
Paleomagnetism:  Chapter 11 224

APPENDIX:
DERIVATIONS

This appendix provides details of derivations referred to throughout the text.  The derivations are devel-
oped here so that the main topics within the chapters are not interrupted by the sometimes lengthy math-
ematical developments.

DERIVATION OF MAGNETIC DIPOLE EQUATIONS

In this section, a derivation is provided of the basic equations describing the magnetic field produced by a
magnetic dipole.  The geometry is shown in Figure A.1 and is identical to the geometry of Figure 1.3 for a
geocentric axial dipole.  The derivation is developed by using spherical coordinates:  r, θ, and φ.  An addi-
tional polar angle, p, is the colatitude and is defined as π – θ.  After each quantity is derived in spherical
coordinates, the resulting equation is altered to provide the results in the convenient forms (e.g., horizontal
component, Hh) that are usually encountered in paleomagnetism.
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Figure A.1   Geocentric axial dipole.  The large arrow is the magnetic dipole moment, M ; θ is the polar
angle from the positive pole of the magnetic dipole; p is the magnetic colatitude; λ is the geo-
graphic latitude; r is the radial distance from the magnetic dipole; H is the magnetic field produced
by the magnetic dipole; 

 ̂

r  is the unit vector in the direction of r.  The inset figure in the upper right
corner is a magnified version of the stippled region.  Inclination, I, is the vertical angle (dip)
between the horizontal and H.  The magnetic field vector H can be broken into (1) vertical compo-
nent, Hv = –Hr, and (2) horizontal component, Hh = Hθ .
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The starting point is the scalar magnetic potential of a magnetic dipole:

V = M ⋅ r̂

r2 = M cosθ
r2 (A.1)

The magnetic field, H, is derived from the scalar magnetic potential by taking the gradient of the potential:

H = −∇V = − ∂
∂ r

r̂ + 1
r

∂
∂θ

θ̂





M cosθ
r2





 (A.2)

Separating the differentials yields

H = − ∂
∂ r

M cosθ
r2





 r̂ − 1

r

∂
∂θ

M cosθ
r2





 θ̂ (A.3)

Performing the required differentiations leads to

H = 2M cosθ
r3 r̂ + M sinθ

r3 θ̂  = Hr r̂ + Hθ θ̂ (A.4)

The horizontal component, Hh, of H is then given by

Hh = Hθ = M sinθ
r3 = M sin(π − θ )

r3 = M sin p

r3 (A.5)

To get this expression in terms of geographic latitude, λ, substitute

p = π
2

− λ (A.6)

to yield

Hh = M cosλ
r3 (A.7)

This is Equation (1.12) in Chapter 1.
Now returning to Equation (A.4), the vertical component, Hv, of H is

Hv = −Hr = − 2M cosθ
r3 = 2M cos p

r3 (A.8)

Again using Equation (A.6), Hv in terms of geographic latitude, λ, is

Hv = 2M sin λ
r3 (A.9)

This is Equation (1.13).
The inclination, I, can be determined by

tan I = 
Hv
Hh

= 2M cos p

r3






r3

M sin p







= 2 cot p (A.10)

Using Equation (A.6), the inclination is given as a function of geographic latitude by

tan I = 2 tan λ (A.11)

This is Equation (1.15), “the dipole equation.”
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For the total intensity, H, of the magnetic field, we find

H = Hh
2 + Hv

2 = M

r3 1 + 3cos2 p = M

r3 1 + 3sin2 λ (A.12)

which is Equation (1.14).

ANGLE BETWEEN TWO VECTORS (AND GREAT-CIRCLE DISTANCE BETWEEN TWO
GEOGRAPHIC LOCATIONS)

The dot product (scalar product) of two vectors A and B is given by

A ⋅ B = ABcosθ (A.13)

where A is the length of vector A, B is the length of vector B, and θ is the angle between A and B.
In terms of the components of the vectors in Cartesian coordinates,

A ⋅ B = AxBx + AyBy + AzBz (A.14)

where Bx is the x component of B, etc.
The angle θ can be determined by

θ = cos−1 A ⋅ B
AB





 (A.15)

