
CHAPTER 4

THE SIMPLE COMPRESSIBLE SUBSTANCE

4.1 Introduction

Since all matter can be compressed if a large enough pressure is applied, a study

of the thermodynamic properties of the simple compressible substance is a good

starting point for any description of the macroscopic properties of matter in

equilibrium. Simple compressible substances are also by far the most important

ones for engineering thermodynamics, since most (but not all) power plants and

engines employ compression, heating, and expansion of a fluid to produce power.

A substance may be approximated as a simple compressible substance if

effects due to other reversible work modes are negligible. For example, if the

surface-to-volume ratio of a large body of water is small enough, then surface

tension will not measurably affect the properties of the water except very near

the surface. On the other hand, surface tension will have a dramatic influence

on the properties of a very small water droplet, and will, for example, cause the

pressure inside the droplet to be elevated above the value predicted if surface

tension were neglected. Clearly, a very small water droplet can’t be treated

accurately as a simple compressible substance, while a large body of water is

approximated very well in this way.

In this chapter, we examine the properties of simple compressible substances.

We will restrict attention to pure substances, which contain only one type of

molecule. Mixtures will be considered in a later chapter.

4.2 Phases of a Simple Compressible Substance

A simple compressible substance may exist in different phases: solid, liquid, or

gas. Some substances have multiple solid phases, some even have multiple liquid

phases (helium), but all have only one gas phase.

An experimental apparatus is shown in Fig. 4.1 which can be used to measure

the properties and phases of a simple compressible substance as a function of

temperature and pressure. A cylindrical solid sample is placed in a vertical

cylinder of the same diameter, which is fitted with a piston. The ambient

pressure is P0, and the piston weight provides a constant downward force F =

68
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Figure 4.1: Constant-pressure heating experiment.

Mpg. The pressure in the cylinder is

P = F/A = Mpg/A+ P0. (4.1)

The sample height is small enough that the pressure may be taken to be uniform

within the sample. The cylinder and piston are well insulated, so there is no

heat loss to the environment.

A small amount of heat Q is added by briefly passing current through a

resistor mounted in the cylinder wall, after which the system is allowed to re-

establish equilibrium. Once the system has come back to equilibrium, both

the temperature and the volume may have changed. The new temperature is

measured with a thermometer, and the new volume by the piston height.

If Q is sufficiently small, the expansion will occur slowly enough that friction

between the piston and cylinder is negligible. In this case, even if the piston

oscillates for a while due to the perturbation, once the oscillations have died out

and the piston has settled down at a new height, the work done by the substance

on the piston will be equal to the work done against atmospheric pressure, plus

the change in the gravitational potential energy of the piston:1

W = (Mpg+P0A)∆y = (Mpg+P0)(∆V/A) = (Mpg/A+P0)∆V = P∆V. (4.2)

An energy balance on the substance yields the change in its internal energy:

∆U = Q− P∆V. (4.3)

1If friction were not negligible, some kinetic energy of the piston would be converted to
internal energy in the piston or cylinder due to friction, and therefore the work would be
> P∆V .
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The quantities Q, P , and ∆V are all measured, so we can calculate ∆U . Since

P is a constant in this experiment, this equation may be rearranged in the form

∆(U + PV ) = Q. (4.4)

The combination U + PV occurs often in analysis of problems at constant

pressure. Since U , P , and V are material properties, so is U + PV . Rather

than always write U +PV , we give this property its own name and symbol: the

enthalpy!definition H is defined by

H = U + PV. (4.5)

Like U and V , H is an extensive property.

In terms of the enthalpy, Eq. (4.4) becomes

∆H = Q. (4.6)

For heat addition at constant pressure, the heat added equals the change in

enthalpy of the substance. In contrast, recall from the First Law that if heat is

added at constant volume (W = 0), then ∆U = Q.

Returning to our experiment, the process in now repeated many times, and

the resulting property values are recorded at every step: heat Q is added, time

is allowed to elapse to re-establish equilibium, the new T and V are measured,

H is incremented by Q.

After n heat addition steps, the volume and temperature have values Vn and

Tn, and enthalpy Hn of the substance relative to its starting value H0 is

Hn −H0 = nQ. (4.7)

Since the extensive properties (V and H) depend on how much of the substance

was placed in the container, it is preferable to convert them to specific quantities

(v = V/M , h = H/M). In Fig. 4.2, the measured temperature and change in

specific enthalpy are shown plotted vs. the measured specific volume (connecting

the individual measurements with solid lines).

When heat is first added to the solid, its temperature increases and it ex-

pands slightly (region a-b in Fig. 4.2). At point b, the temperature stops in-

creasing, although the volume still increases. A look inside the cylinder reveals

the presence of some liquid – the solid is melting.

At point c, all of the solid has melted, and precisely at this point the temper-

ature begins to rise again. But when point d is reached, it stops again and the

volume begins to increase significantly. Bubbles are observed to begin forming
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Figure 4.2: Measured temperature (a) and specific enthalpy change (b) vs. mea-
sured specific volume for constant-pressure heating.

in the liquid at point d – the liquid is boiling. Moving across from point d

to e, the amount of vapor in the cylinder increases, and the amount of liquid

decreases. At point e, no liquid remains, and both temperature and volume

increase upon further heat addition.

Figure 4.2 shows that when two phases are present (solid/liquid or liq-

uid/vapor), h − h0 continues to increase with v even though T is constant,

since energy input is required to convert solid to liquid, or liquid to vapor. Note

that the only way to measure h is by means of Eq. (4.7), which actually only

allows the change in h from the initial state to be determined. There is no

experiment we could do to measure the value in the initial state h0.2 Since

h = u + Pv, if h0 can’t be determined, then u0 can’t be either. This isn’t a

problem, however, since only differences of energy (or enthalpy) have any phys-

ical significance. We can start the experiment in some convenient, reproducible

state, and simply assign any value we like to h0 (for example, h0 = 0). We call

the initial state with arbitrarily-chosen h0 the reference state or datum state.

The results shown in Fig. 4.2 are for a single pressure, P = Mpg/A + P0.

By changing the mass of the piston, we can repeat the experiment for different

pressures, determining T (v) and h(v) − h0 curves for a range of pressures.

Typical T (v) curves are shown in Fig. 4.3(a) with the points on different

curves where the slope is discontinuous connected by dotted lines. The curve

corresponding to Fig. 4.2(a) is labeled P1 on this plot. In Fig. 4.3(b), the dashes

2We could measure it by starting in some other state, but it wouldn’t be the initial state;
the measured value would be relative to the enthalpy in this new initial state, which would
still be undetermined.
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Figure 4.3: (a) T − v curves for constant-pressure heating; (b) phase diagram.

lines are drawn solid, and each region is labeled by which phase or phases are

present in the cylinder. Diagrams like this are called phase diagrams.

The experimental observations are as follows. As the pressure is increased,

the temperature at which liquid appears (the melting point) and the tempera-

ture at which vapor appears (the boiling point) both increase. Also, the spe-

cific volume of the liquid increases to a larger value before boiling begins, and

the specific volume of the vapor once the last liquid has evaporated decreases.

Therefore, the change in specific volume upon boiling decreases as the pressure

increases.

Beyond a particular pressure P3, the T (v) curve changes character. As P3 is

approached, the change in specific volume upon boiling goes to zero – the liquid

and vapor approach the same density, and in fact become identical in all respects

at P3. For P > P3, there is no longer a meaningful distinction between liquid

and vapor, and there is no longer any conventional boiling behavior observed.

