
CHAPTER 7

ENTROPY ACCOUNTING AND APPLICATIONS

7.1 Introduction

In the last chapter, we found two important properties of the entropy:

1. Entropy can be produced by irreversible processes, but can never be de-

stroyed: Ps ≥ 0 for every possible process.

2. When heat Q enters or leaves a system at temperature T , it carries entropy

in the amount Q/T with it.

With these two results, it is possible to write down entropy accounting ex-

pressions for closed or open systems. In this chapter, we will develop these

expressions, and look at several types of problems which can be solved by com-

bining energy and entropy accounting.

7.2 Some General Accounting Principles

We must take some care in developing entropy accounting expressions, since,

unlike energy, entropy is not conserved. First let’s consider in general how to do

accounting for things which can be produced. Consider the monthly statement

you might receive from a bank if you have an interest-bearing bank account.

The account balance at the end of a month is related to the previous month’s

balance by

(new balance) = (old balance) + (deposits) − (withdrawals) + (interest). (7.1)

The account balance is the amount of money “stored” in the account; the de-

posits represent an “inflow” of money, the withdrawals an “outflow” of money,

and we can think of the interest as money “produced” within the account during

the month, since it appears in the account even though you didn’t deposit it.

Therefore, the accounting principle for a bank account is

∆(stored money) = (money inflow)− (money outflow) + (money production).

(7.2)
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Of course, this basic accounting principle applies to anything which can be

stored, transported, and produced. Suppose a factory manufactures a product.

The change in the inventory stored at the factory over some period of time equals

the number of products produced in that period, plus the number returned from

stores (inflow to the factory), minus the number shipped to stores (outflow from

the factory). So Eq. (7.2) can be written more generally:

∆(storage) = (inflow)− (outflow) + (production). (7.3)

This general accounting principle can be applied to the storage, transporta-

tion, and production of physical quantities like mass, momentum, energy, and

entropy. For mass and energy, the production term is always zero, since these

are conserved. Therefore, the energy balances we developed in Chapters 2 and

4 were always of the form

∆(energy stored in system) = (energy inflow)− (energy outflow). (7.4)

For entropy, the production term is non-zero, so we have

∆(entropy stored in system) = (entropy inflow)− (entropy outflow)

+ (entropy production). (7.5)

7.3 Entropy Accounting for a Closed System

For a closed system, the only way entropy can enter or leave the system is with

heat which enters or leaves. The simplest case occurs when heat enters at a

single temperature, as shown below.

dQ
TdS

dPs

During elapsed time dt, heat d̄Q crosses the system boundary where the

temperature is T . We saw in the last chapter that when heat d̄Q enters a system

at temperature T , it brings with it entropy in the amount d̄Q/T . Therefore,

the entropy inflow is d̄Q/T , and there is no entropy outflow.
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During the elapsed time dt, entropy in the amount d̄Ps may have been also

produced within the system due to internal irreversible processes (friction, vis-

cous fluid flow, electrical current flow, unrestrained expansion, etc.). Therefore,

according to Eq. (7.5), the increase in the amount of entropy stored within the

system is

dS =
d̄Q

T
+ d̄Ps. (7.6)

Note that work d̄W might have also been done on or by the system during dt,

but since energy transfer as work does not carry entropy, it does not enter into

the entropy accounting expression.

Since the second law requires d̄Ps ≥ 0,

dS ≥
d̄Q

T
. (7.7)

Thus, the system entropy increases by more than the amount which enters with

heat; the difference is what is produced inside. Equation (7.7) also holds if

d̄Q < 0, in which case it says the the entropy decreases by less than the amount

of entropy which leaves with heat. For a reversible process, Eq. (7.7) reduces to

d̄Qrev = TdSrev. (7.8)

From Eq. (7.6), a process which is both adiabatic ( d̄Q = 0) and reversible

( d̄Ps = 0) would not change the entropy (dS = 0). Therefore,

the entropy is constant during any reversible, adiabatic pro-

cess in a closed system.

We call processes which occur at constant entropy isentropic.

Equation (7.6) can be easily generalized to the case where heat flows across

the boundary at various spots, each of which may have a different temperature

(which might even be time-dependent).

dS
dPs

dQi
Ti

Ti

dQj
Tj

Tj

dQk
Tk

Tk

In time dt, the total entropy S of the system changes due to the entropy

entering or leaving with heat, and the entropy produced by irreversible processes
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inside. If heat enters through I places, and leaves through O places, then

dS =
∑
in

(
d̄Qin

Tin

)
−
∑
out

(
d̄Qout

Tout

)
+ d̄Ps. (7.9)

Note that the d̄Q/T terms are evaluated at the temperature on the system

boundary where the heat flow is occurring.

Equation (7.9) can also be written on a per-unit-time basis (a rate basis).

Dividing by dt,

dS

dt
=
∑
in

(
Q̇in
Tin

)
−
∑
out

(
Q̇out
Tout

)
+ Ṗs. (7.10)

If the temperatures on the boundaries where heat is entering or leaving are

constant in time, this equation can be integrated for a finite time interval (0, t):

∆S = S(t) − S(0) =
∑
in

(
Qin
Tin

)
−
∑
out

(
Qout
Tout

)
+Ps. (7.11)

Here each Q is just the total heat which enters: Q =
∫ t

0
d̄Q.

Equations (7.9) – (7.10) all are simply statements of entropy accounting.

They equate the net change in the total entropy of a system to the net entropy

inflow (inflow - outflow) plus the amount of entropy produced inside the system.

They apply to any closed (control mass) system.

In many (but not all) processes we will consider, the system is in steady

state. In this case, the entropy contained within the system is not changing, so

on a rate basis dS/dt = 0, or on a total time basis ∆S = 0. For a steady-state

problem, Eq. (7.10) reduces to

∑
in

(
Q̇in

Tin

)
−
∑
out

(
Q̇out

Tout

)
+ Ṗs = 0. (7.12)

A great deal can be learned about real processes by carrying out energy and

entropy accounting. Let’s consider a few examples of processes occurring in

closed systems.
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7.4 Heat Transfer Through Finite ∆T

Consider the situation shown below. Heat is flowing from a high-temperature

region at T1 to low-temperature region at T2 through a thin slab of insulation

material, which has thickness L and area A. The temperature is everywhere

constant in time, and the insulation is in steady state.

