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4

Steady-State Electric and Magnetic Fields

A knowledge of electric and magnetic field distributions is required to determine the orbits of
charged particles in beams. In this chapter, methods are reviewed for the calculation of fields
produced by static charge and current distributions on external conductors. Static field
calculations appear extensively in accelerator theory. Applications include electric fields in beam
extractors and electrostatic accelerators, magnetic fields in bending magnets and spectrometers,
and focusing forces of most lenses used for beam transport.

Slowly varying fields can be approximated by static field calculations. A criterion for the static
approximation is that the time for light to cross a characteristic dimension of the system in
question is short compared to the time scale for field variations. This is equivalent to the condition
that connected conducting surfaces in the system are at the same potential. Inductive accelerators
(such as the betatron) appear to violate this rule, since the accelerating fields (which may rise over
many milliseconds) depend on time-varying magnetic flux. The contradiction is removed by noting
that the velocity of light may be reduced by a factor of 100 in the inductive media used in these
accelerators. Inductive accelerators are treated in Chapters 10 and 11. The study of rapidly
varying vacuum electromagnetic fields in geometries appropriate to particle acceleration is
deferred to Chapters 14 and 15.

The static form of the Maxwell equations in regions without charges or currents is reviewed in
Section 4.1. In this case, the electrostatic potential is determined by a second-order differential
equation, the Laplace equation. Magnetic fields can be determined from the same equation by
defining a new quantity, the magnetic potential. Examples of numerical (Section 4.2) and analog
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��E � 0, (4.1)

�×E � 0, (4.2)

��B � 0, (4.3)

�×B � 0. (4.4)

�Ex/�x � �Ey/�y � �Ez/�z � 0. (4.5)

(Section 4.3) methods for solving the Laplace equation are discussed. The numerical technique of
successive overrelaxation is emphasized since it provides insight into the physical content of the
Laplace equation. Static electric field calculations with field sources are treated in Section 4.4.
The classification of charge is emphasized; a clear understanding of this classification is essential
to avoid confusion when studying space charge and plasma effects in beams. The final sections
treat the calculation of magnetic fields from specific current distributions through direct solution
of the Maxwell equations (Section 4.5) and through the intermediary of the vector potential
(Section 4.6).

4.1 STATIC FIELD EQUATIONS WITH NO SOURCES

When there are no charges or currents present. the Maxwell equations have the form

These equations resolve into two decoupled and parallel sets for electric fields [Eqs. (4.1) and
(4.2)] and magnetic fields [Eqs. (4.3) and (4.4)]. Equations (4.1)-(4.4) hold in regions such as that
shown in Figure 4.1. The charges or currents that produce the fields are external to the volume of
interest. In electrostatic calculations, the most common calculation involves charge distributed on
the surfaces of conductors at the boundaries of a vacuum region.

Equations (4.1)-(4.4) have straightforward physical interpretations. Similar conclusions hold for
both sets, so we will concentrate on electric fields. The form for the divergence equation [Eq.
(4.1)] in Cartesian coordinates is

An example is illustrated in Figure 4.2. The electric field is a function of x and y. The meaning of
the divergence equation can be demonstrated by calculating the integral of the normal electric
field over the surface of a volume with cross-sectional area A and thickness∆x. The integral over
the left-hand side is AEx(x). If the electric field is visualized in terms of vector field lines, the
integral is the flux of lines into the volume through the left-hand face. The electric field line flux
out of the volume through the right-hand face is AEx(x + ∆x).
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�� E�n da � ��� (��E) dV. (4.6)

When the electric field is a smooth function of x, variations about a point can be approximated by
a Taylor expansion. The right-hand integral is A[Ex(x) + ∆x �Ex/�x]. The condition that�Ex/�x =
0 leads to a number of parallel conclusions.

1.The integrals of normal electric field over both faces of the volume are equal.
2.All field lines that enter the volume must exit.
3.The net flux of electric field lines into the volume is zero.
4. No field lines originate inside the volume.

Equation (4.5) is the three-dimensional equivalent of these statements.
Thedivergence operatorapplied to a vector quantity gives the effluence of the quantity away

from a point in space. The divergence theorem can be written

Equation (4.6) states that the integral of the divergence of a vector quantity over all points of a
volume is equal to the surface integral of the normal component of the vector over the surface of
the volume. With no enclosed charges, field lines must flow through a volume as shown in Figure
4.3. The same holds true for magnetic fields. The main difference between electric and magnetic
fields is that magnetic field lilies have zero divergence under all conditions, even in regions with
currents. This means that magnetic field lines never emanate from a source point. They either
extend indefinitely or are self-connected.
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� E�dl � �� (�×E)�n da. (4.7)

