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INTRODUCTION

GENERAL CONSIDERATIONS

Toward the end of the 19th century, many physicists believed that
all of the principles of physics had been discovered.  The accepted
principles, now called classical physics, included laws relating to
Newton’s mechanics, Gibbs' thermodynamics, LaGrange’s and Hamilton’s
elasticity and hydrodynamics, Maxwell-Boltzmann molecular statistics,
and Maxwell’s Equations.  However, the discovery that the intensity of
blackbody radiation goes to zero, rather than infinity as predicted by the
prevailing laws, provided an opportunity for new principles to be
discovered.  In 1900, Planck made the revolutionary assumption that
energy levels were quantized, and that atoms of the blackbody could
emit light energy only in amounts given by h , where  is the radiation’s
frequency and h  is a proportionality constant (now called Planck’s
constant).  This assumption also led to our understanding of the
photoelectric effect and ultimately to the concept of light as a particle
called a photon.  A similar course arose in the development of the model
of the electron.  In 1923, de Broglie suggested that the motion of an
electron has a wave aspect where the wavelength, , is inversely

proportional to the electron's momentum, p , as — =
h

p
.  This concept

seemed unlikely according to the familiar properties of electrons such as
charge, mass and adherence to the laws of particle mechanics.  But, the
wave nature of the electron was confirmed by Davisson and Germer in
1927 by observing diffraction effects when electrons were reflected
from metals.

Experiments by the early part of the 20th century had revealed that
both light and electrons behave as waves in certain instances and as
particles in others.  This was unanticipated from preconceptions about
the nature of light and the electron.  Early 20th century theoreticians
proclaimed that light and atomic particles have a "wave-particle duality"
that was unlike anything in our common-day experience.  The wave-
particle duality is the central mystery of the presently accepted atomic
model, quantum mechanics, the one to which all other mysteries could
ultimately be reduced.

Three atomic theories have been developed to explain the
seemingly mysterious physics of the atomic scale.  The earlier theories
of Bohr and Schrödinger assume that the laws of physics that are valid in
the macroworld do not hold true in the microworld of the atom.  In
contrast, the Mills theory is based on the foundation that laws of physics
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valid in the macroworld do hold true in the microworld of the atom.  In
the present case, the predictions which arise from the equations of light
and atomic particles are completely consistent with observation,
including the wave-particle duality of light and atomic particles.

Three Atomic Theories
The theories of Bohr, Schrödinger, and presently Mills all give the

identical equation, Eq. (I.1), for the principal energy levels of the
hydrogen atom.

E = −
Z 2e2

8 on
2 aH

= −
Z2

n2  X 2.1786 X 10−18  J = −
Z 2

n2  X 13.598 eV (I.1)

However, only Mills theory is derived from first principles.  The theories
of Bohr and Schrödinger depend on specific postulates to yield Eq. (I.1).
A relationship exists between the theories of Bohr and Schrödinger with
respect to that of Mills which involves these postulates.

Mills Theory-a classical quantum theory
One-electron atoms include the hydrogen atom, He II, Li III, Be IV,

and so on.  The mass-energy and angular momentum of the electron are
constant; this requires that the equation of motion of the electron be
temporally and spatially harmonic.  Thus, the classical wave equation
applies and

∇2
−

1

v2

2

t2

 
  

 
  (r, , ,t) = 0 (I.2)

where (r, , ,t) is the charge density function of the electron in time and
space.  In general, the wave equation has an infinite number of solutions.
To arrive at the solution which represents the electron, a suitable
boundary condition must be imposed.  It is well known from
experiments that each single atomic electron of a given isotope radiates
to the same stable state.  Thus, Mills chose the physical boundary
condition of nonradiation of the bound electron to be imposed on the
solution of the wave equation for the charge density function of the
electron.  The condition for radiation by a moving charge is derived
from Maxwell's equations.  To radiate, the spacetime Fourier transform
of the current-density function must possess components synchronous
with waves traveling at the speed of light [1].  Alternatively,

For non-radiative states, the current-density function must not
possess spacetime Fourier components that are synchronous
with waves traveling at the speed of light.

Proof that the condition for nonradiation by a moving point charge
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is that its spacetime Fourier transform does not possess components
that are synchronous with waves traveling at the speed of light is given
by Haus [1].  The Haus derivation applies to a moving charge-density
function as well because charge obeys superposition.  The Haus
derivation is summarized below.

The Fourier components of the current produced by the moving
charge are derived.  The electric field is found from the vector equation
in Fourier space (k, ω-space).  The inverse Fourier transform is carried
over the magnitude of k .  The resulting expression demonstrates that

the radiation field is proportional to J⊥ (
c

n, ) , where J⊥ (k, )  is the

spacetime Fourier transform of the current perpendicular to k  and

n ≡
k
|k|

.  Specifically,

E⊥ r,( ) d

2
=

c

2
,Ω( )∫ d dΩ 0
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c
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 n•r 
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 
 (I.3)

The field E⊥ r,( ) d

2
  is proportional to J⊥ c

n,
 
 

 
  , namely, the Fourier

component for which k =
c

.  Factors of  that multiply the Fourier

component of the current are due to the density of modes per unit
volume and unit solid angle.  An unaccelerated charge does not radiate
in free space, not because it experiences no acceleration, but because it

has no Fourier component J⊥ c
n,

 
 

 
 .

The time, radial, and angular solutions of the wave equation are
separable.  The motion is time harmonic with frequency n .  To be a
harmonic solution of the wave equation in spherical coordinates, the
angular functions must be spherical harmonic functions.  A zero of the
spacetime Fourier transform of the product function of two spherical
harmonic angular functions, a time harmonic function, and an unknown
radial function is sought.  The solution for the radial function which
satisfies the boundary condition is a delta function

f (r) =
1

r2 (r − rn ) (I.4)

where rn  is an allowed radius.  Thus, bound electrons are described by a
charge-density (mass-density) function which is the product of a radial

delta function ( f (r) =
1

r2 (r − rn ) ), two angular functions (spherical

harmonic functions), and a time harmonic function.  Thus, an electron is
a spinning, two-dimensional spherical surface, called an electron
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orbitsphere, that can exist in a bound state at only specified distances
from the nucleus.  More explicitly, the orbitsphere comprises a two-
dimensional spherical shell of moving charge.  The corresponding
current pattern of the orbitsphere comprises an infinite series of
correlated orthogonal great circle current loops.  The current pattern
(shown in Figure 1.4) is generated over the surface by two orthogonal
sets of an infinite series of nested rotations of two orthogonal great
circle current loops where the coordinate axes rotate with the two
orthogonal great circles.  Each infinitesimal rotation of the infinite series
is about the new x-axis and new y-axis which results from the preceding
such rotation.  For each of the two sets of nested rotations, the angular
sum of the rotations about each rotating x-axis and y-axis totals 2
radians.  The current pattern gives rise to the phenomenon
corresponding to the spin quantum number.

Mills has built on this result by deriving a complete atomic theory
based on first principles.  The novel theory unifies Maxwell's Equations,
Newton's Laws, and General and Special Relativity.  The central feature of
this theory is that all particles (atomic-size particles and macroscopic
particles) obey the same physical laws.

The Mills theory solves the wave equation for the charge density
function of the electron.  The radial function for the electron indicates
that the electron is two-dimensional.  Therefore, the angular mass-
density function of the electron, A( , ,t), must be a solution of the wave
equation in two dimensions (plus time),

∇2− 1

v2

2

t2

 
  

 
  A( , ,t) = 0 (I.5)

where (r, , ,t) = f (r)A( , ,t) =
1

r 2 (r − rn )A( , ,t)  and A( , ,t) = Y ( , )k(t)
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 

 

 
 A , ,t( ) = 0 (I.6)

where v  is the linear velocity of the electron.  The charge-density
functions including the time-function factor are

 = 0

  
(r, , ,t) =

e

8 r2 [ (r − rn )] Yl
m ,( ) + Y0

0 ,( )[ ] (I.7)

 ≠ 0

  
(r, , ,t) =

e

4 r2 [ (r − rn )] Y0
0 ,( ) + Re Yl

m ,( ) 1 + e i nt[ ]{ }[ ] (I.8)

where
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Re Yl

m ,( ) 1+ e i nt[ ]{ } = Re Yl
m ,( ) + Yl

m ,( )e i nt[ ] = Pl
m cos( )cosm + Pl

m cos( )cos m + nt( )
and n = 0 for m = 0.  And, the Fourier transform of the charge density
function which is derived in the Spacetime Fourier Transform of the
Electron Function Section is a solution of the four-dimensional wave
equation in frequency space (k, ω-space).

M(s,Θ,Φ , ) = 4
sin(2snrn )

2snrn

⊗ 2
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∞
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4
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(I.9)

The motion on the orbitsphere is angular; however, a radial component
exists due to Special Relativistic effects.  Consider the radial wave vector
of the sinc function.  When the radial projection of the velocity is c

sn • vn = s n • c = n (I.10)
the relativistically corrected wavelength is

rn = n  (I.11)
(i.e. the lab frame motion in the angular direction goes to zero as the
velocity approaches the speed of light).  Substitution of Eq. (I.11) into
the sinc function results in the vanishing of the entire Fourier transform

of the current-density function.  Thus, spacetime harmonics of n

c
= k  or

n

c o

= k  for which the Fourier transform of the current-density

function is nonzero do not exist.  Radiation due to charge motion does
not occur in any medium when this boundary condition is met.

Relationship Between the Theories of Bohr and Schrödinger
with Respect to that of Mills

J. J. Balmer showed, in 1885, that the frequencies for some of the
lines observed in the emission spectrum of atomic hydrogen could be
expressed with a completely empirical relationship.  This approach was
later extended by J. R. Rydberg, who showed that all of the spectral lines
of atomic hydrogen were given by the equation:

= R
1

n f
2 −

1

ni
2

 

 
  

 
 (I.12)

where R = 109,677 cm−1 , n f = 1,2,3,... , ni = 2,3,4,... , and ni > n f .  In 1911,
Rutherford proposed a planetary model for the atom where the
electrons revolved about the nucleus (which contained the protons) in
various orbits.  There was, however, a fundamental conflict with this
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model and the prevailing classical physics.  According to classical
electromagnetic theory, an accelerated particle radiates energy (as
electromagnetic waves).  Thus, an electron in a Rutherford orbit,
circulating at constant speed but with a continually changing direction
of its velocity vector is being accelerated; thus, the electron should
constantly lose energy by radiating and spiral into the nucleus.

An explanation was provided by Bohr in 1913, when he assumed
that the energy levels were quantized and the electron was constrained
to move in only one of a number of allowed states.  Niels Bohr's theory
for atomic hydrogen was based on an unprecedented postulate of stable
circular orbits that do not radiate.  Although no explanation was offered
for the existence of stability for these orbits, the results gave energy
levels in agreement with Rydberg's equation.  Bohr's theory was a
straightforward application of Newton's laws of motion and Coulomb's
law of electric force.  According to Bohr's model, the point particle
electron was held to a circular orbit about the relatively massive point
particle nucleus by the balance between the coulombic force of
attraction between the proton and the electron and centrifugal force of
the electron.

e2

4 0r
2 =

mev
2

r
(I.13)

Bohr postulated the existence of stable orbits in defiance of classical
physics (Maxwell's Equations), but he applied classical physics according
to Eq. (I.13).  Then Bohr realized that the energy formula Eq. (I.1) was
given by postulating nonradiative states with angular momentum

  Lz = mevr = nh n = 1,2,3... (I.14)
and by solving the energy equation classically.  The Bohr radius is given
by substituting the solution of Eq. (I.14) for v  into Eq. (I.13).

  
r =

4 0h
2n2

mee
2 = n2a0 n =1, 2,3... (I.15)

The total energy is the sum of the potential energy and the kinetic
energy.  In the present case of an inverse squared central field, the total
energy (which is the negative of the binding energy) is one half the
potential energy [2].  The potential energy, r( ) , is given by Poisson's
Equation

r( ) = −
r '( )dv'

4 0 r − r'

V'
∫ (I.16)

For a point charge at a distance r  from the nucleus the potential is

r( ) =−
e2

4 0r
(I.17)

Thus, the total energy is given by
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E = −
Z 2e2

8 or
(I.18)

Substitution of Eq. (I.15) into Eq.(I.18) with the replacement of the
electron mass by the reduced electron mass gives Eq. (I.1).

Bohr’s model was in agreement with the observed hydrogen
spectrum, but it failed with the helium spectrum, and it could not
account for chemical bonds in molecules.  The prevailing wisdom was
that the Bohr model failed because it was based on the application of
Newtonian mechanics for discrete particles.  And, its limited
applicability was attributed to the unwarranted assumption that the
energy levels are quantized.

In 1923, de Broglie suggested that the motion of an electron has a

wave aspect— =
h

p
.  This was confirmed by Davisson and Germer in

1927 by observing diffraction effects when electrons were reflected
from metals.  Schrödinger reasoned that if electrons have wave
properties, there must be a wave equation that governs their motion.
And, in 1926, he proposed the Schrödinger equation

HΨ = EΨ (I.19)
where Ψ  is the wave function, H  is the wave operator, and E  is the
energy of the wave.  The Schrödinger equation solutions are three
dimensional in space and four dimensional in spacetime

∇2− 1

v2

2

t2

 
  

 
  Ψ(r, , ,t ) = 0 (I.20)

where Ψ(r, , ,t) according to quantum theory is the probability density
function of the electron as described below.  When the time harmonic
function is eliminated [3],

  
−

h2

2

1

r 2 r
r 2 Ψ

r

 
 

 
 +

1

r 2 sin
sin

Ψ 
 

 
 

r,

+
1

r 2 sin2

2Ψ
2

 
 
  

 
r,

 

 
 

 

 
 + U r( )Ψ r, ,( ) = EΨ r, ,( )

(I.21)
In general, the Schrödinger equation has an infinite number of solutions.
To arrive at the solution which represents the electron, a suitable
boundary condition must be imposed.  Schrödinger postulated a
boundary condition: Ψ → 0  as r → ∞ , which leads to a purely
mathematical model of the electron.  The general form of the solutions
for r, ,( ) are

r, ,( ) = f lm r( )
l,m
∑ Ylm ,( ) (I.22)

where the solutions for the angular part of Eq. (I.21), Ylm ,( ), are the
spherical harmonics
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Ylm ,( ) =
2l +1( ) l − m( )!
4 l + m( )! Pl

m cos( )e im (I.23)

The angular part of Eq. (I.21) is the generalized Legendre equation which
is derived from the Laplace equation by Jackson (Eq. (3.9) of Jackson
[4]).  For the case that the potential energy is a constant times the
wavenumber of the electron, k  (a constant times the inverse of the de

Broglie wavelength of the electron--k =
2

;  =
h

p
), the radial part of Eq.

(I.21) is just the Bessel equation, Eq. (3.75) of Jackson [4] with = l +
1

2
.

(In the present case of an inverse squared central field, the magnitude of
each of the binding energy and the kinetic energy is one half the
potential energy [2], and the de Broglie wavelength requires that the

kinetic energy, 
p2

2me

, is a constant times the wavenumber squared.)

Thus, the solutions for f lm r( ) are

f lm r( ) =
Alm

r1/2 J l +1/2 kr( ) +
Blm

r1/2 Nl +1/2 kr( ) (I.24)

It is customary to define the spherical Bessel and Hankel functions,
denoted by jl x( ), nl x( ), hl

1,2( ) x( ),  as follows:

jl x( ) =
2x

 
 

 
 

1/2

Jl +1/2 x( )

nl x( ) =
2x

 
 

 
 

1/2

Nl +1/2 x( )

hl
1,2( ) x( ) =

2x
 
 

 
 

1/2

J l +1/2 x( ) ± iNl +1/2 x( )[ ]

(I.25)

For l = 0 , the explicit forms are:

j0 x( ) = sin x

x

n0 x( ) = −
cos x

x

h0
1( ) x( ) = e ix

ix

(I.26)

Eq. (I.21) has the general form
H = E (I.27)

The energy is given by

H
−∞

∞

∫ dv = E 2

−∞

∞

∫ dv ; (I.28)

Typically, the solutions are normalized.
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2

−∞

∞

∫ dv = 1 (I.29)

Thus,

H
−∞

∞

∫ dv = E (I.30)

A physical interpretation of Eq. (I.30) is sought.  Schrödinger interpreted
eΨ *( x)Ψ(x) as the charge-density or the amount of charge between x  and
x + dx  (Ψ * is the complex conjugate of Ψ ).  Presumably, then, he pictured
the electron to be spread over large regions of space.  Three years after
Schrödinger’s interpretation, Max Born, who was working with scattering
theory, found that this interpretation led to logical difficulties, and he
replaced the Schrödinger interpretation with the probability of finding
the electron between x  and x + dx  as

Ψ(x)Ψ*( x)dx∫ (I.31)

Born’s interpretation is generally accepted.  Nonetheless, interpretation
of the wave function is a never-ending source of confusion and conflict.
Many scientists have solved this problem by conveniently adopting the
Schrödinger interpretation for some problems and the Born
interpretation for others.  This duality allows the electron to be
everywhere at one time—yet have no volume.  Alternatively, the electron
can be viewed as a discrete particle that moves here and there (from
r = 0  to r = ∞), and ΨΨ *  gives the time average of this motion.
According to the Copenhagen interpretation, every observable exists in a
state of superposition of possible states and observation or the potential
for knowledge causes the wavefunction corresponding to the
possibilities to collapse into a definite state.  The postulate of quantum
measurement asserts that the process of measuring an observable forces
the state vector of the system into an eigenvector of that observable,
and the value measured will be the eigenvalue of that eigenvector.  Thus,
Eq.(I.30) corresponds to collapsing the wave function, and E  is the
eigenvalue of the eigenvector.

However, an alternative interpretation of Eq. (I.30) and the
corresponding solutions for  exist.  In the case that  is a function
given by Eqs. (I.24-I.26), Eq. (I.30) is equivalent to an inverse Fourier
transform.  The spacetime inverse Fourier transform in three dimensions
in spherical coordinates is given [5,6] as follows:

M(s,Θ,Φ ) = (r, , )exp( −i2 sr[cosΘcos + sinΘsin cos( −Φ)])r 2 sin drd d
0

2

∫
0
∫

0

∞

∫ (I.32)

With circular symmetry [5]
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M(s,Θ) = 2 (r, )Jo

0
∫

0

∞

∫ 2 sr sinΘsin( )exp −i2 sr cosΘcos( )r2 sin drd (I.33)

With spherical symmetry [5],

M(s) = 4 (r )
0

∞

∫ sinc 2sr( )r 2dr = 4 (r)
0

∞

∫
sinsr

sr
r2dr (I.34)

The Schrödinger equation (Eq. (I.21)) can be transformed into a sum
comprising a part that depends only on the radius and a part that is a
function of angle only.  By separation of variables, and substitution of
the eigenvalues corresponding to the angular part [7], the Schrödinger
equation becomes the radial equation, R r( ), given by

  
−

h2

2 r2

d

dr
r2 dR

dr
 
 

 
 +

h2l l +1( )
2 r 2 +U r( ) 

  
 
  R r( ) = ER r( ) (I.35)

Consider the case that  = 0, that the potential energy is a constant
times the wavenumber, and that the radial function is a spherical Bessel
function as given by Eqs. (I.24-I.26).  In this case, Eq. (I.35) is given by

  
4

sin sr

sr
−

h2

2 r2

d

dr
r 2 d

dr
 
 

 
 + U r( ) 

  
 
  

sin sr

sr
r2 dr

0

∞

∫ = E4
sinsr

sr

sin sr

sr
r2dr

0

∞

∫ (I.36)

Eq. (I.34) is the Fourier transform integral in spherical coordinates with
spherical symmetry.  The left hand side (LHS) of Eq. (I.36) is equivalent
to the LHS of Eq. (I.30) wherein  is given by Eq. (I.26).  Then the LHS of
Eq. (I.36) is the Fourier transform integral of H  wherein the kernel is

r 2 sin sr

sr
.  The integral of Eq. (I.30) gives E  which is a constant.  The

energy E  of Eq. (I.27) is a constant such as b .  Thus, H  according to Eq.
(I.27) is a constant times .

H = b (I.37)
where b  is a constant.  Since is b  is an arbitrary constant, consider the
following case wherein b  is the Rydberg formula:

b = −
Z2e2

8 0n
2aH

(I.38)

Then the energy of Eq. (I.30) is that given by Eq. (I.1).  But, the
Schrödinger equation can be solved to give the energy corresponding to
the radial function given by Eq. (I.4) of the Mills theory.  The radial
function used to calculate the energy is a delta function which
corresponds to an inverse Fourier transform of the solution for .

Ψ s( ) = (s − sn ) (I.39)
With a change of variable, Eq. (I.39) becomes Eq.(I.4).

Eq. (I.36) can be expressed as follows

  
4

sin sr

sr
−

h2

2 r2

d

dr
r 2 d

dr
 
 

 
 + U r( ) 

  
 
  

sin snr

snr
r2dr

0

∞

∫ = E4
sinsr

sr

sin snr

snr
r2dr

0

∞

∫ (I.40)
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It follows from Eq. (I.34) that the right side integral is the Fourier
transform of a radial Dirac delta function.

4 E
sinsnr

snr0

∞

∫
sin sr

sr
r2dr = E

s − sn( )
4 sn

2 (I.41)

Substitution of Eq. (I.37) into Eq. (I.40) gives

4 b
sin snr

snr0

∞

∫
sinsr

sr
r 2dr = b

s − sn( )
4 sn

2 (I.42)

Substitution of Eq. (I.41) and Eq. (I.42) into Eq. (I.40) gives
b s − sn( ) = E s − sn( ) (I.43)

Consider the case where b  is given by

  

b = −
h2

2men
a0

Z2
s

= −

1

n
Z 2e2

8 0s
(I.44)

and sn  is given by
sn = naH (I.45)

where rn = naH .  According to the duality and change of scale properties
of Fourier transforms [8], the energy equation of the Mills theory and
that of quantum mechanics are identical, the energy of a radial Dirac
delta function of radius equal to an integer multiple of the radius of the
hydrogen atom.  The total energy of the electron is given by Poisson's
Equation (Eq. (I.17)) and the relationship that the total energy is one half
the potential energy in the case of an inverse squared central force [2].

E = E (r − rn )
−∞

∞

∫ dr =− (r − rn )

1

n
Z 2e2

8 0r−∞

∞

∫ dr = −

1

n
Z 2e2

8 0rn

= −
Z 2e2

8 on
2aH

(I.46)

As was the case with the Bohr theory, quantum mechanics which is
based on the Schrödinger equation and modifications of the Schrödinger
equation has encountered several obstacles that have proved
insurmountable.  For examples:

1.) The Schrödinger equation failed to predict the electron spin,
and it provides no rational basis for the phenomenon of spin, the
Pauli exclusion principle, or Hund’s rules.  Instantaneous exchange of
information between particles is required, which violates Special
Relativity. According to this model, the electron must spin in one
dimension and give rise to a Bohr magneton; yet, classically the

energy of a magnetic moment is 
2

r3  which in the present case is

infinity (by substitution of r = 0  for the model that the electron is a
point particle), not the required mc2 .  This interpretation is in
violation of Special Relativity [9].  A modification of the Schrödinger
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equation was developed by Dirac to explain spin which relies on the
unfounded notions of negative energy states of the vacuum, virtual
particles, and gamma factors.