In this pressure regime, as heat is added the high-density fluid simply expands

continuously and homogeneously to a low-density fluid, without ever breaking

up into separate liquid and vapor regions within the cylinder.

Pressure P3 is known as the critical pressure Pc. Below Pc, the transfor-

mation from liquid to vapor upon heating occurs by means of the fluid in the

cylinder splitting into two separate regions (high-density liquid and low-density

vapor); as more heat is added, the liquid portion shrinks, and the vapor portion

grows. Above Pc, the transformation from liquid to vapor occurs continuously,

with the fluid remaining uniform throughout the cylinder at all times.

As P approaches Pc from below, the limiting value approached by the boiling



CHAPTER 4. THE SIMPLE COMPRESSIBLE SUBSTANCE 73

Table 4.1: Critical temperature, pressure, and density for a few substances.

Tc (K) Pc (MPa) ρc (kg/m3)
Helium-4 5.20 0.2275 69.64
Hydrogen 32.94 1.28 31.36
Nitrogen 126.2 3.4 314.03
Oxygen 154.6 5.04 436.15
Methane 190.6 4.60 160.43
Carbon Dioxide 304.2 7.38 464.00
Water 647.3 22.1 317.0

temperature is known as the critical temperature Tc. The T (v) curve for P = Pc

has an inflection point at T = Tc:(
∂T

∂v

)
P

= 0 and

(
∂2T

∂v2

)
P

= 0 at T = Tc, P = Pc. (4.8)

The specific volume of the fluid at the point where P = Pc and T = Tc

is known as the critical specific volume vc; the reciprocal of vc is the critical

density ρc. The quantities Tc, Pc, and vc (or ρc) define the critical point. The

critical point quantities for a few substances are listed in Table 4.2.

If the pressure is now lowered below P1, another change in the character of

the T (v) curve is observed. On the P0 curve, there is only one segment where

T is constant, not two. On the flat segment, a solid/vapor mixture is found in

the cylinder, rather than a solid/liquid or liquid/vapor mixture. Evidently, at

sufficiently low pressure no liquid phase forms – instead, the solid transforms

directly to vapor. This process is known as sublimation.

4.3 P − v − T Surfaces

Since any two independent properties serve to define the thermodynamic state

for a simple compressible substance, we may regard any other property as a

function of these two. For example, at every (T, v) point in Fig. 4.3 we know

the pressure, so we can construct P (T, v).

The function P (T, v) defines a surface over the T − v plane. A typical

P −v−T surface is shown in Fig. 4.4. Every equilibrium state of the substance

corresponds to some point on the P−v−T surface. In the pure solid region and

in the pure liquid region below Tc, the slope of the surface is very steep, since

compressing a solid or liquid even a little requires a huge increase in pressure.

In the gas or vapor region, the surface is gently sloped, since gases are easily
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Figure 4.4: A P − v − T surface for a substance which expands upon melting.

compressed. Of course, above the critical point the liquid and gas regions merge

smoothly.

In Fig. 4.4 the term “gas” is used above the critical point, and “vapor”

below it. This convention dates back to the early 19th century, when it was

thought that “gases” like oxygen were different than “vapors” like steam. Va-

pors could be condensed to liquid, but gases (it was believed) could not be.

When it was demonstrated in 1877 that oxygen and nitrogen could be liquified

at sufficiently low temperature, it became clear that there was no fundamental

distinction between gases and vapors; the only difference is that substances such

as oxygen have critical temperatures well below room temperature, while the

critical temperature of water is above room temperature. Thus, liquid water is

commonplace, but liquid oxygen, nitrogen, hydrogen, or helium are not. How-

ever, processes to produce these as liquids are now straightforward, and liquid

oxygen, nitrogen, and helium have very significant technological applications.3

The slope of the P −v−T surface is discontinuous on the boundary between

the single-phase and the two-phase regions. Note that since T remains constant

3For example, liquid hydrogen and oxygen as used as propellants in the Space Shuttle Main
Engine; liquid nitrogen is widely used to cool electronic equipment and photodetectors; liquid
helium is used to cool large superconducting magnets to temperatures a few degrees above
absolute zero.



CHAPTER 4. THE SIMPLE COMPRESSIBLE SUBSTANCE 75

Table 4.2: Triple-point temperatures and pressures.

Tt (K) Pt (kPa)
Helium-4 2.18 5.1
Hydrogen 13.8 7.0
Nitrogen 63.15 12.5
Oxygen 54.34 0.14
Methane 90.68 11.7
Carbon Dioxide 216.54 517.3
Water 273.16 0.61

in the two-phase regions during constant-pressure heating, any horizontal slice

through the surface in a two-phase region must produce a line perpendicular to

the T axis; in other words, the slope of the surface in the T direction is zero in

the two-phase regions.

The solid-vapor two-phase region intersects the solid-liquid and liquid-vapor

regions in a single line parallel to the volume axis. This line is known as the

triple line, since along this line all three phases may coexist in equilibrium. The

pressure and temperature are the same everywhere along the triple line. There-

fore, for a given substance, there is only one pressure Pt and one temperature Tt

at which solid, liquid, and vapor may coexist in equilibrium. The combination

(Tt, Pt) is known as the triple point. Of course it is only a point in the P − T

plane; when the volume axis is considered, it is a line. This is in contrast to the

critical point, which is really a point in (P, v, T ) space.

The triple points for several substances are listed in Table 4.3. Note that

of the ones listed, only carbon dioxide has Pt > 1 atm (1 atm = 101.325 kPa).

Therefore, at 1 atm pressure, solid carbon dioxide (“dry ice”) sublimates, while

solid water melts.

Th P − v− T surface shown in Fig. 4.4 is appropriate for a substance which

expands upon melting, which we assumed implicitly in our discussion above.

However, a few substances – including water – contract when they melt. For

these substances, the P − v − T surface looks like that shown in Fig. 4.5.

If a substance has multiple solid phases, the P − v − T surface can become

very complex. A portion of the actual surface for water is shown in Fig. 4.6,

showing the different phases of ice.

Two-dimensional phase diagrams may be obtained by projecting the P−v−T

surface onto the P − T , T − v, or P − v planes. We have already looked at the

T − v projection in constructing the P − v− T surface [Fig. 4.3(b)]. The P −T
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Figure 4.5: A P − v − T surface for a substance which contracts upon melting.

Figure 4.6: A portion of the P − v − T surface for water.
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Figure 4.7: P −T phase diagrams for (a) a substance which expands on melting;
(b) a substance which contracts on melting.

projection is shown in Fig. 4.7 for a substance which expands on melting (a)

and for one which contracts on melting (b). The critical point (c) and the triple

point (t) are both shown.

The lines separating the single-phase regions on a P − T plot are known as

coexistence lines, since on these lines two phases may coexist. The liquid-vapor

coexistence line terminates at the critical point. In contrast, the solid-liquid

coexistence line never terminates, no matter how high the pressure. This is

because solid and liquid are fundamentally different – in a solid, atoms are

arranged in a highly regular, periodic way, while in a liquid they are arranged

randomly. There is no way for these states with very different symmetry to

transform into one another continuously, and so it is not possible for a critical

point to exist on the solid-liquid coexistence line.