The curl equations determine another geometric property of field lines. This
property proceeds from the Stokes theorem, which states that

The quantities in Eq. (4.7) are defined in Figure 4.4;S is a two-dimensional surface in space and
dl is a length element oriented along the circumference. The integral on the left-hand side is taken
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around the periphery. The right-hand side is the surface integral of the component of the vector v
x E normal to the surface. If the curl is nonzero at a point in space, then field lines form closed
loops around the point. Figure 4.5 'illustrates points in vector fields with zero and nonzero curl..
The study of magnetic fields around current-carrying wires (Section 4.5) will illustrate a vector
function with a nonzero curl.
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�×E �

ux uy uz

�/�x �/�y �/�z

Ex Ey Ez

. (4.8)
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. (4.9)

E � ��φ. (4.10)

��(�φ) � 0,

�
2φ � �

2φ/�x2
� �

2φ/�y2
� �

2φ/�z2
� 0. (4.11)

For reference, the curl operator is written in Cartesian coordinates as

The usual rule for evaluating a determinant is used. The expansion of the above expression is

The electrostatic potential functionφ can be defined when electric fields are static. The electric
field is the gradient of this function,

Substituting forE in Eq. (4.1) gives

or

The operator symbolized by�2 in Eq. (4.11) is called the Laplacian operator. Equation (4.11) is
theLaplace equation. It determines the variation ofφ (and henceE) in regions with no charge.
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The curl equation is automatically satisfied through the vector identity�×(�φ)= 0.
The main reason for using the Laplace equation rather than solving for electric fields directly is

that boundary conditions can be satisfied more easily. The difficulty in solving the Maxwell
equations directly lies in determining boundary conditions for vector fields on surrounding
conducting surfaces. The electrostatic potential is a scalar function; we can show that the
potential is a constant on a connected metal surface. Metals contain free electrons; an electric field
parallel to the surface of a metal drives large currents. Electrons in the metal adjust their positions
to produce a parallel component of field equal and opposite to the applied field. Thus, at a metal
surfaceE(parallel) = 0 andE(normal) is unspecified. Equation (4.10) implies that electric field
lines are always normal to surfaces of constantφ. This comes about because the gradient of a
function (which indicates the direction in which a function has maximum rate of variation) must
always be perpendicular to surfaces on which the function is constant (Fig. 4.6). Since a metal
surface is everywhere perpendicular to the electric field, it must be an equipotential surface with
the boundary conditionφ = constant.
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In summary, electric field lines have the following properties in source-free
regions:

(a) Field lines are continuous. All lines that enter a volume eventually exit.
(b)Field lines do not kink, curl, or cross themselves.
(c)Field lines do not cross each other, since this would result in a point of infinite flux.
(d)Field lines are normal to surfaces of constant electrostatic potential.
(e) Electric fields are perpendicular to metal surfaces.

Fairly accurate electric field sketches can be made utilizing the laminar flow nature of electric field
lines and the above properties. Even with the availability of digital computers, it is valuable to
generate initial sketches of field patterns. This saves time and gives insight into the nature of
fields. An example of an electrostatic field pattern generated by the method of squares is shown in
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�
2Um � 0. (4.12)

�φ(x�∆/2)/�x � [Φ(i�1,j,k)�Φ(i,j,k)]/∆. (4.13)

�
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�

�φ(x�∆/2)
�x

Figure 4.7. In this method, a number of equipotential lines between metal surfaces are sketched.
Electric field lines normal to the equipotential lines and electrodes are added. Since the density of
field lines is proportional to the distance between equipotentials, a valid final solution results when
the elements between equipotential and field lines approach as close as possible to squares. The
process is iterative and requires only some drawing ability and an eraser.

It is also possible to define formally a magnetic potential Um such that

The function Um should not be confused with the vector potential. Methods used for electric field
problems in source-free regions can also be applied to determine magnetic fields. We will defer
use of Eq. (4.12) to Chapter 5. An understanding of magnetic materials is necessary to determine
boundary conditions for Um.

4.2 NUMERICAL SOLUTIONS TO THE LAPLACE EQUATION

The Laplace equation determines electrostatic potential as a function of position. Resulting
electric fields can then be used to calculate particle orbits. Electrostatic problems may involve
complex geometries with surfaces at many different potentials. In this case, numerical methods of
analysis are essential.

Digital computers handle discrete quantities, so the Laplace equation must be converted from a
continuous differential equation to a finite difference formulation. As shown in Figure 4.8, the
quantityΦ(i, j, k) is defined at discrete points in space. These points constitute a
three-dimensional mesh. For simplicity, the mesh spacing∆ between points in the three Cartesian
directions is assumed uniform. The quantityΦ has the property that it equalsφ(x, y, z) at the
mesh points. Ifφ is a smoothly varying function, then a linear interpolation ofΦ gives a good
approximation forφ at any point in space. In summary,Φ is a mathematical construct used to
estimate the physical quantity,φ.