T

T

1

1

2

2

T(x)

Q Q
. .

From the theory of heat conduction in solids, the heat flow through the

insulation is related to the temperature difference across it by

Q̇ =
κA

L
(T1 − T2) , (7.13)

where κ is a material property called the thermal conductivity (SI units: W/m-

K). This equation is analogous to I = V/R for current flow through a resistor,

with Q̇ playing the role of current, ∆T the potential difference, and L/κA the

resistance. For this reason, L/κA is called the thermal resistance Rth of the

insulation.

We will define a system to consist of the insulation, with the left system

boundary at T1 and the right one at T2. We will assume the heat flow is one

dimensional, so heat only crosses the system boundaries perpendicular to x.

Since the insulation is in steady state, no energy or entropy are building up in

the system: dU/dt = 0 and dS/dt = 0. Therefore, the energy balance reduces

to

Q̇h = Q̇c, (7.14)

and so we may drop the subscripts and call the heat transfer rate Q̇.

Applying Eq. (7.10) with dS/dt = 0 and one heat inflow and one heat out-

flow, the entropy accounting expression becomes

0 =
Q̇

T1
−
Q̇

T2
+ Ṗs. (7.15)

Solving for Ṗs,

Ṗs = Q̇

(
1

T2
−

1

T1

)
. (7.16)
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Since T1 > T2, Ṗs > 0, in accord with the Second Law. Note that as

T2 → T1, the ratio Ṗs/Q̇ → 0. Therefore, the amount of entropy produced

per unit of heat transferred can be made arbitrarily small by making ∆T =

T1−T2 sufficiently small. We conclude that heat transfer through a finite ∆T is

irreversible (produces entropy), but in the limit as T2 approaches T1, the process

approaches reversibility.

Of course, from Eq. (7.13), decreasing ∆T decreases the heat transfer rate,

and as T2 → T1 Q̇ → 0. Therefore, in the reversible limit transferring a finite

amount of heat would take infinite time.

7.5 Heat Engines

The original engineering problem which led to the development of thermody-

namics was how to efficiently use the thermal energy of a fire (produced by

burning wood or coal) to do useful work, for example to turn the wheels of a

locomotive.

It’s easy to design a process which can take in heat from a high-temperature

source and produce work for a little while, but much harder to design one which

can go on doing it indefinitely, which is what is really desired. For example, gas

in a cylinder fitted with a piston will expand when heated, pushing the piston,

doing work against an external load. This is fine until the piston has reached

the top of the cylinder, at which time the process must stop. Figuring out how

to get the piston back to its initial position to start the “cycle” again without

having to put more work in than you get out is the challenge.

A heat engine is a device which operates either steadily or in a cycle, which

takes in energy as heat and converts at least part of it into useful work. Heat

engines are a vital part of modern technology. Most current and proposed

electric power plants are heat engines, which take in heat at high temperature

given off by a chemical or nuclear reaction, and convert part of this heat into

electrical work delivered to the grid. Even very sophisticated concepts such as

nuclear fusion are simply different sources of heat — a heat engine of some sort

is still needed to convert this to useful work.1 Automobile, aircraft, and rocket

engines are other examples of practical heat engines.

Since a heat engine operates either continuously or in a cycle, in which

it returns to its initial state after some time period T , we can use a steady-

1One promising power plant concept which is not a heat engine is a fuel cell, which converts
the chemical energy in fuel directly into electrical energy, without first converting it into
thermal energy in a flame. Thermodynamics still governs fuel cell performance, however, as
we’ll discuss later.
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Figure 7.1: A hypothetical one-temperature heat engine.

state analysis to study heat engines. For continuous operation, dE/dt = 0 and

dS/dt = 0, while for cyclic operation we will choose the time period T for the

analysis, in which case ∆E = 0 and ∆S = 0. In the following, we will assume

continuous operation, but the results apply equally for cyclic operation.

To analyze heat engines, it is useful to introduce the conceptual device of

a thermal reservoir. A thermal reservoir is defined as a substance with a very

large heat capacity, so that heat can be taken from it or added to it without

significantly perturbing its temperature. Furthermore, it has a very large ther-

mal conductivity, so that transferring heat to or from it causes only negligible

temperature differences within it [Eq. (7.13)]. A large block of copper or a large

lake would approximate a thermal reservoir.

In the limit where the heat capacity and thermal conductivity become in-

finite, the temperature of a thermal reservoir remains perfectly uniform, and

constant in time, no matter how much heat is added or removed. In this limit,

heat flow within the reservoir is perfectly reversible. (The electrical analog of

a thermal reservoir would be an infinitely-large perfect conductor, which would

have constant electrical potential even if current were being drawn from it.)

7.5.1 A (Hypothetical) One-Temperature Heat Engine

Consider the heat engine shown in Fig. 7.1. The engine takes in heat Q̇h from

a thermal reservoir at temperature Th, and outputs power Ẇ . Since the engine

is in steady state, energy accounting yields

Q̇h = Ẇ (7.17)
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and entropy accounting [Eq. (7.12)] yields

Q̇h
Th

+ Ṗs = 0. (7.18)

Since the Second Law requires Ṗs ≥ 0 and also Th > 0, Eq. (7.18) requires

Q̇h < 0, and therefore Ẇ < 0.

Thus, it is impossible to produce positive power by any process which only

takes in heat at a single temperature Th.

It is not hard to see why this doesn’t work. Entropy is entering the engine

at a rate Q̇h/Th, but no entropy is leaving. (Remember work does not carry

entropy with it.) Thus, operation of this engine would require entropy to be

destroyed inside the engine, but that violates the Second Law. Therefore, we

conclude

a one-temperature heat engine cannot be built.

This statement is sometimes called the Kelvin-Planck statement of the Sec-

ond Law. In some classical treatments of thermodynamics which make no refer-

ence to the existence of atoms or microstates, this is introduced as a postulate.