Each of the coexistence lines in a P − T phase diagram can be described by

some function P (T ), so clearly P and T are not independent when two phases

are simultaneously present. On the liquid-vapor and solid-vapor coexistence

lines, the term vapor pressure is used to denote P (T ), since this is the pressure

of the vapor in equilibrium with the solid or liquid. An equivalent term is

saturation pressure Psat(T ). If pressure is specified, the saturation temperature

Tsat(P ) is defined to be the temperature on the coexistence curve where the

pressure is P . The saturation temperature is just another name for the boiling

temperature. For example, for water, Tsat(1 atm) is 373.15 K (100 ◦C), and

Psat(373.15 K) = 1 atm.

4.4 Determining Properties in the Mixed-Phase Regions

Under conditions where two phases coexist in equilibrium, some care must be

taken to correctly determine the properties and amount of each phase from a
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Figure 4.8: In the liquid/vapor two-phase region, the liquid has specific volume
vf and the vapor has specific volume vg.

phase diagram. The two phases have very different properties. For example,

the specific volume of a liquid is much less than that of a gas. How can we

determine both values from a phase diagram?

The key is to realize that in a two-phase region, the properties of each phase

present are those at the “edges” of the region. For example, consider boiling

a liquid at constant pressure. Just before the temperature where gas bubbles

first appear, the cylinder is still filled with liquid. Call the specific volume at

this point vf .4 As more heat is added at constant pressure, the only thing that

happens is that some liquid becomes vapor – the properties (per unit mass)

of the remaining liquid don’t change. Although there is less liquid, the liquid

remaining still has specific volume vf .

What is the specific volume of the vapor which has been created? It too is

constant during the constant-pressure boiling process, and thus must equal the

value of v obtained once the cylinder contains only vapor. Call this value vg .

Suppose now that the system is somewhere in the two-phase region on the

isobar5 labeled P in Fig. 4.8 and the measured total volume V results in a value

for v = V/M as shown in this figure. This v does not actually correspond to

the specific volume of either the liquid or the vapor in the container. These are

vf and vg , respectively. Instead, v is an average of vf and vg, weighted by the

mass of each in the container.

We use the term “saturated” to denote the states on either side of the vapor

dome (Fig. 4.9). Thus, “saturated liquid” has specific volume vf , and “saturated

4Although it is not entirely logical, it is conventional to use the subscript “f” to denote
properties of the liquid and “g” to denote properties of the vapor in an equilibriumliquid/vapor
mixture.

5An isobar is a line of constant pressure. The P in a circle simply labels the pressure of
this isobar.
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Figure 4.9: Definition of saturated, superheated, and subcooled states.

vapor” has specific volume vg . When liquid and vapor are present together in

equilibrium, the liquid is always saturated liquid, and the vapor is saturated

vapor. Vapor at a temperature above Tsat(P ) is called superheated vapor, and

liquid at a temperature below Tsat(P ) is called subcooled liquid. Subcooled liquid

is also called compressed liquid, since it is at a higher pressure than Psat(T ).

Let the mass of the vapor in the container be Mx, where 0 ≤ x ≤ 1. Then

the mass of the liquid must be M(1− x), since the total mass is M . The total

volume is then

V = M(1− x)vf +Mxvg, (4.9)

or

v =
V

M
= (1− x)vf + xvg. (4.10)

If we know v, we can then solve for x:

x =
v − vf
vg − vf

. (4.11)

The vapor mass fraction x is an intensive thermodynamic property of a

liquid/vapor mixture. The common name in engineering thermodynamics for

x is the quality. This name was given to x by engineers developing steam

engines and power plants: the presence of liquid droplets in the steam damages

engine parts such as turbine blades, hence from the engineer’s perspective higher

“quality” steam had less liquid content. Of course, for other applications the

relative merits of liquid and vapor might be reversed. In this book, we will

usually refrain from making a value judgement about liquid vs. vapor, and

simply call x the vapor mass fraction.
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Equation (4.11) is known as the lever rule. It may be interpreted in terms

Fig. 4.8 as follows. To determine the mass fraction of a phase in a saturated

vapor/liquid mixture, locate the system point in the two-phase region on a T−v

or P − v plot. Now take the length of the horizontal line segment from v to the

saturation line corresponding to the other phase, and divide this length by the

total width of the 2-phase region (vg − vf ). Note that this rule works for any

2-phase region, for example for liquid/solid mixtures.

Example 4.1 A bottle contains 10 kg of carbon dioxide at 260 K. If the volume

of the bottle is 100 liters, does the bottle contain liquid, solid, gas, or a mixture?

How much of each? What is the pressure?

Solution: Since 260 K is greater than the triple-point temperature for CO2,

no solid will be present. Calculate v = V/M = (100 liters)/(10 kg): v = 0.01

m3/kg. From a phase diagram for CO2 at 260 K, we find that vf = 0.001001

m3/kg, and vg = 0.01552 m3/kg. Since v is between these two values, the bottle

contains a mixture of liquid and gaseous CO2. The vapor mass fraction is

x =
0.01− 0.001001

0.01552− 0.001001
= 0.62.

Since it is in the mixed phase region, the pressure is the saturation pressure at

260 K, which is 2.421 MPa.

4.5 Software for Property Evaluation

To solve problems involving real substances (such as the last example), some

source of property data is required. Traditionally in thermodynamics courses,

properties were looked up in tables, or estimated from detailed phase diagrams.

A typical diagram for oxygen is shown in Fig. 4.10. Here the pressure is plotted

against the enthalpy, and many curves representing particular values of other

properties are shown. Since P and h are two valid, independent properties, the

thermodynamic state is represented by a point on this plot. The point may

be fixed by interpolation if any two properties are known for which curves are

plotted on the chart. Once the state point is found, any other properties can

be read off (with some care and practice).

Most thermodynamics textbooks now come with at least some rudimentary

software to evaluate properties. In many cases, the programs are simply elec-

tronic versions of tables, which print to the screen the property values. In other

cases, more elaborate software is provided which allows you to do a complete

thermodynamic analysis. But even these packages are specialized applications,

which you use for thermodynamics but nothing else.
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Figure 4.10: A pressure-enthalpy plot for oxygen.
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A new software package is provided as a supplement to this book which im-

plements thermodynamic property functions in Microsoft Excel (a spreadsheet

program). The thermodynamic property functions are provided by an “add-in”

module called TPX (“Thermodynamic Properties for EXcel”). Details of how

to load it into Excel and use it are given in Appendix A.

Calculating properties is easy with TPX. For example, if you want to know

the specific enthalpy of oxygen at 1 MPa and 500 K, you simply type into a cell:

=h("o2","PT",1,500)

The parameters are: the substance name (case is unimportant); a string stating

the properties which will be used to fix the state (here P and T ); the value of

the first parameter (P ); the value of the second parameter (T ). The value of

the function returned in the cell is 655.83 kJ/kg. You can select any system of

units you like; all inputs and outputs will then be in those units. (This example

assumes the user selected units of Kelvin for temperature, MPa for pressure, kJ

for energy, and kg for mass.)

The real power of using a spreadsheet becomes apparent in more complex

analyses. For example, the temperature and pressure may not be specified

inputs, but are themselves the result of calculations in other cells. In this case,

simply replace the numerical value in the function parameters by the appropriate

cell address (e.g. B4).

The same functions implemented by TPX are also available in a WWW

property calculator. The calculator is convenient for simple calculations, if you

have access to the Web but not to Excel.

