39)

Qss(�x − �y) = 1
4π2

∫
d�k exp

(
−i�k · (�x − �y)

)
Q̃ss(�k) . (4.40)

Q̃ss, which is real and non-negative, is also called the stimulus power spec-
trum (see chapter 1). In terms of these Fourier transforms, equation 4.37
becomes

|D̃s(�k)|2Q̃ss(�k) = σ2
L (4.41)

from which we find

|D̃s(�k)| = σL√
Q̃ss(�k)

. (4.42)

The linear kernel described by equation 4.42 exactly compensates forwhitening filter
whatever dependence the Fourier transform of the stimulus correlation
function has on the spatial frequency �k such that the product Q̃ss(�k)|D̃s(�k)|2
is independent of �k. This product is the power spectrum of L. The out-
put of the optimal filter has a power spectrum that is independent of spa-
tial frequency, and therefore has the same characteristics as white noise.
Therefore, the kernel in equation 4.42 is called a whitening filter. Differ-
ent spatial frequencies act independently in a linear system, so decorrela-
tion and variance equalization require them to be utilized at equal signal
strength. The calculation we have performed only determines the ampli-
tude |D̃s(�k)| and not D̃s(�k) itself. Thus, decorrelation and variance equal-
ization do not uniquely specify the form of the linear kernel. We study
some consequences of the freedom to choose different linear kernels satis-
fying equation 4.42 later in the chapter.

The spatial correlation function for natural scenes has been measured,
with the result that Q̃ss(�k) is proportional to 1/|�k|2 over the range it has
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4.2 Information and Entropy Maximization 17

been evaluated. The behavior near �k = 0 is not well established, but the
divergence of 1/|�k|2 near �k = 0 can be removed by setting Q̃ss(�k) propor-
tional to 1/(|�k|2 + k2

0) where k0 is a constant. The stimuli of interest in the
calculation of retinal ganglion receptive fields are natural images as they
appear on the retina, not in the photographs from which the natural scenes
statistics are measured. An additional factor must be included in Q̃ss(�k) to
account for filtering introduced by the optics of the eye (the optical modu-
lation transfer function). A simple model of the optical modulation trans-
fer function results in an exponential correction to the stimulus correlation optical modulation

transfer functionfunction

Q̃ss(�k) ∝ exp(−α|�k|)
|�k|2 + k2

0

. (4.43)

Putting this into equation 4.42 gives a rather peculiar result; the ampli-
tude |D̃s(�k)|, being proportional to the inverse of the square root of Q̃ss, is
predicted to grow exponentially for large |�k|. Whitening filters maximize
entropy by equalizing the distribution of response power over the entire
spatial frequency range. High spatial frequency components of images are
relatively rare in natural scenes and, even as they occur, are greatly atten-
uated by the eye. The whitening filter compensates for this by boosting
the responses to high spatial frequencies. Although this is the result of
the entropy maximization calculation, it is not a good strategy to use in
an unrestricted way for visual processing. Real inputs to retinal ganglion
cells involve a mixture of true signal and noise coming from biophysical
sources in the retina. At high spatial frequencies, for which the true sig-
nal is weak, inputs to retinal ganglion cells are likely to be dominated by
noise, especially in low-light conditions. Boosting the amplitude of this
noise-dominated input and transmitting it to the brain is not an efficient
visual encoding strategy.

The problem of excessive boosting of responses at high spatial frequency
arises in the entropy maximization calculation because no distinction has
been made between the entropy coming from true signals and that coming
from noise. To correct this problem, we should maximize the information
transmitted by the retinal ganglion cells about natural scenes, rather than
maximize the entropy. A full information maximization calculation of the
receptive field properties of retinal ganglion cells can be performed, but
this requires introducing a number of assumptions about the constraints
that are relevant, and it is not entirely obvious what these constraints
should be. Instead, we will follow an approximate procedure that pre-
filters the input to eliminate as much noise as possible, and then uses the
results of this section to maximize the entropy of a linear filter acting on
the pre-filtered input signal.
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Filtering Input Noise