With this postulate, it is possible to work “backwards” (from our point of view)

using some very clever thought experiments to prove that there must exist a

property, the entropy, which has all of the macroscopic characteristics we’ve

discussed already.

7.5.2 A Two-Temperature Heat Engine

To allow production of positive power, some means of continually removing

entropy from the engine must be provided. The only way to do this in a closed

system is to remove some heat from the engine, which will carry entropy with it.

Since we want to convert at least part of Q̇h to Ẇ , we can only afford to remove

a portion of Q̇h. But we need to remove at least as much entropy as entered

(since some might have also been produced inside), so we need to remove heat

in such a way that the ratio (entropy flow)/(heat flow) is larger going out than

coming in. Since the amount of entropy carried with a unit amount of heat flow

is 1/T , this suggests we should try rejecting some heat to a reservoir at a cold

temperature Tc (large 1/Tc).

Doing energy and entropy accounting for the two-temperature heat engine

in Fig. 7.2, we have

Q̇h = Ẇ + Q̇c, (7.19)

and
Q̇h

Th
+ Ṗs =

Q̇c

Tc
. (7.20)
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Figure 7.2: A two-temperature heat engine.

Eliminating Q̇c between these equations,

Ẇ = Q̇h

(
1−

Tc

Th

)
− TcṖs. (7.21)

We see that positive power can be produced by a two-temperature heat engine.

Since the second law requires Ṗs ≥ 0, the maximum power for a given Q̇h is

produced for Ṗs = 0. Therefore a reversible heat engine produces the most

power possible for a given heat transfer rate Q̇h, and given Th and Tc. For a

real engine, the term −TcṖs represents power “lost” due to irreversibilities.

The thermal efficiency η of a heat engine is defined as

η =
Ẇ

Q̇h
. (7.22)

This definition makes sense, since the desired output is Ẇ , and typically it is

Q̇h which you must “pay for” in the cost of fuel burned to produce it.

A reversible heat engine has the highest thermal efficiency of any heat engine

operating between Th and Tc.From Eq. (7.21), this limiting value of the efficiency

is

ηmax =

(
1−

Tc

Th

)
, (7.23)

This upper-limit efficiency is often called the Carnot efficiency, after Sadi Carnot,

a French engineer who was the first person to systematically analyze heat en-

gines in the 19th century. Note that it depends only on Th and Tc, and is the

same for all possible heat engines operating between these temperatures.

Most practical engines and generators, including automotive engines, air-

craft engines, and electric power generation facilities, can be approximated as
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Figure 7.3: A heat pump or refrigerator “pumps” heat from low temperature
to high temperature.

two-temperature heat engines. In order to produce a fuel-efficient engine, η

should be as large as practically possible. Of course, the first thing to do is to

try to eliminate as much unnecessary entropy production within the engine as

possible, to minimize the term −TcṖs. But once this has been done to the ex-

tent practical, further increases in η require either increasing Th, or decreasing

Tc.

For most engines, Tc is the temperature of the ambient surroundings and

can’t be easily varied. This leaves increasing Th. A flame can easily be used

to produce a temperature of, say, 2000 K. If we use Th = 2000 K and Tc =

300 K, we find ηmax = 1 − 300/2000 = 0.85. This is a very high efficiency,

but unfortunately not many materials can withstand this temperature for long.

Metals (which turbines are usually made of) fail at much lower temperatures,

so the peak temperature in a practical engine is usually limited by materials

constraints. Some of the most significant developments in recent years have

been ceramic components in engines which can take much higher temperatures

and allow designing engines with higher Th.

7.6 Heat Pumps and Refrigerators

Although heat will not spontaneously flow from low temperature to high, a

process can be designed which takes in heat at low temperature and expels heat

at high temperature. However, such a process will not run by itself — it requires

work input to “pump” the heat from low to high temperature.

A heat pump is a device which operates either continuously or in a cycle,
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which takes in heat at low temperature and expels it at higher temperature

(Fig. 7.3). A refrigerator is a common example of a heat pump. Heat continu-

ally leaks into the refrigerated compartment from the surroundings through the

insulation, or when the door is opened. This heat must be removed and expelled

to the surroundings at higher temperature to keep the refrigerated space cold.

We may analyze heat pumps assuming steady-state, as we did to analyze heat

engines, since they operate continuously (dS/dt = 0) or in a cycle (S(T )−S(0) =

0). For the heat pump shown in Fig. 7.3, energy accounting yields

Ẇ + Q̇c = Q̇h, (7.24)

and entropy accounting yields

Q̇c

Tc
−
Q̇h

Th
+Ps = 0. (7.25)

If the heat pump is used as a refrigerator, what we really care about is how

much power Ẇ we have to supply to run the heat pump for a given rate of heat

removal Q̇c from the cold space. In this case, eliminating Q̇h between equations

(7.24) and (7.25),

Ẇ = Q̇c

(
Th

Tc
− 1

)
+ ThṖs. (7.26)

Since the Second Law requires Ṗs ≥ 0, clearly a reversible heat pump (Ṗs =

0) requires the least power input for given Q̇c, Tc, and Th. Note that if Ẇ were

set to zero in Eq. (7.26), there would be no solution with Q̇c > 0, even if the

heat pump were reversible. Therefore,

a zero-work heat pump is impossible to build.

This statement is sometimes called the Clausius statement of the Second Law.

Like the Kelvin-Planck statement, it is sometimes introduced as a postulate in

purely macroscopic treatments of thermodynamics, from which the existence of

entropy is inferred.

The second law requires Ṗs ≥ 0, so for a given Q̇c, the minimum power

required is obtained when Ṗs = 0. Therefore, a hypothetical heat pump which

produces no entropy (a reversible heat pump) would require the least work:

Ẇmin = Q̇c

(
Th

Tc
− 1

)
. (7.27)

Since no real refrigerator is truly reversible, the actual power required to run

it will be greater than this value. The term ThṖs in Eq. (7.26) represents the
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“extra” work a real refrigerator does, due to irreversibilities such as friction and

finite-temperature-difference heat transfer. Design of an energy-efficient refrig-

erator would require a careful thermodynamic analysis to find where entropy is

being produced, and how entropy production could be minimized.