Example 4.2 One kg of water is placed in a closed container and heated at

constant volume. The initial temperature is 300 K. If the desired final state

is the critical point, determine the necessary container volume, initial pressure,

initial vapor mass fraction, and energy transfer as heat.

Solution: Two properties are needed to specify the initial state. The tem-

perature is given, so one more is required. Since the process occurs at constant

volume, the initial volume V1 must equal the final volume V2. The final state is

the critical point, so

V2 = (1 kg)× vc.

The critical specific volume of water may be calculated using TPX:

vc = vcrit("h2o") = 0.003155 m3/kg.

Therefore, state 1 is fixed by T1 = 300 K and v1 = vc. Using TPX, any other
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desired property for state 1 may be computed:

P1 = 3528.2 Pa P("H2O","TV",300,vcrit("H2O"))

X1 = 5.49× 10−5 x("H2O","TV",300,vcrit("H2O"))

u1 = 112.727 kJ/kg u("H2O","TV",300,vcrit("H2O"))

h1 = 112.738 kJ/kg h("H2O","TV",300,vcrit("H2O"))

Note that the initial state is a mixed liquid/vapor state, and so P1 = Psat(300

K). The vapor fraction is very small, since vc is only slightly greater than the

specific volume of the saturated liquid.

The required heat transfer Q is determined from the First Law:

∆U = Q+W.

Since the volume is constant, W = 0, so

Q = ∆U = M(u2 − u1).

Using TPX,

u2 = u("h2o","tv",tcrit("h2o"),vcrit("h2o"))= 2029.6 kJ/kg.

so Q = (1 kg)(2029.6 kJ/kg - 112.7 kJ/kg) = 1916.9 kJ.

4.6 More Properties: Partial Derivatives of Equations of State

Consider an equation of state like P (T, v). Clearly, a partial derivative of this

function, for example (∂P/∂T )v, is some new function of (T, v) and may rightly

be regarded as a thermodynamic property of the system. Some useful derivative

properties are defined here.

4.6.1 Thermal Expansion Coefficient

Most substances expand when heated. The property which tells us how much a

substance expands when heated at constant pressure is the thermal expansion

coefficient β, defined by

β =
1

v

(
∂v

∂T

)
P

(4.12)

To calculate β, the equation of state v(T, P ) would be differentiated with respect

to T .
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Note the 1/v in the definition – β is defined as the fractional change in

volume per degree of temperature increase. Also, note that this definition is

only really meaningful if a single phase is present, since otherwise T can’t be

increased holding P constant.

Example 4.3 What is the thermal expansion coefficient of liquid water at 300

K and 1 atm?

Solution: β may be calculated approximately using TPX, evaluating the

partial derivative by a finite-difference approximation. Taking a small increment

of, say, 0.1 K, use TPX (with units set to K and atm) to evaluate (∂v/∂T )P :(
∂v

∂T

)
P

≈ (v("h2o","tp",300.1,1) - v("h2o","tp",300,1)/0.1)

= 2.75× 10−7 m3/kg-K.

(4.13)

Since

v = v("h2o","tp",300,1)= 0.001003378 m3/kg,

β ≈ 2.74× 10−4 K−1.

4.6.2 Isothermal Compressibility

All matter decreases slightly in volume if the pressure is increased at constant

temperature. The property how the volume varies with pressure at constant

temperature is the isothermal compressibility κ, defined by

κ = −
1

v

(
∂v

∂P

)
T

(4.14)

As with β, if the equation of state v(T, P ) is known, it can be differentiated to

find κ(T, P ). And as with the thermal expansion coefficient, κ is only meaningful

if the substance is in a single phase.

4.6.3 Specific Heats

Suppose a unit mass of a substance absorbs an amount of heat d̄Q; how much

does the temperature increase? It depends in part on how the heating is done.

From the First Law,

du = d̄Q+ d̄W = d̄Q− Pdv. (4.15)
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Constant Volume

If the heating is done at constant volume, the work term is zero. Therefore

du = d̄Q. (4.16)

Differentiating the equation of state u(T, v) at constant v, we may also write

for du

du =

(
∂u(T, v)

∂T

)
v

dT. (4.17)

Equating these two expressions for du produces the desired relationship between

d̄Q and dT :

d̄Q =

(
∂u

∂T

)
v

dT. (4.18)

The specific heat at constant volume cv is defined by

cv =

(
∂u

∂T

)
v

(4.19)

Then

du = cvdT (4.20)

for constant-volume heating. The SI units of cv are J/kg/K.

Constant Pressure

At constant pressure, we have to be careful to remember to account for the work

done against the environment as the sample expands. Rearranging Eq. (4.15),

we find d̄Q = du+ Pdv. But since P is constant in the process, du+ Pdv =

d(u+ Pv). We recognize u+ Pv to be the specific enthalpy h.

Therefore, for constant pressure heating, d̄Q = dh. We can also write

dh =

(
∂h(T, P )

∂T

)
P

dT, (4.21)

since P is constant. Therefore, for constant pressure heating, d̄Q and dT are

related by

d̄Q =

(
∂h

∂T

)
P

dT. (4.22)

The specific heat at constant pressure cp is defined by

cp =

(
∂h

∂T

)
P

(4.23)
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The units are the same as those for cv.

Another common term for cv and cp is heat capacity. Heat capacities may

also be defined per mole of substance (ĉv and ĉp) or for a total amount of

substance of mass M (Cv and Cp).

Finally, it is worth noting that the names “heat capacity” and “specific

heat” both derive from the old idea that a body can store “heat.” The names

shouldn’t be taken too literally – cv and cp are simply defined in terms of the

derivatives given above.

4.7 Model Equations of State

A software package like TPX evaluates properties using some mathematical

functions which have been fit to a large number of experimental measurements.

The measured data might be P (T, v), cp(T, v), or more indirect quantities like

the speed of sound. The functions are empirical, and contain many adjustable

constants which may be set to fit the measurements as accurately as possible.

For example, the functions used by TPX to represent the properties of water

contain more than 60 constants, with values chosen to provide the best fit to

measurements. 6

Sometimes it is desirable to work with much simpler approximate equations

of state. The price for simplicity is lack of accuracy, but in some cases we

are interested in examining qualitative behavior rather than calculating precise

numbers. Here we examine some common approximate or model equations of

state, starting with the simplest and working up to more complex but more

accurate ones.

4.7.1 The Ideal Gas

The quantity P v̂/T (where v̂ is the molar volume) is found to approach the

same value for all fluids in limit of low density when the molecules are far from

one another (Fig. 4.11). The limiting value is found to be

lim
P→0

P v̂

T
= R̂ = 8.314 kJ/mol-K (4.24)

The constant R̂ is known as the universal gas constant. If the pressure is low

enough that P v̂/T has reached this limiting value, then the equation of state is

approximated by

P v̂ = R̂T. (4.25)

6J. H. Keenan et al., Steam Tables, John Wiley and Sons, New York, 1969.
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Figure 4.11: Demonstration that P v̂/T approaches the same value for all fluids
as P → 0.

This equation of state is known as the ideal gas law, and represents the low-

density limit of the equilibrium equation of state of all real simple compressible

substances. An ideal gas (or perfect gas) is defined to be any gas which obeys

Eq. (4.25).