The Laplace equation forφ implies an algebraic difference equation forΦ. The spatial position
of a mesh point is denoted by (i, j, k), with x = i∆, y = j∆, and z = k∆. The x derivative ofφ to
the right of the point (x, y, z) is approximated by

A similar expression holds for the derivative at x -∆/2. The second derivative is the difference of
derivatives divided by∆, or
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�
2φ

�x2
�

Φ(i�1,j,k) � 2Φ(i,j,k) � Φ(i�1,j,k)]

∆2
. (4.14)

Φ(i,j,k) � 1/6 [Φ(i�1,j,k) � Φ(i�1,j,k) � Φ(i,j�1,k)

� Φ(i,j�1,k) � Φ(i,j,k�1) � Φ(i,j,k�1)].
(4.15)

Combining expressions,

Similar expressions can be found for the�
2φ/�y2 and�2φ/�z2 terms. Setting�2φ1 = 0 implies

In summary, (1)Φ(i, j, k) is a discrete function defined as mesh points, (2) the interpolation of
Φ(i, j, k) approximatesφ(x, y, z), and (3) ifφ(x, y, z) satisfies the Laplace equation, thenΦ(i, j, k)
is determined by Eq. (4.15).

According to Eq. (4.15), individual values ofΦ(i, j, k) are the average of their six neighboring
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R(i,j) � ¼[Φ(i�1,j) � Φ(i�1,j) � Φ(i,j�1) � Φ(i,j�1)] � Φ(i,j) (4.16)

Φ(i,j)n�1 � Φ(i,j)n � ωR(i,j)n. (4.17)

points. Solving the Laplace equation is an averaging process; the solution gives the smoothest
flow of field lines. The net length of all field lines is minimized consistent with the boundary
conditions. Therefore, the solution represents the state with minimum field energy (Section 5.6).

There are many numerical methods to solve the finite difference form for the Laplace equation.
We will concentrate on themethod of successive ouerrelaxation. Although it is not the fastest
method of solution, it has the closest relationship to the physical content of the Laplace equation.
To illustrate the method, the problem will be formulated on a two-dimensional, square mesh.
Successive overrelaxation is an iterative approach. A trial solution is corrected until it is close to a
valid solution. Correction consists of sweeping through all values of an intermediate solution to
calculateresiduals, defined by

If R(i, j) is zero at all points, thenΦ(i, j) is the desired solution. An intermediate result can be
improved by adding a correction factor proportional to R(i, j),

The valueω = 1 is the obvious choice, but in practice values ofω between 1 and 2 produce a
faster convergence (hence the term overrelaxation). The succession of approximations resembles
a time-dependent solution for a system with damping, relaxing to its lowest energy state. The
elastic sheet analog (described in Section 4.3) is a good example of this interpretation. Figure 4.9
shows intermediate solutions for a one-dimensional mesh with 20 points and withω = 1.00.
Information on the boundary with elevated potential propagates through the mesh.

The method of successive overrelaxation is quite slow for large numbers of points. The number
of calculations on ann x nmesh is proportional ton2. Furthermore, the number of iterations
necessary to propagate errors out of the mesh is proportional to n. The calculation time increases
as n3 . A BASIC algorithm to relax internal points in a 40 x 48 point array is listed in Table 4.1.
Corrections are made continuously during the sweep. Sweeps are first carried out along thex
direction and then along they direction to allow propagation of errors in both directions. The
electrostatic field distribution in Figure 4.10 was calculated by a relaxation program.

Advanced methods for solving the Laplace equation generally use more efficient algorithms
based on Fourier transforms. Most available codes to solve electrostatic problems utilize a more
complex mesh. The mesh may have a rectangular or even triangular divisions to allow a close
match to curved boundary surfaces.
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Boundary conditions present special problems and must be handled differently from internal points
representing the vacuum region. Boundary points may include those on the actual boundary of the
calculational mesh, or points on internal electrodes maintained at a constant potential. The latter
points are handled easily. They are marked by a flag to indicate locations of nonvariable potential.
The relaxation calculation is not performed at such points. Locations on the mesh boundary have
no neighbors outside the mesh, so that Eq. (4.16) can not be applied. If these points have constant
potential, there is no problem since the residual need not be computed. Constant-potential points
constitute a Dirichlet boundary condition.