Suppose that the visual stimulus on the retina is the sum of the true stim-
ulus ss(�x) that should be conveyed to the brain and a noise term η(�x) that
reflects image distortion, photoreceptor noise, and other signals that are
not worth conveying beyond the retina. To deal with such a mixed input
signal, we express the Fourier transform of the linear kernel D̃s(�k) as a
product of two terms, a noise filter, D̃η(�k), that eliminates as much of the
noise as possible, and a whitening filter, D̃w(�k), that satisfies equation 4.42.
The Fourier transform of the complete filter is then D̃s(�k) = D̃w(�k)D̃η(�k).

To determine the form of the noise filter, we demand that when it is ap-
plied to the total input ss(�x) + η(�x), the result is as close to the signal part
of the input, ss(�x), as possible. As in the previous section, it is easiest
to perform the necessary calculations in the Fourier-transformed spatial
frequency domain. Thus, we express the difference between the filtered
input and the true signal in terms of the Fourier transforms of the signal
and noise, s̃(�k) and η̃(�k). The Fourier transform of the output of the noise
filter is D̃η(�k)(s̃(�k)+ η̃(�k)), and we want to make this as close as possible to
the Fourier transform of the pure signal, s̃(�k). To do this, we minimize the
integral over �k of the squared amplitude of the difference between these
two quantities, averaged over natural scenes,〈∫

d�k
∣∣∣D̃η(�k)

(
s̃(�k) + η̃(�k)

)
− s̃(�k)

∣∣∣2
〉

. (4.44)

Note that the squared amplitude of a complex quantity such as s̃(�k) is∣∣∣s̃(�k)
∣∣∣2 = s̃(�k)s̃∗(�k) where s̃∗(�k) is the complex conjugate of s̃(�k). Setting

the derivative of equation 4.44 with respect to D̃∗
η(

�k′) to zero gives∫
d�k D̃η(�k)

(〈
s̃(�k)s̃∗(�k′)

〉
+

〈
η̃(�k)η̃∗(�k′)

〉)
=

∫
d�k

〈
s̃(�k)s̃∗(�k′)

〉
. (4.45)

In evaluating this expression, we have assumed that the signal and noise
terms are uncorrelated so that 〈s̃(�k)η̃∗(�k′)〉 = 〈η̃(�k)s̃∗(�k′)〉 = 0. The re-
maining averages are related to the Fourier transforms of the stimulus-
stimulus and noise-noise correlation functions (assuming spatial station-
arity in both the stimulus and the noise) by the identities

〈s̃(�k)s̃∗(�k′)〉 = Q̃ss(�k)δ(�k − �k′) and 〈η̃(�k)η̃∗(�k′)〉 = Q̃ηη(�k)δ(�k − �k′) . (4.46)

Substituting these expressions into equation 4.45 gives

D̃η(�k)
(

Q̃ss(�k) + Q̃ηη(�k)
)

= Q̃ss(�k) , (4.47)

which has the solutionnoise filter

Peter Dayan and L.F. Abbott Draft: December 17, 2000



4.2 Information and Entropy Maximization 19

D̃η(�k) = Q̃ss(�k)

Q̃ss(�k) + Q̃ηη(�k)
. (4.48)

This determines both the phase and magnitude of the noise filter. Because
the noise filter is designed so that its output matches the signal as closely
as possible, we make the approximation of using the same whitening filter
as before (equation 4.42). Combining the two, we find that

|D̃s(�k)| ∝ σL

√
Q̃ss(�k)

Q̃ss(�k) + Q̃ηη(�k)
. (4.49)
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Figure 4.3: Receptive field properties predicted by entropy maximization and
noise suppression of responses to natural images. A) The amplitude of the pre-
dicted Fourier-transformed linear filters for low (solid curve) and high (dashed
curve) input noise. |D̃s(�k)| is plotted relative to its maximum value. B) The lin-
ear kernel as a function of the distance from the center of the receptive field for
low (solid curve) and high (dashed curve) input noise. Note the center-surround
structure at low noise. D̃s(�k) is taken to be real, and Ds(|�x|) is plotted relative to
its maximum value. Parameter values used were α = 0.16 cycles/degree, k0 = 0.16
cycles/degree, and Q̃ηη/Q̃ss(0) = 0.05 for the low-noise case and 1 for the high-
noise case.