2.) Quantum mechanics assumes that atomic-size particles obey
different physical laws than macroscopic objects.  For example,
according to Maxwell's equations the electron described by a
Schrödinger one-electron wave function would radiate.  Quantum
Electrodynamics (QED) based on vacuum energy fluctuations (zero
point fluctuation (ZPF) energy) was invented to address some of
these issues, but rigorous solutions of QED result in no solutions
other than infinities.  (Radiated photons make an infinite
contribution to the perturbation series).

The failure of quantum mechanics is attributed to the unwarranted
assumption that first principles such as Maxwell's Equations do not apply
to the electron and the incorrect notion that the electron is described by
a probability distribution function of a point particle.  The success of the
Schrödinger equation can be understood in terms of the nature of the
solutions to the wave equation.  In general, the solutions are separable,
provide three quantum numbers, and yield eigenvalues.  By adjusting the
arbitrary constants of the separable solutions, the desired eigenvalues
can be obtained.

The fourth quantum number arises naturally in the Mills theory as
derived in The Electron g Factor Section.  The Stern-Gerlach experiment
implies a magnetic moment of one Bohr magneton and an associated
angular momentum quantum number of 1/2.  Historically, this quantum

number is called the spin quantum number, s (s =
1

2
; ms =±

1

2
).

Conservation of angular momentum of the orbitsphere permits a
discrete change of its "kinetic angular momentum" (r × mv)  by the field of

  
h
2

, and concomitantly the "potential angular momentum" (r × eA)  must

change by 
  
−

h
2

.  The flux change, , of the orbitsphere for r < rn   is

determined as follows:

  
∆L =

h
2

− r × eA (I.47)

  
=

h
2

−
e2 rA

2
(I.48)

  
=

h
2

−
e

2
(I.49)

In order that the change of angular momentum, ∆L, equals zero,  must

be Φ0 =
h

2e
, the magnetic flux quantum.  Thus, to conserve angular
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momentum in the presence of an applied magnetic field, the orbitsphere
magnetic moment can be parallel or antiparallel to an applied field as
observed with the Stern-Gerlach experiment, and the flip between

orientations ( a rotation of 
2

) is accompanied by the "capture" of the

magnetic flux quantum by the orbitsphere.  And, the total energy of the
flip transition is the sum of Eq. (1.148), the energy of a fluxon treading
the orbitsphere and Eq. (1.136), the energy of reorientation of the
magnetic moment.

∆Emag
spin = 2 BB +

2 BB
 
 

 
 (I.50)

∆Emag
spin = 2(1+

2
) BB (I.51)

∆Emag
spin = 2g BB (I.52)

The spin-flip transition can be considered as involving a magnetic
moment of g times that of a Bohr magneton.  The factor g is
redesignated the fluxon g factor as opposed to the anomalous g factor
and its value is 1.00116.  The experimental value is 1.00116.

The orbitsphere is a resonator cavity which traps photons of
discrete frequencies.  The radius of an orbitsphere increases with the
absorption of electromagnetic energy.  The solutions to Maxwell's
equations for modes that can be excited in the orbitsphere resonator
cavity give rise to four quantum numbers, and the energies of the modes
are the experimentally known hydrogen spectrum.

The subscript n is used in Eq. (I.46); the quantization condition
appears in the Excited States of the One Electron Atom (Quantization)
Section.  Quantization arises as "allowed" solutions of the wave
equation corresponding to a resonance between the electron and a
photon.

More explicitly, it is well known that resonator cavities can trap
electromagnetic radiation of discrete resonant frequencies.  The
orbitsphere is a resonator cavity which traps photons of discrete
frequencies.  Thus, photon absorption occurs as an excitation of a
resonator mode.  The "trapped photon" is a "standing electromagnetic
wave" which actually is a circulating wave that propagates along each
great circle current loop of the orbitsphere.  The time-function factor,
k(t ), for the "standing wave" is identical to the time-function factor of
the orbitsphere in order to satisfy the boundary (phase) condition at the
orbitsphere surface.  Thus, the angular frequency of the "trapped
photon" has to be identical to the angular frequency of the electron
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orbitsphere, n .  Furthermore, the phase condition requires that the
angular functions of the "trapped photon" have to be identical to the
spherical harmonic angular functions of the electron orbitsphere.
Combining k(t ) with the -function factor of the spherical harmonic

gives e i m − n t( )  for both the electron and the "trapped photon" function.
The photon is "glued" to the inner orbitsphere surface and the outer
nuclear surface as photon source charge-density with a radial electric
field.

From the application of the nonradiative boundary condition, the
instability of excited states as well as the stability of the "ground" state
arise naturally in the Mills theory as derived in Stability of Atoms and
Hydrinos Section.  In addition to the above known states of hydrogen
(Eq. (I.1), the theory predicts the existence of a previously unknown
form of matter: hydrogen atoms and molecules having electrons of
lower energy than the conventional "ground" state, called hydrinos  and
dihydrinos, respectively, where each energy level corresponds to a
fractional quantum number.

The central field of the proton corresponds to integer one charge.
Excited states comprise an electron with a trapped photon.  In all energy
states of hydrogen, the photon has an electric field which superposes
with the field of the proton.  In the n = 1 state, the sum is one, and the
sum is zero in the ionized state.  In an excited state, the sum is a fraction
of one (i.e. between zero and one).  Derivations from first principles
given by Mills demonstrate that each "allowed" fraction corresponding

to an excited state is 
1

integer
.  The relationship between the electric field

equation and the "trapped photon" source charge-density function is
given by Maxwell’s equation in two dimensions.

n • E1 − E2( ) =
0

(I.53)

where n  is the radial normal unit vector, E1 = 0  (E1  is the electric field
outside of the orbitsphere), E2  is given by the total electric field at
rn = naH , and σ is the surface charge-density.  The electric field of an
excited state is fractional; therefore, the source charge function is
fractional.  It is well known that fractional charge is not "allowed".  The
reason is that fractional charge typically corresponds to a radiative
current density function.  The excited states of the hydrogen atom are
examples.  They are radiative; consequently, they are not stable.  Thus,
an excited electron decays to the first nonradiative state corresponding
to an integer field, n = 1.  Equally valid from first principles are electronic
states where the sum of the photon field and the central field are an
integer.  These states are nonradiative.  A catalyst can effect a transition
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between these states.

Instability of Excited States
For the excited (integer quantum) energy states of the hydrogen

atom, photon , the two dimensional surface charge due to the "trapped
photons" at the orbitsphere, is given by Eqs. (2.6) and (2.11).

  
photon =

e

4 (rn)
2 Y0

0 ,( ) −
1

n
Y0

0 ,( ) + Re Yl
m ,( ) 1+ e i nt[ ]{ }[ ] 

 
 
 

(r − rn )  n = 2,3,4,..., (I.54)

Whereas, electron , the two dimensional surface charge of the electron
orbitsphere is

  
electron =

−e

4 (rn )2 Y0
0 ,( ) + Re Yl

m ,( ) 1 + e i nt[ ]{ }[ ] (r − rn ) (I.55)

The superposition of photon  (Eq. (I.54)) and electron (Eq. (I.55)), where the
spherical harmonic functions satisfy the conditions given in the Angular
Function Section, is equivalent to the sum of a radial electric dipole
represented by a doublet function and a radial electric monopole
represented by a delta function.

  
photon + electron =

e

4 (rn )2 Y0
0 ,( )

•
(r − rn ) −

1

n
Y0

0 ,( ) (r − rn ) − 1 +
1

n
 
 

 
 Re Yl

m ,( ) 1 + ei nt[ ]{ }[ ] (r − rn )
 
  

 
  

n = 2,3,4,..., (I.56)
where

+ (r − rn ) − (r − rn)[ ] =
•
(r − rn ) (I.57)

The spacetime Fourier transform of Eq. (I.56), the superposition of
photon  (Eq. (I.54)) and electron  (Eq. (I.55)) is

M(s,Θ,Φ , ) = 4 sn

cos(2snrn )

2snrn

⊗ 2
=1

∞

∑ (−1) −1 sin Θ( )2( −1)

( −1)!( − 1)!

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 

cosΘ( )2 +1 2 +1
2 !

( −1)!
s −2

⊗2
=1

∞

∑ (−1) −1 sinΦ( )2( −1)

( −1)!( −1)!

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 

cosΦ( )2 +12 +1
2 !

( −1)!
s −2 1

4
[ ( − n ) + ( + n )]

(I.58)
Consider the radial wave vector of the cosine function of Eq. (I.58).

When the radial projection of the velocity is c
sn • vn = s n • c = n (I.59)

the relativistically corrected wavelength is
rn = n  (I.60)

Substitution of Eq. (I.60) into the cosine function does not result in the
vanishing of the Fourier Transform of the current-density function.

Thus, spacetime harmonics of n

c
= k  or n

c o

= k  do exist for which the
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Fourier Transform of the current-density function is nonzero.  An
excited state is metastable because it is the sum of nonradiative (stable)
and radiative (unstable) components and de-excites with a transition
probability given by the ratio of the power to the energy of the
transition [10].

Stability of "Ground" and Hydrino States
For the below "ground" (fractional quantum) energy states of the

hydrogen atom, photon , the two dimensional surface charge due to the
"trapped photon" at the electron orbitsphere, is given by Eqs. (5.13) and
(2.11).

  
photon =

e

4 (rn)
2 Y0

0 ,( ) −
1

n
Y0

0 ,( ) + Re Yl
m ,( ) 1+ e i nt[ ]{ }[ ] 

 
 
 

(r − rn )  n = 1,
1

2
,
1

3
,
1

4
,...,

(I.61)
And, electron , the two dimensional surface charge of the electron
orbitsphere is

  
electron =

−e

4 (rn )2 Y0
0 ,( ) + Re Yl

m ,( ) 1 + e i nt[ ]{ }[ ] (r − rn ) (I.62)

The superposition of photon  (Eq. (I.61)) and electron , (Eq. (I.62)) where the
spherical harmonic functions satisfy the conditions given in the Angular
Function Section is a radial electric monopole represented by a delta
function.

  
photon + electron =

−e

4 (rn )2

1

n
Y0

0 ,( ) + 1 +
1

n
 
 

 
 Re Yl

m ,( ) 1+ e i nt[ ] 
  

 
  (r − rn )  n = 1,

1

2
,
1

3
,
1

4
,..., (I.63)

As given in the Spacetime Fourier Transform of the Electron Function
Section, the radial delta function does not possess spacetime Fourier
components synchronous with waves traveling at the speed of light (Eqs.
(I.9-I.11)).  Thus, the below "ground" (fractional quantum) energy states
of the hydrogen atom are stable.  The "ground" (n = 1 quantum) energy
state is just the first of the nonradiative states of the hydrogen atom;
thus, it is the state to which excited states decay.

Catalytic Lower-Energy Hydrogen Electronic Transitions
Comparing transitions between below "ground" (fractional

quantum) energy states as opposed to transitions between excited
(integer quantum) energy states, it can be appreciated that the former
are not effected by photons; whereas, the latter are.  Transitions are
symmetric with respect to time.  Current density functions which give
rise to photons according to the boundary condition are created by
photons in the reverse process.  Excited (integer quantum) energy states
correspond to this case.  And, current density functions which do not
give rise to photons according to the nonradiative boundary condition
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are not created by photons in the reverse process.  Below "ground"
(fractional quantum) energy states correspond to this case.  But, atomic
collisions and nonradiative energy transfer can cause a stable state to
undergo a transition to the next stable state.  The transition between two
stable nonradiative states effected by a collision with an resonant energy
sink is analogous to the reaction of two atoms to form a diatomic
molecule which requires a third-body collision to remove the bond
energy [11].

Energy Hole Concept
The nonradiative boundary condition and the relationship between

the electron and the photon give the "allowed" hydrogen energy states
which are quantized as a function of the parameter n .  Each value of n
corresponds to an allowed transition effected by a resonant photon
which excites the electronic transition.  In addition to the traditional
integer values (1, 2, 3,...,) of n , values of fractions are allowed which
correspond to transitions with an increase in the central field (charge)
and decrease in the size of the hydrogen atom.  This occurs, for
example, when the electron couples to another electronic transition or
electron transfer reaction which can absorb energy, an energy sink.  This
transition reaction of the electron of hydrogen to a lower energy state
occurs by the absorption of an energy hole by the hydrogen atom.
The absorption of an energy hole destroys the balance between the
centrifugal force and the resulting increased central electric force.
Consequently, the electron undergoes a transition to a lower energy
nonradiative state.  Thus, the corresponding reaction from an initial
energy state to a lower energy state effected by an energy hole is called a
transition reaction.

From energy conservation, the energy hole of a hydrogen atom

which excites resonator modes of radial dimensions 
aH

m +1
 is

m X 27.2 eV (I.64)
where m = 1,2,3,4,...

After resonant absorption of the energy hole, the radius of the

orbitsphere, aH , decreases to 
aH

m +1
 and after p  cycles of transition

reaction, the radius is 
aH

mp +1
.  In other words, the radial ground state

field can be considered as the superposition of Fourier components.  The
removal of negative Fourier components of energy m X 27.2 eV , where m
is an integer increases the positive electric field inside the spherical shell
by m  times the charge of a proton.  The resultant electric field is a time-
harmonic solution of Laplace's Equations in spherical coordinates.  In
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this case, the radius at which force balance and nonradiation are

achieved is 
aH

m +1
 where m  is an integer.  In decaying to this radius from

the "ground" state, a total energy of [(m +1)2 −12 ]X13.6 eV  is released.  The
transition reaction is hereafter referred to as the BlackLight Process.
The source of energy holes may not be consumed in the transition
reaction; therefore it is a hydrogen catalyst.

An efficient catalytic system that hinges on the coupling of three
resonator cavities involves potassium.  For example, the second
ionization energy of potassium is 31.63 eV .  This energy hole is obviously
too high for resonant absorption.  However, K+  releases 4.34 eV  when it
is reduced to K .  The combination of  K+  to K2+  and K+  to K , then, has a
net energy change of 27.28 eV .

27.28 eV + K+ + K + + H
aH

p

 
  

 
  → K + K2 + + H

aH

( p +1)

 
  

 
  + [(p +1)2 − p2 ]X13.6 eV (I.65)

K + K2+ → K+ + K + + 27.28 eV (I.66)

And, the overall reaction is

H
aH

p

 
  

 
  → H

aH

(p +1)

 
  

 
  + [(p +1)2 − p2 ]X13.6 eV (I.67)

Note that the energy given off as the atom undergoes a transition to a
lower energy level is much greater than the energy lost to the energy
hole.  Also, the energy released is large compared to conventional
chemical reactions.

Disproportionation of Energy States
Lower-energy hydrogen atoms, hydrinos, can act as a source of

energy holes that can cause transition reactions because the excitation
and/or ionization energies are m X 27.2 eV  (Eq. (I.64)).  The general
equation for the absorption of an energy hole of 27.21 eV , m = 1 in Eq.
(I.64), during the transition cascade for the pth cycle of the hydrogen-

type atom, H
aH

p

 
  

 
  , with the hydrogen-type atom, H

aH

m'
 
 

 
 
, that is ionized as

the source of energy holes that causes the transition reaction is
represented by

27.21 eV + H
aH

m'
 
 

 
 

+ H
aH

p

 
  

 
  → H + + e− + H

aH

p + 1( )
 

  
 

  + [ p + 1( )2 − p2 ]X13.6 eV − m' 2 −2( )X13.6 eV 
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(I.68)

H + + e− → H
aH

1
 
 

 
 

+13.6 eV (I.69)

And, the overall reaction is

H
aH

m'
 
 

 
 

+ H
aH

p

 
  

 
  → H

aH

1
 
 

 
 

+ H
aH

p +1( )
 

  
 

  + [2 p +1− m'2 ]X13.6 eV +13.6 eV (I.70)

For example, the equation for the absorption of an energy hole of
27.21 eV , m = 1 in Eq. (I.64), during the transition cascade for the third

cycle of the hydrogen-type atom, H
aH

3
 
 

 
 
, with the hydrogen-type atom,

H
aH

2
 
 

 
 
, that is ionized as the source of energy holes that causes the

transition reaction is represented by

27.21 eV + H
aH

2
 
 

 
 

+ H
aH

3
 
 

 
 

→ H + + e− + H
aH

4
 
 

 
 

+ [42 − 32 ]X13.6 eV − 27.21 eV (I.71)

H + + e− → H
aH

1
 
 

 
 

+13.6 eV (I.72)

And, the overall reaction is

H
aH

2
 
 

 
 

+ H
aH

3
 
 

 
 

→ H
aH

1
 
 

 
 

+ H
aH

4
 
 

 
 

+ [42 −32 − 4]X13.6 eV +13.6eV (I.73)

Disproportionation may be the predominant mechanism of
hydrogen electronic transitions to lower energy levels of interstellar and
solar hydrogen and hydrinos.  Hydrogen transitions to electronic energy
levels below the "ground" state corresponding to fractional quantum
numbers match the spectral lines of the extreme ultraviolet background
of interstellar space and from the sun.  This assignment given in the
Spectral Data of Hydrinos from the Dark Interstellar Medium and
Spectral Data of Hydrinos, Dihydrinos, and Hydrino Hydride Ions from
the Sun Section resolves the paradox of the identity of dark matter,
accounts for many celestial observations such as: diffuse Hα emission is
ubiquitous throughout the Galaxy whereby widespread sources of flux
shortward of 912 Å  are required [12], and resolves many solar problems.
The energy of the emission line for the transition given by Eqs. (I.71-
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I.73) whereby H
aH

2
 
 

 
 
 is ionized as the source of the energy hole of

 27.2 eV , m = 1 in Eq. (I.64), that causes transition reaction is 40.8 eV  (See
Table 1 of the Foreword Section).

H
aH

3
 
 

 
 

H
aH

2

 
  

 
  

 →    H
aH

4
 
 

 
 

(I.74)

In summary, the mathematics of the theories of Bohr, Schrödinger,
and presently Mills converge to Eq. (I.1) as the principal energy levels of
the hydrogen atom.

  En = −
e2

n2 8 oaH

=−
13.598 eV

n2 (I.75a)

n = 1,2,3,... (I.75b)

where aH  is the Bohr radius for the hydrogen atom (52.947 pm), e  is the
magnitude of the charge of the electron, and o  is the vacuum
permittivity.  However, the physics is quite different.  Only the Mills
theory is derived from first principles and holds over a scale of
spacetime of 45 orders of magnitude-it correctly predicts the nature of
the universe from the scale of the quarks to that of the cosmos.  And,
only the Mills theory predicts fractions as "allowed" states.  Explicitly,
Mills theory gives Eq. (I.75a) as the energy-level equation for atomic
hydrogen, but the restriction on "n ", Eq. (I.75b), should be replaced by
Eq. (I.75c).

n = 1,2,3,..., and , n =
1

2
,
1

3
,
1

4
,... (I.75c)

A number of experimental observations lead to the conclusion that
atomic hydrogen can exist in fractional quantum states that are at lower
energies than the traditional "ground" (n = 1) state.  The corresponding
process, the catalytic release of thermal energy as electrons are induced
undergo transitions to lower energy levels corresponding to fractional
quantum numbers, represents a virtually limitless source of clean,
inexpensive energy.
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A NEW ATOMIC THEORY DERIVED FROM FIRST PRINCIPLES

To overcome the limitations of quantum mechanics, physical laws
which are exact on all scales are sought.  Rather than engendering the
electron with a wave nature as suggested by the Davisson-Germer
experiment and fabricating a set of associated postulates and
mathematical rules for wave operators, a new theory is derived from
first principles.

The novel theory unifies Maxwell's Equations, Newton's Laws, and
General and Special Relativity.  Theoretical predictions conform with
experimental observations.  The closed form calculations of a broad
spectrum of fundamental phenomena contain fundamental constants
only.  Equations of the one electron atom are derived which give four
quantum numbers, the spin/nuclear hyperfine structure, the Rydberg
constant, the stability of atoms, the ionization energies, the equation of
the photon, the equation of the electron in free space, the results of the
Stern-Gerlach experiment, the electron g factor, the spin angular
momentum energies, the excited states, the results of the Davisson-
Germer experiment, the parameters of pair production, and the
hyperfine structure interval of positronium.  Ionization energies of two
and three electron atoms are given as well as the bond energies,
vibrational energies, rotational energies, and bond distances of
hydrogen-type molecules and molecular ions.

From the closed form solution of the helium atom, the predicted
electron scattering intensity is derived.  The closed form scattering
equation matches the experimental data; whereas, calculations based on
the Born model of the atom utterly fail at small scattering angles.  The
implications for the invalidity of the Schrödinger and Born model of the
atom and the dependent Heisenberg Uncertainty Principle are discussed.
The theory of collective phenomena including statistical mechanics,
superconductivity, Quantum Hall effects, and the Aharonov-Bohm effect
is given.  Atomic equations of gravitation are derived which provide the
basis of the atomic, thermodynamic, and cosmological arrows of time,
and the equation of the expansion of the universe.  The gravitational
equations with the equivalence of the particle production energies
permit the equivalence of mass/energy and the spacetime metric from
which the gravitational constant and the masses of the leptons, the
quarks, and nucleons are derived.  The basis of the antigravitational
force is presented with supporting experimental evidence.  The magnetic
moments of the nucleons are derived.  The beta decay energy of the
neutron, and the binding energy of deuterium are calculated.  The
theory of alpha decay is derived.

In addition to the above known phenomena and characteristics of



© 2000 by BlackLight Power, Inc.  All rights reserved.
23

fundamental particles and forces, the theory predicts the existence of a
previously unknown form of matter: hydrogen atoms and molecules
having electrons of lower energy than the conventional "ground" state
called hydrinos  and dihydrinos, respectively, where each energy level
corresponds to a fractional quantum number.  The existence of hydrinos
explains the spectral observations of the extreme ultraviolet background
emission from interstellar space, which characterizes dark matter, and it
provides an explanation of the solar neutrino paradox.  The
experimental confirmation of the existence of fractional quantum energy
levels of hydrogen atoms and molecules is presented.  The data shows
the process of hydrino production to be an exothermic reaction that
represents a limitless clean energy source.
The principles are as follows:

Foundations:
• Conservation of mass-energy;

• Conservation of linear and angular momentum;

• Maxwell’s Equations;

• Newton's Laws;

• Special Relativity.

Next, the condition that a bound electron cannot radiate energy is
imposed.  The mathematical formulation for zero radiation is that the
function that describes the motion of the electron must not possess
spacetime Fourier components that are synchronous with waves
traveling at the speed of light.  The permissible solutions of the electron
function are derived as a boundary value problem with the application
of the nonradiative boundary condition.

Solution to the Electron Functions
From these laws and the non-radiative condition the following are

a summary of some of the salient features of the theory derived in
subsequent sections:

• Bound electrons are described by a charge-density (mass-density)
function which is the product of a radial delta function
( f (r) = (r − rn )), two angular functions (spherical harmonic
functions), and a time harmonic function.  Thus, an electron is a
spinning, two-dimensional spherical surface, called an electron
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orbitsphere, that can exist in a bound state at only specified
distances from the nucleus.  More explicitly, the orbitsphere
comprises a two dimensional spherical shell of moving charge.
The corresponding current pattern of the orbitsphere comprises
an infinite series of correlated orthogonal great circle current
loops.  The current pattern (shown in Figure 1.4) is generated
over the surface by two orthogonal sets of an infinite series of
nested rotations of two orthogonal great circle current loops
where the coordinate axes rotate with the two orthogonal great
circles.  Each infinitesimal rotation of the infinite series is about
the new x-axis and new y-axis which results from the preceding
such rotation.  For each of the two sets of nested rotations, the
angular sum of the rotations about each rotating x-axis and y-axis
totals 2  radians.  The current pattern gives rise to the
phenomenon corresponding to the spin quantum number.