Since v̂ = V/N , the ideal gas law can be written in terms of the total volume

V and total number of moles N :

PV = NR̂T. (4.26)

The value of R̂ depends on how N is expressed. If N is expressed as a number of

gram-moles (mol), then R̂ = 8.3143 kJ/mol-K; if N is expressed in kg-moles (1

kmol = 1000 mol), then R̂ = 8314.3 kJ/kmol-K. Alternatively, we could dispense

with using mole numbers, and express N as the actual number of molecules. In

this case, R̂ needs to be converted from mol or kmol units to molecule units (1

mol = 6.023× 1023 molecules; 1 kmol = 6.023× 1026 molecules). In this case,

R̂ = (8.3143 kJ/mol-K)(1000 J/kJ)(1 mol/6.023× 1023) = 1.38× 10−26 J/K.

(4.27)

In these units R̂ is usually called Boltzmann’s constant kB:

kB = 1.38× 10−26 J/K. (4.28)
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In this case, the ideal gas law becomes

PV = NkBT. (4.29)

It’s important to remember that kB and R̂ are really the same thing – just

different units. We’ll see Boltzmann’s constant again in Chapter 6 when we

discuss entropy.

We can also divide Eq. (4.26) by the total mass to obtain

Pv =

(
NR̂

M

)
T =

(
R̂

M̂

)
= RT (4.30)

where M̂ = M/N is the molecular weight, and R = R̂/M̂ . Unlike R̂, R is

different for every gas. For helium, R = (8314.3 J/kmol-k)(1 kmol/4.0026 kg) =

2077.2 J/kg-k, while for water R = (8314.3 J/kmol-K)(1 kmol/18.016 kg) =

461.5 J/kg-K. It is often more convenient to work per unit mass rather than

per mole, and so the form of the ideal gas law we will most often use is Eq. (4.30),

Pv = RT .

It is important to bear in mind that the ideal gas law is not rigorously true,

but becomes a good approximation at “sufficiently low” density. Some students

reflexively invoke Pv = RT if a problem involves a substance they normally

think of as a gas (e.g. helium, oxygen), forgetting that these substances not

only can behave as non-ideal gases, but also can be liquid or solid – it all

depends on the conditions.

It is simple to check whether the ideal gas law is a suitable approximation

under specified conditions. Simply compute the compressibility factor Z, defined

by

Z =
Pv

RT
. (4.31)

If the ideal gas law is valid, then Z should equal 1. The deviation from Z = 1 is

a measure of the error made in assuming ideal-gas behavior under the specified

conditions.

Example 4.4 How much error is made in using the ideal gas law to calculate

the specific volume of hydrogen at 20 MPa and 90 K?

Solution: For hydrogen, R = 8314.3/2.016 = 4124 J/kg-K. Using TPX,

v = v("h2","tp",90,20) = 0.023 m3/kg under these conditions, so Z = (2 ×
107)(0.023)/4124× 90) = 1.24. Therefore, the actual volume is 24% larger than

would be predicted by the ideal gas law.
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Internal Energy, Enthalpy, and Specific Heats

The specific internal energy of any simple compressible substance may be ex-

pressed as a function of T and v: u(T, v). Alternatively, we could take the

independent variables to be (T, ρ) instead of (T, v), in which case we would

write the specific internal energy as u(T, ρ). Since every simple compressible

substance approaches ideal gas behavior as ρ → 0, the specific internal energy

in the ideal-gas limit is u(T, ρ = 0), which is a function of temperature alone:

u(T, 0) = u0(T ). We shall use a superscript “0” to denote properties in the

ideal-gas, ρ→ 0 limit.

The specific enthalpy of an ideal gas is

h0 = u0(T ) + Pv = u0(T ) + RT. (4.32)

Therefore, the specific enthalpy of an ideal gas is also a function only of tem-

perature (independent of pressure).

From the definitions of cv and cp, in the ideal gas limit

c0v(T ) =
du0(T )

dT
, (4.33)

and

c0p(T ) =
dh0(T )

dT
. (4.34)

Since h0(T ) = u0(T ) +RT ,

c0p(T ) = c0v(T ) + R. (4.35)

The analogous equation on a molar basis would be ĉ0p(T ) = ĉ0v(T ) + R̂. Of

course, Eq. (4.35) holds only in the ideal gas limit, where Pv = RT applies.

The function c0p(T )/R is shown in Fig. 4.12 for several gases. Since c0p and

c0v have the same units as R, the ratio c0p/R(= ĉ0p/R̂) is dimensionless. By

multiplying the non-dimensional c0p/R by the appropriate appropriate R (or R̂)

value, c0p or ĉ0p may be determined in any desired unit system.

If c0p(T ) is known, Eq. (4.34) may be integrated between any two tempera-

tures to find the change in enthalpy:

h0(T1) = h0(T0) +

∫ T1

T0

c0p(T )dT . (4.36)
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Figure 4.12: The ideal-gas specific heat c0p(T ) for several gases.

If u0(T1) is desired, it could be computed by integrating Eq. (4.33), or from

u0(T1) = h0(T1)− RT .

For the special case of c0p independent of T , Eq. (4.36) becomes

h0(T1) = h0(T0) + c0p(T1 − T0), (4.37)

and the analogous expression for u0 is

u0(T1) = u0(T0) + c0v(T1 − T0). (4.38)

For some gases, c0p and c0v are truly independent of temperature. This is the

case for any monatomic gas, such as argon, helium, neon, etc. In other cases, it

may be approximately true for a limited temperature range (e.g., for N2 from

300-500 K or from 2000-3000 K).

Physics of the Temperature Dependence of cp(T )

From Figure 4.12, it is apparent that the behavior of the function c0p(T )/R

depends on the molecular structure of the gas. Using the methods of statistical

physics, it is possible to calculate this dependence exactly. We will do this

later, but for now we will discuss qualitatively the physics governing the ideal-

gas specific heat, and learn how to compute at least the high-temperature limit

of c0p(T ) from molecular structure.
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A principle of classical statistical physics known as the principle of equipar-

tition of energy says that every “square term” in the classical expression for the

energy of a molecule will contribute a factor of (1/2)R to c0v. For example, the

kinetic energy of a single atom contains three square terms:

ε =
1

2
m
(
v2
x + v2

y + v2
z

)
. (4.39)

So c0v = (3/2)R and c0p = c0v + R = (5/2)R.

For a diatomic molecule (assuming it can be approximated as two point

masses joined by a linear spring), the energy is

ε =
1

2
(m1 +m2)

(
v2
x + v2

y + v2
z

)
︸ ︷︷ ︸

translation

+
1

2
m12r

2(ω2
y + ω2

z)︸ ︷︷ ︸
rotation

+
1

2
m12v

2
r +

1

2
k(r − r0)2︸ ︷︷ ︸

vibration
(4.40)

where m12 = m1m2/(m1 +m2) is the reduced mass and vr = dr/dt.

Translation Rotation Vibration
Center-of-mass motion (translation) contributes 3 square terms, rotation

about 2 mutually orthogonal axes contributes 2 square terms, and vibration

contributes 2 square terms (one for kinetic energy of vibration, and one for

potential energy due to stretching the bond). The principle of equipartition of

energy would predict c0v/R = 1/2(3 + 2 + 2) = 7/2, and thus c0p/R = 9/2.