Linear kernels resulting from equation 4.49 using equation 4.43 for the
stimulus correlation function are plotted in figure 4.3. For this figure, we
have assumed that the input noise is white so that Q̃ηη is independent
of �k. Both the amplitude of the Fourier transform of the kernel (figure
4.3A), and the actual spatial kernel Ds(�x) (figure 4.3B) are plotted under
conditions of low and high noise. The linear kernels in figure 4.3B have
been constructed by assuming that D̃s(�k) satisfies equation 4.49 and is real,
which minimizes the spatial extent of the resulting receptive field. The
resulting function Ds(�x) is radially symmetric so it only depends on the
distance |�x| from the center of the receptive field to the point �x, and this
radial dependence is plotted in figure 4.3B. Under low noise conditions
(solid lines in figure 4.3), the linear kernel has a bandpass character and the
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predicted receptive field has a center-surround structure, which matches
the retinal ganglion receptive fields shown in chapter 2. This structure
eliminates one major source of redundancy in natural scenes; the strong
similarity of neighboring inputs owing to the predominance of low spatial
frequencies in images.

When the noise level is high (dashed lines in figure 4.3), the structure of
the optimal receptive field is different. In spatial frequency terms, the filter
is now low-pass, and the receptive field loses its surround. This structure
averages over neighboring pixels to extract the true signal obscured by the
uncorrelated noise. In the retina, we expect the signal-to-noise ratio to be
controlled by the level of ambient light, with low levels of illumination cor-
responding to the high noise case. The predicted change in the receptive
fields at low illumination (high noise) matches what actually happens in
the retina. At low light levels, circuitry changes within the retina remove
the opposing surrounds from retinal ganglion cell receptive fields.

Temporal Processing in the LGN

Just as many aspects of the visual world vary gradually across space, nat-
ural images also tend to change slowly over time. This means that there is
substantial redundancy in the succession of natural images, suggesting an
opportunity for efficient temporal filtering to complement efficient spatial
filtering. An analysis similar to that of the previous section can be per-
formed to account for the temporal receptive fields of visually responsive
neurons early in the visual pathway. Recall that the predicted linear tem-
poral response is given by Lt(t) as expressed in equation 4.34. The analog
of equation 4.37 for temporal decorrelation and variance equalization is

〈Lt(t)Lt(t′)〉 = σ2
Lδ(t − t′) . (4.50)

This is mathematically identical to equation 4.37 except that the role of
the spatial variables �a and �b has been replaced by the temporal variables
t and t′. The analysis proceeds exactly as above and the optimal filter is
the product of a noise filter and a temporal whitening filter as before. The
temporal linear kernel Dt(τ) is written in terms of its Fourier transform

Dt(τ) = 1
2π

∫
dω exp(−iωτ)D̃t(ω) (4.51)

and D̃t(ω) is given by an equation similar to 4.49,

|D̃t(ω)| ∝ σL

√
Q̃ss(ω)

Q̃ss(ω) + Q̃ηη(ω)
. (4.52)

In this case, Q̃ss(ω) and Q̃ηη(ω) are the power spectra of the signal and the
noise in the temporal domain.
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Figure 4.4: A) Predicted (curve) and actual (diamonds) selectivity of an LGN cell
as a function of temporal frequency. The predicted curve is based on the optimal
linear filter D̃t(ω) with ω0 = 5.5 Hz. B) Causal, minimum phase, temporal form of
the optimal filter. (Adapted from Dong and Atick, 1995; data in A from Saul and
Humphrey, 1990.)