• The total function that describes the spinning motion of each
electron orbitsphere is composed of two functions.  One
function, the spin function, is spatially uniform over the
orbitsphere, spins with a quantized angular velocity, and gives
rise to spin angular momentum.  The other function, the
modulation function, can be spatially uniform—in which case
there is no orbital angular momentum and the magnetic moment
of the electron orbitsphere is one Bohr magneton—or not
spatially uniform—in which case there is orbital angular
momentum.  The modulation function also rotates with a
quantized angular velocity.  Numerical values for the angular
velocity, radii of allowed orbitspheres, energies, and associated
quantities are calculated.

• Orbitsphere radii are calculated by setting the centripetal force
equal to the electric and magnetic forces.

• The orbitsphere is a resonator cavity which traps photons of
discrete frequencies.  The radius of an orbitsphere increases with
the absorption of electromagnetic energy.  The solutions to
Maxwell's equations for modes that can be excited in the
orbitsphere resonator cavity give rise to four quantum numbers,
and the energies of the modes are the experimentally known
hydrogen spectrum.  The spectrum of helium is the solution of
Maxwell's equations for the energies of modes of this resonator
cavity with a contribution from electron-electron spin and orbital
interactions.
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• Excited states are unstable because the charge-density function of
the electron plus photon have a radial doublet function
component which corresponds to an electric dipole.  The doublet
possesses spacetime Fourier components synchronous with waves
traveling at the speed of light; thus it is radiative.  The charge-
density function of the electron plus photon for the n = 1
principal quantum state of the hydrogen atom as well as for each

of the n =
1

integer
 states mathematically is purely a radial delta

function.  The delta function does not possess spacetime Fourier
components synchronous with waves traveling at the speed of
light; thus, each is nonradiative.

• The spectroscopic linewidth arises from the classical rise-time
band-width relationship, and the Lamb Shift is due to
conservation of energy and linear momentum and arises from the
radiation reaction force between the electron and the photon.

• The photon is an orbitsphere with electric and magnetic field
lines along orthogonal great circles.

• Upon ionization, the orbitsphere radius goes to infinity and the
electron becomes a plane wave (consistent with double-slit
experiments) with the de Broglie wave length, = h / p .

• The energy of atoms is stored in their electric and magnetic
fields.  Chemical bonding occurs when the total energy of the
participant atoms can be lowered with the formation of two
dimensional equipotential energy surfaces (molecular orbitals)
where the motion is along geodesics, and a general form of the
nonradiative boundary condition is met.  Zero order vibration
occurs because it gives rise to a nonradiative lower energy state.

• Certain atoms and ions serve as catalysts to release energy from
hydrogen to produce an increased binding energy hydrogen atom

having a binding energy of 
13.6 eV

1
p

 
 
  

 

2  where p  is an integer greater

than 1, designated as H
aH

p

 
  

 
   where aH  is the radius of the

hydrogen atom.  Increased binding energy hydrogen atoms called
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hydrinos are predicted to form by reacting an ordinary hydrogen
atom with a catalyst having a net enthalpy of reaction of about
the potential energy of hydrogen in its first nonradiative state,
m ⋅ 27.2 eV , where m  is an integer.  This catalysis releases energy
from the hydrogen atom with a commensurate decrease in size of
the hydrogen atom, rn = naH .  For example, the catalysis of H(n = 1)

to H(n = 1/ 2)  releases 40.8 eV , and the hydrogen radius decreases

from aH  to 
1

2
aH .  For example, potassium ions can provide a net

enthalpy of a multiple of that of the potential energy of the
hydrogen atom.  The second ionization energy of potassium is
31.63 eV ; and K+  releases 4.34 eV  when it is reduced to K .  The
combination of reactions K+  to K2+  and K+  to K , then, has a net
enthalpy of reaction of 27.28 eV .  The process is hereafter referred
to as the Atomic BlackLight Process.

• The existence of fractional quantum energy levels of hydrogen
atoms, molecules, and hydride ions as the product of the
BlackLight Process-a new energy source has been confirmed
experimentally.

• The Schwarzschild metric gives the relationship whereby matter
causes relativistic corrections to spacetime that determines the
curvature of spacetime and is the origin of gravity.  The
correction is based on the boundary conditions that no signal can
travel faster that the speed of light including the gravitational
field that propagates following particle production from a photon
wherein the particle has a finite gravitational velocity given by
Newton's Law of Gravitation.

• It is possible to give the electron a spatial velocity function
having negative curvature and, therefore, cause antigravity.  An
engineered spacecraft may be feasible.

• Fundamental particle production occurs when the energy of the
particle given by the Planck equation, Maxwell's Equations, and
Special Relativity is equal to mc2 , and the proper time is equal to
the coordinate time according to General Relativity.  The
gravitational equations with the equivalence of the particle
production energies permit the equivalence of mass/energy and
the spacetime metric from which the gravitational constant and
the masses of the leptons, the quarks, and nucleons are derived.
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• The gravitational equations with the equivalence of the particle
production energies permit the equivalence of mass/energy

( E = mc2 ) and spacetime (
c3

4 G
= 3.22 X 1034

 
kg

sec
).  Spacetime expands

as mass is released as energy which provides the basis of the
atomic, thermodynamic, and cosmological arrows of time.
Entropy and the expansion of the universe are large scale
consequences.  The universe is closed independently of the total
mass of the universe, and different regions of space are
isothermal even though they are separated by greater distances
than that over which light could travel during the time of the
expansion of the universe.  The universe is oscillatory in
matter/energy and spacetime with a finite minimum radius, the
gravitational radius; thus, the gravitational force causes celestial
structures to evolve on a time scale that is greater than the
period of oscillation.  The equation of the radius of the universe,

ℵ, is ℵ=
2GmU

c2 +
cmU

c3

4 G

 

 

 
 

 

 

 
 

−
cmU

c3

4 G

 cos
2 t

2 GmU

c3
 sec

 

 

 
 

 

 

 
 
 m .  The calculated

Hubble constant is H0 = 78.6 
km

sec⋅ Mpc
.  Presently, stars exist which

are older than the elapsed time of the present expansion as
stellar evolution occurred during the contraction phase.  The
maximum energy release of the universe which occurs at the
beginning of the expansion phase is

  

PU =

mec
2

2GM

c2Dc

2GM

c2Dc

=
c5

4 G
= 2.89 X 1051

 W .

• Superconductivity arises when the lattice is a band-pass for the
magnetic field of an array of magnetic dipoles; so, no energy is
dissipated with current flow.

• The Quantum Hall Effect arises when the forces of crossed
electric and magnetic fields balance and the lattice is a band-pass
for the magnetic field of an array of magnetic dipoles.

• The vector potential component of the electron's angular
momentum gives rise to the Aharonov-Bohm Effect.
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• Alpha decay occurs as a transmission of a plane wave through a
potential barrier.

• The proton and neutron functions each comprise a linear
combination of a constant function and three orthogonal
spherical harmonic functions resulting in three quark/gluon
functions per nucleon.  The nucleons are locally two dimensional.
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THE ONE ELECTRON ATOM

One-electron atoms include the hydrogen atom, He(II), Li(III),
Be(IV), and so on.  The mass-energy and angular momentum of the
electron are constant; this requires that the equation of motion of the
electron be temporally and spatially harmonic.  Thus, the classical wave
equation (4-dimensional Laplace equation) applies and

∇2− 1

v2

2

t2

 
  

 
  (r, , ,t) = 0 (1.1)

where (r, , ,t) is the function of the electron in time and space.  In each
case, the nucleus contains Z  protons and the atom has a net positive
charge of (Z −1)e .  All forces are central and Special Relativity applies.
Thus, the coordinates must be three dimensional spherically harmonic
coordinates plus time.  The time, radial, and angular solutions of
Laplace's Equation are separable.  The motion is time harmonic with
frequency n .  To be a harmonic solution of Laplace's equation in
spherical coordinates, the angular functions must be spherical harmonic
functions.

THE BOUNDARY CONDITION OF NONRADIATION AND THE
RADIAL FUNCTION - THE CONCEPT OF THE "ORBITSPHERE"

A zero of the spacetime Fourier transform of the product function
of two spherical harmonic angular functions, a time harmonic function,
and an unknown radial function is sought.

The Boundary Condition
The condition for radiation by a moving charge is derived from

Maxwell's equations.  To radiate, the spacetime Fourier transform of the
current-density function must possess components synchronous with
waves traveling at the speed of light [1].  Alternatively,

For non-radiative states, the current-density function must not
possess spacetime Fourier components that are synchronous
with waves traveling at the speed of light.

Derivation of the Condition for Nonradiation
Proof that the condition for nonradiation by a moving point charge

is that its spacetime Fourier transform does not possess components
that are synchronous with waves traveling at the speed of light is given
by Haus [1].  The Haus derivation applies to a moving charge-density
function as well because charge obeys superposition.  The Haus
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derivation is summarized below.

The Fourier components of the current produced by the moving charge
are derived.  The electric field is found from the vector equation in
Fourier space (k, ω-space).  The inverse Fourier transform is carried
over the magnitude of k .  The resulting expression demonstrates that

the radiation field is proportional to J⊥ (
c

n, ) , where J⊥ (k, )  is the

spacetime Fourier transform of the current perpendicular to k  and

n ≡
k
|k|

.  Specifically,

E⊥ r,( ) d

2
=

c

2
,Ω( )∫ d dΩ 0

0

n X n X J⊥ c
n,

 
 

 
 e

i
c

 

 
 

 

 
 n•r 

 
  

 
 (1.2)

The field E⊥ r,( ) d

2
  is proportional to J⊥ c

n,
 
 

 
 , namely, the Fourier

component for which k =
c

.  Factors of  that multiply the Fourier

component of the current are due to the density of modes per unit
volume and unit solid angle.  An unaccelerated charge does not radiate
in free space, not because it experiences no acceleration, but because it

has no Fourier component J⊥ c
n,

 
 

 
 .

Derivation of the Boundary Condition
In general, radial solutions of the Helmholtz wave equation are

spherical Bessel functions, Neumann functions, Hankel functions,
associated Laguerre functions, and the radial Dirac delta function.  The
Dirac delta function eliminates the radial dependence and reduces the
number of dimensions of the Helmholtz wave equation from four to
three.  The solution for the radial function which satisfies the boundary
condition is three dimensional delta function in spherical coordinates--a
spherical shell [2]

f (r) =
1

r2 (r − rn ) (1.3)

where rn  is an allowed radius.  The Fourier Transform of the radial Dirac
delta function is a sinc function.  For time harmonic motion, with
angular velocity, , the relationship between the radius and the
wavelength is

2 r = (1.4)
Consider the radial wave vector of the sinc function, when the radial
projection of the velocity is c , the relativistically corrected wavelength is

r = (1.5)
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Substitution of Eq. (1.5) into the sinc function results in the vanishing of
the entire Fourier Transform of the current-density function.

SPACETIME FOURIER TRANSFORM OF THE ELECTRON FUNCTION
The electron charge-density (mass-density) function is the product

of a radial delta function ( f (r) =
1

r2 (r − rn )) , two angular functions

(spherical harmonic functions), and a time harmonic function.  The
spacetime Fourier transform in three dimensions in spherical
coordinates plus time is given [3,4] as follows:

M(s,Θ,Φ , ) = (r, , ,t )exp( −i2 sr[cosΘ cos + sin Θsin cos( −Φ)])
0

2

∫
0
∫

0

∞

∫
0

∞

∫
                                              exp(−i t)r 2 sin drd d dt

(1.6)

With circular symmetry [3]

M(s,Θ, ) = 2 (r, ,t)Jo (
0
∫

0

∞

∫
0

∞

∫ 2 sr sinΘsin )exp −i2 sr cosΘcos( )r2 sin exp −i t( )drd dt

(1.7)
With spherical symmetry [3],

M(s, ) = 4 (r,t)sinc(2sr)r2 exp(−i t)drdt
0

∞

∫
0

∞

∫ (1.8)

The solutions of the classical wave equation are separable.
(r, , ,t) = f (r)g( )h( )k( t) (1.9)

The orbitsphere function is separable into a product of functions of
independent variables, r, , ,  and t .  The radial function which satisfies
the boundary condition is a delta function.  The time functions are of
the form e i t , the angular functions are spherical harmonics, sin or
cosine trigonometric functions or sums of these functions, each raised
to various powers.  The spacetime Fourier transform is derived of the
separable variables for the angular space function of sin  and sin . It
follows from the spacetime Fourier transform given below that other
possible spherical harmonics angular functions give the same form of
result as the transform of sin  and sin .  Using Eq. (1.8), F(s), the space
Fourier transform of ( f (r) = (r − rn )) is given as follows:

F(s) = 4
1

r2 (r − rn )sinc(2sr)r 2dr
0

∞

∫ (1.10)

F(s) = 4 sinc(2srn ) (1.11)
The subscript n is used hereafter; however, the quantization
condition appears in the Excited States of the One Electron
Atom (Quantization) Section.  Quantization arises as
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"allowed" solutions of the wave equation corresponding to a
resonance between the electron and  a photon.

Using Eq. (1.7), G(s,Θ) ,, the space Fourier transform of g( ) = sin  is
given
as follows where there is no dependence on :

G(s,Θ) = 2 sin Jo 2 sr sinΘsin( )exp −i2 sr cosΘcos( )sin r 2d dr
0
∫

0

∞

∫ (1.12)

G(s,Θ) = 2 r 2 sin2 Jo 2 sr sin Θsin( )cos 2 sr cosΘcos( )d dr
0
∫

0

∞

∫ (1.13)

From Luke [5] and [6]:

J z( ) =
1

2
z

 
 

 
 

v −1( )n z

2
 
 

 
 

2n

n!Γ v + n +1( )n= 0

∞

∑ =
1

2
z

 
 

 
 

v −1( )n z

2
 
 

 
 

2n

n! v + n( )!n =0

∞

∑ (1.14)

Let
Z = 2 sr sinΘsin (1.15)

With substitution of Eqs. (1.15) and (1.14) into Eq. (1.13),

G(s,Θ) = 2 r 2 sin2 (−1)n sr sinΘsin( )2n

n!n!n= 0

∞

∑ 

  
 

  cos(2 sr cosΘ cos )d dr
0
∫

0

∞

∫ (1.16)

G s,Θ( ) = 2 r 2

0

∞

∫
−1( )n sr sinΘ( )2n

n!n!n= 0

∞

∑
0
∫ sin2 n+1( ) cos 2 sr cosΘcos( )d dr (1.17)

G s,Θ( ) = 2 r2 (−1)n−1 sr sinΘ( )2( n −1)

(n −1)!(n −1)!
sin2n cos(2 sr cosΘ cos )d dr

n =1

∞

∑
0
∫

0

∞

∫ (1.18)

From Luke [7], with Re(υ) > −
1

2
:

J z( ) =

1

2
z

 
 

 
 

Γ 1
2

 
 

 
 Γ + 1

2
 
 

 
 

cos zcos( )
0
∫ sin2 d (1.19)

Let
z = 2 sr cos , and n = (1.20)

Applying the relationship, the integral of a sum is equal to the sum of
the integral to Eq. (1.18), and transforming Eq. (1.18) into the form of
Eq. (1.19) by multiplication by
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1 =
Γ

1

2
 
 
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 Γ +

1

2
 
 

 
 sr cosΘ( )

sr cosΘ( ) Γ 1
2

 
 

 
 Γ + 1

2
 
 

 
 

(1.21)

and by moving the constant outside of the integral gives:

G(s,Θ) = 2 r2 (−1) −1 rsin Θ( )2( −1)

( −1)!( −1)!
 

0
∫

=1

∞

∑
0

∞

∫

 
Γ

1

2
 
 

 
 Γ +

1

2
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 
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 sr cosΘ( )
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2
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G s,Θ( ) = 2 r2 (−1) −1 rsinΘ( )2( −1)
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Applying Eq. (1.19),

G s,Θ( ) = 2 r2 (−1) −1 rsinΘ( )2( −1)

( −1)!( −1)!
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∫ dr (1.24)

Using the Hankel transform formula from Bateman [8]:

r
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(1.25)

and the Hankel transform relationship from Bateman [9], the general Eq.
(1.31) is derived as follows:

f (x) <=======> g(y; ) = f (x) xy( )
1

2
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 
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∫ dx (1.26)

xm f (x),m = 0,1,2...<=======> y
1

2
−

 

 
 

 

 
 d

ydy

 
 
  

 

m

y
m + −

1

2

 

 
 

 

 
 
g(y;m + )

 

  
 

  (1.27)

r
0

∞

∫ r
−

1

2

 

 
 

 

 
 

rs( )
1

2

 

 
 

 

 
 J rs( )dr = s

1

2
−

 

 
 

 

 
 d

sds
 
 

 
 s

+ −
1

2

 

 
 

 

 
 
s

1

2

 

 
 

 

 
  

  
 

  (1.28)



© 2000 by BlackLight Power, Inc.  All rights reserved.
38
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Collecting the r  raised to a power terms, Eq. (1.24) becomes,

G(s,Θ) = 2
(−1) −1 sin Θ( )2( −1)
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Let r =
r'

2 cosΘ
;  dr =

dr'

2 cosΘ
,
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By applying Eq. (1.31), Eq. (1.33) becomes,
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By collecting power terms of s , Eq. (1.34) becomes,
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H(s,Φ), the space Fourier transform of h( ) = sin  is given as follows
where there is no dependence on :

The spectrum of sin  and sin  are equivalent.  Applying a change of
variable to the Fourier transform of g( ) = sin .

======>    implies     Θ =======>Φ
Therefore, Φ  replaces Θ  in Eq. (1.35),

H(s,Φ) = 2
(−1) −1 sinΦ( )2( −1)
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The time Fourier transform of K(t) = Re{exp(i nt)} where n  is the



© 2000 by BlackLight Power, Inc.  All rights reserved.
39

angular frequency is given [4] as follows:

cos nt exp(−i t)dt =
1

2

1

2
[ ( − n ) + ( + n )]

0

∞

∫ (1.37)

A very important theorem of Fourier analysis states that the
Fourier transform of a product is the convolution of the individual
Fourier transforms [10].  By applying this theorem, the spacetime
Fourier transform of an orbitsphere, M(s,Θ,Φ , ) is of the following form:

M(s,Θ,Φ , ) = F(s) ⊗ G(s,Θ)⊗ H (s,Φ)K( ) (1.38)
Therefore, the spacetime Fourier transform, M(s,Θ,Φ , ), is the
convolution of Eqs. (1.11), (1.35), (1.36), and (1.37).

M(s,Θ,Φ , ) = 4 sinc(2srn ) ⊗ 2
=1

∞

∑ (−1) −1 sin Θ( )2( −1)
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1
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cosΦ( )2 +1
2 +1
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4
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(1.39)
The condition for nonradiation of a moving charge-density function is
that the spacetime Fourier transform of the current-density function
must not have waves synchronous with waves traveling at the speed of

light, that is synchronous with n

c
  or synchronous with n

c o

 where ε

is the dielectric constant of the medium. The Fourier transform of the
charge-density function of the orbitsphere (bubble of radius r ) is given
by Eq. (1.39).  In the case of time harmonic motion, the current-density
function is given by the time derivative of the charge-density function.
Thus, the current-density function is given by the product of the
constant angular velocity and the charge-density function.  The Fourier
transform of current-density function of the orbitsphere is given by the
product of the constant angular velocity and Eq. (1.39).  Consider the
radial and time parts of, J⊥ , the Fourier transform of the current-density
function where the angular transforms are not zero:

J⊥ ∝ nsinc2srn

1

4
[ ( − n ) + ( + n )] = n

sin2 srn

2 srn

1

4
[ ( − n ) + ( + n )]

(1.40)
For the case that the current-density function is constant, the delta
function of Eq. (1.40) is replaced by a constant.  For time harmonic
motion, with angular velocity, n , Eq. (1.40) is nonzero only for = n ;
thus, −∞< s < ∞  becomes finite only for the corresponding wavenumber,
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sn .  The relationship between the radius and the wavelength is
vn = n f n (1.41)
vn = 2 rn f n = n f n (1.42)
2 rn = n (1.43)

The motion on the orbitsphere is angular; however, a radial component
exists due to Special Relativistic effects.  Consider the radial wave vector
of the sinc function.  When the radial projection of the velocity is c

sn • vn = s n • c = n (1.44)
the relativistically corrected wavelength is1

rn = n  (1.45)
(i.e. the lab frame motion in the angular direction goes to zero as the
velocity approaches the speed of light as given by Eq. (24.15)).
Substitution of Eq. (1.45) into the sinc function results in the vanishing
of the entire Fourier Transform of the current-density function.  Thus,

spacetime harmonics of n

c
= k  or n

c o

= k  do not exist for which the

Fourier Transform of the current-density function is nonzero.  Radiation
due to charge motion does not occur in any medium when this boundary
condition is met.  [Note that the boundary condition for the solution of
the radial function of the hydrogen atom with the Schrödinger equation
is that Ψ → 0  as r → ∞ .  Here, however, the boundary condition is
derived from Maxwell's equations:  For non-radiative states, the current-
density function must not possess spacetime Fourier components that
are synchronous with waves traveling at the speed of light.  An
alternative derivation which provides acceleration without radiation is
given by Abbott [11]]  Bound electrons are described by a charge-density
(mass-density) function which is the product of a radial delta function,
Eq. (1.3), two angular functions (spherical harmonic functions), and a
time harmonic function.  This is a   solution of Laplace's Equation.  Thus,

1 The special relativistic length contraction relationship observed for a
laboratory frame relative to an inertial frame moving at constant
velocity v  in the direction of velocity v  is

l = lo 1 −
v2

c2

Consider the distance on a great circle given by

rd = r
0

2

∫
0

2

= 2 r

The distance undergoes length contraction only in the  direction as v → c .
Thus, as v → c  the distance on a great circle approaches its radius which is the
relativistically contracted electron wavelength.
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this radial function implies that allowed states are two-dimensional
spherical shells (zero thickness) of charge-density (and mass density) at
specific radii rn .  These shells are referred to as electron orbitspheres.
See Figure 1.1 for a pictorial representation of an orbitsphere.

Figure 1.1.  The orbitsphere is a two dimensional spherical shell with the
Bohr radius of the hydrogen atom.

Given time harmonic motion and a radial delta function, the
relationship between an allowed radius and the electron wavelength is
given by Eq. (1.43).  Using the de Broglie relationship for the electron
mass where the coordinates are spherical,

n =
h

pn

=
h

mevn

(1.46)

and the magnitude of the velocity for every point on the orbitsphere is

  
vn =

h
mern

(1.47)

THE ANGULAR FUNCTION
The radial function for the electron indicates that the electron is

two-dimensional.  Therefore, the angular mass-density function of the
electron , A( , ,t), must be a solution of the Laplace equation in two
dimensions (plus time),
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∇2− 1
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  A( , ,t) = 0 (1.48)

where (r, , ,t) = f (r)A( , ,t) =
1

r 2 (r − rn )A( , ,t) and A( , ,t) = Y( , )k(t)

1

r 2 sin
sin
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+
1

r 2 sin2

2

2

 
 
  

 
r,

−
1

v2

2

t2

 

 
 

 

 
 A , ,t( ) = 0 (1.49)

where v  is the linear velocity of the electron.  Conservation of
momentum and energy allows the angular functions and time functions
to be separated.

A( , ,t) = Y ( , )k(t) (1.50)
Charge is conserved as well, and the charge of an electron is
superimposable with its mass.  That is, the angular mass-density
function, A( , ,t), is also the angular charge-density function.

