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Exercises

Chapter 1

1. Generate spike sequences with a constant firing rate r0 using a Pois-
son spike generator. Then, add a refractory period to the model by
allowing the firing rate r(t) to depend on time. Initially, r(t) = r0.
After every spike, set r(t) to zero. Allow it to recover exponentially
back to r0 by setting r(t + �t) = r0 + (r(t) − r0)exp(−�t/τref) after
every simulation time step �t in which no spike occurs. The con-
stant τref controls the refractory recovery rate. Initially, use τref = 10
ms. Compute the Fano factor and coefficient of variation, and plot
the interspike interval histogram for spike trains generated without
a refractory period and with a refractory period determined by τref
over the range from 1 to 20 ms.

2. Plot autocorrelation histograms of spike trains generated by a Pois-
son generator with A) a constant fire rate of 100 Hz, B) a constant
firing rate of 100 Hz and a refractory period modeled as in exer-
cise 1 with τref = 10 ms, and C) a variable firing rate r(t) = 100(1 +
cos(2πt/25 ms)) Hz. Plot the histograms over a range from 0 to 100
ms.

3. Generate a Poisson spike train with a time-dependent firing rate
r(t) = 100(1 + cos(2πt/300 ms)) Hz. Approximate the firing rate
from this spike train by making the update rapprox → rapprox +1/τapprox
every time a spike occurs, and letting rapprox decay exponentially,
rapprox → rapprox exp(−�t)/τapprox), if no spike occurs during a time
step of size �t. Make a plot the average squared error of the esti-
mate,

∫
dt(r(t)− rapprox(t))2 as a function of τapprox and find the value

of τapprox that produces the most accurate estimate for this firing pat-
tern.

4. Using the same spike trains as in exercise 3, construct estimates of
the firing rate using square, Gaussian, and other types of window
functions to see which gives the most accurate estimate.

5. For a constant rate Poisson process, every sequence of N spikes oc-
curring during a given time interval is equally likely. This seems
paradoxical because we certainly do not expect to see all N spikes
appearing within the first 1% of the time interval. Yet this seems as
likely as any other pattern. Resolve this paradox.

6. Build a white-noise stimulus. Plot its autocorrelation function and
power spectrum, which should be flat. Discuss the range of relation
of these results to those for an ideal white-noise stimulus given the
value of �t you used in constructing the stimulus.

7. Construct two spiking models using an estimate of the firing rate
and a Poisson spike generator. In the first model, let the firing rate
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be determined in terms of the stimulus s by rest(t) = [s]+. In the
second model, the firing rate is determined instead by integrating the
equation (see Appendix A of chapter 5 for a numerical integration
method)

τr
drest(t)

dt
= [s]+ − rest(t) (1)

with τr = 10 ms. In both cases, use a Poisson generator to produce
spikes at the rate rest(t). Compare the responses of the two models
to a variety of time-dependent stimuli including approximate white-
noise, and study the responses to both slowly and rapidly varying
stimuli.

8. Use the two models constructed in exercise 7, driven with an ap-
proximate white-noise stimulus, to generate spikes, and compute
the spike-triggered average stimulus for each model. Show how the
spike-triggered average depends on τr in the second model by con-
sidering different values of τr.

Chapter 2

1. Build a model neuron (based on the electrosensory lateral-line lobe
neuron discussed in chapter 1) using a Poisson generator firing at a
rate predicted by equation ?? with r0 = 50 Hz and

D(τ) = cos
(

2π(τ − 20 ms)
140 ms

)
exp

(
− τ

60 ms

)
Hz .

Use a Gaussian white noise stimulus constructed using a time inter-
val �t = 10 ms with σ2

s = 10. Compute the firing rate and spike train
for a 10 s period. From these results, compute the spike-triggered av-
erage stimulus C(τ) and the firing rate-stimulus correlation function
Qrs(τ) and compare them with the linear kernel given above. Ver-
ify that the relations in equation ?? hold. Repeat this exercise with a
static nonlinearity so that the firing rate is given by

r(t) = 10
∣∣∣∣r0 +

∫ ∞

0
dτ D(τ)s(t − τ)

∣∣∣∣
1/2

Hz

rather than by equation ??. Show that C(τ) and Qrs(−τ) are still pro-
portional to D(τ) in this case, though with a different proportionality
constant.

2. For a Gaussian random variable x with zero mean and standard de-
viation σ, prove that

〈xF(αx)〉 = ασ2〈F′(αx)〉
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where α is a constant, F is any function, F′ is its derivative,

〈xF(αx)〉 =
∫

dx
1√
2πσ

exp
(
− x2

2σ2

)
xF(αx) ,

and similarly for 〈F′(αx)〉. By extending this basic result first to mul-
tivariant functions and then to the functionals, the identity ?? can be
derived.