Now instead of dealing with Cartesian coordinates, express the directions in terms of north, east, and down

components on a sphere.  For example, a unit vector Â  can be expressed as

Â = ANN̂ + AEÊ + AVV̂ (A.16)

where AN is the north component of Â , etc.
The unit vector Â  can be written in terms of its inclination and declination by

AN = cos IA cos DA,  AE = cos IA sin DA,  and AV = sin IA (A.17)

where IA is the inclination of unit vector Â , etc.
Now the angle between two directions (unit vectors) can be written as

θ = cos−1 Â ⋅ B̂
ÂB̂







= cos−1 Â ⋅ B̂( ) (A.18)

In terms of the inclinations and declinations of the two vectors, the angle θ is given by

 θ = cos–1(cos IA cos DA cos IB cos DB + cos IA sin DA cos IB sin DB + sin IA sin IB) (A.19)

So given the inclinations and declinations of any two vectors, one can use Equation (A.19) to determine the

angle between those two directions.

Equation (A.19) also can be used to determine the great-circle distance (angular distance) between any

two geographic locations.  Instead of viewing directions as being points on a sphere of unit radius, we now

use the unit sphere to view geographic locations.  Consider two geographic locations, one at latitude λa and

longitude φa and another at latitude λb and longitude φb.  The great-circle distance from (λa, φa) to (λb, φb) is
determined by substituting λa for IA, φa for DA, etc. in Equation (A.19).  The result is

 θ = cos–1(cos λa cos φa cos λb cos φb + cos λa sin φa cos λb sin φb + sin λa sin φb) (A.20)
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An alternative expression for the great-circle distance between two locations is introduced below and is
sometimes the more convenient form.

LAW OF SINES AND LAW OF COSINES

Two fundamental relationships of spherical trigonometry can be illustrated by using the spherical triangle
ABC in Figure A.2, and these relationships will be used often in the derivations to follow.  The spherical
triangle has corners A, B, and C; and A, B, and C stand for the angles between the sides of the triangle at the
respective corners.  The distances a, b, and c are angular distances of the sides of the triangle that are
opposite the corners A, B, and C, respectively.  These angular distances are the angle subtended by a side
of the triangle at the center of the sphere (see the inset in Figure A.2).

B

C

A

a
c

b

B

A

c

c

Figure A.2   Spherical triangle with apices at A,
B, and C and sides a, b, and c.  The
inset figure shows the plane contain-
ing A, B, and the center of the sphere;
the angular distance c is the angle
subtended by side c at the center of
the sphere.  The projection (for this
and all global projections to follow) is
orthographic with the latitude and
longitude grid in 30° increments.

The Law of Cosines states that

cos a = cos b cos c + sin b sin c cos A (A.21)

The Law of Cosines can be applied to any side of a spherical triangle by simply rearranging the labels on the
sides and at the corners.  For example, in the triangle of Figure A.2,

cos b = cos c cos a + sin c sin a cos B (A.22)

The second relationship is the Law of Sines, for which the governing equation is

sin a

sin A
= sin b

sin B
= sinc

sinC
(A.23)

We will apply the Law of Cosines and the Law of Sines frequently in the coming derivations.

CALCULATION OF A MAGNETIC POLE FROM THE DIRECTION OF THE MAGNETIC FIELD

The trigonometry involved in deriving the expressions for calculating a magnetic pole from a magnetic field
direction is shown in Figure A.3a.  The site is at geographic latitude λs and longitude φs and the pole is at
geographic latitude λp and longitude φp.  We form a spherical triangle with apices at (λs, φs), (λp, φp), and the
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Figure A.3   (a) Determination of a magnetic
pole from a magnetic field direction.
The site is at (λs, φs); the magnetic pole
is at (λp, φp); the north geographic pole
is at point N; the colatitude of the site is
ps; the colatitude of the magnetic pole is
pp; β is the longitudinal difference
between the magnetic pole and the site.
(b)  Ambiguity in magnetic pole longi-
tude.  The pole may be at either (λp, φp)
or (λp, φp’); the longitude at φs + π / 2 is
shown by the heavy line.

north geographic pole, N.  The colatitude (angular distance from the north geographic pole) of the site is ps,

while the colatitude of the magnetic pole is pp.