The performance of a refrigerator is characterized by the coefficient of per-

formance, defined as the watts of heat removed from the cold space per watt of

power input: COPref = Q̇c/Ẇ . From Eq. (7.27), the maximum value is

COP
(max)
ref =

1

Th/Tc − 1
. (7.28)

Note that this can be greater than one: more energy can be removed as heat

than is required as input to run the process.

An interesting thing about this equation is that it only depends on Th and

Tc, not on the details of how we implement the heat pump – every possible

refrigerator design has the same limiting COP as it approaches reversibility,

no matter whether the working substance is a fluid, or a magnetic crystal, or

anything else.

If a heat pump is used to heat a house by pumping heat Q̇h into the house at

Th from the outside surroundings at Tc, then eqs. (7.24) and (7.25) still apply,

but we are most concerned with the ratio Q̇h/Ẇ . If we eliminate Q̇c between

equations (7.24) and (7.25), we find

Ẇ = Q̇h

(
1−

Tc

Th

)
+ TcṖs. (7.29)

The performance parameter which is used to characterize heat pumps used

for heating is also called the coefficient of performance, but it is defined slightly

differently:

(COP)hp =
Q̇h

Ẇ
. (7.30)

For a reversible heat pump the coefficient of performance is maximized:

(COP)
(max)
hp =

1

1− Tc/Th
. (7.31)

7.6.1 The Carnot Cycle

We’ve shown based on very general considerations that no heat engine can have

an efficiency greater than 1 − Tc/Th. In deriving this result, we didn’t have

to say anything about how the engine operates – it is a general result, which

applies to all conceivable heat engines.
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Figure 7.4: The Carnot Cycle two-temperature heat engine. Each step is per-
formed quasi-statically, and therefore the process is reversible. By reversing the
cycle, it also can function as a heat pump.

It’s instructive to consider a simple idealized, reversible cycle which achieves

this limiting efficiency. While not a very practical design for an engine, this

cycle, known as the Carnot cycle, is conceptually the simplest possible reversible

two-temperature heat engine. By running it in reverse, it functions as a heat

pump.

In a Carnot-cycle engine, a fluid (not necessarily an ideal gas) is placed in

a piston/cylinder system. The following 4 steps are executed in a reversible

manner in sequence:

1. The cylinder is placed in contact with a thermal reservoir at Th, and the

fluid is expanded isothermally, drawing in heat Qh.

2. Now the thermal reservoir is removed, and the expansion continues adia-

batically. Since no heat is being added in this step, but the fluid is doing
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Figure 7.5: The Carnot cycle as represented on a T − S plot.

work, its temperature drops. This step continues until the temperature

drops to Tc.

3. Now a thermal reservoir at Tc is placed in contact with the cylinder, and

the the fluid is isothermally compressed, expelling heat Qc.

4. Finally, the thermal reservoir is removed, and the compression continues

adiabatically, ending with the piston reaching its initial position and the

fluid temperature back at Th.

In Fig. 7.4, this process is represented on a P − V plot, assuming the fluid

is a gas. Since the process is carried out quasi-statically, the fluid remains in

equilibrium at all times during the cycle. Therefore, its state may be represented

at every time by a point in the P − V plane, and the entire cycle is a closed

curve in the P − V plane.

A simpler representation of this cycle is a temperature-entropy (T −S) plot,

as shown in Fig. 7.5.

The Carnot cycle traces out a rectangle on a T − S plot, and this is true no

matter what the fluid is. Consider first steps 2 and 4, which are both reversible

and adiabatic. We have shown that reversible, adiabatic processes are isentropic,

so the entropy of the fluid does not change during steps 2 and 4. They must

appear as vertical lines on a T − S plot.

Steps 1 and 3 are isothermal, so they must appear as horizontal lines on a

T − S plot. Step 1 draws in heat Qh, which brings in entropy Qh/Th with it.

Since the process is reversible, Ps = 0 and therefore

∆S1 = Sb − Sa =
Qh

Th
. (7.32)
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For step 3, heat Qc is rejected and the entropy of the system decreases by

Qc/Tc:

∆S3 = Sa − Sb = −
Qc
Tc
. (7.33)

Since step 3 brings the system entropy back to its initial value (it is unchanged

by step 4), we must have
Qc
Tc

=
Qh
Th

= ∆S1. (7.34)

The net heat taken in by one complete cycle is then

Qh −Qc = Th∆S − Tc∆S = (Th − Tc)∆S, (7.35)

which is simply the area enclosed by the cycle on the T − S plot.

An energy balance for one complete cycle is

Qh = Wnet +Qc, (7.36)

where Wnet is the net work output for the entire cycle. (If we denote the work

output done in step n by Wn, then Wnet = W1 +W2 +W3 +W4, where W1 and

W2 are positive, and W3 and W4 are negative.) Therefore,

Wnet = Qh −Qc = (Th − Tc)∆S (7.37)

is also given by the area enclosed on a T − S plot.

We can also relate Qh, Qc, and W to areas on the T − S plot:

s

T

T

h

c
Q h

s

T

T

h

c
cQ

s

T

T

h

c

netQ
= W

Then the efficiency η = W/Qh is simply the ratio of the areas of two rect-

angles, and is easily seen to be (1− Tc/Th).

Temperature-entropy plots are very useful for analyzing any reversible cycle.

For a reversible process, d̄Q = TdS. Integrating this around a complete cycle,

returning to the initial state,

Qnet =

∮
d̄Q =

∮
TdS. (7.38)
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Thus, the net heat taken in during one complete cycle equals the area enclosed

by the cycle on a T −S plot, no matter what the shape of the curve is (not only

for a rectangle). From the First Law for a complete cycle,∮
dU = 0 =

∮
d̄Q−

∮
d̄W (7.39)

where we are taking work to be positive which is done by the system. Therefore,

the net work done during one cycle is also given by the enclosed area:

Wnet = Qnet =

∮
TdS. (7.40)

7.6.2 Maximum Power Output of a Heat Engine

Anyone who has compared the performance and fuel efficiency of a Geo Metro

and a Corvette will not be surprised to learn that there is a trade-off between

the efficiency of an engine and its power output. Let’s look at a simple example

which shows this clearly.