This is in fact observed at high temperatures for diatomic gases (see the N2

curve in Fig. 4.12). But at lower temperatures, c0p is found to be less than

the value predicted by the equipartition principle. The reason for this is that

equipartition of energy is a classical principle, which is valid only if classical

physics provides an acceptable description of the molecular motion.

If we had calculated the energy of the molecule using quantum mechanics,

we would have found that the possible energies for translation, rotation, and vi-

bration are quantized. According to the correspondence principle, whenever the

spacing between quantum levels is very small compared to the average energy

a molecule possesses, the predictions of quantum mechanics approach those of

classical mechanics. An appropriate comparison would be the average transla-

tional energy per molecule, which is just (3/2)kBT . Actually, we’re interested

only in orders of magnitude so we can drop the 3/2 and just compare to kBT .
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Mode ε/kB (K)
Translation 10−15

Rotation 2.9
Vibration 3390

Table 4.3: Characteristic quantum level spacings divided by kB, in Kelvin. The
value for translation assumes a 1 cm3 box.

Typical numbers for the energy level spacings of N2 are shown in Table 4.3.

These energies are shown divided by kB, giving them the units of Kelvin and

making the comparison to kBT easy.

We see that a classical description of translation is essentially always valid,

and for rotation it is valid except at very low temperatures, when in any case

N2 wouldn’t be a gas. But vibration is another matter entirely. The spac-

ing between vibrational levels for N2 predicted by quantum mechanics is large

compared to the average energy per molecule at room temperature. For this

reason, collisions of a room-temperature N2 molecule with others do not have

enough energy to “excite” vibration, and so the molecule can’t acquire vibra-

tional energy. Higher temperatures are needed for vibration to become “fully

excited.”

This explains the c0p(T ) behavior for N2. At room temperature, c0p ≈ 7/2.

This suggests that the contribution from vibration is missing. The molecule

is translating and rotating, but essentially not vibrating at all, since the low-

est vibrational level is too high to be reached by collisions with other room-

temperature molecules. As the temperature increases, c0p approaches 9/2 as

expected, as vibration becomes excited.

High Temperature Limit for Polyatomic Molecules

Molecules containing more than 2 atoms have several different vibration modes,

with different frequencies and therefore different spacings between vibrational

levels. The vibrational modes become excited at different temperatures in gen-

eral. As each mode becomes active, the value of c0p increases by R.

The vibrational modes of CO2 are shown below, along with the vibrational

frequencies of each. (The units used are the standard spectroscopic units of

wavenumbers. To convert to Hz, multiply by the speed of light.) There are

actually two bending modes with the same frequency, since the molecule may

bend in the plane of the paper (as shown) or out of the plane, so CO2 has a

total of four vibrational modes.
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Symmetric
Stretch

Asymmetric
Stretch

Bending
(2 modes)

1,388 cm 2,349 cm 667 cm-1 -1 -1

We can determine the high-temperature limit for c0p for any polyatomic

molecule using the equipartition principle. Suppose the molecule contains N

atoms, has NR rotational modes, and NV vibrational modes.

If the molecule is linear (such as CO2), it has only 2 possible rotations, just

like a diatomic, so NR = 2. (It is impossible to rotate about the molecular axis,

since the nuclei are effectively point masses.) But a nonlinear, bent molecule

(such as H2O) has 3 possible independent rotations (NR = 3).

The number of vibrational modes is given by 7

NV = 3N − 3−NR. (4.41)

From the discussion of the equipartition principle above, we see that each

rotational mode contributes (1/2)R to c0p, while each vibrational mode con-

tributes a full R. (Vibration has 2 square terms – one for kinetic energy, one

for potential energy.) So the general formula for a polyatomic molecule is

cp(T →∞)

R
=

5

2
+

1

2
NR +NV . (4.42)

Therefore,
cp(T →∞)

R
=

{
3N − 3/2 linear
3N − 2 nonlinear

(4.43)

4.7.2 The van der Waals Equation of State

In 1873, The Dutch physicist van der Waals proposed (as part of his doctoral

thesis) two simple, empirical modifications to the ideal gas law, in an attempt to

find a gas law valid over a wider range of conditions. The first modification was

to replace v in the ideal gas law by (v− b), where b is a small positive constant.

This accounts for the fact that real gases are not infinitely compressible, since the

7It takes 3N numbers to specify the instantaneous configuration of the molecule (x, y, and
z for each atom). Therefore, the molecule has 3N “degrees of freedom.” We can alternatively
describe the molecular configuration by specifying its center-of-mass position (3 numbers),
angular orientation (1 angle for each rotational mode), and amplitude of each vibrational
mode (1 number for each mode). The sum of these must equal 3N .
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molecules have finite volume (v does not approach zero as P increases holding

T constant). The constant b corresponds roughly to the specific volume of the

fluid when the molecules are packed together — essentially the liquid or solid

specific volume.

The second modification accounts approximately for the attractive forces

between molecules. Molecules about to strike the wall feel a net restraining

force due to their attraction to the other molecules in the gas behind them; this

lowers the speed with which they strike the wall and the impulse delivered to

the wall in the collision. Since any pressure measurement can be thought of as

measuring the force on a wall due to the impulse of many collisions per second,

the measured pressure P will be somewhat lower than the value which would be

measured if the attractive forces were absent. The magnitude of the lowering,

van der Waals argued, should be proportional to 1/v2, since the wall collision

frequency per unit area is proportional to 1/v, and to first approximation the net

restraining force should be proportional to the number of “nearby” molecules,

which also scales with 1/v.

Based on these considerations, van der Waals proposed replacing P in the

ideal gas law by P +a/v2, since the measured P is lower than it “should be” in

the ideal gas law by a factor a/v2, where a is a positive constant.

With these modifications to the ideal gas law, the van der Waals equation

(P + a/v2)(v − b) = RT (4.44)

is obtained. For large v (low density), this equation reduces to the ideal gas

law, as it should.

Unlike the ideal gas equation of state, the van der Waals equation has a

critical point, where (∂T/∂v)P = 0 and (∂2T/∂v2)P = 0. It is left as an

excercise to show that setting these two partial derivatives to zero results in the

solution for Tc and Pc

RTc =
8a

27b
(4.45)

Pc =
a

27b2
. (4.46)

Solving for a and b in terms of Tc and Pc,

a =
27

64

(RTc)
2

Pc
(4.47)

b =
RTc
8Pc

. (4.48)
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If we pick a and b using these expressions, the van der Waals equation is

guaranteed to reproduce the correct critial temperature and pressure, although

this certainly does not mean it must produce any other accurate property values.

In Fig. 4.13, the predictions of the van der Waals equation, the ideal gas

equation, and TPX are compared near the critical point of methane. Three

isotherms at 0.94Tc, Tc, and 1.06Tc are shown, along with the actual vapor

dome of methane. All three agree fairly well at large v, where the ideal gas

law holds approximately. For smaller v, the ideal gas law does not adequately

approximate the actual P (v, T ) at all.

The van der Waals equation does much better. For T > Tc, the shape of the

isotherm is qualitatively right, although quantitatively it overpredicts P (v, T )

at small v. It also overpredicts the critical volume vc slightly. An interesting

thing happens below Tc: the van der Waals P (v, T ) is no longer monotonic in

v – instead, the isotherm exhibits a local maximum and a local minimum.