Dong and Atick (1995) analyzed temporal receptive fields in the LGN in
this way under the assumption that a substantial fraction of the tempo-
ral redundancy of visual stimuli is removed in the LGN rather than in
the retina. They determined that the temporal power spectrum of natural
scenes has the form

Q̃ss(ω) ∝ 1
ω2 + ω2

0

(4.53)

where ω0 is a constant. The resulting filter, in both the temporal frequency
and time domains, is plotted in figure 4.4. Figure 4.4A shows the predicted
and actual frequency responses of an LGN cell. This is similar to the plot
in figure 4.3A except that the result has been normalized to a realistic re-
sponse level so that it can be compared with data. Because the optimiza-
tion procedure only determines the amplitude of the Fourier transform of
the linear kernel, Dt(τ) is not uniquely specified. To uniquely specify the
temporal kernel we require it to be causal (Dt(τ) = 0 for τ < 0) and im-
pose a technical condition known as minimum phase, which assures that
the output changes as rapidly as possible when the stimulus varies. Fig-
ure 4.4B shows the resulting form of the temporal filter. The space-time
receptive fields shown in chapter 2 tend to change sign as a function of τ.
The temporal filter in figure 4.4B has exactly this property.

An interesting test of the notion of optimal coding was carried out by Dan,
Atick, and Reid (1996). They used both natural scene and white-noise
stimuli while recording cat LGN cells. Figure 4.5A shows the power spec-
tra of spike trains of cat LGN cells in response to natural scenes (the movie
Casablanca), and figure 4.5B shows power spectra for white-noise stimuli.
The power spectra of the responses to natural scenes are quite flat above
about ω = 3 Hz. In response to white noise, on the other hand, they rise
with ω. This is exactly what we would expect if LGN cells are acting as
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Figure 4.5: A) Power spectra of the spike trains of 51 cat LGN cells in response
to presentation of the movie Casablanca, normalized to their own values between 5
and 6 Hz. B) Equivalently normalized power spectra of the spike trains of 75 LGN
cells in response to white-noise stimuli. (Adapted from Dan et al., 1996.)

temporal whitening filters. In the case of natural stimuli, the whitening
filter evenly distributes the output power over a broad frequency range.
Responses to white-noise stimuli increase at high frequencies due to the
boosting of inputs at these frequencies by the whitening filter.

Cortical Coding

Computational concerns beyond mere linear information transfer are
likely to be relevant at the level of cortical processing of visual images.
For one thing, the primary visual cortex has many more neurons than the
LGN, yet they can collectively convey no more information about the vi-
sual world than they receive. As we saw in chapter 2, neurons in primary
visual cortex are selective for quantities such as spatial frequency and ori-
entation that are of particular importance in relation to object recognition
but not for information transfer. Nevertheless, the methods described in
the previous section can be used to understand restricted aspects of re-
ceptive fields of neurons in primary visual cortex, namely the way that
the multiple selectivities are collectively assigned. For example, cells that
respond best at high spatial frequencies tend to respond more to low tem-
poral frequency components of images, and vice-versa.

The stimulus power spectrum written as a function of both spatial and
temporal frequency has been estimated as

Qss(�k, ω) ∝ 1

|�k|2 + α2ω2
(4.54)

where α = 0.4 cycle seconds/degree. This correlation function decreases
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Figure 4.6: Dependence of temporal frequency tuning on preferred spatial fre-
quency for space-time receptive fields derived from information maximization
in the presence of noise. The curves show a transition from partial whitening
in temporal frequency for low preferred spatial frequency (solid curve, 0.5 cy-
cles/degree) to temporal summation for high preferred spatial frequency (dashed
curve, 4 cycles/degree). (Adapted from Li, 1996.)