3. Using the inverses of equations ?? and ??

ε = ε0
(
exp(X/λ) − 1

)
and a = −180◦(ε0 + ε)Y

λεπ
,

map from cortical coordinates back to visual coordinates and deter-
mine what various patterns of activity in the primary visual cortex
would ’look like’. Consider straight lines and bands of constant ac-
tivity extending across the cortex at various angles. Ermentrout and
Cowan (1979) used these results as a basis of a mathematical theory
of visual hallucinations.

4. Compute the integrals in equations ?? and ?? for the case σx = σy = σ

to obtain the results

Ls = A
2

exp
(
−σ2(k2 + K2)

2

)(
cos(φ − �)exp

(
σ2kK cos(�)

)
+ cos(φ + �)exp

(−σ2kK cos(�)
))

.

and

Lt(t) = α6|ω|√ω2 + 4α2

(ω2 + α2)4 cos(ωt − δ) .

with

δ = arctan
(ω

α

)
+ 8 arctan

(
2α

ω

)
− π .

and verify the selectivity curves in figures ?? and ??. In addition, plot
δ as a function or ω. The integrals can be also be done numerically to
obtain these curves directly.

5. Compute the response of a model simple cell with a separable space-
time receptive field to a moving grating

s(x, y, t) = cos (Kx − ωt) .

For Ds use equation ?? with σx = σy = 1◦, φ = 0, and 1/k = 0.5◦.
For Dt use equation ?? with α = 1/(15 ms). Compute the linear esti-
mate of the response given by equation ?? and assume that the actual
response is proportional to a rectified version of this linear response
estimate. Plot the response as a function of time for 1/K = 1/k = 0.5◦
and ω = 8π/s. Plot the response amplitude as a function of ω for
1/K = 1/k = 0.5◦ and as a function of K for ω = 8π/s.
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6. Construct a model simple cell with the nonseparable space-time re-
ceptive field described in the caption of figure ??B. Compute its re-
sponse to the moving grating of exercise 4. Plot the amplitude of
the response as a function of the velocity of the grating, ω/K, us-
ing ω = 8π/s and varying K to obtain a range of both positive and
negative velocity values (use negative K values for this).

7. Compute the response of a model complex cell to the moving grating
of exercise 5. The complex cell should be modeled by squaring the
linear response estimate of the simple cell used in exercise 5, and
adding this to the square of the response of a second simple cell with
identical properties except that its spatial phase preference is φ =
−π/2 instead of φ = 0. Plot the response as a function of time for
1/K = 1/k = 0.5◦ and ω = 8π/s. Plot the response amplitude as a
function of ω for 1/K = 1/k = 0.5◦ and as a function of K for ω =
8π/s.

8. Construct a model complex cell that is disparity tuned but insensi-
tive to the absolute position of a grating. The complex cell is con-
structed by summing the squares of the responses of two simple
cells, but disparity effects are now included. For this exercise, we
ignore temporal factors and only consider the spatial dependence of
the response. Each simple cell response is composed of two terms
that correspond to inputs coming from the left and right eyes. Be-
cause of disparity, the spatial phases of the image of a grating in the
two eyes, �L and �R, may be different. We write the spatial part of
the linear response estimate for a grating with the preferred spatial
frequency (k = K) and orientation (� = θ = 0) as

L1 = A
2

(cos(�L) + cos(�R))

assuming that φ = 0 (this equation is a generalization of ??). Let the
complex cell response be proportional to L2

1 + L2
2 where L2 is similar

to L1 but with the cosine functions replaced by sine functions. Show
that the response of this neuron is tuned to the disparity, �L − �R,
and is independent of the absolute spatial phase of the grating, �L +
�R. Plot the response tuning curve as a function of disparity. (See
Ohzawa et al, 1991).

9. Determine the selectivity of the LGN receptive field of equation ??
to spatial frequency and of the temporal response function for LGN
neurons, equation ??, to temporal frequency by computing their in-
tegrals when multiplied by cosine functions of space or time respec-
tively. Use σc = 0.3◦, σs = 1.5◦, B = 5, 1/α = 16 ms, and 1/β = 64 ms.
Plot the resulting spatial and temporal frequency tuning curves.