The electron orbitsphere experiences a constant potential energy
because it is fixed at r = rn .  In general, the kinetic energy for an inverse
squared electric force is half the potential energy.  It is the rotation of
the orbitsphere that causes spin angular momentum.  The rotational
energy of a rotating body, Erot , is

Erot =
1

2
I 2 (1.51)

where I  is the moment of inertia and  is the angular velocity.  The
angular velocity must be constant (at a given n ) because r  is constant
and the energy and angular momentum are constant.  The allowed
angular velocities are related to the allowed frequencies by

n = 2 n (1.52)
The allowed frequencies are related to allowed velocities by

vn = n n  (1.53)
The allowed velocities and angular frequencies are related to rn  by

vn = rn n (1.54)

  
n =

h
mern

2
(1.55)

  
vn =

h
mern

(1.56)

The sum of the L i, the magnitude of the angular momentum of each
infinitesimal point of the orbitsphere of mass mi , must be constant.  The
constant is   h .

  
|L i |∑ = r × miv∑ = mern

h
mern

= h (1.57)

where the velocity is given by Eq. (1.47).  The vector projections of the
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orbitsphere spin angular momentum relative to the Cartesian
coordinates are given in the Spin Angular Momentum of the Orbitsphere
with  = 0 Section.

In the case of an excited state, the charge density function of the
electron orbitsphere can be modulated by the corresponding "trapped"
photon to give rise to orbital angular momentum about the z-axis.  The
"trapped photon" is a "standing electromagnetic wave" which actually is
a circulating wave that propagates around the z-axis.  Its source current
superimposes with each great circle current loop of the orbitsphere.  In
order to satisfy the boundary (phase) condition at the orbitsphere
surface, the angular and time functions of the photon must match those
of its source current which modulates the orbitsphere charge density
function as given in the Equation of the Electric Field Inside the
Orbitsphere Section.  The time-function factor, k(t ), for the photon
"standing wave" is identical to the time-function factor of the
orbitsphere.  Thus, the angular frequency of the "trapped photon" has to
be identical to the angular frequency of the electron orbitsphere, n

given by Eq. (1.55).  However, the linear velocity of the modulation
component is not given by Eq. (1.54)--the orbital angular frequency is
with respect to the z-axis; thus, the distance from the z-axis must be
substituted for the orbitsphere radius of Eq. (1.54).  The vector
projections of the orbital angular momentum and the spin angular
momentum of the orbitsphere are given in the Rotational Parameters of
the Electron (Angular Momentum, Rotational Energy, and Moment of
Inertia) Section.  Eq. (1.49) becomes

  
−

h2

2I

1

sin
sin

 
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sin2

2
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 

 

 
 A , ,t( ) = Erot A , ,t( ) (1.58)

The spacetime angular function, A( , ,t), is separated into an angular
and a time function, Y ( , )k(t).  The solution of the time harmonic
function is k(t ) = e i nt .  When the time harmonic function is eliminated,

  
−
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2I

1

sin
sin
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+
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sin2

2

2

 
 
  

 
r,

 

 
 

 

 
 Y ,( ) = ErotY ,( ) (1.59)

Eq. (1.59) is the equation for the rigid rotor.  The angular function can
be separated into a function of  and a function of  and the solutions
are well known [11].  The energies are given by

  
Erot =

h2l(l +1)

2I
    l = 0,1,2,3,..., (1.60)

where the moment of inertia, I , is derived in the Rotational Parameters
of the Electron (Angular Momentum, Rotational Energy, and Moment of
Inertia) Section.  The angular functions are the spherical harmonics,
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  Yl
m( , ) = Pl

m(cos )e im .  The spherical harmonic Y0
0 ( , ) = 1 is also a solution.

The real part of the spherical harmonics vary between −1 and 1.  But the
mass of the electron cannot be negative; and the charge cannot be
positive.  Thus, to insure that the function is positive definite, the form
of the angular solution must be a superposition:

  Y0
0 ( , ) + Yl

m( , ) (1.61)
(Note that   Yl

m( , ) = Pl
m(cos )e im  are not normalized here as given by Eq.

(3.53) of Jackson [12]; however, it is implicit that magnitude is made to
satisfy the boundary condition that the function is positive definite and
Eq. (1.63) is satisfied.)  Y0

0 ( , ) is called the angular spin function

corresponding to the quantum numbers s =
1

2
; m s = ±

1

2
 as given in the Spin

Angular Momentum of the Orbitsphere with  = 0 Section and the Stern-
Gerlach Experiment Section.    Yl

m( , ) is called the angular orbital
function corresponding to the quantum numbers

  l = 0, 1, 2, 3,  4,...; m l =  - l,  - l + 1,  ...,  0,  ...,  + l .    Yl
m( , ) can be thought of as

a modulation function.  The charge-density of the entire orbitsphere is

the total charge divided by the total area, 
−e

4 rn
2 .  The fraction of the

charge of an electron in any area element is given by

  N Y0
0 ( , ) + Yl

m( , )[ ]rn
2 sin d d , (1.62)

where N  is the normalization constant.  Therefore, the normalization
constant is given by

  
−e = Nrn

2 Y0
0 ( , ) + Yl

m( , )[ ]sin d d
0

2

∫
0
∫ (1.63)

For  = 0, N =
−e

8 rn
2 .  For  ≠ 0, N =

−e

4 rn
2 .  The charge-density functions

including the time-function factor are

 = 0

  
(r, , ,t) =

e

8 r2 [ (r − rn )] Yl
m ,( ) + Y0

0 ,( )[ ] (1.64)

  0

  
(r, , ,t) =

e

4 r2 [ (r − rn )] Y0
0 ,( ) + Re Yl

m ,( ) 1 + e i nt[ ]{ }[ ] (1.65)

where

  
Re Yl

m ,( ) 1+ e i nt[ ]{ } = Re Yl
m ,( ) + Yl

m ,( )e i nt[ ] = Pl
m cos( )cosm + Pl

m cos( )cos m + nt( )
and n = 0 for m = 0.  The photon equations which correspond to the
orbitsphere states, Eqs. (1.64) and (1.65) are given in the Excited States
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of the One Electron Atom (Quantization) Section.  For n = 1, and  = 0,
m = 0, and s = 1/ 2, the charge (and mass) distribution is spherically
symmetric and M1,0,0,1/2 = −14.41 Cm−2  everywhere on the orbitsphere.

Similarly, for n = 2 ,  = 0, m = 0, and s = 1/ 2, the charge distribution
everywhere on the sphere is M2,0,0,1/2 = −3.602 Cm−2 .  For n = 2 ,  = 1, m = 0,
and s = 1/ 2, the charge distribution varies with .  Y1

0 ( , ) is a maximum
at = 0°  and the charge-density is also a maximum at this point,
M2,1,0,1/2 ( = 0° ) =−7.203 Cm−2 .  The charge-density decreases as  increases;
a minimum in the charge-density is reached at

= 180°,  M2,1,0,1/2 ( = 180° ) = 0 Cm−2 .

For  = 1 and m = ±1, the spherical harmonics are complex, and the
angular functions comprise linear combinations of

Y1,x = sin cos (1.66)
Y1,y = sin sin (1.67)

Each of Y1,x  and Y1,y  is the component factor part of a phasor.  They are
not components of a vector; however, the x  and y  designation
corresponds, respectively, to the historical px  and py  probability density
functions of quantum mechanics.  Y1,x  is a maximum at = 90°  and = 0° ;
M2,1,x,1/2 (90° ,0° ) =−3.602 Cm−2 .  Figure 1.2 gives pictorial representation of
how the modulation function changes the electron density on the
orbitsphere for several  values. (When the electron charge appears
throughout this text in a function involving a linear combination of the
spin and orbital functions, it is implicit that the charge is normalized.)
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Figure 1.2  The orbital function modulates the constant (spin) function.
                  (shown for t = 0; cross-sectional view)
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THE ORBITSPHERE EQUATION OF MOTION FOR  = 0
The orbitsphere equation of motion for  = 0 is solved as a

boundary value problem.  The boundary conditions are: 1.) each
infinitesimal point of the orbitsphere must move along a great circle; 2.)
every such infinitesimal point must have the same angular and linear
velocity given by Eqs. (1.55) and (1.56), respectively; 3.) the current of
the orbitsphere must give rise a magnetic moment of a Bohr magneton
and the corresponding magnetic field; 4.) the magnetic moment must
align completely parallel or antiparallel with an applied magnetic field in
agreement with the Stern-Gerlach experiment; 5.) the energy of the
transition of the alignment of the magnetic moment with an applied
magnetic field must be given by Eq. (1.151); 6.) the projection of the

angular momentum of the orbitsphere onto the z-axis must be 
  
±

h
2

, and

7.) the projection of the angular momentum of the orbitsphere onto an

axis which precesses about the z-axis must be 
  
±

3

4
h .

In the derivation of Eqs. (1.58) and (1.59), the moment of inertia,
typically caused by a point particle or a reduced mass, is mr 2 .  Here,
however,  the mass is in the form of a two-dimensional, spherical shell.
Assume that  = 0 and that the electron mass and charge is uniformly
distributed over the orbitsphere.  Each point on the sphere with mass mi

has the same angular velocity ( n ), the same magnitude of linear
velocity (vn ), and the same moment of inertia (mirn

2 ).  The motion of each
point of the orbitsphere is along a great circle, and the motion of each
great circle is correlated with the motion on all other great circles.  The

orbitsphere is not analogous to a globe, where I =
2

3
mr2 , spinning about

some axis.  The velocity of a point mass on a spinning globe is a function
of .  On the orbitsphere, however, each point mass has the same
velocity (magnitude); the velocity is not a function of .  Each point
must travel on a great circle such that all points have the same velocity
(magnitude) and angular frequency.  The uniform charge-density
function of the orbitsphere is constant in time due to the motion of the
current along great circles.  The current flowing into any given point of
the orbitsphere equals the current flowing out, but the current pattern
of the orbitsphere is not uniform.  The equation of motion for each
point mass which gives the current pattern of the orbitsphere is
generated as follows:

(Here a procedure is used to generate the current pattern of the
orbitsphere from which the physical properties are derived in the Spin
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Angular Momentum of the Orbitsphere with  = 0 Section and are
shown to match the boundary conditions.)

Consider the electron to be evenly distributed within two orthogonal
great circle current loops.  Then consider two infinitesimal point masses
(charges), one and two, of two orthogonal great circle current loops.
The Cartesian coordinate system wherein the first current loop lies in
the
yz-plane, and the second current loop lies in the xz-plane is designated
the orbitsphere reference frame.

Figure 1.3  Two infinitesimal point masses (charges) of two orthogonal
great circle current loops in the orbitsphere frame.

The current pattern of the orbitsphere comprises an infinite series of
correlated orthogonal great circle current loops.  It is generated by an
infinite series of nested rotations of two orthogonal great circle current
loops each about the new x-axis and new y-axis which results from the
preceding such rotation.  Each such two orthogonal great circle current
loops wherein the first current loop lies in the yz-plane, and the second
current loop lies in the xz-plane of the orbitsphere reference frame is an
element of the infinite series.  The first such orthogonal great circle
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current loops is shown in Figure 1.3.  The second element of the series is
generated by rotation of the first element by an infinitesimal angle ∆
about the first x-axis followed by a rotation by the same infinitesimal
angle ∆  about the new (second) y-axis to form a second x-axis.  The
third element of the series is generated by the rotation of the second
element by the infinitesimal angle ∆  about the second x-axis followed
by the rotation by the same infinitesimal angle ∆  about the new (third)
y-axis.  In general, the (n +1)th element of the series is generated by the
rotation of the nth orbitsphere coordinate system by the infinitesimal
angle ∆  about the nth x-axis followed by the rotation of the nth
orbitsphere coordinate system by the infinitesimal angle ∆  about the
(n +1)th new y-axis. The orbitsphere is given by reiterations of the
successive rotations where the summation of the rotation about each of

the x-axis and the y-axis is ∆ = 2
n=1

2

∆

∑  which rotates the final z-axis to

the first negative z-axis, the final x-axis to the first -y-axis, and the final
y-axis to the first -x-axis.  (The total angle, 2 , is the hypotenuse of the
triangle having the sides of  radians corresponding to x-axis rotations
and  radians corresponding to y-axis rotations.)  Then the reiterations
of the successive rotations is continued about the nth x-axis followed by
the rotation of the nth orbitsphere coordinate system by the
infinitesimal angle ∆ ' =−∆  about the (n +1)th new y-axis where the
magnitude of the summation of the rotation about each of the x-axis and

the y-axis is ∆ ' = 2
n=1

2

∆ '

∑ .  The final step rotates the final z-axis to the

first z-axis, the final x-axis to the first x-axis, and the final y-axis to the
first y-axis.  Thus, the orbitsphere is generated from two orthogonal
great circle current loops which are rotated about the nth x-axis then
about the (n +1)th y-axis in two steps.  The first step comprises all
rotations by ∆ , and the second step comprises all rotations by ∆ ' .  In
the case of the nth element of the first step, the intersection of the two
orthogonal great circle current loops occurs at the nth z-axis which is

along a great circle in a plane rotated 
4

 with respect to the 1st xz-plane

and 1st yz-plane of Figure 1.3.  In the case of the nth element of the
second step, the intersection of the two orthogonal great circle current
loops occurs at the nth z-axis which is along a great circle in a plane

rotated 
4

 with respect to the 1st yz-plane and the 1st negative xz-plane

(the plane containing the negative x-axis and the positive z-axis) of
Figure 1.3.
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Consider two point masses, one and two, in the reference frame of
the orbitsphere at time zero.  Point one is at x' = 0 , y' = 0 , and z' = rn  and
point two is at x' = rn , y' = 0 , and z' = 0 .  Let point one move on a great
circle toward the negative y’-axis, as shown in Figure 1.3, and let point
two move on a great circle toward the positive z’-axis, as shown in Figure
1.3.  The equations of motion, in the reference frame of the orbitsphere
are given by

point one:

x1
' = 0 y1

' = −rnsin( nt) z1
' = rn cos( nt) (1.68)

point two:

x2
' = rn cos( nt) y2

' = 0 z2
' = rn sin( nt) (1.69)

The great circles are rotated by an infinitesimal angle ∆  (a rotation
around the x-axis) and then by ∆  (a rotation around the new y-axis).
The coordinates of each point on the rotated great circle is expressed in
terms of the first (x,y,z) coordinates by the following transforms:

point one:

x1

y1

z1

 

 

 
 
 

 

 

 
 
 

=
cos(∆ )    − sin2(∆ )    − sin(∆ )cos(∆ )
      0            cos(∆ )            − sin(∆ )

sin(∆ )   cos(∆ )sin(∆ )     cos2(∆ )

 

 

 
 
 

 

 

 
 
 

  

x1
'

y1
'

z1
'

 

 

 
 
 

 

 

 
 
 

(1.70)

and ∆ ' =−∆  replaces ∆  for ∆ = 2
n=1

2

∆

∑ ; ∆ ' = 2
n=1

2

∆ '

∑
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point two:

x2

y2

z2

 

 

 
 
 

 

 

 
 
 

=
cos(∆ )    − sin2(∆ )    − sin(∆ )cos(∆ )
      0            cos(∆ )            − sin(∆ )

sin(∆ )   cos(∆ )sin(∆ )     cos2(∆ )

 

 

 
 
 

 

 

 
 
 

  

x2
'

y2
'

z2
'

 

 

 
 
 

 

 

 
 
 

(1.71)

and ∆ ' =−∆  replaces ∆  for ∆ = 2
n=1

2

∆

∑ ; ∆ ' = 2
n=1

2

∆ '

∑

The total orbitsphere is given by reiterations of Eqs. (1.70) and (1.71).
The output given by the non primed coordinates is the input of the next
iteration corresponding to each successive nested rotation by the
infinitesimal angle where the summation of the rotation about each of

the x-axis and the y-axis is ∆ = 2
n=1

2

∆

∑  and ∆ ' = 2
n=1

2

∆ '

∑ .

The current pattern corresponding to point one and point two
shown with 8.49 degree increments of the infinitesimal angular variable
∆ (∆ ' ) of Eqs. (1.70) and (1.71) is shown from three perspectives in
Figures 1.4 A, 1.4 B, and 1.4 C.  The complete orbitsphere current
pattern corresponds to all such correlated points, point one and point
two, of the orthogonal great circles shown in Figure 1.3 which are
rotated according to Eqs. (1.70) and (1.71) where ∆ (∆ ' ) approaches
zero and the summation of the infinitesimal angular rotations of ∆ (∆ ' )

about the successive x-axes and y-axes is 2 .
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Figure 1.4 A.  The current pattern of the orbitsphere shown with 8.49
degree increments of the infinitesimal angular variable ∆ (∆ ' ) from the
perspective of looking along the z-axis.
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Figure 1.4 B.  The current pattern of the orbitsphere shown with 8.49
degree increments of the infinitesimal angular variable ∆ (∆ ' ) from the
perspective of looking along the x-axis.
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Figure 1.4 C.  The current pattern of the orbitsphere shown with 8.49
degree increments of the infinitesimal angular variable ∆ (∆ ' ) from the
perspective of looking along the y-axis.

SPIN ANGULAR MOMENTUM OF THE ORBITSPHERE WITH  = 0
As demonstrated in Figures 1.3 and 1.4, the orbitsphere is

generated from two orthogonal great circle current loops which are
rotated about the nth x-axis then about the (n +1)th y-axis in two steps.
The first step comprises all rotations by ∆ , and the second step
comprises all rotations by ∆ ' .  In the case of the nth element of the first
step, the intersection of the two orthogonal great circle current loops

occurs at the nth z-axis which is along a great circle in a plane rotated 
4

with respect to the 1st xz-plane and the 1st yz-plane of Figure 1.3.  In
the case of the nth element of the second step, the intersection of the
two orthogonal great circle current loops occurs at the nth z-axis which

is along a great circle in a plane rotated 
4

 with respect to the 1st yz-

plane and the 1st negative xz-plane (the plane containing the negative x-
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axis and the positive z-axis) of Figure 1.3.  The mass density, 
me

4 r1
2 , of the

orbitsphere of radius r1  is uniform.  However, the projections of the
angular momentum of the great circle current loops of the orbitsphere
onto the z-axis and onto the xy-plane can be derived by considering two

orthogonal great circle current loops of Figure 1.5 each of mass 
me

2
which generate the current pattern of the orbitsphere in two steps.
(Here the physical properties of the orbitsphere are derived following
the procedure used to generate the current pattern of the orbitsphere
given in the Orbitsphere Equation of Motion for  = 0 Section and are
shown to match the boundary conditions.)

Figure 1.5 A.  The angular momentum of the orthogonal great circle

current loops in the xy-plane is 
  

h
2

.

For step one, the resultant angular momentum vector of the

orthogonal great circle current loops of magnitude 
  

h
2

 moves along a
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great circle oriented at an angle of 
4

 to the 1st xz-plane and the 1st yz-

plane.  For the vector current directions shown in Figure 1.5 A, as the
Y0

0 ( , ) orbitsphere function is partially generated in step one, the
resultant angular momentum vector moves along the great circle from
the 1st xy-plane to the 1st negative z-axis and back to the xy-plane.  The
trajectory of the resultant angular momentum vector is shown in Figure
1.5 B.

Figure 1.5 B.  The trajectory of the resultant angular momentum vector

of the orthogonal great circle current loops of magnitude 
  

h
2

 during

step one.

The total sum of the magnitude of the angular momentum of each
infinetesimal point of the orbitsphere is   h  (Eq. (1.57)).  Thus, the

angular momentum of each great circle is 
  
h
2

.  The planes of the great

circles are oriented at an angle of 
2

 with respect to each other, and the

resultant angular momentum is 
  

h
2

 in the xy-plane.  Now, allow the
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summation of the rotations by ∆  to go from zero to 2 .  For step one,
the vector projection of the angular momentum onto the xy-plane goes

as the magnitude of 
  

h
2

cos  (
  

h
2

cos ) for 0 ≤ ≤
2

 where  is defined as

the angle of the resultant angular momentum vector of the orthogonal
great circle current loops that moves along a great circle oriented at an

angle of 
4

 to the 1st xz-plane and the 1st yz-plane as shown in Figure

1.5 B.  The trajectory of the resultant angular momentum vector is from

= 0  to =
2

, and then from =
2

 to = 0 .  The vector projection of the

angular momentum onto the negative z-axis goes as 
  

h
2

sin  as shown in

Figure 1.5 B.  In each case, the projection of the angular momentum is
periodic over the range of  corresponding to Σ∆  which generates the
angular momentum distribution.  The projection in the xy-plane varies in

magnitude from a maximum of 
  

h
2

 to zero to 
  

h
2

 again.  The projection

onto the negative z-axis varies in magnitude from zero to a maximum of

  

h
2

 to zero again.  The total of each projection, Lxy ∑∆
 and L z ∑∆ , is the

integral of the magnitude of the vector as a function of .  The result is
the root mean square value (rms) of the maximum magnitude which is
multiplied by one half corresponding to two steps (i.e. the electron
angular momentum is distributed over 1/2 of the surface of a sphere in
the first step, and the mirror image of the angular momentum
distribution is generated in the second step given infra).

 
  
Lxy ∑∆

=
1

2

h
2

 
1

2
=

h
4

(1.72)

  
L z ∑∆ =

1

2

h
2

 
1

2
=

h
4

(1.73)

For step two, the resultant angular momentum vector of the

orthogonal great circle current loops of magnitude 
  

h
2

 moves along a

great circle oriented at an angle of 
4

 to the 1st yz-plane and the 1st

negative xz-plane (the plane containing the negative x-axis and the
positive z-axis).  For the vector current directions shown in Figure 1.5 A,
as the Y0

0 ( , ) orbitsphere equation of motion is completely generated in
step two, the resultant angular momentum vector moves along the great
circle from the xy-plane to the negative z-axis and back to the xy-plane
such that the vector projections on to the z-axis all add positively and
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the vector projections into the xy-plane sum to zero.  The trajectory of
the resultant angular momentum vector is shown in Figure 1.5 C.

Figure 1.5 C.  The trajectory of the resultant angular momentum vector

of the orthogonal great circle current loops of magnitude 
  

h
2

 during

step two.

For step two, the trajectory of the resultant angular momentum
vector is from = 0  to = .  The vector projection of the angular

momentum onto the xy-plane goes as 
  

h
2

cos  for 0 ≤ ≤
2

 and 
  
−

h
2

cos

for 
2

≤ ≤  as shown in Figure 1.5 C.  The projection of the angular

momentum is a periodic function of  corresponding to Σ∆ '  which
generates the angular momentum distribution.  The projection in the xy-

plane varies in magnitude from a maximum of 
  

h
2

 to zero to 
  
−

h
2

.  For

step two, the vector projection into the xy-plane, Lxy ∑∆ '
 is zero, but the

scalar sum of the angular momentum in the xy-plane is the absolute
value of the integral of the magnitude of the vector as a function of .
The result is the root mean square value (rms) of the maximum
magnitude which is multiplied by one half corresponding to two steps
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(i.e. the electron angular momentum is distributed over 1/2 of the
surface of a sphere in the first step, and the mirror image of the angular
momentum distribution is generated in the second step).  The scalar
sum is given by the magnitude of Eq. (1.72).