The other commonly encountered boundary specification is the Neumann condition in which the
normal derivative of the potential at the boundary is specified. In most cases where the Neumann
condition is used, the derivative is zero, so that there is no component of the electric field normal
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R(0,j) � ¼ [Φ(0,j�1) � 2Φ(1,j) � Φ(0,j�1)] � Φ(0,j). (4.18)

1
r

�

�r
r
�φ

�r
�

�
2φ

�z2
� 0. (4.19)

to the boundary. This condition applies to boundaries with special symmetry, such as the axis in a
cylindrical calculation or a symmetry plane of a periodic system. Residues can be calculated at
Neumann boundaries since the potential outside the mesh is equal to the potential at the first point
inside the mesh. For example, on the boundaryi = 0 , the conditionΦ(-1, j) = Φ(+1, j) holds. The
residual is

Two-dimensional systems with cylindrical symmetry are often encountered in accelerator
applications. Potential is a function of (r, z), with no azimuthal dependence. The Laplace equation
for a cylindrical system is

The finite difference form for the Laplace equation for this case is
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Φ(i,j) �
1
4

(i�½)Φ(i�1,j)
i

�

(i�½)Φ(i�1,j)
i

� Φ(i,j�1) � Φ(i,j�1) . (4.20)

where r = i∆ and z = j∆.
Figure 4.10 shows results for a relaxation calculation of an electrostatic immersion lens. It

consists of two cylinders at different potentials separated by a gap. Points of constant potential
and Neumann boundary conditions are indicated. Also shown is the finite difference
approximation for the potential variation along the axis, 0(0, z). This data can be used to
determine the focal properties of the lens (Chapter 6).

4.3 ANALOG METHODS TO SOLVE THE LAPLACE EQUATION

Analog methods were used extensively to solve electrostatic field problems before the advent of
digital computers. We will consider two analog techniques that clarify the nature of the Laplace
equation. The approach relies on finding a physical system that obeys the Laplace equation but
that allows easy measurements of a characteristic quantity (the analog of the potential).

One system, the tensioned elastic sheet, is suitable for two-dimensional problems (symmetry
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F[(i�½)∆] � T [H(i∆,j∆)�H([i�1]∆,j∆)]/∆,

F[(i�½)∆] � T [H([i�1]∆,j∆)�H(i∆,j∆)]/∆.

F[(i�½)∆] � �F[(i�½)∆],

F[(j�½)∆] � �F[(j�½)∆].

�
2H(x,y)/�x2

� �
2H(x,y)/�y2

� 0.

along the z axis). As shown in Figure 4.11, a latex sheet is stretched with uniform tension on a
frame. If the sheet is displaced vertically a distanceH(x, y), there will be vertical restoring forces.
In equilibrium, there is vertical force balance ateach point. The equation of force balance can be
determined from the finite difference approximation defined in Figure 4.11. In terms of the surface
tension, the forces to the left and right of the point (i∆, j∆) are

Similar expressions can be determined for they direction. The height of the point (i∆, j∆) is
constant in time; therefore,

and

Substituting for the forces shows that the height of a point on a square mesh is the average of its
four nearest neighbors. Thus, inverting the arguments of Section 4.2,H(x, y) is described by the
two-dimensional Laplace equation
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E � ρ j

Height is the analog of potential. To make an elastic potential solution, parts are cut to the
shape of the electrodes. They are fastened to the frame to displace the elastic sheet up or down a
distance proportional to the electrode potential. These pieces determine equipotential surfaces.
The frame is theground plane.

An interesting feature of the elastic sheet analog is that it can also be used to determine orbits of
charged particles in applied electrostatic fields. Neglecting rotation, the total energy of a ball
bearing on the elastic sheet isE = T + mgh(x, y), where g is the gravitational constant. The
transverse forces acting on a ball bearing on the elastic sheet are Fx = �H/�x and Fy = �H/�y.
Thus, ball bearings on the elastic sheet follow the same orbits as charged particles in the
analogous electrostatic potential, although over a considerably longer time scale.

Figure 4.12 is a photograph of a model that demonstrates the potentials in a planar electron
extraction gap with a coarse grid anode made of parallel wires. The source of the facet lens effect
associated with extraction grids (Section 6.5) is apparent.

A second analog technique, the electrolytic tank, permits accurate measurements of potential
distributions. The method is based on the flow of current in a liquid medium of constant-volume
resistivity,ρ (measured in units of ohm-meters). A dilute solution of copper sulfate in water is a
common medium. A model of the electrode structure is constructed to scale from copper sheet
and immersed in the solution. Alternating current voltages with magnitude proportional to those
in the actual system are applied to the electrodes.