10. Construct the Hubel-Wiesel simple and complex cell models of fig-
ure ??. Use difference-of-Gaussian and Gabor functions to model the
LGN and simple cell response. Plot the spatial receptive field of the
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simple cell constructed in this way. Compare the result of summing
appropriately placed LGN center-surround receptive fields (figure
??A) with the results of the Gabor filter model of the simple cell that
uses the spatial kernel of equation ??. Compare the responses of a
complex cell constructed by linearly summing the outputs of simple
cells (figure ??B) with different spatial phase preferences with the
complex cell model obtained by squaring and summing two simple
cell responses with spatial phases 90◦ apart as in equation ??.

Chapter 3

1. Suppose that the probabilities that a neuron responds with a firing
rate between r and r + �r to two stimuli labeled plus and minus are
p[r|±]�r where

p[r|±] = 1√
2πσr

exp

(
−1

2

(
r − 〈r〉±

σr

)2
)

.

Assume that the two mean rate parameters 〈r〉+ and 〈r〉− and the sin-
gle variance σ2

r are chosen so that these distributions produce nega-
tive rates rarely enough that we can ignore this problem. Show that

α(z) = 1
2

erfc
(

z − 〈r〉−√
2σr

)
and β(z) = 1

2
erfc

(
z − 〈r〉+√

2σr

)

and that the probability of a correct answer in a two-alternative forced
choice task is given by equation ??. Derive the result of equation ??.
Plot ROC curves for different values of the discriminability

d′ = 〈r〉+ − 〈r〉−
σr

.

By simulation, determine the fraction of correct discriminations that
can be made in a two-alternative forced choice task involving dis-
criminating between plus-then-minus and minus-then-plus presen-
tations of two stimuli. Show that the fractions of correct answer for
different values of d′ are equal to the areas under the corresponding
ROC curves.

2. Model the responses of the cercal system of the cricket by using the
tuning curves of equation ?? to determine mean response rates and
generating spikes with a Poisson generator. Simulate a large num-
ber of responses for a variety of wind directions randomly, use the
vector method to decode them on the basis of spike counts over a
predefined trial period, and compare the decoded direction with the
actual direction used to generated the responses to determine the
decoding accuracy. Plot the root-mean-square decoding error as a
function of wind direction for several different trial durations. The
results may not match those of figure ?? because a different model of
variability was used in that analysis.

Draft: February 22, 2000 Theoretical Neuroscience



6

3. Show that if an infinite number of unit vectors �ca is chosen from a
probability distribution that is independent of direction,

∑
(�v · �ca)�ca ∝

�v for any vector �v. How does the sum approach this limit for a finite
number of terms?

4. Show that the Bayesian estimator that minimizes the expected av-
erage value of the the loss function L(s, sbayes) = (s − sbayes)

2 is the
mean given by equation ?? and that the median corresponds to min-
imizing the expected loss function L(s, sbayes) = |s − sbayes|.

5. Simulate the response of a set of M1 neurons to a variety of arm
movement directions using the tuning curves of equation ?? with
randomly chosen preferred directions, and a Poisson spike genera-
tor. Choose the arm movement directions and preferred directions to
lie in a plane so that they are characterized by a single angle. Study
how the accuracy of the vector decoding method depends on the
number of neurons used. Compare these results with those obtained
using the ML method by solving equation ?? numerically.

6. Show that the formulas for the Fisher information in equation ?? and
also be written as

IF(s) =
〈(

∂ ln p[r|s]
∂s

)2
〉

=
∫

dr p[r|s]
(

∂ ln p[r|s]
∂s

)2

or

IF(s) =
∫

dr
1

p[r|s]

(
∂p[r|s]

∂s

)2

.

Use the fact that
∫

dr p[r|s] = 1.

7. The discriminability for the variable Z defined in equation ?? is the
difference between the average Z values for the two stimuli s + �s
and s divided by the standard deviation of Z. The average of the
difference in Z values is

〈�Z〉 =
∫

dr
∂ ln p[r|s]

∂s
(
p[r|s + �s] − p[r|s]

)
.

Show that for small �s, 〈�Z〉 = IF(s)�s. Also prove that the average
value of Z,

〈Z〉 =
∫

dr p[r|s]
∂ ln p[r|s]

∂s

is zero and that the variance of Z is IF(s). Computing the ratio, we
find from these results that d′ = �s

√
IF(s) which matches the dis-

criminability ?? of the ML estimator.

Peter Dayan and L.F. Abbott Draft: February 22, 2000



7

8. Extend equation ?? to the case of neurons encoding a D-dimensional
vector stimulus �s with tuning curves given by

fa(�s) = rmax exp
(
−|�s − �sa|2

2σ2
r

)

and perform the sum by approximating it as an integral over uni-
formly and densely distributed values of �sa to derive the result in
equation ??.