The magnetic colatitude, p, is the great-circle angular distance of the site from the magnetic pole.  This

angular distance is determined from the dipole formula (Equation (A.10)):

p = cot−1 tan I

2




 = tan−1 2

tan I




 (A.24)

Now we need to find pp by using the Law of Cosines:

cos pp = cos ps cos p + sin ps sin p cos D (A.25)
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Using the definition of the colatitude,

pp = π
2

− λ p    and   ps = π
2

− λs (A.26)

Substituting these expressions for pp and ps in Equation (A.25) leads to

 cos cos cos
π λ π λ
2 2

−



 = −



p s p + −



sin sin cos

π λ
2 s p D (A.27)

Using

cos
π
2

−



 =x xsin     and    sin cos

π
2

−



 =x x

in Equation (A.27) yields

sin λ p = sin λs cos p + cosλs sin pcos D (A.28)

and

λ p = sin−1 sin λs cos p + cosλs sin pcos D( ) (A.29)

which is Equation (7.2).
The next step is to determine the angle β, which is the difference in longitude between the pole and the

site (Figure A.3a).  Applying the Law of Sines to the spherical triangle in Figure A.3 yields

sin p

sinβ
=

sin pp

sin D
(A.30)

Rearrange Equation (A.30) to give

sinβ = sin D

sin pp
sin p (A.31)

Now substitute pp = (π / 2) – λp to yield

sinβ π λ
=

−





sin

sin
sin

D
p

p2
(A.32)

and

sinβ = sin D

cosλ p
sin p (A.33)

Now solve for β to give

β = sin−1 sin psin D

cosλ p









 (A.34)

which is Equation (7.3).
As given by Equation (A.34), β is limited to the range –π / 2 to +π  / 2.  But this raises an important

ambiguity in the derivation.  Simply adding b to the site longitude would not allow the pole longitude to differ
from the site longitude by more than π / 2. This ambiguity is shown schematically in Figure A.3b.  As viewed
from the site at λs, φs, the above expression for β would not allow the pole to be in the longitudinal hemi-
sphere opposite from the site (beyond the longitude shown by the heavy line in Figure A.3b).

The ambiguity is whether the pole longitude is given by (1) φp = φs + β (as shown in Figure A.3a) or (2)
φp = φs + (π – β).  These two possibilities are shown by the two spherical triangles in Figure A.3b.  The
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smaller triangle has apices at (λs, φs), (λp, φp), and N; the larger triangle has apices at (λs, φs), (λp, φ′p), and
N.  Because λp is the same for either of the two possible poles, pp is the same angular distance for either
triangle.  So we must devise a test to determine which of the two possible spherical triangles applies to a
particular calculation of a magnetic pole position.

Apply the Law of Cosines to the two triangles in Figure A.3b.  For the smaller triangle,

cos p = cos pp cos ps + sin pp sin ps cosβ (A.35)

while for the larger triangle,

cos p = cos pp cos ps + sin pp sin ps cos(π − β ) (A.36)

Now substitute

pp = π
2

− λ p




 , ps = π

2
− λs





 , cos(π – β) = –cos β, cos

π
2

− λ p




 = sin λ p ,

and sin
π
2

− λ p




 = cosλ p (A.37)

into Equations (A.35) and (A.36) to yield

cos sin sin cos cos cosp p p p p= +λ λ λ λ β (A.38)

for the smaller triangle and

cos p = sin λ p sin λs − cosλ p cosλs cosβ (A.39)

for the larger triangle.
At this point we realize that λp, λs, and β are all limited to the range –π / 2 to +π / 2.  Within this range, the

product  cos λp cos λs cos β will always be positive.  So if we find cos p  ≥  sin λp sin λs, this indicates that we
must be dealing with the smaller spherical triangle in Figure A.3b, and pole longitude is given by

φp = φs + β (A.40)

But if we find cos p < sin λp sin λs, we must be dealing with the larger triangle in Figure A.3b, for which

φp = φs + π − β (A.41)

This development explains the conditional tests and alternative methods of calculating φp given by Equa-
tions (7.4) through (7.7).

CONFIDENCE LIMITS ON POLES:  dp AND dm

From the previous section, we know how to map an observed magnetic field direction I and D observed at

site( λs, φs) into a magnetic pole position (λp, φp).  Now we consider the confidence limits on (λp, φp) resulting
from circular confidence limits on the direction.