Suppose we have a two-temperature heat engine operating between specified

Th and Tc, and we want to maximize the power output

Ẇ = ηQ̇h. (7.41)

The highest η will be achieved by minimizing Ṗs, in which case η will approach

the Carnot efficiency.

To minimize Ṗs, the engine must be run very slowly — in the limit, quasi-

statically. This minimizes the work lost to friction, and also insures that heat

transfer from the hot reservoir to the engine and from the engine to the cold

reservoir is slow enough that large temperature differences (needed to “drive”

the heat transfer) don’t develop. But if we run the engine that slowly, Q̇h will

be very small!

The engine will be very efficient at converting Qh into W , but the rate of

heat extraction Q̇h will be very low, as will Ẇ = ηQ̇h, and in the limit of a

reversible process (infinitely slow) both will go to zero. So it seems that building

a reversible engine is not what we want to do if we want to maximize power

output. The conditions which maximize η don’t maximize the product ηQ̇h.

To maximize power instead of efficiency, we must allow some irreversibility.

Let’s consider a simple case which only has one type of irreversibility – finite ∆T

heat transfer. In reality, this source of irreversibility is inescapable. For example,

suppose heat is taken from a reservoir at Th by passing a fluid through tubes

immersed in it. In order for heat to flow from Th into the fluid in the tubes,
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Figure 7.6: An “endoreversible” engine, in which the only irreversibility is due
to the thermal resistances for heat transfer.
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the fluid temperature must be less than Th; call it T1. The heat transfer rate is

generally proportional to the temperature difference:

Q̇h =
Th − T1

Rh
(7.42)

where Rh is the overall thermal resistance, which depends on factors such as

the total tube area, the fluid flow rate, and the thermal conductivities of the

materials involved. But if these are constant, then Qh ∝ (Th − T1).

Also, to reject heat to a reservoir at Tc, the fluid (again flowing through

tubes) must be hotter than Tc; let’s say it has temperature T2 > Tc. Then the

heat rejection rate will be

Q̇c =
T2 − Tc
Rc

, (7.43)

where Rc is the thermal resistance for heat transfer to the cold reservoir.

Assume for simplicity that there are no other irreversibilities – the engine

is a reversible one, operating between its own maximum and minimum tem-

peratures T1 and T2. An hypothetical engine which is internally reversible, but

must transfer heat in or out through thermal resistances is called endoreversible,

meaning that the interior (endo) is reversible.

Since the engine is internally reversible, its efficiency is

η =
Ẇ

Q̇h
=

(
1−

T2

T1

)
. (7.44)

But since T1 < Th for Qh > 0, and T2 > Tc for Qc > 0, this efficiency is less

than the value it would have if it were operating reversibly between Th and Tc.

Temperatures T1 and T2 are not fixed, but change depending on the heat

extraction rate. We can use Eq. (7.42) and Eq. (7.43) to substitute for T1 and

T2 in terms of the constant reservoir temperatures Th and Tc. If we also invoke

the first law (Q̇h = Ẇ + Q̇c), we find (after a bit of algebra):

η = 1−
Tc

Th − Q̇h(Rh +Rc)
. (7.45)

As we increase the rate at which we take heat from the hot reservoir, the

engine efficiency goes down, since T1 decreases and T2 increases. If we keep

increasing Q̇h, eventually T1 and T2 approach each other, and η → 0. From

Eq. (7.45), this occurs when

Q̇
(max)
h =

Th − Tc
Rh + Rc

. (7.46)
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Figure 7.7: Efficiency, heat input, and power output for an endoreversible en-

gine. Both Q̇h and Ẇ are shown normalized by Q̇
(max)
h [Eq. (7.46)]. Left:

Tc/Th = 0.5; right: Tc/Th = 0.2.

Equation (7.45) may be written as

η = 1−
(Tc/Th)

1− (Q̇h/Q̇
(max)
h )(1− Tc/Th))

. (7.47)

The power output is given by

Ẇ = ηQ̇h. (7.48)

The quantities η, Q̇h, and Ẇ shown below in Fig. 7.7 as a function of Q̇h

for two values of Tc/Th (0.2 and 0.5). The maximum efficiency is obtained for

Q̇h → 0, but the maximum power output occurs at a value of Q̇h > 0, where

the engine efficiency is less than its maximum value.

To find the maximum power point, we can differentiate Ẇ with respect to

Q̇h and set the resulting expression to zero. Doing this, the maximum power

condition is found to occur for

Q̇
(maxpower)
h = Q̇

(max)
h

1

1 +
√
Tc/Th

. (7.49)

Substituting this expresssion into Eq. (7.47), the engine efficiency at the maxi-

mum power condition is

η(maxpower) = 1−

√
Tc

Th
. (7.50)

Note that this (unlike the Carnot efficiency) is not an upper limit on the effi-

ciency of an engine. It’s simply the efficiency an internally reversible engine will
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have in the presence of thermal resistance for heat transfer, when it is operating

at the maximum-power-output condition.

The surprising thing about this result is that η(maxpower) depends only on Tc

and Th, not on Rc and Rh. This analysis was first done by Curzon and Ahlborn

at the University of British Columbia in 1975 and for this reason 1 −
√
Tc/Th

is sometimes called the Curzon and Ahlborn efficiency.

Curzon and Ahlborn pointed out that this efficiency is in practice quite close

to that of many large power plants. This suggests that finite-∆T heat transfer

is one of the largest irreversibilities encountered in real power plants, and that

they are in effect designed for maximum power output achievable for given Th,

Tc, Rh, and Rc. This in turn suggests that capital cost, not fuel cost, is the

dominant factor in determining how many power plants are designed. (If fuel

cost were dominant, it would make sense to operate below maximum power,

where the efficiency is higher. To produce the required power, a larger (and

more expensive) power plants could be built.)