both for high spatial and high temporal frequencies. Figure 4.6 shows how
temporal selectivity for a combined noise and whitening filter constructed
using this stimulus power spectrum changes for different preferred spatial
frequencies. The basic idea is that components with fairly low stimulus
power are boosted by the whitening filter, while those with very low stim-
ulus power get suppressed by the noise filter. As shown by Li (1996), if a
cell is selective for high spatial frequencies, the input signal rapidly falls
below the noise (treated as white) as the temporal frequency of the input is
increased. As a result, the noise filter of equation 4.48 causes the temporal
response to be largest at zero temporal frequency (dashed curve of figure
4.6). If instead, the cell is selective for low spatial frequencies, the signal
dominates the noise up to higher temporal frequencies, and the whitening
filter causes the response to increase as a function of temporal frequency
up to a maximum value where the noise filter begins to suppress the re-
sponse (solid curve in figure 4.6). Model receptive fields with preference
for high spatial frequency thus act as low-pass temporal filters, and re-
ceptive fields with selectivity for low spatial frequency act as band-pass
temporal filters.

Similar conclusions can be drawn concerning other joint selectivities. For
instance, color selective (chrominance) cells tend to be selective for low
temporal frequencies, because their input signal to noise ratio is lower
than that for broad-band (luminance) cells. There is also an interesting
predicted relationship between ocular dominance and spatial frequency
tuning due to the nature of the correlations between the two eyes. Opti-
mal receptive fields with low spatial frequency tuning (for which the in-
put signal-to-noise ratio is high) have enhanced sensitivity to differences
between inputs coming from the two eyes. Receptive fields tuned to inter-
mediate and high spatial frequencies suppress ocular differences.
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4.3 Entropy and Information for Spike Trains

Computing the entropy or information content of a neuronal response
characterized by spike times is much more difficult than computing these
quantities for responses described by firing rates. Nevertheless, these com-
putations are important, because firing rates are incomplete descriptions
that can lead to serious underestimates of the entropy and information. In
this section, we discuss how the entropy and mutual information can be
computed for spike trains. Extensive further discussion can be found in
the book by Rieke et al. (1997).

Spike-train entropy calculations are typically based on the study of long-
duration recordings consisting of many action potentials. The entropy or
mutual information typically grows linearly with the length of the spike
train being considered. For this reason, the entropy and mutual informa-
tion of spike trains are reported as entropy or information rates. Theseentropy and

information rates are the total entropy or information divided by the duration of the spike
train. We write the entropy rate as h rather than H. Alternately, entropy
and mutual information can be divided by the total number of action po-
tentials and reported as bits per spike rather than bits per second.

To compute entropy and information rates for a spike train, we need to
determine the probabilities that various temporal patterns of action poten-
tials appear. These probabilities replace the factors P[r] or p[r] that occur
when discrete or continuous firing rates are used to characterize a neu-
ral response. The temporal pattern of a group of action potentials can be
specified by listing either the individual spike times or the sequence of in-
tervals between successive spikes. The entropy and mutual information
calculations we present are based on a spike-time description, but as an
initial example we consider an approximate computation of entropy us-
ing interspike intervals.

The probability of an interspike interval falling in the range between τ and
τ + 	τ is given in terms of the interspike interval probability density by
p[τ]	τ. Because the interspike interval is a continuous variable, we must
specify a resolution 	τ with which it is measured to define the entropy. If
the different interspike interval are statistically independent, the entropy
associated with the interspike intervals in a spike train of average rate 〈r〉
and of duration T is the number of intervals, 〈r〉T, times the integral over τ

of −p[τ] log2(p[τ]	τ). The entropy rate is obtained by dividing this result
by T, and the entropy per spike requires dividing by the number of spikes,
〈r〉T. The assumption of independent interspike intervals is critical for ob-
taining the spike-train entropy solely in terms of p[τ]. Correlations be-
tween different interspike intervals reduce the total entropy, so the result
obtained by assuming independent intervals provides an upper bound on
the true entropy of a spike train. Thus, in general, the entropy rate h for
a spike train with interspike interval distribution p[τ] and average rate 〈r〉
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satisfies

〈h〉 ≤ −〈r〉
∫ ∞

0
dτ p[τ] log2(p[τ]	τ) . (4.55)