We start by determining the confidence limits, ∆I, on the inclination and on the declination, ∆D, from I, D,

and α95 (the usual confidence limit on the direction).  At this point, this is a direction space problem as

schematically represented on the lower hemisphere of the equal-area projection in Figure A.4a.  Two ex-

amples of directions and confidence limits are shown in this diagram.  Note how a steep inclination results in

a large confidence limit ∆D on the declination.
Now consider the spherical triangle ABC of Figure A.4a.  The angular distance b = (π / 2) – I and c = α95.

The angle B is π / 2, and the angle C is ∆D.  Apply the Law of Sines to this triangle to give
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Figure A.4   (a)  Equal-area projection of direction
I, D and attendant confidence limits ∆I,
∆D.  The confidence limit surrounding the
direction is circular in direction space but
is mapped into an ellipse by the equal-
area projection.  (b) Magnetic pole at
(λp, φp) and attendant confidence limits dp
and dm.  The site location is (λs, φs); p is
the magnetic colatitude; the dark stippled
region is a spherical triangle with apices
(λs, φs), (λp, φp), and T; the light stippled
region is a confidence oval about the
magnetic pole with semi-major and semi-
minor axes dm and dp, respectively; ∆D is
the angle at apex (λs, φs).

sinc

sinC
= sin b

sin B
(A.42)

which rearranges to

sinC = sincsin B

sin b
(A.43)

Substituting the above quantities for b, c, B, and C yields

sin ∆D =
sinα95 sin

π
2

sin
π
2

− I





= sinα95
cos I

(A.44)
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from which ∆D can be determined.  By inspection of Figure A.4a,

∆I = α95 (A.45)

Now we turn our attention to Figure A.4b, which illustrates mapping a magnetic field direction I, D
observed at (λs, φs) into a magnetic pole at (λp, φp).  Consider the spherical triangle with apices at (λs, φs),
(λp, φp), and T.  The angle at apex (λs, φs) is ∆D.  The angles at apices (λp, φp) and T are both π / 2.  The
angular distance from (λs, φs) to (λp, φp) is the magnetic colatitude p.  The angular distance from (λp, φp) to
T is dm, the confidence limit perpendicular to the great-circle path from (λs, φs) to (λp, φp.).

Apply the Law of Sines to get

sin dm

sin ∆D
= sin p

sinT
(A.46)

Now substitute

T = π
2

 and sin ∆D = sinα95
cos I

(from Equation (A.44)) and rearrange to get

dm = sin−1 sinα95 sin p

cos I




 (A.47)

This is the general expression for the confidence limit dm.  But because dm and α95 are usually small angles
and sin (x) ≈ x, for small x, Equation (A.47) is usually given as

dm = α95
sin p

cos I
(A.48)

which is Equation (7.9).
From Equation (A.10), we know that

p = tan−1 2
tan I





 = cot−1 tan I

2




 (A.49)

Now we use

d cot−1 x( ) = − dx

1 + x2   and  d tan x( ) = sec2 x dx

to get

dp d I
I dI

I

I dI

I
= ( )[ ] = − = −

+
−cot tan

sec

tan

sec

tan
1 1

2

1

2
2

1

4
2

2

21

2

4

 

+

 
(A.50)

Use of the trigonometric identities

sec2 x = 1

cos2 x
, tan x = sin x

cos x
, and sin2 x + cos2 x = 1

in Equation (A.50) yields

dp =
−2

dI

cos2 I

4 + sin2 I

cos2 I

= −2dI

4cos2 I + sin2 I
= −2dI

1 + 3cos2 I
(A.51)
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Recalling that dI = α95 and observing that dp is symmetrical about (λp, φp) give the end result

dp = 2α95
1

1 + 3cos2 I







(A.52)

which is Equation (7.8).

EXPECTED MAGNETIC FIELD DIRECTION

The problem here is to derive expressions that allow determination of the magnetic field direction expected
at an observing site (λs, φs) due to a geocentric dipole with pole position (λp, φp).  We also derive expres-
sions for the confidence limits on the expected direction that result from circular confidence limits (usually
A95) on the pole.  The geometry of the problem is illustrated in Figure A.5.
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Figure A.5  Geometry used to determine the
expected magnetic field direction from a
magnetic pole.  The magnetic pole is at
P (λp, φp) with circular confidence limit
A95; the site location is at S (λs, φs); N is
the geographic north pole; p is the
magnetic colatitude of the site; ps is the
geographic colatitude of the site; pp is
the geographic colatitude of the mag-
netic pole; ∆φ is the longitudinal differ-
ence between the magnetic pole and
the site; Dx is the expected magnetic
field declination at the site with confi-
dence limit = ∆Dx.