7.7 Entropy Accounting for Open Systems

To extend our analysis to open systems, we have to modify the entropy account-

ing expressions of Section 7.3 to account for entropy carried by matter entering

or leaving the system. We’ve already seen that when matter enters a system,

it carries with it energy of e units per kg. Recall e is the total specific energy:

e = u+ |~V |2/2 + gz.

It should come as no surprise that matter also carries entropy into a system

when it enters. After all, entropy is an extensive property like energy or mass.

The amount brought in is s units of entropy per kg, where s is the specific

entropy (J/K-kg) of the matter entering. So if a fluid is flowing into a control

volume at rate ṁ, and at the inlet the fluid has specific entropy sin, the rate at

which entropy is carried into the system by the fluid will be ṁsin.

We can easily add terms to our entropy accounting equations to account for

this convected entropy. For example, Eq. (7.10) can be generalized as:

dS

dt
=

∑
heat in

(
Q̇in
Tin

)
−

∑
heat out

(
Q̇out
Tout

)
(7.51)

+
∑

inlets

(ṁs)in −
∑

outlets

(ṁs)out + Ṗs. (7.52)
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Figure 7.8: A steady-flow device.

7.8 Steady-Flow Devices

In Chapter 5, a set of useful steady-flow devices was introduced: turbines,

compressors, pumps, nozzles, diffusers, and heat exchangers. These devices

change the state of a fluid flowing steadily through them. In Chapter 5, we did

an energy accounting on each of them. Let’s now combine this with an entropy

accounting.

We’ll make the assumptions of steady state (no change in the amount of

energy or entropy contained within the device), steady flow (constant ṁ in

and out), and equilibrium properties at the inlet and outlet, where we need to

evaluate them. We will assume that heat transfer occurs at a steady rate Q̇ to

the surroundings at T0, and power Ẇ is being produced at a steady rate. With

these assumptions, the system is as shown in Fig. 7.8.

With the system as shown in the sketch, the entropy accounting is

ṁsin + Ṗs = ṁsout +
Q̇

T0
(7.53)

Note that we are taking the system boundary just outside the device, where the

temperature is T0. In that way, the irreversibility due to any finite-∆T heat

transfer occurs within the system, and is contained in the Ṗs term. If we put

the system boundary inside the device, then entropy would be being produced

in the environment – we could do the analysis that way, too, but it would be

more complicated.

Let’s apply this equation together with an energy balance to some specific

devices.



CHAPTER 7. ENTROPY ACCOUNTING AND APPLICATIONS 178

7.8.1 Adiabatic steady-flow devices

In Chapter 5, we introduced five steady-flow devices which are often modeled as

adiabatic. These were (1) compressors, (2) turbines, (3) nozzles, (4) diffusers,

and (5) valves.

For any adiabatic steady-flow device, Eq. (7.53) reduces to

ṁsin + Ṗs = ṁsout. (7.54)

Since the second law requires Ṗs ≥ 0, sout ≥ sin:

the specific entropy of the fluid leaving an adiabatic steady-

flow device is greater than or equal to the specific entropy

of the fluid entering.

Equation (7.54), together with the steady-flow energy equation introduced

in Chapter 4, is what we need to analyze any of these devices. Recall the

forms of the steady-flow energy equation appropriate for adiabatic compressors,

turbines, nozzles, and diffusers:

Wc = Ẇc/ṁ = h2 − h1 (compressor) (7.55)

Wt = Ẇt/ṁ = h1 − h2 (turbine) (7.56)

∆
[
V 2/2

]
= h1 − h2 (nozzle or diffuser) (7.57)

(7.58)

Since h and s appear in the energy and entropy accounting expressions, an

h − s plot is a convenient way to represent the change in the state of the fluid

as it passes through any of these devices, as shown in Fig. 7.9.

In Fig. 7.9, the inlet state 1 and the outlet state 2 are shown connected by

a dashed line. This is because the process may be irreversible, and so the fluid

inside the device may not be in an equilbrium state, and therefore would not

correspond to any point on the plot. Since the second law requires s2 ≥ s1,

state 2 can be anywhere to the right of point 1, but not to the left.

In these plots, another state “2s” is also shown. This is the outlet state

which would result for an “ideal” reversible adiabatic device operating between

P1 and P2. The fluid coming out of the idealized device ends up in a different

state than the outlet state of the real, irreversible device. State 2s has the

pressure of state 2, but the entropy of state 1.

The turbine work output, compressor work input, or nozzle/diffuser change

in kinetic energy is given by |h2−h1|. This is shown on the plot. Since constant-
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pressure lines have positive slope on an h − s plot [i.e., (∂h/∂s)P > 0],2 we see

that the reversible device always has the best performance. Specifically,

1. A reversible turbine gives the maximum work output Wt

2. A reversible compressor requires the least work input Wc

3. A reversible nozzle gives the maximum change in kinetic energy.

Example 7.1 Steam enters an adiabatic turbine at 900 K and 10 MPa and

leaves at 1 MPa. What is the maximum work output per unit mass of steam,

and what is the exit temperature under maximum work conditions?

Solution: at the inlet,

h1 = h("h2o","tp",900,10) = 3691.5 kJ/kg

s1 = s("h2o","tp",900,10) = 6.977 kJ/kg-K.

Since the Second Law requires s2 ≥ s1, s2 ≥ 6.977 kJ/kg/K, and we’re given

P2 = 1 MPa. From TPX, the state with s2 = s1 at 1 MPa has temperature

535.87 K and enthalpy 2970.6 kJ/kg. Any state at this pressure with greater

entropy has a higher temperature, and a higher enthalpy (try it and see).

The work output per kg of steam is Wt = h1 − h2. Thus, the most work

is produced when h2 is as small as possible; the smallest h2 is achieved when

s2 = s1. Therefore, the greatest work output possible is Wmax = 3691.5−2970.6

kJ/kg = 720.9 kJ/kg, and the exit temperature is 535.87 K.