Stability and the Liquid-Vapor Phase Transition

Suppose we prepare a van der Waals gas in a cylinder at T0 < Tc, with v0 chosen

such that the state lies on the portion of the T0 isotherm where (∂P/∂v)T > 0

(Fig. 4.14). The piston weight is chosen to balance P0 = P (v0, T0) exerted by

the gas. But due to very small random fluctuations in the number of molecules

striking the piston from both sides, the piston position (and therefore v) will

fluctuate very slightly.

Suppose due to a small fluctuation v increases very, very slightly. Then since

(∂P/∂v)T > 0 on this portion of the isotherm, P will increase. This will create

a net upward force on the piston, so v will increase even more. The process will

stop only when point b is reached, where the pressure again balances the piston

weight.

Now consider the other case: suppose v decreases very slightly. Now the

pressure in the gas drops, so there is a net downward force on the piston, and

it falls until point a is reached.

We conclude from this thought experiment that the entire portion of the

isotherm with (∂P/∂v)T > 0 is unstable. A small fluctuation in v, no matter

how small, results in the system changing state: it will either go to the low-

volume state a, or the high-volume state b (both of which are stable to small

fluctuations, since (∂P/∂v)T < 0 for these states).

Thus, the van der Waals equation predicts that for a given T < Tc, there

is a range of pressures for which there are two possible states which are stable

to small fluctuations. One state has v < vc, and may be regarded as the liquid
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Figure 4.13: Isotherms for methane predicted by TPX, the van der Waals equa-
tion, and the ideal gas equation. The temperatures are 179.1, 190.5, and 202.0
K.
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Figure 4.15: Comparison of actual behavior during isothermal compression to
prediction of van der Waals equation.

state, and the other has v > vc, and may be regarded as the vapor state.

In reality, of course, we don’t observe isotherms which have the shape in

Fig. 4.14 for T < Tc. Instead, at some pressure Psat(T ) the fluid abruptly

switches from the low-density (vapor) state to the high-density (liquid) state or

visa versa, as shown in Fig. 4.15. The reason this happens is that although both

the liquid and vapor states for pressures within the shaded region are stable to

small perturbations, only one is stable to “big” perturbations. For P > Psat(T ),

it is the liquid state which is most stable, and for P < Psat(T ) it is the vapor

state. We’ll see how to predict Psat(T ) soon.

This qualitative behavior applies to real fluids, not only to idealized van

der Waals fluids: the liquid-vapor phase transition results from an instabil-



CHAPTER 4. THE SIMPLE COMPRESSIBLE SUBSTANCE 98

ity of an “underlying” smooth P (v, T ) function. By carefully avoiding “big”

perturbations (like dirt particles or scratches on the container wall where va-

por bubbles can get a start) it is actually possible experimentally to prepare

liquid at P < Psat(T ). Similarly, by carefully compressing a vapor in very

clean conditions pressures greater than Psat(T ) can be reached without liquid

droplets forming. Such states are called metastable states. Metastable states

are not thermodynamic equilibrium states, since if the system is given a big

enough perturbation (a dust particle, a scratch, gently shaking the container),

it switches to the more stable state.

To experimentally prepare metastable states, it is actually more common to

vary temperature at a given P . In this case, liquid is stable below Tsat(P ) (the

boiling point), and metastable above it. Liquid heated above the boiling point

without boiling is called superheated liquid and vapor cooled below the boiling

point without condensing is called supercooled vapor.

A Generalized Equation of State

The van der Waals equation of state may be put in non-dimensional form by

defining the nondimensional reduced pressure P ∗ = P/Pc and reduced tempera-

ture T ∗ = T/Tc. If we write Eq. (4.44) in terms of P ∗ and T ∗, and substitute

for a and b from Eq. (4.47) and Eq. (4.48), it reduces to

Z3 −

(
P ∗

8T ∗
+ 1

)
Z2 +

(
27P ∗

64T ∗2

)
Z −

27P ∗2

512T ∗3
= 0, (4.49)

where Z is the compressibility factor Pv/RT . The roots of this cubic equation

determine Z(T ∗, P ∗). Depending on T ∗ and P ∗, this equation will have either

one root, or three. (If three, then as discussed above the middle one is unstable.)

Note that a and b do not appear in Eq. (4.49). Thus, the van der Waals

equation of state reduces to a single equation for all fluids, independent of a and

b, as long as T and P are expressed in reduced form. Equations of state which

depend only on T ∗ and P ∗ are called generalized equations of state. The van

der Waals equation is the simplest example of a generalized equation of state.

At the critical point (P ∗ = 1, T ∗ = 1) the solution to Eq. (4.49) is Z = 3/8.

Thus, the van der Waals equation predicts that all fluids should have Zc =

Pcvc/RTc = 0.375.

Unfortunately, Zc for real fluids is not 0.375, and differs from one fluid to the

next. Most fluids have Zc in the range from about 0.23 to about 0.33 – less than

the van der Waals equation of state would predict. So clearly the van der Waals

equation of state is not very accurate for real fluids. This is also clear from

Fig. 4.13: the critical specific volume is overpredicted, as is the liquid specific
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Figure 4.16: Compressibility factor Z vs. P ∗ (Pr) for several values of T ∗ (Tr).

volume at high pressure.

4.7.3 The Principle of Corresponding States

Even though the van der Waals equation is not particularly accurate, the ability

to write it as a universal function Z(T ∗, P ∗) is intriguing — maybe Z really can

be expressed as a function of only T ∗ and P ∗, but the function resulting from

the van der Waals equation simply isn’t the right one.

To test this hypothesis, we can take measured P − v − T data for different

fluids, calculate Z = Pv/RT , and the plot Z as a function of P ∗ = P/Pc and

T ∗ = T/Tc, where of course Tc and Pc differ for each fluid.

If Z = Z(T ∗, P ∗), plotting Z in this way should collapse the experimental

P − v − T data onto the same set of curves for all fluids. A plot of this type is

shown in Fig. 4.16, in which Z is plotted vs. P ∗ for T ∗ values from 1 to 2. It

is observed that the experimental values for different fluids do tend to fall onto

the same curves for a given T ∗, independent of the particular fluid.

However, it is also clear that this result is only approximate. For example,

on the T ∗ = 1.5 curve in Fig. 4.16, the propane data points are systematically

above the mean, and the methane points systematically below. Also, we have

already stated that Zc varies slighly from one fluid to another, which could not

be true if Z = Z(T ∗, P ∗) were exactly true, since Zc = Z(1, 1).
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The statement that Z = Z(T ∗, P ∗) is known as the Principle of Correspond-

ing States. As we have already seen, it an approximate principle, not an exact

one. Several empirical fits for Z(T ∗, P ∗) have been proposed which seek to re-

produce the “average” behavior shown in Fig. 4.16. The earliest was a set of

charts due to Nelson and Obert in 1954.

A more recent, popular generalized equation of state is one proposed by Lee

and Kesler in 1975. The function they propose for Z(T ∗, P ∗) for “simple” fluids

is shown graphically in Fig. 4.17. It can be seen that this function corresponds

fairly closely to the experimental data shown in Fig. 4.16. Simple fluids are

basically ones composed of small, simple molecules, but the precise definition of

a simple fluid is circular: it is one for which Z(T ∗, P ∗) is as shown in Fig. 4.17.

Lee and Kesler (following earlier work by Pitzer) also introduced a third

parameter, the so-called acentric factor ω, to allow better correlation of ex-

perimental data than can be achieved using only the parameters T ∗ and P ∗.