The vector projection of the angular momentum onto the negative

z-axis goes as 
  

h
2

sin  for 0 ≤ ≤  as shown in Figure 1.5 C.  The vector

projection onto the z-axis is periodic over the range of  corresponding
to Σ∆  which generates the angular momentum distribution and varies in

magnitude from zero to a maximum of 
  

h
2

 to zero again.  The total of

each projection, L z ∑∆ '
, is the integral of the magnitude of the vector as

a function of .  The result is the root mean square value (rms) of the
maximum magnitude which is multiplied by one half corresponding to
two steps (i.e. the electron angular momentum is distributed over 1/2 of
the surface of a sphere in the first step, and the mirror image of the
angular momentum distribution is generated in the second step).  The
vector sum is given by Eq. (1.73).

The total angular momentum of the orbitsphere is   h  (Eq. (1.57)).
The vector projection of the angular momentum into the xy-plane is
given by Eq. (1.72), and the scalar sum of the projection of the angular

momentum into the xy-plane is 
  
h
2

.  Consider steps one and two.  As

demonstrated by Figures 1.3, 1.4, and 1.5, each contribution to vector
sum of the z component of the orbitsphere angular momentum is

positive.  Thus, the z-projection of the angular momentum is 
  
h
2

.

Consider the case of a magnetic field applied to the orbitsphere.  The
magnetic moment corresponding to the angular momentum along the z-
axis results in the alignment of the z-axis of the orbitsphere with the
magnetic field.  The angular momentum in the xy-plane precesses about
the applied field; thus, the time average angular momentum in the xy-
plane is zero.  The angular momentum of the precessing orbitsphere can
be given as an equivalent vector which precesses about the z-axis which
possesses a scalar projection of the angular momentum into the xy-plane

of 
  
h
2

 and a vector projection of the angular momentum onto the z-axis

of 
  
h
2

.  S  the projection of the orbitsphere angular momentum that

precesses about the z-axis called the spin axis at an angle of =
3

 and an

angle of =  with respect to Lxy ∑∆
 given by Eq. (1.72) is
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S = ±

3

4
h (1.74)

S  rotates about the z-axis at the Larmor frequency; thus, Sz , the time
averaged projection of the orbitsphere angular momentum onto the axis

of the applied magnetic field is 
  
±

h
2

.  To verify the validity of Eq. (1.74),

consider the components of the angular momentum along the z-axis and
in the xy-plane from the perspective of a frame that rotates with S  and
from the presepective of the stationary or laboratory frame.  In the
rotating frame = 0  is defined in the direction of the resultant angular
momentum vector shown in Figure 1.5A.  From Eq. (1.72), the angular

momentum in this direction is 
  
h
4

.  The angular momentum in the

direction =  with respect to this direction is 
  

3

4
hsin

3
=

3

4
h .  Thus, in

the rotating frame, the resultant scalar angular momentum in the xy

plane is 
  
h
2

.  S  forms a cone in the nonrotating laboratory frame with a

total angular momentum of   h .  The projection of this angular

momentum onto the z-axis is 
  
±hcos

3
= ±

h
2

.  (The same result is obtained

from the approach given by Eq. (3.35).)  The plus or minus sign
corresponds to the two possible vector orientations which are observed
with the Stern-Gerlach experiment described below.

ROTATIONAL PARAMETERS OF THE ELECTRON (ANGULAR
MOMENTUM, ROTATIONAL ENERGY, AND MOMENT OF INERTIA)

One result of the correlated motion along great circles is that some
of the kinetic energy is not counted in the rotational energy.  That is, for
any spin axis there will be an infinite number of great circles with planes
passing through that axis with  angles other than 90° .  All points on any
one of these great circles will be moving, but not all of that motion will
be part of the rotational energy; only that motion perpendicular to the
spin axis will be part of the rotational energy.  Thus, the rotational
kinetic energy will always be less than the total kinetic energy.
Furthermore, the following relationships must hold.

Erotational =
1

2
I 2 ≤

1

2
mev

2 (1.75)

  I ≤ h (1.76)
I ≤ mer

2 (1.77)
Furthermore, it is known from the Stern-Gerlach experiment that a beam
of silver atom splits into two components when passed through an
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inhomogeneous magnetic field.  This experiment implies a magnetic
moment of one Bohr magneton and an associated angular momentum
quantum number of 1/2.  Historically, this quantum number is called
the spin quantum number, and that designation will be retained.  The
angular momentum can be thought of arising from a spin component or
equivalently an orbital component of the spin.  The z-axis projection of
the spin angular momentum was derived in the Spin Angular Momentum
of the Orbitsphere with  = 0 Section.

  
Lz = I iz = ±

h
2

(1.78)

where  is given by Eq. (1.55); so,
 = 0

  
Lz = I

h
mer

2 =
h
2

(1.79)

Thus,

Iz = Ispin =
mern

2

2
(1.80)

From Eq. (1.51),

Erotational   spin =
1

2
Ispin

2[ ] (1.81)

From Eqs. (1.55) and (1.80),

  
Erotational = Erotational   spin =

1

2
Ispin

h
mern

2

 

 

 
 
 
 

 

 

 
 
 
 

2 

 
 

 

 
 =

1

2

mern
2

2

h
mern

2

 

 

 
 
 
 

 

 

 
 
 
 

2 

 
 

 

 
 =

1

4

h2

2Ispin

 

  
 

  (1.82)

When  ≠ 0, the spherical harmonic is not a constant and the charge-
density function is not uniform over the orbitsphere.  Thus, the angular
momentum can be thought of arising from a spin component and an
orbital component.

Derivation of the Rotational Parameters of the Electron
In the derivation of Eq. (1.59) and its solution for Erotational  (Eq.

(1.60)), the moment of inertia, I , was assumed by McQuarrie [11] to be
the moment of inertia of a point particle, mrn

2 .  However, the correct
equation of the electron is a two dimensional shell with constant or a
constant plus a spherical harmonic angular dependence.  In that case,
the relationships given by Eqs. (1.75) to (1.77) must hold.

The substitution of NI  for I  in the rigid rotor problem [11] where
N  is a constant does not change the form of the previous solution given
by Eq. (1.60).  However, the result that

  
N =

l(l +1)

l2 + 2l + 1
 
 

 
 

1

2
<1 (1.83)

derived below gives
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Erotational =

h2l l +1( )
2I l2 + 2l +1( ) (1.84)

and gives the moment of inertia of the orbitsphere, Iorbital, where  ≠ 0 as

  
NI = Iorbital = mern

2 l l +1( )
l2 + 2l +1( )

 

 
 

 

 
 

1

2

(1.85)

The solution of Eq. (1.59) for | L|  , the magnitude of the orbital angular
momentum is [11]

  | L| = h l(l +1) (1.86)
where I  of Eq. (1.59) is the moment of inertia of a point charge.  It is
demonstrated by Eq. (1.57) that the total sum of the magnitudes of the
angular momenta of the infinitesimal points of the electron orbitsphere
is   h  ; therefore, the magnitude of the angular momentum of an electron
orbitsphere must be less than   h , and the moment of inertia must be less
than that given by mern

2 .  For example, the moment of inertia of the
uniform spherical shell, IRS , is [13]

IRS =
2

3
mrn

2 (1.87)

Thus, Eq. (1.86) must be multiplied by a fraction, 
1

K
, to give the correct

angular momentum.  Given that generally L  is
L = I iz (1.88)

then

  
Iorbital iz = h

1

K
l(l +1) , (1.89)

where  is given by Eq. (1.55).  The orbital moment of inertia, Iorbital, is

  
Iorbital = mern

2 1

K
l(l +1) (1.90)

The total kinetic energy, T , of the orbitsphere is

T =
1

2
mevn

2 (1.91)

Substitution of Eq. (1.56) gives

  
T =

h2

2mern
2 (1.92)

Erotational   of the rigid shell is given by Eq. (1.51) with I  given by Eq. (1.87).
Erotational  orbital  of the orbitsphere is given by Eq. (1.60) multiplied by the

fraction 
1

K2  so that Eqs. (1.75) to (1.77) hold with I = mern
2 .

  
Erotational  orbital =

h2

2I

l l +1( )
K2

 
  

 
  (1.93)

Eq. (1.59) can be expressed in terms of the variable x  which is
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substituted for cos .  The resulting function P(x) is called Legendre's
equation and is a well-known equation in classical physics.  It occurs in a
variety of problems that are formulated in spherical coordinates.  When
the power series method of solution is applied to P(x), the series must be
truncated in order that the solutions be finite at x =±1.  The solution to
Legendre's equation given by Eq. (1.60) is the maximum term of a series
of solutions corresponding to the m  and  values [11,14].  The
rotational energy must be normalized by the total number of states-each
corresponding to a set of quantum numbers of the power series
solution.  As demonstrated in the Excited States of the One Electron
Atom (Quantization) Section, the quantum numbers of the excited states
are

n = 2,3,4,...

= 1,2,..., n − 1

m = - ,  – +1,...,0,..., +
In the case of an orbitsphere excited state, each rotational state solution
of Eq. (1.59) (Legendre's equation) corresponds to a multipole moment
of the charge-density function (Eq. (1.65)).  Erotational  orbital  is normalized by
N , the total number of multipole moments. N , the total number of
multipole moments where each corresponds to an  and m  quantum

number of an energy level corresponding to a principal quantum
number of n  is

  
N =

l=0

n−1

∑
ml =−l

+l

∑ =
l= 0

n−1

∑ 2l +1 = n2 = l2 + 2l +1 (1.94)

Thus, K2  is equal to N  given by Eq. (1.94).  Substitution of Eq. (1.94)
into Eq. (1.93) gives

  
Erotational  orbital =

h2

2I

l l +1( )
l2 + 2l +1

 
  

 
  (1.95)

Substitution of Eq. (1.94) into Eq. (1.90) gives the orbital moment of
inertia.

  
Iorbital = mern

2 l(l +1)

l2 + 2l +1
 
 

 
 

1

2
(1.96)

In the case of the excited states, the orbitsphere charge-density function
for   l ≠ 0 , Eq. (1.65), is the sum of two functions of equal magnitude. L z ,
total is given by the sum of the spin and orbital angular momenta.  The
principal energy levels of the excited states are split when a magnetic
field is applied.  The energy shift due to spin and orbital angular
momenta are given in the Spin and Orbital Splitting Section.

  0
Lz total = Lz spin + Lz orbital (1.97)
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Similarly, the orbital rotational energy arises from a spin function (spin
angular momentum) modulated by a spherical harmonic angular
function (orbital angular momentum).  The time-averaged orbital
rotational energy is zero; the magnitude is given by Eq. (1.95); the
rotational energy due to spin is given by Eq. (1.82); the total kinetic
energy is given by Eq. (1.92).

Erotational  orbital = 0 (1.98)
The demonstration that the modulated orbitsphere solutions are
solutions of the wave equation appears in Box 1.1.

_________________________________________________________
________
BOX 1.1.  DERIVATION OF THE ROTATIONAL PARAMETERS OF THE
ELECTRON FROM A SPECIAL CASE OF THE WAVE EQUATION--THE
RIGID ROTOR EQUATION

For a time harmonic charge density function, Eq. (1.49)
becomes

1

r 2 sin
sin

 
 

 
 

r,

+
1

r 2 sin2

2

2

 
 
  

 
r,

+
2

v2

 

 
 

 

 
 A ,( ) = 0 (1)

Substitution of the velocity about a Cartesian coordinate axis, v = ,
into Eq. (1) gives

1

r 2 sin
sin

 
 

 
 

r,

+
1

r 2 sin2

2

2

 
 
  

 
r,

+
2

( )2

 

 
 

 

 
 A ,( ) = 0 (2)

Substitution of Eq. (1.55) into Eq. (1.2) gives

  

1

r 2 sin
sin

 
 

 
 

r,

+
1

r 2 sin2

2

2

 
 
  

 
r,

+ n
2

h
mern

2

 
 
  

 
 

2

 

 

 
 
 

 

 

 
 
 
A ,( ) = 0 (4)

Multiplication by the denominator of the second term in Eq. (3) gives

  

h
mern

2

 
 
  

 
 

2
1

r2 sin
sin

 
 

 
 

r,

+
1

r2 sin2

2

2

 
 
  

 
r,

 

 
 

 

 
 + n

2
 

 
 

 

 
 A ,( ) = 0 (4)

Substitution of Eq. (1.51) gives

  

h
mern

2

 
 
  

 
 

2
1

r2 sin
sin

 
 

 
 

r,

+
1

r2 sin2

2

2

 
 
  

 
r,

 

 
 

 

 
 +

2Erot

I

 

 
 

 

 
 A ,( ) = 0 (5)

The total rotational energy is given by the superposition of  quantum
states corresponding to a multipole expansion of total rotational energy
of the orbitsphere.  The total number, N , of multipole moments where



© 2000 by BlackLight Power, Inc.  All rights reserved.
65

each corresponds to an  and m  quantum number of an energy level

corresponding to a principal quantum number of n  is

  
N =

l=0

n−1

∑
ml =−l

+l

∑ =
l= 0

n−1

∑ 2l +1 = l2 + 2l +1 = n2 (6)

Summing over all quantum states gives

  l=0

n−1

∑
ml =−l

+l

∑ h
mern

2

 
 
  

 
 

2
1

r2 sin
sin

 
 

 
 

r,

+
1

r2 sin2

2

2

 
 
  

 
r,

 

 
 

 

 
 +

l= 0

n−1

∑
ml =−l

+l

∑ 2Erot

I

 

 
 

 

 
 A ,( ) = 0

(7)
Each of the orbital energy, orbital moment of inertia, and orbital angular
momentum is a modulation of the orbitsphere function.  Thus, the sum
of 2  over all   l  quantum numbers is rn .  Substitution of

z = rn cos ; x = rn sin cos ; y = rn sin sin  into Eq. (7) gives

  
rn

h
mern

2

 
 
  

 
 

2
1

rn
2 sin

sin
 
 

 
 

r,

+
1

rn
2 sin2

2

2

 
 
  

 
r ,

 

 
 

 

 
 + l2 + 2l +1( ) 2Erot

I

 

 
 

 

 
 A ,( ) = 0

(8)

where 
2Erot

I
 is the constant, n  given by Eq. (1.55), and r = rn .  Eq. (8) can

be expressed in terms of the rotational energy of any given mode by
dividing the denominator of the first term by, K2 , the factor
corresponding to the vector projection of the rotational energy onto the
z-axis.

  

Ih2

2me
2rn

4 l2 + 2l +1( )
1

sin
sin

 
 

 
 

r,

+
1

sin2

2

2

 
 
  

 
r,

 

 
 

 

 
 + Erot

 

 
 

 

 
 A ,( ) = 0

(9)
In the case that Erot  is the total rotational energy which is equal to the
kinetic energy of the orbitsphere given by Eq. (1.92) and that the
moment of inertia is given by

I = mern
2 (10)

Eq. (9) becomes equivalent to Eq. (1.59).

  

1

N

h2

2I

1

sin
sin

 
 

 
 

r,

+
1

sin2

2

2

 
 
  

 
r,

 

 
 

 

 
 + Erot  total

 

 
 

 

 
 A ,( ) = 0

(11)
where N  is one.  Eq. (11) applies to all of the multipole modes of the
rotational energy with the appropriate moment of inertia, I , and factor
N ; thus, the rotational energy of each mode is given by Eq. (1.58) with
these conditions.  Eq. (9) can be expressed in terms of the rotational
energy of any given mode by dividing the first term by, K2 , the factor
corresponding to the vector projection of the rotational energy and the
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moment of inertia onto the z-axis.

  

Ih2

2me
2rn

4K2 l2 + 2l +1( )
1

sin
sin

 
 

 
 

r,

+
1

sin2

2

2

 
 
  

 
r,

+ Erot

 

 
 

 

 
 A ,( ) = 0 (12)

where in the case of the spherical harmonics,   N = l2 + 2l +1.  From Eq.
(1.51) and Eq. (1.88), Eq. (12) can be expressed as

  

h2

me
2rn

4 K2 l2 + 2l +1( )
1

sin
sin

 
 

 
 

r ,

+
1

sin2

2

2

 
 
  

 
r ,

 

 
 

 

 
 +

L2

I2

 

 
 

 

 
 A ,( ) = 0 (13)

In the case of the spherical harmonic functions with Eq. (1.88) and Eq.
(1.55), Eq. (12) gives

  

h2 l l +1( )( )
me

2rn
4 K2 l2 + 2l +1( ) =

L

I
=

h
mern

2 (14)

Thus,

  

l l +1( )( )
l2 + 2l + 1( ) = K (15)

Eq. (12) becomes Eq. (11) where the rotational energy is given by Eq.
(1.95).

  
Erotational  orbital =

h2

2I

l l +1( )
l2 + 2l +1

 
  

 
  (16)

and the orbital moment of inertia is given by Eq. (1.96).

  
Iorbital = mern

2 l(l +1)

l2 + 2l +1
 
 

 
 

1

2
(17)

The Substitution of Eqs. (1.65), (6), and (16) into Eq. (11) gives

  
−

h2

2I

l l +1( )
l2 + 2l + 1

 
  

 
  +

h2

2mern
2

l l +1( )
l2 + 2l +1

= 0 (18)

Substitution of Eq. (17) into Eq. (18) gives

  

−
h2

2mern
2 l l + 1( )

l2 + 2l +1

l l +1( )
l2 + 2l + 1

 
  

 
  +

h2

2mern
2

l l +1( )
l2 + 2l +1

= 0 (19)

0 = 0 (20)
Thus, the modulated orbitsphere solutions are shown to be

solutions of the wave equation by their substitution into the wave
equation (Eqs. (18-20).  The present derivation of the rigid rotor
equation given by the substitution of

  

Erot = 1

2
I n

2

n =
h

mern
2

v = n

(21)
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is consistent with the wave equation relationship:

v =
2 (22)

Whereas, Schrodinger's derivation from the Helmholtz equation [1] with
the substitution of

=
h

mev (23)
gives the rigid rotor equation with the paradox that

v2 =
h

me 2 (24)
which is not the wave relationship,

v =
2 (25)
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_________________________________________________________
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MAGNETIC PARAMETERS OF THE ELECTRON (BOHR MAGNETON)

The Magnetic Field of an Orbitsphere from Spin
The orbitsphere is a shell of negative charge current comprising

correlated charge motion along great circles.  For  = 0, the orbitsphere
gives rise to a magnetic moment of 1 Bohr magneton [16] as shown in
the Derivation of the Magnetic Field Section,

  
B =

eh
2me

= 9.274 X 10−24
 JT −1, (1.99)

and a magnetic field derived below.

  
H =

eh
mern

3 ( ir cos − i sin )      for r < rn (1.100)

  
H =

eh
2mer

3 (ir 2cos − i sin )     for r > rn (1.101)

It follows from Eq. (1.99), the relationship for the Bohr magneton, and
relationship between the magnetic dipole field and the magnetic moment
m  [17] that Eqs. (1.100) and (1.101) are the equations for the magnetic
field due to a magnetic moment of a Bohr magneton, m = Biz  where
iz = ir cos − i sin .  Note that the magnetic field is a constant for r < rn .
See Figure 1.6.  It is shown in the Magnetic Parameters of the Electron
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(Bohr Magneton) Section that the energy stored in the magnetic field of
the electron orbitsphere is

  
Emag,total = oe

2h2

me
2r1

3 (1.102)

Figure 1.6.  The magnetic field of an electron orbitsphere.

Derivation of the Magnetic Field
Consider Figure 1.6. The magnetic field must satisfy the following

relationships:
∇⋅ H = 0 in free space (1.103)

n X (Ha − Hb ) = K (1.104)

n ⋅(Ha − Hb ) = 0 (1.105)

H =−∇ (1.106)

The z component of the current, i , for a current loop of total charge, e ,
oriented at an angle  with respect to the z-axis is given as the product
of the charge, the angular velocity (The orbitsphere angular velocity is
given by Eq. (1.55).), and sin .

  
i =

eh
mern

2 sin (1.107)

Consider the orbitsphere depicted in Figures 1.3, 1.4, and 1.5.  The
surface current-density function, Ki , is perpendicular to the angular
momentum.  As shown in the Spin Angular Momentum Section, the
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vector projection of the orbitsphere angular momentum onto the xy-
plane goes as cos∆  as shown in Figure 1.5 B.  It is periodic over the

range of Σ∆  and Σ∆ '  and varies in magnitude from a maximum of 
  

h
2

to zero to 
  

h
2

 again.  The projection of the charge-density of the

orbitsphere onto the xy-plane (perpendicular to the z-axis) which
carries the incremental current, ii , is a function of sin .  The angular
function of the current-density of the orbitsphere is normalized to that
of one electron.

N =
1

sin2 sin d
0
∫

=
3

4
(1.108)

Due to the precession of the S-axis about the z axis, the time averaged
projection of the angular momentum of the electron orbitsphere onto
the xy-plane is zero.  Therefore, the current corresponding to the total
charge of the electron is about the z-axis, and the angular velocity of the
spinning orbitsphere is twice that of a stationary orbitsphere.  As shown
in Figure 1.5 B, the projection of the angular momentum is only onto the
negative z-axis of length rn .  Thus, the incremental current-density dKi

along the z-axis is given by dividing ii  by the length, rn .  The current-
density of the orbitsphere in the incremental length dz is

  
K( , ,z) = i 2N

eh
mern

3 = i
3

2

eh
mern

3 (1.109)

Because
 z = rcos (1.110)

a differential length
 dz = − sin rnd (1.111)

and so the current-density in the differential length rnd  as measured
along the periphery of the orbitsphere is a function of sin .  Thus, the
surface current-density function is given by

  
K(r, , ) = i

3

2

eh
mern

3 sin (1.112)

Substitution of Eq. (1.112) into Eq. (1.104) gives

  
H a − H b =

3

2

eh
mern

3 sin (1.113)

To obtain H , the derivative of Ψ with respect to  must be taken, and
this suggests that the  dependence of Ψ be taken as cos .  The field is
finite at the origin and is zero at infinity; so, solutions of Laplace’s
equation in spherical coordinates are selected because they are
consistent with these conditions [18].
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Ψ = C
r

rn

 

  
 

  cos  ;                   r < rn (1.114)

Ψ = A
rn

r
 
 

 
 

2

cos  ;                   r > rn (1.115)

The negative gradient of these potentials is

H =
−C

rn

(ir cos − i sin )    for r < rn (1.116)

H =
A

rn

rn

r
 
 

 
 

3

(ir 2cos + i sin )    for r > rn (1.117)

The continuity conditions of Eqs. (1.104), (1.105), (1.112), and (1.113)
and are applied to obtain the following relationships among the variables

−C

rn

=
2A

rn

(1.118)

  

A

rn

−
C

rn

=
3

2

eh
mern

3 (1.119)

Solving the variables algebraically gives the magnetic fields of an
electron:

  
H =

eh
mern

3 ( ir cos − i sin )      for r < rn (1.120)

  
H =

eh
2mer

3 (ir 2cos − i sin )     for r > rn (1.121)

Derivation of the Energy
The energy stored in the magnetic field of the electron is

Emag =
1

2 o H 2r 2 sin drd dΦ
0

∞

∫
0
∫

0

2

∫ (1.122)

Emag total = Emag external + Emag  internal (1.123)

  
Emag internal =

1

2 o

eh
mer1

3

 

  
 

  

2

cos2 + sin2 
 
 

 
 
 

0

r1

∫ r 2 sin drd dΦ
0
∫

0

2

∫ (1.124)

  
=

2 oe
2h2

3me
2r1

3 (1.125)
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Emag external =

1

2 o

eh
2mer1

3

 

  
 
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2

4cos 2 + sin2 
 
 

 
 
 

r1

∞

∫ r2 sin drd dΦ
0
∫

0

2

∫ (1.126)

  
= oe

2h2

3me
2r1

3 (1.127)

  
Emag total =

2 oe
2h2

3me
2r1

3 + oe
2h2

3me
2r1

3 (1.128)

  
Emag total = oe

2 h2

me
2r1

3 (1.129)

STERN-GERLACH EXPERIMENT
The sum of the L i, the magnitude of the angular momentum of

each infinitesimal point of the orbitsphere of mass mi , must be constant.
The constant is   h .

  
|L i |∑ = r × miv∑ = mern

h
mern

= h (1.130)

where the velocity is given by Eq. (1.47).  Furthermore, it is known from
the Stern-Gerlach experiment that a beam of silver atoms is split into
two components when passed through an inhomogeneous magnetic
field.  The measured angular momentum in the direction of the applied

field (spin axis) is 
  
±

h
2

, and the magnitude of the angular momentum

vector which precesses about the spin axis is 
  

3
4
h   As demonstrated in

the Orbitsphere Equation of Motion Section, the projection of the total

orbitsphere angular momentum onto the spin axis is 
  
±

h
2

 , and the

projection onto S, the axis which precesses about the spin axis, is 
  

3
4
h .