9. Derive equation ?? by minimizing the expression ??. Use the meth-
ods of Appendix A in chapter 2.

10. Use the electric fish model from problem 1 of chapter 2 to generate
a spike train response to a stimulus s(t) of your choosing. Decode
the spike train and reconstruct the stimulus using an optimal linear
filter. Compare the optimal decoding filter with the optimal kernel
for rate prediction, D(τ). Determine the average squared error of
your reconstruction of the stimulus. Examine the effect that various
static nonlinearities in the model for the firing rate that generates the
spikes have on the accuracy of the decoding.

Chapter 4

1. Show that the distribution that maximizes the entropy when the fir-
ing rate is constrained to lie in the range 0 ≤ r ≤ rmax is given by equa-
tion ?? and its entropy for a fixed resolution �r is given by equation
??. Use a Lagrange multiplier (chapter 12) to constrain the integral
of p[r] to one.

2. Show that the distribution that maximizes the entropy when the mean
of the firing rate is held fixed is an exponential, and compute its en-
tropy for a fixed resolution �r. Assume that the firing rate can fall
anywhere in the range from zero to infinity. Use Lagrange multi-
pliers (chapter 12) to constrain the integral of p[r] to one and the
integral of p[r]r to the fixed average firing rate.

3. Show that the distribution that maximizes the entropy when the mean
and variance of the firing rate are held fixed is a Gaussian, and com-
pute its entropy for a fixed resolution �r. To simplify the mathemat-
ics, allow the firing rate to take any value between minus and plus
infinity. Use Lagrange multipliers (chapter 12) to constrain the inte-
gral of p[r] to one, the integral of p[r]r to the fixed average firing rate,
and the integral of p[r](r − 〈r〉)2 to the fixed variance.

4. Using Fourier transforms solve equation ?? to obtain the result of
equation ??.
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5. Suppose the filter Ls(�a) has a correlation function that satisfies equa-
tion ??. We write a new filter in terms of this old one by

L′
s(�a) =

∫
d�c U(�a, �c)Ls(�c) . (2)

Show that if U(�a, �c) satisfies the condition of an orthogonal transfor-
mation, ∫

d�c U(�a, �c)U(�b, �c) = δ(�a − �b) , (3)

the correlation function for this new filter also satisfies equation ??.

6. Construct an integrate-and-fire neuron model, and drive it with an
injected current consisting of the sum of two or more sine waves
with incommensurate frequencies. Compute the rate of information
about the injected current contained in the spike train produced by
this model neuron the method discussed in the text.

Chapter 5

1. Write down the analytic solution of equation ?? when Ie(t) is an arbi-
trary function of time. The solution will involve integrals that cannot
be performed unless Ie(t) is specified.

2. Construct the model of two, coupled integrate-and-fire model neu-
rons of figure ??. Show how the pattern of firing for the two neurons
depends on the strength, type (excitatory or inhibitory), and time
constant of the reciprocal synaptic connection (see Van Vreeswijk et
al, 1994).

3. Plot the firing frequency as a function of constant electrode current
for the Hodgkin-Huxley model. Show that the firing rate jumps dis-
continuously from zero to a finite value when the current passes
through the minimum value required to produce sustained firing.

4. Demonstrate postinhibitory rebound in the Hodgkin-Huxley model.

5. The Nernst equation was derived in this chapter under the assump-
tion that the membrane potential was negative and the ion being
considered was positively charged. Rederive the Nernst equation,
??, for a negatively charged ion and for the case when E is positive
to verify that it applies in all these cases.

6. Compute the value of the release probability Prel at the time of each
presynaptic spike for a regular, periodic, constant-frequency presy-
naptic spike train as a function of the presynaptic firing rate. Do this
for both the depression and facilitation models discussed in the text.
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7. Verify that the state probabilities listed after equation ?? are actually
a solution of these equations if n satisfies equation ??. Show that an
arbitrary set of initial values for these probabilities, will ultimately
settle into this solution.

8. Construct and simulate the K+ channel model of figure ??. Plot the
mean squared deviation between the current produced by N such
model channels and the Hodgkin-Huxley current as a function of N,
matching the amplitude of the Hodgkin-Huxley model so that the
mean currents are the same.

9. Construct and simulate the Na+ channel model of figure ??. Com-
pare the current through 100 such channels with the current pre-
dicted by the Hodgkin-Huxley model at very short times after a
step-like depolarization of the membrane potential. What are the
differences and why do they occur?

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12
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