According to the definition of volume resistivity, the current density is proportional to the
electric field

Figure 4.12 Elastic sheet analog for electrostatic potential near an extraction grid. Elevated
section represents a high-voltage electrode surrounded by a grounded enclosure. Note the
distortion of the potential near the grid wires that results in focusing of extracted particles.
(Photograph and model by the author. Latex courtesy of the Hygenic Corporation.)
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j � ��φ/ρ. (4.21)

��j � 0. (4.22)

or

The steady-state condition that charge at any point in the liquid is a constant implies that all
current that flows into a volume element must flow out. This condition can be written

Combining Eq. (4.21) with (4.22), we find that potential in the electrolytic solution obeys the
Laplace equation.

In contrast to the potential in the real system, the potential in the electrolytic analog is
maintained by a real current flow. Thus, energy is available for electrical measurements. A
high-impedance probe can be inserted into the solution without seriously perturbing the fields.
Although the electrolytic method could be applied to three-dimensional problems, in practice it is
usually limited to two-dimensional simulations because oflimitations on insertion of a probe. A
typical setup is shown in Figure 4.13. Following the arguments given above, it is easy to show
that a tipped tank can be used to solve for potentials in cylindrically symmetric systems.

4.4 ELECTROSTATIC QUADRUPOLE FIELD

Although numerical calculations are often necessary to determine electric and magnetic fields in
accelerators, analytic calculations have advantages when they are tractable. Analytic solutions
show general features and scaling relationships. The field expressions can be substituted into
equations of motion to yield particle orbit expressions in closed form. Electrostatic solutions for a
wide variety of electrode geometries have been derived. In this section. we will examine the
quadrupole field, a field configuration used in all high-energy transport systems. We will
concentrate on the electrostatic quadrupole; the magnetic equivalent will be discussed in Chapter
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Ex � �kx � Eox/a, (4.23)

Ey � �ky � �Eoy/a. (4.24)

�φ/�x � �Eox/a, �φ/�y � �Eoy/a,

φ � �Eox
2/2a � f(y) � C, φ � �Eoy

2/2a � g(x) � C �.

φ(x,y) � (Eo/2a) (y2
� x2). (4.25)

φ(x,y)
Eoa/2

�

y
a

2

�

x
a

2

. (4.26)

5.
The most effective procedure to determine electrodes to generate quadrupole fields is to work

in reverse, starting with the desired electric field distribution and calculating the associated
potential function. The equipotential lines determine a set of electrode surfaces and potentials that
generate the field. We assume the following two-dimensional fields:

It is straightforward to verify that both the divergence and curl ofE are zero. The fields of Eqs.
(4.23) and (4.24) represent a valid solution to the Maxwell equations in a vacuum region. The
electric fields are zero at the axis and increase (or decrease) linearly with distance from the axis.
The potential is related to the electric field by

Integrating the partial differential equations

Takingφ(0, 0) = 0, both expressions are satisfied if

This can be rewritten in a more convenient, dimensionless form:

Equipotential surfaces are hyperbolas in all four quadrants. There is an infinite set of electrodes
that will generate the fields of Eqs. (4.23) and (4.24). The usual choice is symmetric electrodes on
the equipotential linesφo = ±E oa/2. Electrodes, field lines, and equipotential surfaces are plotted
in Figure 4.14. The quantitya is the minimum distance from the axis to the electrode, and Eo is
the electric field on the electrode surface at the position closest to the origin. The equipotentials in
Figure 4.14 extend to infinity. In practice, focusing fields are needed only near the axis. These
fields are not greatly affected by terminating the electrodes at distances a few times a from
the axis.
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��E � (ρ1 � ρ2 � ρ3)/εo. (4.27)

E � E1(applied) � E2(dielectric) � E3(spacecharge). (4.28)

4.5 STATIC ELECTRIC FIELDS WITH SPACE CHARGE

Space chargeis charge density present in the region in which an electric field is to be calculated.
Clearly, space charge is not included in the Laplace equation, which describes potential arising
from charges on external electrodes. In accelerator applications, space charge is identified with
the charge of the beam; it must be included in calculations of fields internal to the beam. Although
we will not deal with beam self-fields in this book, it is useful to perform at least one space charge
calculation. It gives insight into the organization of various types of charge to derive electrostatic
solutions. Furthermore, we will derive a useful formula to estimate when beam charge can be
neglected.

Charge density can be conveniently divided into three groups: (1) applied, (2) dielectric, and (3)
space charge. Equation 3.13 can be rewritten

The quantityρ1 is the charge induced on the surfaces of conducting electrodes by the application
of voltages. The second charge density represents charges indielectric materials. Electrons in
dielectric materials cannot move freely. They are bound to a positive charge and can be displaced
only a small distance. The dielectric charge density can influence fields in and near the material.
Electrostatic calculations with the inclusion ofρ2 are discussed in Chapter 5. The final charge
density,ρ3, represents space charge, or free charge in the region of the calculation. This usually
includes the charge density of the beam. Other particles may contribute toρ3, such as low-energy
electrons in a neutralized ion beam.