The Stern-Gerlach experiment implies a magnetic moment of one Bohr
magneton and an associated angular momentum quantum number of
1/2.  Historically, this quantum number is called the spin quantum

number, s ( s =
1

2
; ms =±

1

2
), and that designation is maintained.

ELECTRON g FACTOR
As demonstrated by Purcell [19], when a magnetic field is applied

to an electron in a central field which comprises a current loop, the
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orbital radius does not change, but the velocity changes as follows:

∆v =
erB
2me

(1.131)

The angular momentum of the electron orbitsphere is   h  as given by Eq.

(1.57), and as demonstrated in Figure 1.5, 
  
h
2

 of the orbitsphere angular

momentum is in the plane perpendicular to any applied magnetic field.
The angular momentum in the presence of an applied magnetic field is

L = r × (mev + eA) (1.132)
where A  is the vector potential of the external field evaluated at the
location of the orbitsphere.  Conservation of angular momentum of the
orbitsphere permits a discrete change of its "kinetic angular

momentum" (r × mv)  by the field of 
  
h
2

, and concomitantly the "potential

angular momentum" (r × eA)  must change by - 
  
h
2

.  The flux change, , of

the orbitsphere for r < rn  is determined as follows:

  
∆L =

h
2

− r × eA (1.133)

  
=

h
2

−
e2 rA

2
(1.134)

  
=

h
2

−
e

2
(1.135)

In order that the change of angular momentum, ∆L, equals zero,  must

be Φ0 =
h

2e
, the magnetic flux quantum.  Thus, to conserve angular

momentum in the presence of an applied magnetic field, the orbitsphere
magnetic moment can be parallel or antiparallel to an applied field as
observed with the Stern-Gerlach experiment, and the flip between

orientations ( a rotation of 
2

) is accompanied by the "capture" of the

magnetic flux quantum by the orbitsphere "coils" comprising
infinitesimal loops of charge moving along geodesics (great circles).

The energy to flip the orientation of the orbitsphere due to its
magnetic moment of a Bohr magneton, B , is

∆Emag
spin = 2 BB (1.136)

where

  
B =

eh
2me

(1.137)

The energy change corresponding to the "capture" of the magnetic flux
quantum is derived below.  From Eq. (1.129) for one electron,
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Emag = 0e

2h2

(me )2 rn
3 (1.138)

is the energy stored in the magnetic field of the electron.  The
orbitsphere is equivalent to a Josephson junction which can trap integer

numbers of fluxons where the quantum of magnetic flux is Φ0 =
h

2e
.

Consider Eq. (1.138).  During the flip transition a fluxon treads the
orbitsphere at the speed of light; therefore, the radius of the orbitsphere
in the lab frame is 2  times the relativistic radius in the fluxon frame.
Thus, the energy of the transition corresponding to the "capture" of a
fluxon by the orbitsphere, ∆Emag

fluxon, is

  
∆Emag

fluxon = oe
2h2

(me )2 2 rn( )3 (1.139)

  
= oe

2

4 2mern

eh
2me

 
 
  

 
 h

2e rn
2

 
 
  

 
 (1.140)

= oe
2

4 2mern
B

Φ0

A
 
 

 
 (1.141)

where A is the area and Φ0  is the magnetic flux quantum.

∆Emag
fluxon = 2

e2
o

2mern

 

  
 

  
1

4 2 BB (1.142)

where the nth fluxon treading through the area of the orbitsphere is
equivalent to the applied magnetic flux.  Furthermore, the term in
brackets can be expressed in terms of the fine structure constant,  ,as
follows:

e2
o

2mern

=
e2

ocv

2mevrnc
(1.143)

Substitution of Eq. (1.47) gives

  
e2

ocv

2hc
(1.144)

Substitution of

c =
1

o o

(1.145)

and

= oe
2c

2h
(1.146)

gives

  
e2

ocv

2hc
= 2

v

c
(1.147)

The fluxon treads the orbitsphere at v = c .  Thus,
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∆Emag
fluxon = 2

2 BB (1.148)

The principal energy of the transition of reorientation of the orbitsphere
is given by Eq. (1.136).  And, the total energy of the flip transition is the
sum of Eq. (1.148), the energy of a fluxon treading the orbitsphere and
Eq. (1.136), the energy of reorientation of the magnetic moment.

∆Emag
spin = 2 BB +

2 BB
 
 

 
 (1.149)

∆Emag
spin = 2(1+

2
) BB (1.150)

∆Emag
spin = 2g BB (1.151)

The magnetic moment of Eq. (1.136) is twice that from the gyromagnetic
ratio as given by Eq. (2.36) of the Orbital and Spin Splitting Section.  The
magnetic moment of the electron is the sum of the component

corresponding to the kinetic angular momentum, 
  
h
2

, and the component

corresponding to the vector potential angular momentum, 
  
h
2

, (Eq.

(1.132).  The spin-flip transition can be considered as involving a
magnetic moment of g  times that of a Bohr magneton.  The factor g  is
redesignated the fluxon g  factor as opposed to the anomalous g factor
and its value is 1.00116.  The experimental value is 1.00116.  Additional
small corrective terms to the g  factor arise as a result of the radiative
reaction force [20].

DETERMINATION OF ORBITSPHERE RADII, rn
The one-electron  orbitsphere is a spherical shell of negative

charge (total charge = −e ) of zero thickness at a distance rn  from the
nucleus (charge = + Ze ).  It is well known that the field of a spherical
shell of charge is zero inside the shell and that of a point charge at the
origin outside the shell [21].  See Figure 1.7.
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Figure 1.7  The electric fields of a proton, an electron, and a hydrogen
atom.

Thus, for a nucleus of charge Z , the force balance equation for the
electron orbitsphere is obtained by equating the forces on the mass and
charge densities.  For the ground state, n = 1, the centrifugal force of the
electron is given by

Fcentrifugal =
me

4 r1
2

v1
2

r1

(1.152)

where 
me

4 r1
2  is the mass density of the orbitsphere.  The centripetal force
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is the electric force, Fele , between the electron and the nucleus.

Fele =
e

4 r1
2

Ze

4 or1
2 (1.153)

where o  is the permittivity of free-space.
The second centripetal force is an electrodynamic force, a force

dependent on the second derivative of charge position which respect to
time, which arises between the electron and the nucleus.  The motion of
each point in the magnetic field of the nucleus will cause a relativistic
central force, Fmag , which acts on each point mass.  The magnetic central
force is derived as follows from the Lorentzian force which is
relativistically corrected.  Each infinitesimal point of the orbitsphere
moves on a great circle, and each point charge has the charge-density

e

4 rn
2 .  As given in the Proton and Neutron Section, the proton is

comprised of a linear combination of three constant functions and three
orthogonal spherical harmonic quark/gluon functions.  From the photon
inertial reference frame at the radius of each infinitesimal point of the
electron orbitsphere, the proton charge distribution is given as the
product of the quark and gluon functions which gives rise to a uniform
distribution.  The magnetic flux of the proton in the v = c  inertial frame
at the electron radius follows from McQuarrie [16]:

  
B = oeh

2mprn
3 (1.154)

And, the magnetic flux due to a nucleus of charge Z  and mass m  is

  
B = o Z

1
eh

2mrn
3 (1.155)

The motion of each point will cause a relativistic central force, F i mag,
which acts on each point mass.  The magnetic central force is derived as
follows from the Lorentzian force which is relativistically corrected. The
Lorentzian force density on each point moving at velocity v  given by Eq.
(1.47) is

Fmag =
e

4 rn
2 v × B (1.156)

Substitution of Eq. (1.47) for v  and Eq. (1.155) for B gives

  
Fmag =

1

4 r1
2

Z1e
2

o

2mern

 

  
 

  
h2

mrn
3 (1.157)

The term in brackets can be expressed in terms .  From Eqs. (1.143-
1.147)

Z1e
2

o

2mern

= 2 Z1

v

c
(1.158)

It can be shown that the relativistic correction to Eq. (1.157) is the
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reciprocal of Eq. (1.158).  Consider an inertial frame following a great
circle of radius rn  with v = c .  The motion is tangential to the radius; thus,
rn  is Lorentzian invariant.  But, the tangential distance along a great
circle is 2 rn  in the laboratory frame and rn  in the v = c  frame.  The
charge is relativistically invariant, whereas, the mass is not.  The
relativistic correction to the laboratory frame mass relative to the v = c
frame is 2 .  The correction follows from the Lorentz transformation of
the electron's invariant angular momentum of   h .  It is shown by Purcell
[22] that the force on a moving charge due to a moving line of charge is
a relativistic electric force due to Lorentzian contraction of the line

charge density.  The force is proportional to 
v

c
 where v  is the electron's

velocity.  Thus, it follows that the electron mass in the laboratory frame

relative to the v = c  inertial frame is which is also proportional to 
v

c
.

Following the derivation of Purcell with the substitution of the relativistic
mass density for the charge density gives the electron mass correction to
the electrodynamic force as

me = 2
v

c
meRest (1.159)

Furthermore, due to invariance of charge under Gauss's Integral Law, the
radius term in the brackets of Eq. (1.157) is relativistically corrected.
The radius of the electron relative to the v = c  frame, r* , is relativistically
corrected as follows.  From Eq. (1.43) the relationship between the
radius and the electron wavelength is

2 r =  (1.160)
Using the de Broglie Eq. (1.46) with v = c

=
h

mv
=

h

mc
(1.161)

With substitution of Eq. (1.160) into Eq. (1.161)

  
r* =

h
mc

= Dc = ao (1.162)

where   D C  is the Compton wavelength bar, and where ao  is the Bohr
radius.  The radius of the electron orbitsphere in the v = c  frame is   D C ,
and the relativistic correction due to length contraction can be
determined as a boundary value problem.  Eq. (1.162) can be expressed
in terms of a relativistic correction, n , which multiplies, r1 , the radius of
the electron orbitsphere in the lab frame.  The lab frame electron radius

is taken as 
ao

Z2

  which is consistent with Eq. (1.169); thus, it is the

solution of our boundary value problem as shown as follows.
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r* =

h
mc

= Dc = ao =
nao

Z2

= nr1 (1.163)

It follows from Eq. (1.163) that the radius, rn , of Eq. (1.157) must be
corrected by the factor Z2 .  By correcting the radius and the mass, the

relativistic correction is 
1

2 Z2

v
c

.  In this case, Z1 = Z2 ; thus, 1 is

substituted for the term in brackets in Eq. (1.157); therefore,

  
Fmag = −

1

4 r1
2

h2

mrn
3 (1.164)

The force balance equation is given by equating the centrifugal and
centripetal force densities:

  

me

4 r1
2

v1
2

r1

=
e

4 r1
2

Ze

4 or1
2 −

1

4 r1
2

h2

mrn
3 (1.165)

Using Eq. (1.47),

  
r1 =

4 oh
2

Ze2
e

(1.166)

where the reduced electron mass, e , is

e =
mem

me + m
(1.167)

The Bohr radius is

  
ao =

4 oh
2

e2me

(1.168)

And, the radius given by force balance between the centifugal force and
central electrostatic force alone is

  
r1 =

4 oh
2

Ze2me

=
a0

Z
(1.169)

And, for hydrogen, m  of Eq. (1.167) is
m = mp (1.170)

Substitution of the reduced electron mass for the electron mass gives,
aH , the Bohr radius of the hydrogen atom.

  
aH =

4 oh
2

e2
e

(1.171)

Thus, Eq. (1.166) becomes

r1 =
aH

Z
(1.172)

ENERGY CALCULATIONS
The potential energy V  between the electron and the nucleus

separated by the radial distance radius r1  is,
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V =
−Ze2

4 or1

=
−Z 2e2

4 oaH

= −Z2
 X 4.3675 X 10−18

 J = −Z 2
 X 27.2 eV (1.173)

Because this is a central force problem, the kinetic energy, T , is −
1

2
V .

T =
Z 2e2

8 oaH

= Z 2
 X 13.59 eV (1.174)

The same result can be obtained from T =
1

2
mev1

2  and Eq. (1.47).

Alternatively, the kinetic energy, which is equal to the stored electric
energy, Eele , can be calculated from

T = Eele = −
1

2 o E2dv
∞

r1

∫ (1.175)

where E = −
Ze

4 or
2 .  Thus, as the orbitsphere shrinks from ∞ to  r1 ,

Eele = −
Z 2e2

8 oaH

= −Z 2
 X 2.1786 X 10−18  J = −Z 2

 X 13.598 eV (1.176)

The calculated Rydberg constant is 109,677.58 cm−1 ; the experimental
Rydberg constant is 109,677.58 cm−1 .  Furthermore, a host of parameters
can be calculated for the hydrogen atom, as shown in Table 1.1.
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Table 1.1. Some calculated parameters for the hydrogen atom (n = 1).
                                                                                                                   
radius r1 = aH 5.2918 X 10−11

 m

potential energy V =
−e2

4 oaH

−27.196 eV

kinetic energy T =
e2

8 oaH

13.598 eV

angular velocity (spin)
  

1 =
h

mer1
2 4.13 X 1016

 rads−1

linear velocity v1 = r1 1 2.19 X 106
 ms−1

wavelength 1 = 2 r1 3.325 X 10−10
 m

spin quantum number s =
1

2

1

2

moment of Inertia I = mer1
2 s(s +1) 2.209 X 10−51

 kgm2

angular kinetic energy Eangular =
1

2
I 1

2 11.78 eV

magnitude of the   h 1.0545 X 10−34
 Js

angular momentum

projection of the   S = h s s +1( ) 9.133 X 10−35
 Js

angular momentum
onto the S-axis

projection of the
  
Sz =

h
2

5.273 X 10−35
 Js

angular momentum
onto the z-axis

mass density
me

4 r1
2 2.589 X 10−11

 kgm−2

charge-density
e

4 r1
2 14.41 Cm−2

                                                                                                                   
Table 1.2 gives the radii and energies for some one-electron atoms.
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In addition to the energies, the wavelength, angular frequency, and the
linear velocity can be calculated for any one-electron atom from Eqs.
(1.46), (1.55), and (1.56).  Values are given in Table 1.3.

Table 1.2. Calculated energies (non-relativistic) and calculated ionization
energies for some one-electron atoms.

______________________________________________________________________________
Calculated Calculated Calculated Calculated Experimental

Atom r1
a Kinetic Potential Ionization Ionization

(a0 ) Energyb Energyc Energyd Energye

(eV) (eV) (eV) (eV)

H 1.000 13.59 –27.18 13.59 13.59

He+ 0.500 54.35 –108.70 54.35 54.58

Li2 + 0.333 122.28 –244.56 122.28 122.45

Be3+ 0.250 217.40 –438.80 217.40 217.71

B4 + 0.200 339.68 –679.36 339.68 340.22

C5+ 0.167 489.14 –978.28 489.14 489.98

N6+ 0.143 665.77 –1331.54 665.77 667.03

O7+ 0.125 869.58 –1739.16 869.58 871.39

a from Equation (1.169)
b from Equation (1.174)
c from Equation (1.173)
d from Equation (1.176)
e experimental
______________________________________________________________________________

It is noteworthy that the potential energy is a constant (at a given n )
because the electron is at a fixed distance, rn , from the nucleus.  And,
the kinetic energy and velocity squared are constant because the atom
does not radiate at rn  and the potential energy is constant.
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Table 1.2. Calculated radii, angular frequencies, linear velocities, and
wavelengths for the n = 1 state of some one-electron atoms
(non-relativistic).

____________________________________________________________________________
Atom r1

a angularb linearc wavelengthd

(a0 ) velocity velocity (10−10
 m )

(1017rad s−1 ) (106
 ms−1 )

H 1.000 0.413 2.19 3.325

He+ 0.500 1.65 4.38 1.663

Li2 + 0.333 3.72 6.56 1.108

Be3+ 0.250 6.61 8.75 0.831

B4 + 0.200 10.3 10.9 0.665

C5+ 0.167 14.9 13.1 0.554

N6+ 0.143 20.3 15.3 0.475

O7+ 0.125 26.5 17.5 0.416

a from Equation (1.169)
b from Equation (1.55)
c from Equation (1.56)
d from Equation (1.46)
____________________________________________________________________________

It should be noted that the linear velocity is an appreciable percent of
the velocity of light for some of the atoms in Table 1.2—5.9% for O7+ for
example. Relativistic corrections must be applied before a comparison
between the total energy and ionization energy (Table 1.2) is made.
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EXCITED STATES OF THE ONE ELECTRON ATOM (QUANTIZATION)

EQUATION OF THE ELECTRIC FIELD INSIDE THE ORBITSPHERE
It is well known that resonator cavities can trap electromagnetic

radiation of discrete resonant frequencies.  The orbitsphere is a
resonator cavity which traps photons of discrete frequencies.  Thus,
photon absorption occurs as an excitation of a resonator mode.  The
"trapped photon" is a "standing electromagnetic wave" which actually is
a circulating wave that propagates around the z-axis, and its source
current superimposes with each great circle current loop of the
orbitsphere.  The time-function factor, k(t ), for the "standing wave" is
identical to the time-function factor of the orbitsphere in order to
satisfy the boundary (phase) condition at the orbitsphere surface.  Thus,
the angular frequency of the "trapped photon" has to be identical to the
angular frequency of the electron orbitsphere, n  given by Eq. (1,55).
Furthermore, the phase condition requires that the angular functions of
the "trapped photon" have to be identical to the spherical harmonic
angular functions of the electron orbitsphere.  Combining k(t ) with the

-function factor of the spherical harmonic gives e
i m − n t( )  for both the

electron and the "trapped photon" function.  The photon is "glued" to
the inner orbitsphere surface and the outer nuclear surface as photon
source charge-density with a radial electric field.  Thus, the "trapped
photon" is analogous to a gluon described in the Proton and Neutron
Section and is different from a photon in free space as described in the
Equation of the Photon Section.

For a spherical resonator cavity, the relationship between an
allowed radius and the "photon standing wave" wavelength is

2 r = n  (2.1)
where n  is an integer.  Now, the question arises: given that this is a
resonator cavity, which nonradiative states are possible where the
transition is effected by a "trapped photon"?  For the electron
orbitsphere, a spherical resonator cavity, the relationship between an
allowed radius and the electron wavelength is

2 (nr1) = 2 rn = n 1 = n (2.2)
where

n = 1,2,3,4,...

n =
1

2
,
1

3
,
1

4
,...

1  is the allowed wavelength for n = 1
r1  is the allowed radius for n = 1

An electron in the ground state, n = 1, is in force balance including the
electrodynamic force which is included by using the reduced electron
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mass as given by Eqs. (1.166), (1.171), and (1.172).
mev1

2

r1

=
Ze2

4 or1
2 (2.3)

When an electron in the ground state absorbs a photon of sufficient
energy to take it to a new non-radiative state, n = 2,3,4,...,  force balance
must be maintained.  This is possible only if the central field is

equivalent to that of a central charge of 
Ze

n
, and the excited state force

balance equation is
mevn

2

rn

=
1

n

Ze2

4 orn
2 (2.4)

where r1  is the "ground" state radius of the electron, and rn  is the nth
excited state radius of the electron.  The radius of the nth excited state
follows from Eq. (1.172) and Eq. (2.4).

rn = naH (2.5)

The reduction of the charge from Ze to 
Ze

n
 is caused by trapping a

photon in the orbitsphere, a spherical resonator cavity.   The photon's
electric field creates a "standing wave" in the cavity with an effective

charge of  −1 +
1

n
 
 

 
 
Ze (at rn ).  The total charge experienced by the electron

is the sum of the proton and "trapped photon" charge components.  The
equation for these "trapped photons" can be solved as a boundary value
problem of Laplace’s equation.  For the hydrogen atom, the boundary
conditions are that the electric field is in phase with the orbitsphere and
that the radial function for the electric field of the "trapped photon" at
rn  is

E rphoton = −1 +
1

n
 
 

 
 

e

4 o rn( )2     n = 2,3,4,..., (2.6)

The general form of the solution to Laplace’s equation in spherical
coordinates is

  
Φ r, ,( ) = Al, mr l + Bl,mr− l+1( )[ ]

m =−l

l

∑
l= 0

∞

∑ Y0
0 ,( ) + Yl

m ,( )[ ] (2.7)

All   Al,m  are zero because the electric field given by the potential must be
inversely proportional to the radius to obtain force balance.  The
electric field is the gradient of the potential

E = −∇Φ (2.8)
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E r = −
Φ
r

ˆ i r

E = −
1

r

Φ ˆ i 

E = − 1

rsin

Φ ˆ i 

(2.9)

Thus,

  
E r = Bl, m l +1( )

m =− l

l

∑
l=0

∞

∑ r − l+2( ) Y0
0 ,( ) + Yl

m ,( )[ ] (2.10)

Given that E( proton) =
+e

4 orn
2 , and that the electric fields of the proton and

"trapped photon" must superimpose to yield a field equivalent to a

central point charge of 
+Ze

n
, the "trapped photon" electric field for each

mode is determined as follows.  The time-function factor and the
angular-function factor of the charge-density function of the orbitsphere
(Eqs. (1.64) and (1.65)) at force balance must be in phase with the
electric field of the "trapped photon".  The relationship between the
electric field equation and the "trapped photon" source charge-density
function is given by Maxwell’s equation in two dimensions.

n • E1 − E2( ) =
0

(2.11)

where n  is the radial normal unit vector, E1 = 0  (E1  is the electric field
outside of the orbitsphere), E2  is given by the total electric field at
rn = naH , and  is the surface charge-density.  Thus,

  
E r photon  n,l, m| rn = na

H

=
e

4 o naH( )2 −1 +
1

n
Y0

0 ,( ) + Re Yl
m ,( ) 1 + ei nt[ ]{ }[ ] 

 
 
 

n = 0 for m = 0 (2.12)

  
= −Bl,m l +1( )

m=− l

l

∑
l= 0

∞

∑ naH( )− l+ 2( )
Y0

0 ,( ) + Re Yl
m ,( ) 1+ e i nt[ ]{ }[ ]

n = 0 for m = 0 (2.13)
Therefore,

  
−Bl,m =

e naH( )l

4 o l +1( ) −1+
1

n
 
 

 
 m =− l

l

∑
l= 0

∞

∑ , and (2.14)

  
E r photon  n,l, m

=
e naH( )l

4 o

1

r l+2( ) −Y0
0 ,( ) +

1

n
Y0

0 ,( ) + Re Yl
m ,( ) 1 + e i nt[ ]{ }[ ] 

 
 
 

n = 0 for m = 0 (2.15)
n = 1,2,3,4,...