A spherical triangle SPN is constructed with N at the geographic pole, P at the magnetic pole (λp, φp),

and S at the site (λs, φs).  Having gone through a similar problem before, we realize that the declination of the

expected magnetic field direction, Dx, at site (λs, φs) is the angle at apex S.
The first step in the derivation is to determine the angular distance, p, from (λp, φp) to (λs, φs).  Apply the

law of sines to triangle SPN in Figure A.5 to get

cos p = cos pp cos ps + sin pp sin ps cos∆φ (A.53)

Now substitute

pp = p

2
− λ p ,  ps = π

2
− λs ,  and ∆φ = φp − φs

into Equation (A.53) and use

cos
π
2

− λ p




 = sin λ p  and sin

π
2

− λ p




 = cosλ p
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to find

cos p = sin λ p sin λs + cosλ p cosλs cos φp − φs( ) (A.54)

from which you can determine p.

The expected inclination, Ix, can be determined from p by using the dipole equation (Equation (A.10)):

Ix = tan−1 2cot p( ) (A.55)

The confidence limit on Ix is defined as ∆Ix and can be determined from the equation that we derived to get

dp from ∆I (= α95 in Equation (A.52)) and substituting A95 for dp:

A95 = 2∆Ix
1

1 + 3cos2 Ix







(A.56)

which rearranges to give

∆Ix = A95
2

1 + 3cos2 Ix( ) = A95
2

1 + 3cos2 p







(A.57)

To determine the expected declination, Dx, we can use Equation (A.28) derived above:

sin λ p = sin λs cos p + cosλs sin pcos D (A.28)

and rearrange to solve for Dx:

cos Dx =
sin λ p − sin λs cos p

cosλs sin p
(A.58)

from which Dx can be determined.

The confidence limit on Dx is ∆Dx, which can be derived by applying the Law of Sines to the spherical

triangle STP (Figure A.5):

sin A95
sin ∆Dx

= sin p

sinT
(A.59)

Now note that T = π / 2 (thus sin T = 1) and rearrange to give

∆Dx = sin−1 sin A95
sin p







(A.60)

If you actually go through some calculations of ∆Ix and ∆Dx, you will find that these confidence limits

change with Ix (and p) in a systematic fashion.  For small p (steep inclination), ∆Dx > ∆Ix; ∆Ix ≈ ∆Dx at about

p = 60° (Ix ≈ 50°); for 60° < p ≤ 90° (Ix < 50°), ∆Ix > ∆Dx.

This determination of the confidence limits ∆Ix and ∆Dx produces a confidence oval (not circle) about

Ix, Dx.  ∆Ix is the semi-axis of the confidence oval in the vertical plane through Ix, Dx.  But the other semi-axis
of the confidence oval is not ∆Dx.  Remember that ∆Dx is the projection of the direction space confidence

limit onto the periphery of the equal-area projection (Figure A.4a).  The required dimension of the confidence

limit about Ix, Dx can be determined from Equation (A.44) by substituting the desired angular distance c
(Figure A.4a) for α95.  This leads to

c = sin−1 cos Ix sin ∆Dx( ) (A.61)
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ROTATION AND FLATTENING IN DIRECTION SPACE

Here, we derive the equations to evaluate the vertical axis rotation that is required to align an observed
declination with an expected declination.  In addition, we develop equations to determine the flattening of
inclination indicated by comparison of the observed and expected inclination.

The equal-area projection of Figure A.6 illustrates the problem.  In this example, the observed direction
has inclination Io = 40°, and declination Do = 20°.  The confidence limit is α95 = 8°.  This observed direction
is compared to an expected direction at the sampling site, Ix = 60° and Dx = 330°.  The confidence limits on
the expected direction are ∆Ix = 5.3° and ∆Dx = 8°.