Electric fields have the property of superposition. Given fields corresponding to two or more
charge distributions, then the total electric field is the vector sum of the individual fields if the
charge distributions do not perturb one another. For instance, we could calculate electric fields
individually for each of the charge components,El, E2, andE3. The total field is

Only the third component occurs in the example of Figure 4.15. The cylinder with uniform charge
density is a commonly encountered approximation for beam space charge. The charge density is
constant,ρo, from r = 0 to r = rb. There is no variation in the axial (z) or azimuthal (θ) directions
so that�/�z = �/�θ = 0. The divergence equation (3.13) implies that there is only a radial
component of electric field. Because all field lines radiate straight outward (or inward forρo < 0),
there can be no curl, and Eq. (3.11) is automatically satisfied.
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1
r

d(rEr)

dr
�

ρo

εo

. (4.29)

Er(r < rb) �
ρor

2εo

. (4.30)

Er(r > rb) �
ρor

2
b

2εor
. (4.31)

Inside the charge cylinder, the electric field is determined by

Electric field lines are generated by the charge inside a volume. The size of the radial volume
element goes to zero near the origin. Since no field lines can emerge from the axis, the condition
Er(r = 0) = 0 must hold. The solution of Eq. (4.29) is

Outside the cylinder, the field is the solution of Eq. (4.29) with the right-hand side equal to zero.
The electric field must be a continuous function of radius in the absence of a charge layer. (A
charge layer is a finite quantity of charge in a layer'of zero thickness; this is approximately the
condition on the surface of an electrode.) Thus, Er(r = rb

+) = Er(r = rb
-), so that

The solution is plotted in Figure 4,16. The electric field increases linearly away from the axis in
the charge region. It decreases as1/r for r > r b because the field lines are distributed over a larger
area.

The problem of the charge cylinder can also be solved through the electrostatic potential. The
Poisson equation results when the gradient of, the potential is substituted in Eq. (3.13):
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�
2φ � �

ρ(x)
εo

, (4.32)
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dr
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� �
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. (4.33)

φ(r < rb) � �

ρor
2

4εo

, (4.34)

φ(r > rb) � �

ρor
2
b

4εo

2 ln
r
rb

� 1 . (4.35)

�6Φ(i,j,k) � Φ(i�1,j,k) � Φ(i�1,j,k) � Φ(i,j�1,k)

� Φ(i,j�1,k) � Φ(i,j,k�1) � Φ(i,j,k�1) � �ρ(x,y,z)∆3/∆εo.
(4.36)

or

The solution to the Poisson equation for the charge cylinder is

The potential is also plotted in Figure 4.16.
The Poisson equation can be solved by numerical methods developed in Section 4.2. If the finite

difference approximation to�2φ [Eq. (4.14)] is substituted in the Poisson equation in Cartesian
coordinates (4.32) and both sides are multiplied by∆2, the following equation results:
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Φ(i,j,k) � 1/6 [Φ(i�1,j,k) � Φ(i�1,j,k) � Φ(i,j�1,k)

� Φ(i,j�1,k) � Φ(i,j,k�1) � Φ(i,j,k�1)] � Q(i,j,k)/6εo.
(4.37)

R(i,j,) � 1/4 [Φ(i�1,j) � Φ(i�1,j) � Φ(i,j�1) � Φ(i,j�1)]

� Φ(i,j) � Q(i,j)/4εo .
(4.38)

� B�dl � µo �� jzdA � µoI. (4.39)

B
θ
� µoI/2πr. (4.40)

The factorρ∆3 is approximately the total charge in a volume∆3 surrounding the mesh point(i, j,k)
when (1) the charge density is a smooth function of position and (2) the distance∆ is small
compared to the scale length for variations inρ. Equation (4.36) can be converted to a finite
difference equation by defining Q(i, j, k) =ρ(x, y, z)∆3. Equation (4.36) becomes

Equation (4.37) states that the potential at a point is the average of 'its nearest neighbors elevated
(or lowered) by a term proportional to the space charge surrounding the point.

The method of successive relaxation can easily be modified to treat problems with space charge.
In this case, the residual [Eq. (4.16)] for a two-dimensional problem is

4.6 MAGNETIC FIELDS IN SIMPLE GEOMETRIES

This section illustrates some methods to find static magnetic fields by direct use of the Maxwell
equations [(4.3) and (4.4)]. The fields are produced by current-carrying wires. Two simple, but
often encountered, geometries are included: the field outside a long straight wire and the field
inside of solenoidal winding of infinite extent.