= 1,2,..., n − 1
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m = − , – +1,...,0,..., +

E rtotal  is the sum of the "trapped photon" and proton electric fields,

  
E rtotal

=
e

4 or
2 +

e naH( )l

4 o

1

r l+2( ) −Y0
0 ,( ) +

1

n
Y0

0 ,( ) + Re Yl
m ,( ) 1 + e i nt[ ]{ }[ ] 

 
 
 

n = 0 for m = 0 (2.16)
For r = naH  and m = 0, the total radial electric field is

E rtotal =
1

n

e

4 o naH( )2 (2.17)

All boundary conditions are met for the electric fields and the
wavelengths of the "trapped photon" and the electron.  Thus, Eq. (2.16)
is the solution for the excited modes of the orbitsphere, a spherical
resonator cavity.  And, the quantum numbers of the electron are n , , m
(m ), and ms (Described in the Stern-Gerlach Experiment Section).

PHOTON ABSORPTION
The energy of the photon which excites a mode in a stationary

spherical resonator cavity from radius aH  to radius naH  is

  
Ephoton =

e2

4 o aH

1−
1

n2
 
 

 
 

= h = h (2.18)

After multiplying Eq. (2.18) by 
  

aH

aH

=
4 0 h

2

e2
eaH

, where aH  is given by Eq.

(1.171), photon  is

  
photon =

h
meaH

2 1−
1

n2
 
 

 
 

(2.19)

In the case of an electron orbitsphere, the resonator possesses kinetic
energy before and after the excitation.  The kinetic energy is always one-
half of the potential energy because the centripetal force is an inverse
squared central force.  As a result, the energy and angular frequency to
excite an electron orbitsphere is only one-half of the values above, Eqs.
(2.18) and (2.19).  From Eq. (1.55), the angular velocity of an electron
orbitsphere of radius naH  is

  
n =

h
me naH( )2 (2.20)

The change in angular velocity of the orbitsphere for an excitation from
n = 1 to n = n  is

  
∆ =

h
me aH( )2 −

h
me naH( )2 =

h
me aH( )2 1−

1

n2
 
 

 
 

(2.21)



© 2000 by BlackLight Power, Inc.  All rights reserved.
88

The kinetic energy change of the transition is

  

1

2
me (∆v)2 =

1

2

e2

4 0aH

1 −
1

n2
 
 

 
 

=
1

2
h (2.22)

The change in angular velocity of the electron orbitsphere, Eq. (2.21), is
identical to the angular velocity of the photon necessary for the
excitation, photon  (Eq. (2.21)).  The energy of the photon necessary to
excite the equivalent transition in an electron orbitsphere is one-half of
the excitation energy of the stationary cavity because the change in
kinetic energy of the electron orbitsphere supplies one-half of the
necessary energy.  The change in the angular frequency of the
orbitsphere during a transition and the angular frequency of the photon
corresponding to the superposition of the free space photon and the
photon corresponding to the kinetic energy change of the orbitsphere
during a transition are equivalent.  The correspondence principle holds.
It can be demonstrated that the resonance condition between these
frequencies is to be satisfied in order to have a net change of the energy
field [1].

The excited states of hydrogen are given in Table 2.1.
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Table 2.1. Calculated energies (non-relativistic; no spin-orbit interaction;
no electronic spin/nuclear spin interaction) and ionization
energies for the hydrogen atom in the ground state and some
excited states.

______________________________________________________________________________
Calculated Calculated Calculated Calculated Experimental

n Z rn
a Kinetic Potential Ionization Ionization

 ( aH ) Energyb Energyc Energyd Energye

(eV) (eV) (eV) (eV)

1 1 1.000 13.589 –27.21 13.598 13.595

2
1

2
2.000 3.397 –6.803 3.400 3.393

3
1

3
3.000 1.510 –3.023 1.511 1.511

5
1

5
5.000 0.544 –1.088 0.544 0.544

10
1

10
10.000 0.136 –0.272 0.136 0.136

a from Equation (2.5)

b from T = −
1

2
V

c from Equation (1.173)
d from Equation (2.22)
e experimental
_____________________________________________________________________________

SELECTION RULES
The multipole fields of a radiating source can be used to calculate

the energy and angular momentum carried off by the radiation [2].  For
definiteness we consider a linear superposition of electric (l, m)
multipoles with different m values, but all having the same l, and
following Eq. (16.46) of Jackson [2], write the fields as

Bl = aE l,m( )
m
∑ Xlmhl

1( ) kr( )ei t

E
l
= i

k
∇× B

l

(2.23)

For harmonically varying fields, the time-averaged energy density is
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u =
1

16
E • E* + B •B*( ) (2.24)

In the radiation zone, the two terms are equal.  Consequently, the energy
in a spherical shell between r  and (r + dr ) ( for kr >> 1) is

dU =
dr

8 k2 aE
* l, m'( )aE

m,m '
∑ l,m( ) Xlm '

*∫ •XlmdΩ (2.25)

where the asymptotic form (Eq. (16.13) of Jackson [2]) of the spherical
Hankel function has been used.  With the orthogonality integral (Eq.
(16.44) of Jackson [2]) this becomes

dU

dr
=

1

8 k2 aE l,m( ) 2

m
∑ (2.26)

independent of the radius.  For a general superposition of electric and
magnetic multipoles, the sum over m becomes a sum over l and m and
aE

2
 becomes aE

2
+ aM

2
.  The total energy is a spherical shell in the

radiation zone is thus an incoherent sum  over all multipoles.
The time-averaged angular-momentum density is

m =
1

8 c
Re r × E × B *( )[ ] (2.27)

The triple cross product can be expanded, and the electric field
substituted to yield, for a superposition of electric multipoles,

m =
1

8
Re B* L • B( )[ ] (2.28)

Then the angular momentum in a spherical shell between r  and (r + dr )
in the radiation zone is

dM =
dr

8 k2 Re aE
* l,m'( )aE

m ,m'
∑ l, m( ) L • Xlm'( )∫

*

XlmdΩ (2.29)

With the explicit form (Eq. (16.43) of Jackson [2]) for Xlm , Eq. (2.29) can
be written

dM
dr

=
1

8 k2 Re aE
* l,m'( )aE

m ,m'
∑ l, m( ) Ylm'

* LYlm∫ dΩ (2.30)

From the properties of LYlm  listed in Eq. (16.28) of Jackson [2] and the
orthogonality of the spherical harmonics, we obtain the following

expressions for the Cartesian components of 
dM

dr
dM x

dr
=

1

16 k2 Re l − m( ) l + m +1( )aE
* l,m + 1( ) + l + m( ) l − m +1( )aE

* l, m −1( )[ ]aE
m
∑ l, m( ) (2.31)

dM y

dr
=

1

16 k2 Im l − m( ) l + m +1( )aE
* l,m +1( ) − l + m( ) l − m +1( )aE

* l,m −1( )[ ]aE
m
∑ l, m( ) (2.32)

dM z

dr
=

1

8 k2 maE l, m( )2

m
∑ (2.33)

These equations show that for a general lth order electric multipole that
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consists of a superposition of different m values, only the z component
of the angular momentum is relatively simple.

For a multipole with a single m value, Mx  and My  vanish, while a
comparison of Eq. (2.33) and Eq. (2.25) shows that

dM z

dr
=

m dU

dr
(2.34)

independent of r .  Experimentally, the photon can carry ±    h . units of
angular momentum.  Thus, during excitation the spin, orbital, or total
angular momentum of the orbitsphere can change by zero or ±    h   The
electron transition rules arise from conservation of angular momentum.
The selection rules for multipole transitions between quantum states
arise from conservation of total angular momentum and component
angular momentum where the photon carries   h  of angular momentum.
The radiation of a multipole of order (l, m) carries   mh  units of the z
component of angular momentum per photon of energy   h .

ORBITAL AND SPIN SPLITTING
The ratio of the square of the angular momentum, M2 , to the

square of the energy, U2 , for a pure (l,m) multipole follows from Eq.
(2.25) and Eqs. (2.31-2.33)

M2

U 2 =
m 2

2 (2.35)

The magnetic moment is defined [3] as

 =
charge x angular momentum

2 x mass
(2.36)

The radiation of a multipole of order (l, m) carries m  h  units of the z
component of angular momentum per photon of energy   h .  Thus, the z
component of the angular momentum of the corresponding excited state
electron orbitsphere is

  Lz = mh (2.37)
Therefore,

  
z =

emh
2me

= m B (2.38)

where B  is the Bohr magneton.  The presence of a magnetic field causes
the principal excited state energy levels of the hydrogen atom (Eq.
(2.22)) to split by the energy Emag

orb  corresponding to the interaction of
the magnetic flux with the magnetic moment given by Eq. (2.38).  This
energy is called orbital splitting.

Emag
orb = m BB (2.39)

As is the case with spin splitting given by one half the energy of Eq.
(1.151) which corresponds to the transition between spin states, the
energy of the electron is increased in the case that the magnetic flux is
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antiparallel to the magnetic moment, or the energy of the electron is
decreased in the case that the magnetic flux is parallel to the magnetic
moment.  The spin and orbital splitting energies superimpose; thus, the
principal excited state energy levels of the hydrogen atom (Eq. (2.22))
are split by the energy Emag

spin/ orb

  
Emag

spin/ orb = m
eh

2me

B + msg
eh
me

B (2.40)

where it follows from Eq.(2.15) that

  

n = 2,3,4,...

l = 1,2,..., n − 1

m = −l,−l +1,...,0,..., +l

ms = ±
1

2
For the electric dipole transition, the selection rules are

∆m = 0,±1

∆ms = 0
(2.41)

Splitting of the energy levels in addition to that given by Eq. (2.40)
occurs due to a relativistic effect described in the Spin-Orbital Coupling
Section.  Also, a very small shift which is observable by radio-frequency
spectroscopy is due to conservation of energy and linear momentum and
arises from the radiation reaction force between the electron and the
photon.  This so-called Lamb Shift is described in the Resonant Line
Shape and Lamb Shift Section.

Decaying spherical harmonic currents on the surface of the
orbitsphere give rise to spherical harmonic radiation fields during
emission; conversely, absorbed spherical harmonic radiation fields
produce spherical harmonic currents on the surface of the orbitsphere
to effect a transition.  Transition intensities, I , are given by the integral
of the product of the multipole of the photon, pXl ,m ,( ), and the initial,
iXl, m ,( ), and final, fXl ,m ,( ), states as is the case with classical
electrodynamics calculations involving antennas.

I ∝ I0
iXl, m ,( )pX l,m ,( ) fX l,m ,( )

0

2

∫ sin d d
0
∫

2

(2.42)

The distribution of multipole radiation and the multipole moments of
the orbitsphere for absorption and emission are derived in Jackson [4].
Some of the simpler angular distributions are listed in Table 2.2.

Table 2.2.  Some of the simpler angular distributions of multipole radiation



© 2000 by BlackLight Power, Inc.  All rights reserved.
93

and the multipole moments of the orbitsphere for absorption and emission.

m

0 ±1 ±2

1

Dipole

3

8
sin2 3

16
1 + cos2( )

2

Quadrapole

15

8
sin2 cos2 5

16
1 − 3cos2 + 4cos 4( ) 5

16
1 − cos4( )

RESONANT LINE SHAPE AND LAMB SHIFT
The spectroscopic linewidth arises from the classical rise-time

band-width relationship, and the Lamb Shift is due to conservation of
energy and linear momentum and arises from the radiation reaction
force between the electron and the photon.  It follows from the Poynting
Power Theorem (Eq. (7.27)) with spherical radiation that the transition
probabilities are given by the ratio of power and the energy of the
transition [5].  The transition probability in the case of the electric
multipole moment given by Jackson [5] as

Qlm =
3

l + 3
e na

0
( )l

(2.43)

is [5]

  

1 = power
energy

1 =

2 c

2l +1( )!![ ]2

l + 1

l
 
 

 
 k

2l +1 Qlm + Qlm
' 2

 

 
 

 

 
 

h[ ]
= 2

e2

h

 
 
  

 
0

0

2

2l +1( )!![ ]2

l + 1
l

 
 

 
 

3
l +3

 
 

 
 

2

kna
0( )2l

(2.44)

This rise-time gives rise to, Γ , the spectroscopic line-width.  The
relationship between the rise-time and the band-width is given by Siebert
[6].
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2 = 4

t2

−∞

∞

∫ h2 t( )dt

h2 t( )dt
−∞

∞

∫
−

t
−∞

∞

∫ h2 t( )dt

h2 t( )dt
−∞

∞

∫

 

 

 
 
 

 

 

 
 
 

2 

 

 
 
 

 

 

 
 
 

(2.45)

Γ2 = 4

f 2 H f( )2
df

−∞

∞

∫

H f( ) 2
df

−∞

∞

∫
(2.46)

By application of the Schwartz inequality, the relationship between the
rise-time and the band-width is

Γ ≥
1

(2.47)

From Eq. (2.44), the line-width is proportional to the ratio of the

Quantum Hall resistance, 
h

e2 , and, , the radiation resistance of free

space.

= 0

0

(2.48)

And, the Quantum Hall resistance given in the Quantum Hall Effect
Section was derived using the Poynting Power Theorem.  Also, from Eq.
(2.44), the line-width is proportional to the fine structure constant, ,

  
=

1

4
o

o

e2

h
(2.49)

During a transition, the total energy of the system decays exponentially.
Applying Eqs. (2.45) and (2.46) to the case of exponential decay,

h( t) = e
− 1

T
t

u t( ) (2.50)

H f( ) =
1

1

T
 
 

 
 

2

+ 2 f( )2

(2.51)

where the rise-time, , is the time required for h( t) of Eq. (2.50) to decay
to 1/ e  of its initial value and where the band-width, Γ , is the half-power
bandwidth, the distance between points at which

H f( ) =
H 0( )

2
(2.52)

From Eq. (2.45),
= T (2.53)

From Eq. (2.46),

Γ =
1

T
(2.54)



© 2000 by BlackLight Power, Inc.  All rights reserved.
95

From Eq. (2.53) and Eq. (2.54), the relationship between the rise-time
and the band-width for exponential decay is

Γ =
1

(2.55)

Photons obey Maxwell-Boltzmann statistics as given in the
Statistical Mechanics Section.  The emitted radiation, the summation of
an assemble of emitted photons each of an exact frequency and energy
given by Eq. (4.8), appears as a wave train with effective length c / Γ .
Such a finite pulse of radiation is not exactly monochromatic but has a
frequency spectrum covering an interval of the order Γ .  The exact
shape of the frequency spectrum is given by the square of the Fourier
Transform of the electric field.  Thus, the amplitude spectrum is
proportional to

E( ) ∝ e− t

0

∞

∫ e−i tdt =
1

− i
(2.56)

The coefficient  corresponds to the spectroscopic linewidth and also to
a shift in frequency that arises from the radiation reaction force
between the electron and the photon.  The energy radiated per unit
frequency interval is therefore

dI( )
d

= I
0

Γ
2

1

−
0
− ∆( )2

+ Γ / 2( )2
(2.57)

where I
0
 is the total energy radiated.  The spectral distribution is called a

resonant line shape.  The width of the distribution at half-maximum
intensity is called the half-width or line-breadth and is equal to Γ .
Shown in Figure 2.1 is such a spectral line.  Because of the reactive
effects of radiation the line is shifted in frequency.  The small radiative
shift of the energy levels of atoms was first observed by Lamb in 1947
[7] and is called the Lamb Shift in his honor.
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Figure 2.1.  Broadening of the spectral line due to the rise-time and
shifting of the spectral line due to the radiative reaction.  The resonant
line shape has width Γ .  The level shift is ∆ .

ω

Γ

∆ω

ωο

dI

dω
(ω)

The Lamb Shift of the 2P1/2  state of the hydrogen atom having the
quantum number   l = 1 is calculated by applying conservation of energy
and linear momentum to the emitted photon, electron, and atom.  The
photon emitted by an excited state atom carries away energy, linear
momentum, and angular momentum.  The initial and final values of the
energies and momenta must be conserved between the atom, the
electron, and the photon.  (Conservation of angular momentum is used
to derive the photon's equation in the Equation of the Photon Section).
Consider an isolated atom of mass M  having an electron of mass me  in an
excited state level at an energy E  and moving with velocity V  along the
direction in which the photon is to be emitted (the components of
motion perpendicular to this direction remain unaffected by the
emission and may be ignored).  The energy above the "ground" state at
rest is

E +
1

2
MV2 

 
 
 (2.58)

When a photon of energy Eh  is emitted, the atom and/or electron
recoils and has a new velocity

V + v (2.59)
(which is a vector sum in that V  and v  may be opposed), and a total
energy of
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1

2
M V + v( )2 (2.60)

By conservation of energy,

E +
1

2
MV2 = Eh +

1

2
M V + v( )2 (2.61)

so, that the actual energy of the photon emitted is given by

Eh = E − 1

2
Mv2 − MvV

Eh = E − ER − ED

(2.62)

The photon is thus deficient in energy by a recoil kinetic energy

ER =
1

2
Mv2 (2.63)

which is independent of the initial velocity V , and by a thermal or
Doppler energy

ED = MvV (2.64)
which depends on V ; therefore, it can be positive or negative.

Momentum must also be conserved in the emission process.  The
energy, E , of the photon is given by Eq. (4.8)

  
E = h = h

2
= h = hf = h

c
(2.65)

From Special Relativity,
  E = h = mc2 (2.66)

Thus, p , the momentum of the photon is

p = mc =
Eh

c
(2.67)

where c  is the velocity of light, so that

MV = M V + v( ) +
Eh

c
(2.68)

And, the recoil momentum is

Mv = −
Eh

c
(2.69)

Thus, the recoil energy is given by

ER =
Eh

2

2Mc2 (2.70)

and depends on the mass of the electron and/or atom and the energy of
the photon.  The Doppler energy, ED , is dependent on the thermal
motion of the atom, and will have a distribution of values which is
temperature dependent.  A mean value, ED , can be defined which is
related to the mean kinetic energy per translational degree of freedom

ED

_

≅
1

2
kT (2.71)

by
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ED

_

≅ 2 EkER = Eh

2 Ek

_

Mc2 (2.72)

where k  is Boltzmann's constant and T  is the absolute temperature.  As
a result, the statistical distribution in energy of the emitted photons is
displaced from the true excited-state energy by −ER  and broadened by

ED  into a Gaussian distribution of width 2ED

_

.  The distribution for
absorption has the same shape but is displaced by +ER.

For the transition of the hydrogen atom with n = 2  and   l = 0  in the
initial and final states, the emitted angular radiation power pattern is
uniform.  The linear momentum of the photon is balanced by the recoil
momentum of the entire atom of mass mH .  The recoil frequency of the
hydrogen atom, ∆f, is given by the combining Eqs. (2.65) and (2.70).

∆f =
∆
2

=
Eh

h
=

Eh( )2

2mHc2 = 13 MHz (2.73)

where Eh  is

Eh =13.6 1−
1

n2

 
 

 
 − h∆f     ; h∆f <<<1     Eh = 13.6 1−

1

n2

 
 

 
    (2.74)

However, during the emission of a photon by an excited state atom, with
  l ≠ 0 , the angular radiation power pattern is not uniform, and the
electron receives the recoil momentum as the charge-density of the
electron changes from uniform to uniform plus a spherical harmonic
function (angular modulation) as given in the One Electron Atom
Section.  In the case of   l = 1;   ml = 0, the angular charge-density function is

  
(r, , ,t) =

e

4 rn
2 [ (r − rn )] Y0

0 ,( ) + Yl
m ,( )Re 1+ e i nt[ ][ ] (2.75)

where

  Yl
m ,( )Re 1+ e i nt[ ] = Re Yl

m ,( ) + Yl
m ,( )e i nt[ ] = Pl

m cos( )cosm + Pl
m cos( )cos m + nt( )

and n = 0 for m = 0.
Y1,z = cos (2.76)

Figure 1.2 gives pictorial representation of how the modulation function
changes the electron density on the orbitsphere for several  values.

The angular function , Xlm
2 , of the radiation power pattern of the

electron in the 2P1/2  (  l = 1;   ml = 0) state is equivalent to that of a Hertzian
dipole.

Xlm
2 = sin2 (2.77)

The integral of Eq. (2.77) over the surface of a spherical shell is

  
Xlm l=1

2 =
8

3
(2.78)

Thus, the inverse of Eq. (2.78) is the weighting factor of momentum
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transfer due to the radiation power pattern.  Photons obey Maxwell-
Boltzmann statistics as given in the Statistical Mechanics Section.  The
distribution of the linear momentum transferred from the emitted
photons to the electrons is given by the projection of the photon
momentum distribution onto the x, y, or z-axis which corresponds to 3
degrees of freedom.  The Lamb Shift of the 2P1/2  state of the hydrogen
atom is given by the combining Eqs. (2.65), (2.78), and (2.70)

∆f =
∆
2

=
Eh

h
= 3

Eh( )2

h2mec
2 =1052 MHz (2.79)

where Eh  is

  

Eh =13.6 1− 1
n2

 
 

 
 

1

Xlm l=1

2
− h∆f  

Eh =13.6 1− 1
n2

 
 

 
 

3
8

− h∆f ;  

h∆f <<<1

∴ Eh = 13.6 1−
1

n2

 
 

 
 

3

8
  

(2.80)

Furthermore, it follows from Eq. (2.75), that the recoil energy of the
photon corresponding to momentum transfer to the atom for the case of

  l = 1 is one half that of the case where = 0  (Eq. (2.73)).

∆f =
∆
2

=
Eh

h
=

1

2

Eh( )2

2mHc2 = 6.5 MHz (2.81)

The recoiling electron transfers momentum to the nucleus which binds
the electron, and some linear momentum is transferred to the atom as
angular momentum.  Linear momentum of the electron, atom, and
photon are conserved where the propagation vector of the photon does
not go through the nucleus; thus, it possesses an equal and opposite
component of angular momentum with respect to the atom.  The total
recoil energy is the sum of the electron component (Eq. (2.79)) and the
atom component (Eq. (2.81)).  Thus, the calculated Lamb Shift due to
both components of linear momentum transfer is

∆f = 1052 MHz + 6.5 MHz = 1058.5 MHz
∆f = 1052 MHz + 6.5MHz = 1058.5MHz (2.82)
The experimental Lamb Shift is 1058 MHz .

The present calculations used the electron rest mass; however, the
relativistic mass is required in order to be exact.  It is given by Eq.
(7.31).  In addition to the Lamb Shift, the spectral lines of hydrogen are
Zeeman split by spin-orbital coupling and electron-nuclear magnetic
interactions.

(As a further example, conservation of linear momentum of the
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photon is central to the Mössbauer phenomenon.  See Mills patent [8]).

SPIN-ORBITAL COUPLING
The spin-orbital coupling split is given by the Dirac equation [9]

which applies Special Relativity to a spherically symmetric charge
distribution in a central field as is the case with the orbitsphere.  And,
Dirac's spin-orbital interaction operator follows from Eq. (1.164) and
Eq. (1.173).

E = mec
2 1 +

n − j +
1

2
 
 

 
 + j +

1

2
 
 

 
 

2

− 2

 

 

 
 
 

 

 

 
 
 

2 

 

 
 
 

 

 

 
 
 

−1
2

;   n = 1,2,3,...∞

    j +
1

2
≤ n

(2.83)

The predicted energy difference between the 2P1/2 and 2P3/2, 2S1/2  levels
of the hydrogen atom, Es/o, given by Eq. (2.83) is

Es/ o ≅
4mec

2

32
(2.84)

which corresponds to a frequency of about 11,000 MHz  or a wavelength of
about 2.7 cm .  The experimental value is 10,950 MHz .