The performance of an adiabatic steady-flow device is often characterized

by its isentropic efficiency ηs. The definition of ηs is different for each type of

device, but in each case is a comparison of the actual performance (work input or

output, or change in kinetic energy) with the performance of an ideal isentropic

device operating between the same pressures. The isentropic efficiency is always

defined so that it is ≤ 1.

For a turbine,

ηs,t =
Wt

Wt,s
=

h1 − h2

h1 − h2s
. (7.59)

Here Wt is the actual work output, and Wt,s is the work output of the ideal

isentropic turbine. Values of ηs for real turbines depend on size, varying from

perhaps 60% for a very small turbine to 95% for a very large, well-designed

turbine. A typical value would be around 90%.

2Since dh = d(u + Pv), dh = (Tds − Pdv) + vdP + Pdv = Tds + vdP . Therefore,
(∂h/∂s)P = T , which is positive.
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For a compressor,

ηs,c =
Wc,s

Wc
=
h2s − h1

h2 − h1
. (7.60)

Compressor efficiencies are typically lower than turbine efficiencies, with a typi-

cal value of about 85%. A very large compressor might approach 90% efficiency.

7.9 Steady-Flow Availability

A question which is often of interest is how much power can be produced by

any conceivable steady-flow process which takes a steadily-flowing fluid from a

specified inlet state to a specified outlet state. To answer this question, consider

again Fig. 7.8. From Eq. (7.53), the entropy accounting is

ṁs1 + Ṗs = ṁs2 +
Q̇

T0
. (7.61)

The energy accounting for this steady flow process is

ṁ(e+ Pv)1 = Ẇ + Q̇+ ṁ(e+ Pv)2. (7.62)

(We are allowing the fluid to have kinetic and/or potential energy in addition

to internal energy in states 1 and 2.)

Eliminating Q̇ between these equations and solving for Ẇ ,

Ẇ = ṁ [(e+ Pv)1 − (e+ Pv)2]−
[
T0ṁ(s1 − s2) + T0Ṗs

]
, (7.63)

or

Ẇ = ṁ(b1 − b2)− T0Ṗs, (7.64)

where

b = e+ Pv − T0s (7.65)

is the steady flow availability function. (Note that it is the environment tem-

perature T0, not the fluid temperature T , which appears in this expression.)

From Eq. (7.64), we see that a real, irreversible process always produces less

power than a reversible process acting between the same inlet and outlet states,

for the same mass flow rate. The term T0Ṗs represents power which is “lost”

due to the irreversibilities in the real process. For this reason, it is called the

irreversibility rate İ:

İ = T0Ṗs. (7.66)
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The maximum power produced occurs for İ = 0, and is

Ẇ (max) = ṁ(b1 − b2). (7.67)

In some cases, the outlet state 2 is not fixed, and therefore we may ask

what state 2 conditions maximize Ẇ (max). Clearly, this will be the state which

minimizes b2.

To minimize

b2 = u2 + ek,2 + ep,2 + P2v2 − T0s2,

the first thing to do is pick state 2 to have zero kinetic energy, and the lowest

achievable potential energy. For example, if the potential energy is due to

gravitation, pick state 2 at the lowest achievable elevation. (Elevations below

the surface of the earth result in lower potential energy, but are not ususally

achievable.)

Once this is done, we are left with the task of minimizing h2 − T0s2. It

can be shown (using methods to be discussed in the next chapter) that this is

minimized for T2 = T0 and P2 as small as possible. The lowest possible P2 is

P0, since eventually the fluid must flow to the environment. Thus, the optimal

state 2 is the one which is in thermal and mechanical equilibrium with the

environment.

Example 7.2

A certain industrial process exhausts 10 kg/s of steam at 2 atm and 400 K

to the atmosphere through an exhaust valve. It has been suggested that the

valve should be replaced with some process which can generate electrical power.

Before deciding whether to pursue this, it is desired to know how much power

could be produced in principle. The environment conditions are P0 = 1 atm

and T0 = 300 K.

Solution: The maximum power output is ṁ(b1 − b2). We will take state 2 to

be liquid water at 1 atm and 300 K. Using TPX, the properties are

State T (K) P (atm) h (kJ/kg) s (kJ/kg-K) b (kJ/kg)
1 400 2 2720.4 7.156 573.6
2 300 1 112.7 0.393 -5.3

Therefore, Ẇ (max) =(10 kg/s)(578.9 kJ/kg) = 5.8 MW. Of course, any real

process will produce less power, but a well-designed process should be able to

produce at least a couple of megawatts. Whether it makes sense to pursue this

would depend on how much the process costs to build and run, and on the cost

of electricity saved.
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Problems

7.1 Gaseous water at 5 MPa in a piston/cylinder system is adiabatically ex-

panded until its temperature is 400 K. If it is desired that there be no

liquid droplets in the final state, what is the minimum possible initial

temperature?

7.2 An insulated container contains saturated liquid nitrogen at 1 atm. You

wish to design a process to produce work from this liquid nitrogen.

1. If the surroundings are at 300 K and 1 atm, what is the maximum

work which could be produced in principle?

2. Suppose you use a simple process in which you transfer the liquid to

a piston-cylinder system, and let it warm up to room temperature

at constant pressure. Sketch this process on an appropriate process

diagram, and calculate the work produced.

3. If the work produced in (b) is less than the maximum calculated in

(a), discuss why.

4. Can you suggest ways to improve this process?

7.3 The Cassini mission to Saturn was recently launched by NASA, and should

arrive at Saturn in 2004. Like all NASA deep space missions, on-board

electrical power on Cassini is generated by RTGs (Radioisotope Thermo-

electric Generators). These consist of pellets of radioactive plutonium

fuel which produce heat, bundles of silicon-germanium thermocouples,

and radiator fins which radiate waste heat into space. The thermocou-

ples produce electrical power directly when connected between the high-

temperature “General Purpose Heat Source” containing the plutonium

and the cold radiator fins.
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The heat rejected from the radiator fins follows the Stefan-Boltzmann law:

Q̇c = εAσT 4
c .