The wire (Fig. 4.17) has currentI in thez direction. There are no radial magnetic field lines
since��B = 0. There is no component Bz since the fields must be perpendicular to the current.
Thus, magnetic field lines are azimuthal. By symmetry, the field lines are circles. The magnitude of
the azimuthal field (or density of lines) can be determined by rewriting the static form of Eq.
(3.12) in integral form according to the Stokes law [Eq. (4.7)],

Using the fact that field lines are circles, we find that
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1
r

�(rBr)

�r
�

�Bz

�z
� 0,

�Br

�z
�

�Bz

�r
� 0. (4.41)

Bo � µo J � µo (N/L) I. (4.42)

The solenoidal coil is illustrated in Figure 4.18. It consists of a helical winding of insulated wire
on a cylindrical mandrel. The wire carries currentI. The quantity(N/L) is the number of turns per
unit length.Solenoidderives from the Greek word for pipe; magnetic field lines are channeled
through the windings. In a finite length winding, the field lines return around the outside. We will
consider the case of an infinitely long structure with no axial variations. Furthermore, we assume
there are many windings over a length comparable to the coil radius, or (N/L)rc » 1. In this limit,
we can replace the individual windings with a uniform azimuthal current sheet. The sheet has a
current per unit lengthJ (A/m) = (N/L)I.

The current that produces the field is azimuthal. By the law of Biot and Savart, there can be no
component of azimuthal magnetic field. By symmetry, there can be no axial variation of field. The
conditions of zero divergence and curl of the magnetic field inside the winding are written

Setting�/�z equal to zero in Eqs. (4.41); we find thatBr is zero and thatBz has equal magnitude
at all radii. The magnitude of the axial field can be determined by applying Eq. (4.39) to the loop
illustrated in Figure 4.18. The field outside a long solenoid is negligible since return magnetic flux
is spread over a large area. There are no contributions to the loop integral from the radial
segments because fields are axial. The only component of the integral comes from the part of the
path inside the solenoid, so that

Many magnetic confinement systems for intense electron beams or for high-temperature plasmas
are based on a solenoidal coil bent in a circle and connected, as shown in Figure 4.19. The
geometry is that of a doughnut ortoruswith circular cross section. The axial fields that circulate
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around the torus are calledtoroidal field lines. Field lines are continuous and self-connected. All
field lines are contained within the winding. The toroidal field magnitude inside the winding is not
uniform. Modification of the loop construction of Figure 4.19 shows that the field varies as the
inverse of the major radius. Toroidal field variation is small when the minor radius (the radius of
the solenoidal windings) is much less than the major radius.
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Bx � �Az/�y, By � ��Az/�x. (4.43)

dAz � 0 � (�Az/�x) dx � (�Az/�y) dy. (4.44)

4.7 MAGNETIC POTENTIALS

The magnetic potential and the vector potential aid in the calculation of magnetic fields. In this
section, we will consider how these functions are related and investigate the physical meaning of
the vector potential in a two-dimensional geometry. The vector potential will be used to derive
the magnetic field for a circular current loop. Assemblies of loop currents are used to generate
magnetic fields in many particle beam transport devices.

In certain geometries, magnetic field lines and the vector potential are closely related. Figure
4.20 illustrates lines of constant vector potential in an axially uniform system in which fields are
generated by currents in thez direction. Equation (3.24) implies that the vector potential has only
an axial component,Az. Equation (3.23) implies that

Figure 4.20 shows a surface of constantAz in the geometry considered. This line is defined by
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dy/dx � By/Bx. (4.45)

Bx � �Um/�x, By � �Um/�y. (4.46)

dUm � (�Um/�x) dx � (�Um/�y) dy � Bxdx � Bydy.

dy/dx � �By/Bx. (4.47)

Az � ±½µoI ln(x �2
�y �2)/2π.

Az �
µoI

4π
ln

(x�d)2
�y2

(x�d)2
�y2

.

Substituting Eqs. (4.43) into Eq. (4.44), an alternate equation for a constantAz line is

Equation (4.45) is also the equation for a magnetic field line. To summarize, when magnetic fields
are generated by axial currents uniform inz, magnetic field lines are defined by lines of constant
Az.

A similar construction shows that magnetic field lines are normal to surfaces of constant
magnetic potential. In the geometry of Figure 4.20,

by the definition ofUm. The equation for a line of constantUm is

Lines of constant magnetic potential are described by the equation

Analytic geometry shows that the line described by Eq. (4.47) is perpendicular to that of Eq.
(4.45).