KNIGHT SHIFT
The unpaired electron of the hydrogen atom gives rise to a

uniform magnetic field at the nucleus which is given by Eq. (1.120).

  
H =

eh
mern

3 ( ir cos − i sin ) r < rn (2.85)

Multiplication of Eq. (2.85) by the permeability of free space, µ0, and
substitution of the Bohr radius of the hydrogen atom, aH , given by Eq.
(1.171) for rn  of Eq. (2.85) gives the magnetic flux, Bs , at the nucleus
due to electron spin.

  
Bs = 0eh

meaH
3 iz = 157.29 T (2.86)

The proton possesses a magnetic moment which is derived in the Proton
and Neutron Section and is given by

  

P =

2

3
 
 

 
 

2

eh

2
mp

2

(2.87)

∆Emag
proton spin, the energy to flip the orientation of the proton's magnetic

moment, P , from parallel to antiparallel to the direction of the
magnetic flux Bs  is



© 2000 by BlackLight Power, Inc.  All rights reserved.
101

∆Emag
proton spin = −2 PBs  (2.88)

As given in the Spin Angular Momentum of the Orbitsphere with   l = 0
Section, the z directed magnetic field of the nucleus corresponding to
the proton magnetic moment given by Eq. (2.87) gives rise to a
projection of the angular momentum of the electron onto an axis which

precesses about the z-axis of 
  

3

4
h .  The projection of the magnetic

energy between the electron orbitsphere and the proton is equivalent to
that of the angular momentum onto the axis which precesses about the

z-axis, 
3

4
 times that of a Bohr magneton.  In the case of the hydrogen

atom, the energy to flip the orientation of the proton's magnetic
moment, P , from parallel to antiparallel to the direction of the
magnetic flux Bs  of the electron is given by the substitution of the

magnetic flux Bs  of Eq. (2.86) multiplied by 
3

4
 into Eq. (2.88).

  
∆Emag

proton spin = −2 P
0eh

meaH
3

3

4
= −3.837 X 10−24

 J = −2.395 X 10−5
 eV (2.89)

The frequency, f , can be determined from the energy using the Planck
relationship, Eq. (2.18).

f =
3.837 X 10−24

 J

h
= 5.790 GHz  (2.90)

The shift of the NMR frequency of a nucleus by an unpaired electron is
called the Knight Shift.  The Knight Shift of the hydrogen atom is given
by Eq. (2.90) which corresponds to the magnetic flux given by Eq.
(2.86).  The experimental value is unknown; however, magnetic
hyperfine structure shifts of Mossbauer spectra corresponding to
magnetic fluxes of 100 T  or more due unpaired electrons are common.

SPIN-NUCLEAR COUPLING
The radius of the hydrogen atom is increased or decreased very

slightly due to the force between the magnetic moment of the electron
and the magnetic field of the nucleus.  The magnetic moment of the
electron is a Bohr magneton, B , given by Eq. (1.99).  The magnetic
moment m  of the proton is given by Eq. (2.87), and the magnetic field of
the proton follows from the relationship between the magnetic dipole
field and the magnetic moment m  as given by Jackson [10] where
m = Piz .

H = P

r3 (ir 2cos − i sin ) (2.91)

Multiplication of Eq. (2.91) by the permeability of free space, µ0, gives
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the magnetic flux, BP , due to the nucleus.

BP = 0 P

r 3 (ir 2cos − i sin )  (2.92)

The force between the magnetic moment of the electron and the
magnetic flux of the proton, FS/N , is

FS/N =
1

4 r1
2 Biz •∇BP (2.93)

Substitution of Eq. (2.92) into Eq. (2.93) gives

FS/N =±
1

4 r1
2 B 3 0

r 4  P (ir cos − i sin ) • (ir 2cos − i cos )d
0
∫ (2.94)

FS/N =±
1

4 r1
2 B 3 0

r 4  Pir (2.95)

where the plus corresponds to parallel alignment of the magnetic
moments of the electron and proton, and the minus corresponds to
antiparallel alignment of the magnetic moments of the electron and
proton.  The force must be corrected for the vector projection of the
angular momentum onto the z-axis.  As given in the Spin Angular
Momentum of the Orbitsphere with   l = 0  Section, the z directed
magnetic field of the nucleus corresponding to the proton magnetic
moment given by Eq. (1.120) gives rise to a projection of the angular
momentum of the electron onto an axis which precesses about the z-axis

of 
  

3

4
h .  The projection of the magnetic force between the electron

orbitsphere and the proton is equivalent to that of the angular

momentum onto the axis which precesses about the z-axis, 
3

4
 times

that of a Bohr magneton.  The force balance equation of the hydrogen
atom including the spin/nuclear force is given by substituting Eq. (2.95)

multiplied by 
3

4
 into Eq. (1.165).

  

me

4 r1
2

v1
2

r1

=
e

4 r1
2

e

4 or1
2 −

1

4 r1
2

h2

mrn
3 ±

1

4 r1
2 B 3 0

r4  P

3

4
(2.96)

Using Eq. (1.47),

  
r1± =

aH + aH
2 ±

6 oe Pao

3

4
h

2
(2.97)

where r1+  corresponds to parallel alignment of the magnetic moments of
the electron and proton, r1−  corresponds to antiparallel alignment of the
magnetic moments of the electron and proton, aH  is the Bohr radius of
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the hydrogen atom given by Eq. (1.171), and ao  is the Bohr radius given
by Eq. (1.168).

Energy Calculations
The change in the electric energy of the electron due to the slight

shift of the radius of the electron is given by the difference between the
electric energies associated with the two possible orientations of the
magnetic moment of the electron with respect to the magnetic moment
of the proton, parallel versus antiparallel.  Each electric energy is given
by the substitution of the corresponding radius given by Eq. (2.97) into
Eq. (1.176).  The change in electric energy for the flip from parallel to
antiparallel alignment, ∆Eele

S/ N , is

∆Eele
S/ N =

e2

8 o

1

r1−

−
1

r1+

 

  
 

  = 2.878 X 10−24  J (2.98)

The magnetic energy to flip the orientation of the proton's
magnetic moment, P , from parallel to antiparallel to the direction of
the magnetic flux Bs  of the electron is given by Eq. (2.89).

  
∆Emag

proton spin = −2 P
0eh

meaH
3

3

4
= −3.837 X 10−24

 J (2.99)

The total energy of the transition from parallel to antiparallel
alignment, ∆Etotal

S/ N , is given as the sum of Eqs. (2.98) and (2.99).

  
∆Etotal

S/ N =
e2

8 o

1

r1−

−
1

r1+

 

  
 

  − 2 P
0eh

meaH
3

3

4
(2.100)

∆Etotal
S/ N = 2.878 X 10−24  J − 3.837 X 10−24  J =−9.592 X 10−25  J (2.101)

The energy is expressed in terms of wavelength using the Planck
relationship, Eq. (2.65).

=
hc

∆Etotal
S/ N = 21 cm (2.102)

The experimental value from astrophysical studies and from electron
spin resonance measurements is 21 cm .

SPIN-NUCLEAR AND ORBITAL-NUCLEAR COUPLING OF HYDRINOS
The theory of a previously unknown form of matter: hydrogen

atoms having electrons of lower energy than the conventional "ground"
state called hydrinos, where each energy level corresponds to a
fractional quantum number is given in the Atomic Coulomb Field
Collapse--Hydrino Theory--BlackLight Process Section.  The radius of the

hydrino atom corresponding to the fractional quantum number 
1

n
 where

n  is an integer is the Bohr radius of the hydrogen atom divided by n , 
aH

n
,
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and the central field is n  times that of the proton.  The quantum
numbers of the electron for below "ground" states are n , , m (m ),

and ms as described in the Atomic Coulomb Field Collapse--Hydrino
Theory--BlackLight Process Section.  The relationship between the
quantum numbers is given by
Eq. (5.13).
 n = 2,3,4,...

 = 1,2,..., n − 1 (2.103)
m = − , –  +1,...,0,..., +

Photons obey Maxwell’s Equations.  At the two dimensional surface
of the orbitsphere containing a "trapped photon", the relationship
between the photon’s electric field and its two dimensional charge-
density at the orbitsphere is

n • E1 − E2( ) =
0

(2.104)

Thus, the photon’s electric field acts as surface charge.  According to Eq.
(2.104), the "photon standing wave" in the electron orbitsphere
resonator cavity gives rise to a two dimensional surface charge at the
orbitsphere two dimensional surface.  The surface charge is given by Eq.
(2.104) for a central field strength equal in magnitude to ne .  This
surface charge possesses the same angular velocity as the orbitsphere;
thus, it is a current with a corresponding magnetic field.  As
demonstrated in the Orbital and Spin Splitting Section, the z component
of the angular momentum of an excited state electron orbitsphere
corresponding to a "trapped photon" multipole of order (  l , m) is

  Lz = mh (2.105)
Eq. (2.105) also applies in the case of hydrinos, hydrogen atoms with
below "ground" state electronic energy levels.

The "trapped photon" is a "standing electromagnetic wave" which
actually is a circulating wave that propagates along each great circle
current loop of the orbitsphere.  The time-function factor, k(t ), for the
"standing wave" is identical to the time-function factor of the
orbitsphere in order to satisfy the boundary (phase) condition at the
orbitsphere surface.  Thus, the angular frequency of the "trapped
photon" has to be identical to the angular frequency of the electron
orbitsphere, n .  Furthermore, the phase condition requires that the
angular functions of the "trapped photon" have to be identical to the
spherical harmonic angular functions of the electron orbitsphere.  The
rotational parameters of the surface current of the "photon standing
wave" are given in the Derivation of the Rotational Parameters of the
Electron Section.  The solution to Legendre's equation given by Eq. (1.60)
is the maximum term of a series of solutions corresponding to the m and
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 values [11,12].  From Eq. (1.86), Lo
photon , the magnitude of the orbital

angular momentum along the axis which precesses about the z-axis is

  Lo
photon = h l(l +1) (2.106)

Therefore, from Eq. (2.36),

  
=

eh
2me

l(l +1) = B l(l +1) (2.107)

where B  is the Bohr magneton.  The magnetic moment gives rise to a
magnetic field at the nucleus.  The magnetic field follows from the
relationship between the magnetic dipole field and the magnetic moment
m  as given by Jackson [10] where   m = B l(l +1)  where the z-axis is
redesignated as the precessing axis.

  
H =

2 B

rn
3 l(l +1)(ir cos − i sin ) r < rn (2.108)

Multiplication of Eq. (2.108) by the permeability of free space, 0 , and
substitution of the Bohr radius of the hydrogen atom, aH , given by Eq.
(1.171) for rn  of Eq. (2.108) gives the magnetic flux, Bo , at the nucleus
due to the orbital angular momentum of the electron.

  
Bo = 0eh

meaH
3 l(l + 1)iz (2.109)

The orbital-nuclear coupling energy,∆Emag
proton orb , the energy to flip the

orientation of the proton's magnetic moment, P , from parallel to
antiparallel to the direction of the magnetic flux Bo  due to the orbital
angular momentum of the electron given by Eq. (2.109), is

∆Emag
proton orb =−2 PBo  (2.110)

The spin-nuclear and orbital-nuclear coupling energies superimpose.
Thus, Emag

proton spin orb , the energy to flip the orientation of the proton's
magnetic moment, P , from parallel to antiparallel to the direction of the
magnetic flux Bs  due to electron spin and the magnetic flux Bo  due to
the orbital angular momentum of the electron is the sum of Eqs. (2.89)
and (2.110).

Emag
proton spin orb= −2 PBo − 2 PBs

3

4
(2.111)

The spin and orbital moments of inertia, spin and orbital angular
momenta, and spin and orbital kinetic energies of an excited state
electron orbitsphere are given in the Derivation of the Rotational
Parameters of the Electron Section.  Substitution of Eq. (1.55) and Eq.
(1.96) into Eq. (1.88) gives the magnitude of the orbital component of
the angular momentum of an excited state electron orbitsphere
corresponding to a multipole of order (  l , m).  Lo

electron , the magnitude of
the orbital angular momentum along the axis which precesses about the
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z-axis is

  
Lo

electron = h
l(l +1)

l2 + l +1
 
 

 
 

1

2
(2.112)

Eq. (2.112) also applies in the case of hydrinos, hydrogen atoms with
below "ground" state electronic energy levels.  Therefore, from Eq.
(2.36),

  
=

eh
2me

l(l +1)

l2 + 2l +1
 
 

 
 

1

2
= B

l(l +1)

l2 + 2l +1
 
 

 
 

1

2
(2.113)

where B  is the Bohr magneton.  The force between the magnetic
moment of the electron due to orbital angular momentum and the
magnetic flux of the proton, FO/N , is

  
FO/N =

1

4 r1
2 B

l(l +1)

l2 + 2l +1
 
 

 
 

1

2
iz •∇BP (2.114)

where the z-axis is redesignated as the precessing axis.  Substitution of
Eq. (2.92) into Eq. (2.114) gives

  
FO/N = ±

1

4 r1
2 B

l(l +1)

l2 + 2l + 1
 
 

 
 

1

2
3 0

r 4  P (ir cos − i sin ) • ( ir 2cos − i cos )d
0
∫ (2.115)

  
FO/N = ±

1

4 r1
2 B

l(l +1)

l2 + 2l + 1
 
 

 
 

1

2
3 0

r 4  Pir (2.116)

where the plus corresponds to parallel alignment of the magnetic
moments of the electron and proton, and the minus corresponds to
antiparallel alignment of the magnetic moments of the electron and
proton.  The force balance equation of the hydrino atom including the
spin-nuclear force and the orbital-nuclear force is given by Eq. (5.14),
Eq. (2.116), Eq. (1.94), and Eq. (2.96) where the magnitude of the
central field is an integer, n .

  

me

4 r1
2

v1
2

r1

=
e

4 r1
2

ne

4 or1
2 −

1

4 r1
2

h2

mern
3 ±

1

4 r1
2

1

n
l l +1( ) +

3

4

 
 
  

 
 

B3 0

r4  P (2.117)

Using Eq. (1.47),

  
r1± =

aH + aH
2 ±

6 oe l l +1( ) +
3

4

 
 
  

 
 

Pao

h
2n

(2.118)

where r1+  corresponds to parallel alignment of the magnetic moments of
the electron and proton, r1−  corresponds to antiparallel alignment of the
magnetic moments of the electron and proton, aH  is the Bohr radius of
the hydrogen atom given by Eq. (1.171), and ao  is the Bohr radius given
by Eq. (1.168).
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Energy Calculations
The change in the electric energy of the electron due to the slight

shift of the radius of the electron is given by the difference between the
electric energies associated with the two possible orientations of the
magnetic moment of the electron with respect to the magnetic moment
of the proton, parallel versus antiparallel.  Each electric energy is given
by the substitution of the corresponding radius given by Eq. (2.118) into
Eq. (1.176) where the magnitude of the central field of the hydrino atom
is n  times that of a proton.  The change in electric energy for the flip
from parallel to antiparallel alignment, ∆Eele

S/N  O/N , is

∆Eele
S/N  O/N =

ne2

8 o

1

r1−

−
1

r1+

 

  
 

  (2.119)

The magnetic energy to flip the orientation of the proton's
magnetic moment, P , from parallel to antiparallel to the direction of
the magnetic flux Bs  due to electron spin and the magnetic flux Bo  due
to the orbital angular momentum of the electron follows from Eqs.

(2.109) and (2.111) where the radius of the hydrino atom is 
aH

n
.

  
Emag

proton spin orb= −2 P

n3
0eh

meaH
3 l l +1( ) − 2 P

n3
0eh

meaH
3

3

4
= − l l +1( ) +

3

4

 
 
  

 
 2 P

n3
0eh

meaH
3 (2.120)

The total energy of the transition from parallel to antiparallel
alignment, ∆Etotal

S/N O/N , is given as the sum of Eqs. (2.119) and (2.120).

  
∆Etotal

S/N O/N =
ne2

8 o

1

r1−

−
1

r1+

 

  
 

  − l l +1( ) +
3

4

 
 
  

 
 2 P

n3
0eh

meaH
3 (2.121)

For the case that   l = 0 ,
∆Etotal

S/N O/N = n2 2.878 X 10−24  J − n3 3.837 X 10−24  J (2.122)
The frequency, f , can be determined from the energy using the Planck
relationship, Eq. (2.65).

f =
∆Etotal

S/N O/N

h
(2.123)

From Eq. (2.122), Eq. (2.102), and the Planck relationship, Eq. (2.123),
the energy, the wavelength, and the frequency corresponding to the
spin-nuclear coupling energy of the hydrino atom with the lower energy

state quantum numbers n  and   l  and with the radius 
aH

n
 are given in

Table 2.3.
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Table 2.3.  The spin-nuclear coupling energy of the hydrino atom with the

lower energy state quantum numbers n  and   l  and with the radius 
aH

n
.

n   l Energy
( J X 1023)

Lambda
(cm )

Wave Number
(cm−1)

Frequency
(GHz )

1 0 0.09592 20.71 0.04829 1.447

2 0 1.918 1.0355 0.9657 28.95

2 1 5.051 0.3933 2.543 76.23

3 0 7.769 0.2557 3.911 117.2

3 1 20.46 0.09710 10.30 308.7

3 2 29.74 0.06678 14.97 448.9

4 0 19.95 0.09957 10.04 301.1

4 1 52.53 0.03781 26.44 792.8

4 2 76.38 0.02601 38.45 1153

4 3 99.76 0.01991 50.22 1505

5 0 40.77 0.04873 20.52 615.2

5 1 107.3 0.01851 54.03 1620

5 2 156.1 0.01273 78.57 2355

5 3 203.8 0.009746 102.6 3076

5 4 251.3 0.007905 126.5 3792

EINSTEIN A COEFFICIENT
An estimate of the transition probability for magnetic multipoles is

given by Eq. (16.105) of Jackson [13].  For a magnetic dipole   l = 1, and
Eq. (16.105) of Jackson is

  

1

M

≅
g

mc
 
 

 
 

2 he2

c

 
 
  

 16
k2 (2.124)

Substitution of

k =
c

(2.125)

into Eq. (2.124) gives

  

1

M

≅
g

mc
 
 

 
 

2 he2

c

 
 
  

 16

3

c2 (2.126)
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From Eq. (2.126), the transition probability is proportional to the
frequency cubed.  The experimental Einstein A coefficient for hydrogen
H n = 1( )  [14] is

A = 2.87 X 10−15
 sec−1 (2.127)

The frequencies for the spin/nuclear hyperfine transition of hydrogen
H n = 1( )  and hydrino H n = 1/ 2( )  are given in Table 2.3.  The Einstein A
coefficient for hydrino H n = 1/ 2( )  is given by Eq. (2.126) and Eq. (2.127)
and the frequencies of Table 2.3.

AH n=1/2( ) = AH n=1( )
H n =1/2( )

H n=1( )

 

 
 

 

 
 

3

= 2.87 X 10−15  
28.95

1.447
 
 

 
 

3

sec−1 = 2.30 X 10−11  sec −1 (2.128)

INTENSITY OF SPIN-NUCLEAR AND ORBITAL-NUCLEAR COUPLING
TRANSITIONS OF HYDRINOS

The intensity, I , of spin-nuclear and orbital-nuclear coupling
transitions of hydrinos can be calculated from the column density of
hydrogen or hydrino atoms, N(H) , and the Einstein A coefficient, Aul .
The column density is given by the product of the number of hydrogen
or hydrino atoms per unit volume, nH , and the path length,   l , which is
calculated in steradians from its integral.

  
I =

1

4
Aul N(H ) =

1

4
AulnHl (2.129)

The number of hydrogen or hydrino atoms per unit volume, nH ,
can be determined from the experimental results of Labov and Bowyer
[15].  The number of electronic transitions per atom per second, k1  (Eq.
(5.69) of the Interstellar Disproportionation Rate Section), is equivalent
to the number of photons per atom per second, Aul  (Eq. (2.129).
Equating intensities of photon flux (Eq. (2.129) and the rate of the
disproportionation reaction, rm ,m', p  Eq. (5.70), gives

I =
1

4
Aul N(H ) =

1

2
nH

aH

p

 
 
  

 

2
3kT

mH

N(H ) (2.130)

where   N(H) = nHl is the column density.  The intensity reported by Labov
and Bowyer for the 304 Å line which is herein assigned as the 1/ 3 → 1/ 4 H
transition is I = 2080+740

−720  photons cm−2s −1sr−1  [15].  In the case that m = 1, m' = 2 ,

and p = 3 in Eqs. (5.50-5.52); T = 50 K , and gm , p = 1 (the result of F o
••

rster's
theory for the efficiencies of dipole-dipole resonant energy transfers),

the column density of hydrino atoms, H
aH

3
 
 

 
 , is calculated along the

sight-line at b=48 deg to be
N(H) = 2 X 1018  cm−2 (2.131)
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The calculated density of hydrino atoms, H
aH

3
 
 

 
 , is

nH = 4 X 103  atom / m3 (2.132)
Substitution of Eq. (2.132) and Eq. (2.128) into Eq. (2.129) gives the
intensity as a function of the path length,   l , which is calculated in
steradians from its integral.

  
I =

1

4
Aul N(H ) =

1

4
2.30 X 10−11  sec −1( ) 4 X 103  atom

m 3

 
 
  

 
1 photon

atom
 
 

 
 l (2.133)

References
1. Mizushima, M., Quantum Mechanics of Atomic Spectra and Atomic

Structure, W.A. Benjamin, Inc., New York, (1970),  p.17.
2. Jackson, J. D., Classical Electrodynamics, Second Edition, John Wiley &

Sons, New York, (1962), pp. 739-752.
3. McQuarrie,D. A., Quantum Chemistry, University Science Books, Mill

Valley, CA, (1983), pp. 238-241.
4. Jackson, J. D., Classical Electrodynamics, Second Edition, John Wiley &

Sons, New York, (1962), pp. 752-763.
5. Jackson, J. D., Classical Electrodynamics, Second Edition, John Wiley &

Sons, New York, (1962), pp. 758-763.
6. Siebert, W. McC., Circuits, Signals, and Systems, The MIT Press,

Cambridge, Massachusetts, (1986), pp. 488-502.
7. Lamb, W. E., Retherford, R. C., Phys. Rev., Vol. 72, (1947), pp. 241-243.
8. R. L. Mills, EPO Patent Number 86103694.5/0 198 257, Method and

Apparatus for Selective Irradiation of Biological Materials, (1986).
9. Berestetskii, V. B., Lifshitz, E. M., Pitaevskii, Quantum Electrodynamics,

Pergamon Press, Oxford, (1982), pp. 118-128.
10. Jackson, J. D., Classical Electrodynamics, Second Edition, John Wiley &

Sons, New York, (1962), p. 178.
11. McQuarrie, D. A., Quantum Chemistry, University Science Books, Mill

Valley, CA, (1983), pp. 206-221.
12. Pauling, Linus, Wilson, E., Bright, Introduction to Quantum Mechanics

with Applications to Chemistry, McGraw-Hill Book Company, New York,
(1935), pp. 118-121.

13. Jackson, J. D., Classical Electrodynamics, Second Edition, John Wiley &
Sons, New York, (1962), pp. 758-760.

14. Allen, C. W., Astrophysical Quantities, 3 rd Edition, (1973), University
of London, The Athlone Press, p. 79.

15. Labov, S., Bowyer, S., "Spectral observations of the extreme ultraviolet
background", The Astrophysical Journal, 371, (1991), pp. 810-819.