Here Tc is the temperature of the radiator fins, A is the total fin area, and

ε is a material property known as the emissivity (0 < ε < 1).

The array of thermocouples constitutes a heat engine operating between

the plutonium fuel temperature (Th) and the radiator temperature Tc.

To minimize the weight and spacecraft size, it is desired to keep the radi-

ator fins as small as possible. For a given power generation requirement

Ẇ , ε, and Th, determine

1. the minimum radiator fin area required, if the thermocouples act as

“ideal” heat engines.

2. the thermodynamic efficiency η = Ẇ/Q̇h and fin temperature Tc

under the conditions of part (a).

Assume that there is no heat transfer limitation on the rate at which heat

may be taken from the radioactive source.

7.4 You have 2 identical copper blocks of mass M . One is initially at tem-

perature T1(0), and the other is initially at temperature T2(0) < T1(0).

Both may be assumed to be incompressible substances with constant c.

You now let them interact through some process which extracts heat from

block 1, generates work, and dumps some heat into block 2. Since the

blocks have finite mass, T1(t) and T2(t) change with time. Eventually,

they come to the same temperature T1(∞) = T2(∞) = Tf and no more

work can be done.

1. Taking both blocks together as the system and assuming no heat is

transferred to or from the environment, write down expressions for

∆U = U(∞)− U(0) and ∆S = S(∞)−S(0). Assume that the total

entropy produced during the process is Ps.

2. Combine these equations to obtain expressions for W and Tf . Your

expression should contain only M , c, T1(0), T2(0), and Ps.

3. Show that the maximum possible work is

Wmax = Mc
(√

T1 −
√
T2

)2

and determine Tf in this case.
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7.5 Nitrogen is held in a container at its critical pressure and temperature. If

the environment is at 300 K and 1 atm, what is the maximum work which

could be done per kg of N2?

7.6 A concept for a positioning thruster for a very small (1 kg) spacecraft is

shown below.

340 K

liquid
reservoir

capillary 
tube

micro-nozzleQ

micro-spacecraft

Liquid HFC-134a at T = 250 K and 0.8 MPa flows from a small on-board

reservoir into a capillary tube 0.5 mm in diameter and 1 cm long, where it

absorbs waste heat given off by the on-board electronic equipment, causing

it to evaporate. It emerges from the tube as vapor at 320 K at a pressure

of 0.65 MPa. (Due to wall friction, there is a substantial pressure drop

down the tube.) The vapor emerging from the tube enters an adiabatic

micro-nozzle and is accelerated to produce thrust. The micro-nozzle has

an isentropic efficiency of 0.9, and the pressure at its exit is 0.05 MPa.

Determine:

1. The irreversibility rate İ in the capillary tube, if the environment

surrounding the tube is at 340 K.

2. The velocity and temperature at the exit of the micro-nozzle

3. The mass flow rate in mg/s required to produce a thrust of 1 mN.

(Thrust is mass flow rate multiplied by exit velocity.)

7.7 What is the minimum power required by an adiabatic compressor which

compresses 10 kg/min of saturated water vapor at 0.2 MPa to 0.4 MPa?

7.8 What is the minimum power required by any process (not necessarily adia-

batic) which compresses 10 kg/min of saturated water vapor at 0.2 MPa to

0.4 MPa? The surroundings are at P0 = 1 atm and T0 = 300 K. Compare

this process to that in problem 1. Are the final states the same? Does

this process involve heat transfer? If so, in which direction?



CHAPTER 7. ENTROPY ACCOUNTING AND APPLICATIONS 186

7.9 An industrial process to produce liquid nitrogen starts with gaseous nitro-

gen at 300 K and 1 atm, which enters at a steady rate of 1 kg/s. The

product is saturated liquid nitrogen at 1 atm.

1. If the environment is at 300 K and 1 atm, does this process require

work input, or can it produce work?

2. Determine the minimum work input, or maximum work output (de-

pending on your answer to (a)).

3. Determine the heat transfer rate for the conditions of part (b).

7.10 (NOTE: Requires Helium data; can’t be done with current version of

TPX.)

Two cylinders with pistons each contain 10 kg of helium. The weight of

piston 1 keeps P1 constant at 0.05 MPa, and the weight of piston 2 keeps

P2 constant at 0.2 MPa. Initially, both cylinders are at a temperature

of 5.2 K. They are now thermally connected to a reversible heat pump,

which heats cylinder 1 and cools cylinder 2 with no heat transfer to the

surroundings. When cylinder 1 reaches 8 K, the process stops.

1. Write equations expressing energy and entropy accounting for this

process.

2. Find the final state of the helium in cylinder 2.

3. Find the work input to the heat pump.

Reversible
Heat Pump

1 2

7.11 A heat-powered portable air compressor consists of three components:

(a) an adiabatic compressor; (b) a constant pressure heater (heat supplied

from an outside source); and (c) an adiabatic turbine. The compressor

and turbine both may be idealized as reversible, and air may be assumed

to be an ideal gas with k = cp/cv = 1.4.

Ambient air enters the compressor at 0.1 MPa and 300 K, and is com-

pressed to 0.6 MPa. All of the power from the turbine goes to run the
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compressor, and the turbine exhaust is the supply of compressed air. If

this pressure is required to be 0.2 MPa, what must the temperature be at

the exit of the heater?

7.12 For a particular industrial process, a stream of gaseous oxygen at 2 MPa

and 1000 K is required. You have available a stream of saturated liquid

oxygen at 100 K, and you wish to design a process to continuously produce

the desired gaseous oxygen from this liquid oxygen. The surroundings are

at 300 K. Determine whether such a process requires work input or can

produce work output, and the minimum work input or maximum work

output per kg of O2.

7.13 An adiabatic pump pumps 200 kg/hr of saturated liquid HFC-134a at

320 K to 2.5 MPa. The temperature of the emerging liquid is 321.26 K.

Determine:

1. The power required to run the pump

2. The isentropic efficiency of the pump

3. The entropy production rate

4. The irreversibility rate if the environment is at 300 K.