They observe that simple fluids have Psat(T )/Pc = 0.1 when T/Tc = 0.7. To

parameterize deviations from the behavior of Fig. 4.17, they define ω as

ω = − log10

(
Psat(0.7Tc)

Pc

)
− 1.0. (4.50)

The acentric parameter is zero for a simple fluid, and usually positive for other

fluids.

Lee and Kesler assume that the effects of non-zero ω can be accounted for

by adding a correction term linear in ω:

Z = Z(0)(T ∗, P ∗) + ωZ(1)(T ∗, P ∗). (4.51)

Here Z(0) is the function shown in Fig. 4.17, and Z(1) is a correction factor

to account for non-simple-fluid effects. Specifically, Z(1) is computed so that

an accurate Z(T ∗, P ∗) function is obtained for octane (C8H18), which is not a

“simple” fluid and has ω = 0.3978. Of course, Eq. (4.51) is still approximate, but

it is found to be accurate to within 2% or 3% for most non-polar or slightly polar

fluids. For highly-polar fluids (e.g. water) or very light ones (e.g. hydrogen,

helium, or neon) for which quantum effects are important, it is less accurate.

Equation 4.51 is implemented in TPX as the function ZLK(T*, P*, Omega).

The Omega parameter is optional – if omitted, the result will be calculated for

ω = 0 (a simple fluid).

4.7.4 The Incompressible Substance

Finally, now that we have considered some rather complex model equations of

state, we turn to the simplest possible equation of state. The compressibility
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Figure 4.17: The Lee-Kesler generalized compressibility function Z(0) for a sim-
ple fluid.
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of most liquids and solids is quite low. Unless very large pressures are applied,

the specific volume hardly changes at all.

If we wish to ignore entirely the compressibility of a liquid or a solid, we can

replace the real P (v, T ) behavior by a simple model:

v = v0, (4.52)

where v0 is a constant. A idealized substance which obeys Eq. (4.52) is called

an incompressible substance. It is not possible to do compression work on an

incompressible substance, since by definition dv = 0. Therefore, the First Law

for an incompressible substance is

du = d̄Q. (4.53)

Therefore, the only way to change u is by heat addition. This implies that an

incompressible substance has only one degree of freedom, so u = u(T ).

If we choose to approximate a real liquid as incompressible in solving a

particular problem, we simply neglect the small pressure dependence of v and

u. A common choice is to evaluate v and u at the saturation pressure at the

local temperature, and use these values no matter what the real liquid pressure

is.

Note that by definition h = u + Pv, so h will still depend on P for an

incompressible substance, even though u does not. Therefore, for a process in

which T and P change, ∆h = ∆u+v∆P . For most liquids and solids, v is small

enough that the v∆P term is small compared to ∆u.

Note also that (∂h/∂T )P = du/dT in this case, so

cp(T ) = cv(T ) (4.54)

for an incompressible substance. This relationship is very different than the one

for ideal gases [Eq. (4.35)].

Problems

4.1 Some properties of ice, liquid water, and water vapor at the triple point

T = 273.16 K are given below.

Phase Density (kg/m3) Specific enthalpy (kJ/kg)
Ice 917.0 -333.5
Liquid 999.8 0.0
Vapor 4.84× 10−3 2501.4
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The enthalpy values are relative to the liquid enthalpy.

A closed, constant volume 1 liter container initially is at a temperature

infinitesimally below 273.16 K. It holds solid and vapor in equilibrium,

with 80% solid by mass. Heat is now added until equal masses of liquid

and solid are present. Write down equations expressing energy, mass, and

volume balance. Determine numerically how much heat must be added.

4.2 The air pressure in aircraft cabins is kept lower than sea level atmospheric

pressure, since otherwise the pressure force on the airframe would be too

great at high altitude. A typical value for a transatlantic flight would be a

cabin pressure equivalent to atmospheric pressure at an elevation of 8,000

ft. On such a flight, to what temperature should the flight attendants heat

water for it to boil? How much heat must be added to boil a unit mass

of water, and how does it compare to the heat needed at sea level? Make

any reasonable assumptions you need for the analysis, but state what you

are assuming.

4.3 Five kg of methane are contained in a closed, 150 liter container. If the

pressure is 1 MPa, determine:

1. Whether any liquid is present, and if so how many kg

2. The temperature

3. The internal energy U of the methane (J)

4.4 A particular substance has an isothermal compressibility κ = aT 4/P 3 and

a thermal expansion coefficient β = bT 3/P 2. Determine the equation of

state v(T, P ) to within an additive constant and the ratio a/b.

4.5 Ten kg of saturated nitrogen vapor at 90 K is heated at constant pressure

until its volume is 3 m3. Determine

1. The pressure

2. The final temperature

3. The heat added

4. The work done by the nitrogen on the environment.

4.6 Using TPX, plot the compressibility factor Z for hydrogen and for oxygen

at 300 K vs. pressure. For hydrogen, plot Z over the pressure range of 1

atm to 100 MPa, and for oxygen over the pressure range of 0.02 MPa to

20 MPa. Use a logarithmic scale for pressure.
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For a particular gas storage tank design, it is necessary to estimate to

within 1% accuracy the tank volume required for a given mass of gas and

pressure at T = 300 K. For both hydrogen and oxygen, determine the

pressure below which use of the ideal gas equation provides acceptable

accuracy.

4.7 Estimate the temperature water at the bottom of a 500 ft deep lake would

have to be heated before it begins to boil.

4.8 The specific heat at constant volume cv for insulating solids at low temper-

ature is given by the equation

cv

R
=

(
12π4

5

)(
T

θ

)3

,

which is known as the Debye T 3 law. The constant θ is known as the

Debye temperature, and is a characteristic of the material in question.

For diamond, θ = 2200 K. Treating diamond as incompressible, how much

heat in Joules must be added to raise the temperature of 1 kg of diamond

from 1 K to 50 K?

4.9 Show that for any simple compressible substance(
∂P

∂T

)
v

=
β

κ

and (
∂β

∂P

)
T

= −

(
∂κ

∂T

)
P

4.10 Derive the results for a van der Waals gas

RTc =
8a

27b

and

Pc =
a

27b2
.

4.11 A particular substance is found to obey the Dieterici equation of state

P (v − b) exp(a/vRT ) = RT.

1. Derive expressions for the properties at the critical point Pc, vc, and

Tc in terms of the constants a, b, and R.
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2. Compare the values for Zc = Pcvc/RTc predicted by this equation

with the values from Table 4.2 or calculated using TPX for hydrogen,

carbon dioxide, and water.

4.12 A particular fluid has critical state parameters Tc = 300 K and Pc = 6

MPa, and a molecular weight of 30. Estimate its specific volume at T =

330 K and P = 12 MPa using

1. the van der Waals equation of state

2. the Lee-Kesler generalized compressibility function, assuming it is a

simple fluid.

4.13 Determine the high-temperature limit for cp for Ar, N2, H2O, CO2, and

CH4, and compare to the results in Figure 4.12. What is the value of cp

(kJ/kg/K) in the high-temperature limit for C60?

4.14 Calculate the acentric parameter ω for N2, CH4, and CF4H2 (“HFC134a”)

using TPX. Compare the predictions for Z at T ∗ = 1.2, P ∗ = 1.5 using

1. TPX

2. Lee-Kesler with ω = 0

3. Lee-Kesler with the actual ω.
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