If a spike train is described by a homogeneous Poisson process with rate
〈r〉, we have p[τ] = 〈r〉exp(−〈r〉τ), and the interspikes are statistically in-
dependent (chapter 1). Equation 4.55 is then an equality and, performing Poisson entropy

ratethe integrals,

〈h〉 = 〈r〉
ln(2)

(1 − ln(〈r〉	τ)) . (4.56)

We now turn to a more general calculation of the spike-train entropy. To
make entropy calculations practical, a long spike train is broken into sta-
tistically independent subunits, and the total entropy is written as the sum
of the entropies for the individual subunits. In the case of equation 4.55,
the subunit was the interspike interval. If interspike intervals are not in-
dependent and we wish to compute a result and not merely a bound, we
must work with larger subunit descriptions. Strong, Koberle, de Ruyter
van Steveninck, and Bialek (1998) proposed a scheme that uses spike se-
quences of duration Ts as these basic subunits. Note that the variable Ts is
used here to denote the duration of the spike sequence being considered,
while T, which is much larger than Ts, is the duration of the entire spike
train.

The time that a spike occurs is a continuous variable so, as in the case
of interspike intervals, a resolution must be specified when spike train
entropies are computed. This can be done by dividing time into discrete
bins of size 	t. We assume that the bins are small enough so that not more
than one spike appears in a bin. Depending on whether or not a spike
occurred within it, each bin is labeled by a zero (no spike) or a one (spike).
A spike sequence defined over a block of duration Ts is thus represented
by a string of Ts/	t zeros and ones. We denote such a sequence by B(t),
where B is a Ts/	t bit binary number, and t specifies the time of the first
bin in the sequence being considered. Both Ts and t are integer multiples
of the bin size 	t.

The probability of a sequence B occurring at any time during the entire re-
sponse is denoted by P[B]. This can be obtained by counting the number
of times the sequence B occurs anywhere within the spike trains being an-
alyzed (including overlapping cases). The spike-train entropy rate implied
by this distribution is

h = − 1
Ts

∑
B

P[B] log2 P[B] , (4.57)

where the sum is over all the sequences B found in the data set, and we
have divided by the duration Ts of a single sequence.
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If the spike sequences in non-overlapping intervals of duration Ts are in-
dependent, the full spike-train entropy rate is also given by equation 4.57.
However, any correlations between successive intervals (if B(t + Ts) is cor-
related with B(t), for example) reduce the total spike-train entropy, caus-
ing equation 4.57 to overestimate the true entropy rate. Thus, for finite Ts,
this equation provides an upper bound on the true entropy rate. If Ts is too
small, B(t + Ts) and B(t) are likely to be correlated, and the overestimate
may be severe. As Ts increases, we expect the correlations to get smaller,
and equation 4.57 should provide a more accurate value. For any finite
data set, Ts cannot be increased past a certain point, because there will
not be enough spike sequences of duration Ts in the data set to determine
their probabilities. Thus, in practice, Ts must be increased until the point
where the extraction of probabilities becomes problematic, and some form
of extrapolation to Ts → ∞ must be made.

Statistical mechanics arguments suggest that the difference between the
entropy for finite Ts and the true entropy for Ts → ∞ should be propor-
tional to 1/Ts for large Ts. Therefore, the true entropy can be estimated, as
in figure 4.7, by linearly extrapolating a plot of the entropy rate versus 1/Ts
to the point 1/Ts = 0. In figure 4.7 (upper line), this has been done for data
from the motion sensitive H1 neuron of the fly visual system. The plotted
points show entropy rates computed for different values of 1/Ts, and they
vary linearly over most of the range of the plot. However, when 1/Ts goes
below about 20/s (or Ts = 50 ms), the variation suddenly increases. This
is the point at which the amount of data is insufficient to extract even an
overestimate of the entropy. By linearly extrapolating the linear part of the
series of computed points in figure 4.7, Strong et al. estimated that the H1
spike trains had an entropy rate of 157 bits/s for a resolution of 	t = 3 ms.