N

EW
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FIx
I  , Dxx

o

c

I  ,Do

Figure A.6   Equal-area projection of vertical axis
rotation, R, and inclination flattening, F.
The observed direction is Io, Do; the
expected direction is Ix, Dx; the confi-
dence regions about the directions are
shown by stippling; c is the angular
distance of the confidence limit from the
vertical plane through Ix, Dx.

The vertical-axis rotation is R and is defined as positive for an observed direction clockwise from the
expected direction as shown in Figure A.6.  The vertical-axis rotation is simply given by

R = Do – Dx (A.62)

The flattening of inclination is labeled F and is defined as positive when the observed inclination is less
than (“flatter” than) the expected inclination.  Thus F is given simply by

F = Ix – Io (A.63)

We need a method to evaluate confidence limits on R and F, which are labeled ∆R and ∆F, respectively.
The original method of assigning confidence limits to R and F was to treat the errors in the observed and
expected directions as independent errors.  This approach led to

∆R = ∆Do
2 + ∆Dx

2 (A.64)

and

∆F = ∆Io
2 + ∆Ix

2 (A.65)

The confidence limits ∆Do, and ∆Io can be determined from Equations (A.44) and (A.45).  ∆Ix and ∆Dx can
be determined from Equations (A.57) and (A.60).  Subsequent to derivation of the above equations, a rigor-
ous statistical analysis of the confidence limits on R and F by Demarest (1983; reference in Chapter 11) has
shown that the confidence limits should be calculated by using the following equations:
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∆R = 0.8 ∆Do
2 + ∆Dx

2
(A.66)

and

∆F = 0.8 ∆Io
2 + ∆Ix

2 (A.67)

ROTATION AND POLEWARD TRANSPORT IN POLE SPACE

Rotation about a vertical axis and (paleo)latitudinal transport are sometimes more effectively addressed by
comparing an observed paleomagnetic pole with a reference paleomagnetic pole.  This situation is shown in
Figure A.7.  The reference pole is at point RP (λr , φr ) with A95 = Ar ; the observed pole is at point OP (λo, φo)
with A95 = Ao; the site location from which the observed pole was determined is at point S (λs, φs).  The
problem is to determine the vertical axis rotation, R, and the poleward transport (motion toward the refer-
ence pole) indicated by the discordance between the observed pole and the reference pole.
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Figure A.7  Geometry required to determine
vertical axis rotation and poleward
displacement by comparing observed
and reference paleomagnetic poles.  RP
is the reference paleomagnetic pole at
(λr , φr) with A95 = Ar; OP is the observed
paleomagnetic pole at (λo, φo) with
A95 = Ao; the site location S is (λs, φs); N
is the north geographic pole; the dashed
longitudinal lines connect S, OP, and RP
to N; the dark stippled region is a
spherical triangle with apices S, OP, RP
and sides po, pr , and s; the light stippled
circles are confidence circles about
observed and reference poles; the
vertical axis rotation is angle R.

We form the spherical triangle shown in Figure A.7 with apices at S, OP, and RP.  The first step is to
determine the angular distances pr , po, and s.  There are two approaches:  (1) Use the formula developed
for determining the great-circle distance between two locations (Equation (A.20)); or (2) use the formula
developed for determining the angular distance from observation location to the observed paleomagnetic
pole (Equation (A.38)).  For the second approach, we form three spherical triangles (N–OP–S, N–S–RP,
and N–OP–RP) by connecting the three apices of S–OP–RP with the geographic pole.  Equation (A.38) is
then applied to each of these three triangles to determine the unknown angular distances pr , po, and s.  The
results are

pr = cos−1 sin λr sin λs + cosλr cosλs cos φr − φs[ ]( ) (A.68)

po = cos−1 sin λs sin λo + cosλs cosλo cos φs − φo[ ]( ) (A.69)

s = cos−1 sin λr sin λo + cosλr cosλo cos φr − φo[ ]( ) (A.70)
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Knowing these angular distances, we can determine the rotation, R, by realizing that R is the angle at
apex S and applying the Law of Cosines to the spherical triangle S–OP–RP:

coss = cos po cos pr + sin po sin pr cos R (A.71)

Solving for R gives

R = cos−1 coss − cos po cos pr
sin po sin pr







(A.72)

Note that Equation (A.72) will not tell you whether R is positive (clockwise rotation) or negative (counter-
clockwise rotation).  But inspection of Figure A.7 indicates that R is negative in this example.