The correspondence of field lines and lines of constantAz can be used to find magnetic fields of
arrays of currents. As an example, consider the geometry illustrated in Figure 4.21. Two infinite
length wires carrying opposed currents±I are separated by a distance2d. It is not difficult to
show that the vector potential for a single wire is

where the origin of the coordinate system(x', y') is centered on the wire. The total vector
potential is the sum of contributions from both wires. In terms of the coordinate system(x, y)
defined in Figure 4.21, the total vector potential is

Lines of constantAz (corresponding to magnetic field tines) are plotted in Figure 4.21.
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j
θ
� I δ(z�) δ(r �

�a). (4.48)

There are many instances in accelerator applications in which magnetic fields are produced by
azimuthal currents in cylindrically symmetric systems. For instance, the field of a solenoidal lens
(Section 6.7) is generated by axicentered current loops of various radii. There is only one nonzero
component of the vector potential,A

θ
. It can be shown that magnetic field lines follow surfaces of

constant2πrA
θ
. The function 2πrA

θ
is called thestream function. The contribution from many

loops can be summed to find a net stream function.
The vector potential of a current loop of radiusa (Fig. 4.22) can be found by application of Eq.

(3.24). In terms of cylindrical coordinates centered at the loop axis, the current density is

Care must be exercised in evaluating the integrals, since Eq. (3.24) holds only for a Cartesian
coordinate system. The result is
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A
θ
�

µoIa

4π �

2π

0

cosθ�dθ�

(a 2
� r 2

� z2
� 2ar cosθ�)½

. (4.49)

M � 4ar/(a 2
� r 2

� z2
� 2ar),

A
θ
�

µoIa

π (a 2
� r 2

� z2
� 2ar)½

(2�M) K(M) � 2 E(M)
M

. (4.50)

Defining the quantity

Eq. (4.49) can be written in terms of the complete elliptic integrals E(M) and K(M) as

Although the expressions in Eq. (4.50) are relatively complex, the vector potential can be
calculated quickly on a computer. Evaluating the elliptic integrals directly is usually ineffective
and time consuming. A better approach is to utilize empirical series tabulated in many
mathematical handbook s. These series give an accurate approximation in terms of power series
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K(M) � 1.38629� 0.111972(1�M) � 0.0725296(1�M)2

� [0.50000� 0.121348(1�M) � 0.0288729(1�M)2)] ln(1/(1�M)l
(4.51)

E(M) � 1�0.463015(1�M) � 0.107781(1�M)2

� [0.245273(1�M) � 0.0412496(1�M)2] ln[1/(1�M)].
(4.52)

Bz �
1
r

�(rA
θ
)

�r
, Br � �

�A
θ

�z
. (4.53)

A
θ
(r,z) �

µoIa

4π �

2π

0

cosθ� dθ�

a 2
�z2

�

arcos2θ� dθ�

a 2
�z2 3

. (4.54)

A
θ
�

µoIa
2r

4 a 2
�z2 3

. (4.55)

Bz(0,z) �
µoIa

2

2 a 2
�z2 3

. (4.56)

and elementary transcendental functions. For example, the elliptic integrals are given to an
accuracy of 4 x 10-5 by [adapted from M. Abramowitz and I. A. Stegun, Eds.,Handbook of
Mathematical Functions (Dover, New York, 1970), p. 591].

(4.52)

The vector potential can be calculated for multiple coils bv transforming coordinates and then
summingA

θ
. The transformations arez�(z - zcn) anda � rcn, wherezcn andrcn are the coordinates

of thenth coil. Given the net vector potential, the magnetic fields are

A quantity of particular interest for paraxial orbit calculations (Section 7.5) is the longitudinal
field magnitude on the axisBz(0, z). The vector potential for a single coil [Eq. (4.49)] can be
expanded for r « a as

The integral of the first term is zero, while the second term gives

Applying Eq. (4.53), the axial field is
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Bz(0,z) � (B1�B2) � (�B1/�z � �B2/�z) z

� (�2B1/�z2
� �

2B2/�z2) z2
�...

Bz � µoI / (1.25)3/2 a (4.57)

We can use Eq. (4.56) to derive the geometry of the Helmholtz coil configuration. Assume that
two loops with equal current are separated by an axial distanced. A Taylor expansion of the axial
field near the axis about the midpoint of the coils gives

The subscript1 refers to the contribution from the coil atz = - d/2, while 2 is associated with the
coil at z = + d/2. The derivatives can be determined from Eq. (4.56). The zero-order components
from both coils add. The first derivatives cancel at all values of the coil spacing. At a spacing ofd
= a, the second derivatives also cancel. Thus, field variations near the symmetry point are only on
the order of(z/a)3 . Two coils withd = a are called Helmholtz coils. They are used when a weak
but accurate axial field is required over a region that is small compared to the dimension of the
coil. The field magnitude for Helmholtz coils is