To compute the mutual information rate for a spike train, we must sub-
tract the noise entropy rate from the full spike-train entropy rate. The
noise entropy rate is determined from the probabilities of finding various
sequences B given that they were evoked by the same stimulus. This is
done by considering sequences B(t) that start at a fixed time t. If the same
stimulus is used in repeated trials, sequences that begin at time t in every
trial are generated by the same stimulus. Therefore, the conditional prob-
ability of the response given the stimulus is, in this case, the distribution
P[B(t)] for response sequences beginning at the time t. This is obtained
by determining the fraction of trials on which B(t) was evoked. Note that
P[B(t)] is the probability of finding a given sequence at time t within a
set of spike trains obtained on trials using the same stimulus. In contrast,
P[B], used in the spike-train entropy calculation, is the probability of find-
ing the sequence B at any time within these trains. Determining P[B(t)] for
a sufficient number of spike sequences may take a large number of trials
using the same stimulus.

The full noise entropy is computed by averaging the noise entropy at time
t over all t values. The average over t plays the role of the average over
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Figure 4.7: Entropy and noise entropy rates for the H1 visual neuron in the fly
responding to a randomly moving visual image. The filled circles in the upper
trace show the full spike-train entropy rate computed for different values of 1/Ts.
The straight line is a linear extrapolation to 1/Ts = 0, which corresponds to Ts →
∞. The lower trace shows the spike train noise entropy rate for different values
of 1/Ts. The straight line is again an extrapolation to 1/Ts = 0. Both entropy rates
increase as functions of 1/Ts , and the true spike-train and noise entropy rates are
overestimated at large values of 1/Ts. At 1/Ts ≈ 20/s, there is a sudden shift in
the dependence. This occurs when there is insufficient data to compute the spike
sequence probabilities. The difference between the y intercepts of the two straight
lines plotted is the mutual information rate. The resolution is 	t = 3 ms. (Adapted
from Strong et al., 1998.)

stimuli in equation 4.6. The result is

hnoise = −	t
T

∑
t

(
1
Ts

∑
B

P[B(t)] log2 P[B(t)]

)
(4.58)

where T/	t is the number of different t values being summed.

If equation 4.58 is based on finite-length spike sequences, it provides an
upper bound on the noise entropy rate. The true noise entropy rate is es-
timated by performing a linear extrapolation in 1/Ts to 1/Ts = 0, as was
done for the spike-train entropy rate. This is done for the H1 data in figure
4.7. The result is a noise entropy of 79 bits/s for 	t = 3 ms. The infor-
mation rate is obtained by taking the difference between the extrapolated
values for the spike-train and noise entropy rates. The result for the fly H1
neuron used in figure 4.7, is an information rate of 157 - 79 = 78 bits/s or
1.8 bits/spike. Values in the range 1 to 3 bits/spike are typical results of
such calculations for a variety of preparations.
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Both the spike-train and noise entropy rates depend on 	t. The leading
dependence, coming from the log2 	t term discussed previously, cancels
in the computation of the information rate, but the information can still de-
pend on 	t through non-divergent terms. This reflects the fact that more
information can be extracted from accurately measured spike times than
from poorly measured spike times. Thus, we expect the information rate
to increase with decreasing 	t, at least over some range of 	t values. At
some critical value of 	t that matches the natural degree of noise jitter in
the spike timings, we expect the information rate to stop increasing. This
value of 	t is interesting because it tells us about the degree of spike tim-
ing accuracy in neural encoding.

The information conveyed by spike trains can be used to compare re-
sponses to different stimuli and thereby reveal stimulus-specific aspects
of neural encoding. For instance, Rieke, Bodnar and Bialek (1995) com-
pared the information conveyed by single neurons in a peripheral audi-
tory organ (the amphibian papilla) of the bullfrog in response to broad-
band noise or to noise filtered to have an amplitude spectrum close to that
of natural bullfrog calls (although the phases for each frequency compo-
nent were chosen randomly). They determined that the cells conveyed on
average 46 bits per second (1.4 bits per spike) for broad-band noise and
133 bits per second (7.8 bits per spike) for stimuli with call-like spectra,
despite the fact that the broad-band noise had a higher entropy. The spike
trains in response to the call-like stimuli conveyed information with near
maximal efficiency.