The poleward transport, p, is simply
p = po – pr (A.73)

The confidence limit on R can be determined from Equation (A.66):

∆R = 0.8 ∆Do
2 + ∆Dx

2 (A.66)

where from Equation (A.60):

∆Dx = sin−1 sin Ar
sin pr







(A.74)

and

∆Do = sin−1 sin Ao
sin po







(A.75)

The confidence limit on p is ∆p and is given by

∆p = 0.8 ∆pr
2 + ∆po

2 (A.76)

From inspection of Figure A.7, we can see that

∆po = Ao (A.77)
and

∆pr = Ar (A.78)

PALEOLATITUDES AND CONFIDENCE LIMITS

A paleogeographic map is often used to compare the paleomagnetically determined paleolatitude of an
accreted terrane with the paleolatitude of the continent to which the terrane was accreted.  The confidence
limits on the paleolatitude of the terrane are illustrated by showing the upper and lower paleolatitudinal
limits.  An example is shown in Figure 11.13.  In this section, we derive the equations that are used to
determine paleolatitudes and the attendant confidence limits.

Two basic approaches to this problem have been used in the paleomagnetic literature.  As with the
rotation and transport problem, one approach uses the observed paleomagnetic direction, while the other
uses the observed paleomagnetic pole.  We’ll first derive the equations for the direction-space approach
then address the pole-space approach.

If we observe a mean paleomagnetic inclination Io at a particular site, the dipole equation (Equation A.11)
can be used to determine the paleolatitude:

λo = tan−1 tan Io
2





 (A.79)
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The confidence limit on Io is ∆Io = α95.  Because of the nonlinearity of Equation (A.79), the resulting confi-
dence limits on λo are not symmetric about λo.  Adding ∆Io = α95 to Io will yield the higher latitude confidence
limit, which we can label λo

+:
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+( )


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−tan
tan1 95

2
(A.80)

The lower confidence limit λo
−  is determined by subtracting ∆Io = α95 from Io:
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2
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(A.81)

These confidence limits on paleolatitude λo will be symmetric about λo only for λo = 0° or λo = 90°.
This derivation explains why paleolatitudes determined from paleomagnetic inclinations are sometimes

listed with asymmetric confidence limits.  For example, “The Cretaceous paleolatitude of the Macintosh
Terrane is 42.3° with upper and lower 95% confidence limits of 50.0° and 35.7°, respectively.”

In the pole-space approach, the paleogeographic map for a continent is produced as described in Chap-
ter 10.  The confidence limit for the reference pole is Ar, which directly gives the paleolatitude confidence
limit for any point on the continent.  As explained in the development of rotation and poleward displacement
of a crustal block (and illustrated in Figure A.7), the angular distance from the site location to the observed
pole is po, the observed paleocolatitude.  From po, the observed paleolatitude is easily determined by

λo = 90° – po (A.82)

The confidence limit on λo is simply Ao, the confidence limit on the observed pole (= confidence limit on po;
Equation (A.77)).  So there are confidence limits on the paleolatitude of the crustal block and on the conti-
nent to which the terrane is now attached.

The simplest way to make a paleogeographic map that encompasses these paleolatitudinal confidence
limits is to use the results derived for poleward transport.  You want to show how far the crustal block has
moved latitudinally with respect to the continent.  So you place the continent in its paleogeographic position;
then use Equation (A.82) to determine the paleolatitude of the crustal block and place the block at that
paleolatitude.  The confidence limit on paleolatitudinal position of the crustal block with respect to the continent
is the confidence limit ∆p on poleward transport (Equation (A.76)).  This confidence limit accounts for uncer-
tainties in the paleolatitudes of both the crustal block and the continent.  But to make the paleogeographic
map, we fix the continent in the paleogeographic grid and ascribe all the paleolatitudinal uncertainty to the
crustal block.  The confidence limits on paleolatitude of the block are shown as λo ± ∆p on the paleogeo-
graphic map.  This procedure was used to construct the Middle–Late Triassic paleogeographic map of
Figure 11.13 showing the paleolatitude of the Nikolai Greenstone.
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