4.4 Chapter Summary

Shannon’s information theory can be used to determine how much a neu-
ral response tells both us, and presumably the animal in which the neuron
lives, about a stimulus. Entropy is a measure of the uncertainty or surprise
associated with a stochastic variable, such as a stimulus. Mutual informa-
tion quantifies the reduction in uncertainty associated with the observa-
tion of another variable, such as a response. The mutual information is
related to the Kullback-Leibler divergence between two probability distri-
butions. We defined the response and noise entropies for probability dis-
tributions of discrete and and continuous firing rates and considered how
the information transmitted about a set of stimuli might be optimized.
The principles of entropy and information maximization were used to ac-
count for features of the receptive fields of cells in the retina, LGN, and
primary visual cortex. This analysis introduced probability factorization
and equalization and whitening and noise filters. Finally, we discussed
how the information conveyed about dynamic stimuli by spike sequences
can be estimated.

Information theoretic principles also lie at the heart of many of the unsu-
pervised learning methods that are discussed in chapters 8 and 10 which
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suggest how to adjust synaptic weights so that single neurons or networks
of neurons code their inputs in ways that come to be appropriately sensi-
tive to the information they contain.

4.5 Appendix

Positivity of the Kullback-Leibler Divergence

The logarithm is a concave function which means that log2〈z〉 ≥ 〈log2 z〉,
where the angle brackets denote averaging with respect to some probabil- Jensen’s inequality
ity distribution and z is any positive quantity. The equality holds only if
z is a constant. If we consider this relation, known as Jensen’s inequality,
with z = P[r]/Q[r] and the average defined over the probability distribu-
tion P[r], we find

−DKL(P, Q) =
∑

r

P[r] log
(

Q[r]
P[r]

)
≤ log

(∑
r

P[r]
Q[r]
P[r]

)
= 0 . (4.59)

The last equality holds because Q[r] is a probability distribution and thus
satisfies

∑
r Q[r] = 1. The equations in 4.59 implies that DKL(P, Q) ≥ 0,

with equality holding if and only if P[r]= Q[r]. A similar result holds for
the Kullback-Leibler divergence between two probability densities,

DKL(p, q) =
∫

dr p[r] ln
(

p[r]
[q[r]

)
≥ 0 . (4.60)

4.6 Annotated Bibliography

Information theory was created by Shannon (see Shannon & Weaver,
1949) largely as a way of understanding communication in the face of
noise. Cover & Thomas (1991) provide a recent review, and Rieke et al.
(1997) give a treatment specialized to neural coding. Information theory,
and theories inspired by it, such as histogram equalization, were quickly
adopted in neuroscience and psychology as a way of understanding sen-
sory transduction and coding, as discussed by Barlow (1961) and Uttley
(1979). We followed a more recent set of studies, inspired by Linkser (1988)
and Barlow (1989), which have particularly focused on optimal coding in
early vision; Atick & Redlich (1990), Plumbley (1991), Atick, Li & Redlich
(1992), Atick (1992), van Hateren (1992; 1993), Li & Atick (1994a), Dong
& Atick (1995), and Dan et al. (1996). Li & Atick (1994b) discuss the ex-
tension to joint selectivities of cells in V1 and Li & Atick (1994a); Li (1996)
treat stereo and motion sensitivities as examples.

The statistics of natural sensory inputs is reviewed by Field (1987). Camp-
bell & Gubisch (1966) estimated the optimal modulation transfer function.
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We followed the technique of Strong et al. (1998) for computing the mutual
information about a dynamical stimulus in spike trains. Bialek et al. (1993)
present an earlier approach based on stimulus reconstruction.
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