
CHAPTER 2

ENERGY, WORK, AND HEAT

2.1 Introduction

Energy is a familiar concept, but most people would have a hard time defining

just what it is. You may hear people talk about “an energy-burning workout,”

“an energetic personality,” or “renewable energy sources.” A few years ago

people were very concerned about an “energy crisis.” None of these uses of the

word “energy” corresponds to its scientific definition, which is the subject of

this chapter.

The most important characteristic of energy is that it is conserved: you can

move it around or change its form, but you can’t destroy it, and you can’t

make more of it.1 Surprisingly, the principle of conservation of energy was not

fully formulated until the middle of the 19th century. This idea certainly does

seem nonsensical to anyone who has seen a ball roll across a table and stop,

since the kinetic energy of the ball seems to disappear. The concept only makes

sense if you know that the ball is made of atoms, and that the macroscopic

kinetic energy of motion is simply converted to microscopic kinetic energy of

the random atomic motion.

2.2 Work and Kinetic Energy

Historically, the concept of energy was first introduced in mechanics, and there-

fore this is an appropriate starting point for our discussion. The basic equation

of motion of classical mechanics is due to Newton, and is known as Newton’s

second law.2 Newton’s second law states that if a net force F is applied to a

body, its center-of-mass will experience an acceleration a proportional to F:

F = ma. (2.1)

The proportionality constant m is the inertial mass of the body.

1Thus, energy can’t be burned (fuel is burned), it is a property matter has (not personali-
ties), there are no sources of it, whether renewable or not, and there is no energy crisis (but
there may be a usable energy, or availability, crisis).

2For now we consider only classical, nonrelativistic mechanics.

7



CHAPTER 2. ENERGY, WORK, AND HEAT 8

Suppose a single external force F is applied to point particle moving with

velocity v. The force is applied for an infinitesimal time dt, during which the

velocity changes by dv = a dt, and the position changes by dx = v dt.

F
m

v

Taking the scalar product3 (or dot product) of Eq. (2.1) with dx gives

F · dx = ma · dx

=

[
m

(
dv

dt

)]
· [vdt]

= mv · dv

= d(mv2/2). (2.2)

Here v = |v| is the particle speed. Note that only the component of F along

the direction the particle moves is needed to determine whether v increases

or decreases. If this component is parallel to dx, the speed increases; if it is

antiparallel to dx the speed decreases. If F is perpendicular to dx, then the

speed doesn’t change, although the direction of v may.

Since we’ll have many uses for F · dx and mv2/2, we give them symbols and

names. We call F · dx the infinitesimal work done by force F, and give it the

symbol d̄W :

d̄W = F · dx (2.3)

(We’ll see below why we put a bar through the d in d̄W .)

The quantity mv2/2 is the kinetic energy Ek of the particle:

Ek =
mv2

2
(2.4)

With these symbols, Eq. (2.2) becomes

d̄W = d(Ek). (2.5)

Equation (2.5) may be interpreted in thermodynamic language as shown in

Fig. 2.1. A system is defined which consists only of the particle; the energy

3Recall that the scalar product of two vectors A = iAi+jAj +kAk and B = iBi+jBj+
kBk is defined as A ·B = AiBi + AjBj +AkCk. Here i, j, and k are unit vectors in the x,
y, and z directions, respectively.



CHAPTER 2. ENERGY, WORK, AND HEAT 9

d(E )
k

System

Environment

dW

Figure 2.1: Energy accounting for a system consisting of a single point particle
acted on by a single force for time dt.

“stored” within the system (here just the particle kinetic energy) increases by

d(Ek) due to the work d̄W done by external force F. Since force F is produced

by something outside the system (in the environment), we may regard d̄W as

an energy transfer from the environment to the system. Thus, work is a type of

energy transfer. Of course, d̄W might be negative, in which case d(Ek) < 0.

In this case, the direction of energy transfer is actually from the system to the

environment.

The process of equating energy transfers to or from a system to the change

in energy stored in a system we will call energy accounting. The equations which

result from energy accounting we call energy balances. Equation (2.5) is the first

and simplest example of an energy balance – we will encounter many more.

If the force F is applied for a finite time t, the particle will move along some

trajectory x(t).

F(x,t)

m

A

B

v

The change in the particle kinetic energy ∆Ek = Ek(B) − Ek(A) can be

determined by dividing the path into many very small segments, and summing

Eq. (2.2) for each segment.

∆x i

F
i

In the limit where each segment is described by an infinitesimal vector dx,
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Figure 2.2: Energy accounting for a single particle acted on by (a) a single force
(b) multiple forces for finite time.

the sum becomes an integral:∫
path

d̄W =

∫
path

d(Ek) (2.6)

The right-hand side of this can be integrated immediately:∫
path

d(Ek) = ∆Ek. (2.7)

The integral on the left-hand side defines the total work done by F:

W =

∫
path

d̄W =

∫
path

F · dx. (2.8)

Note that the integral is along the particular path taken. Eq. (2.6) becomes

W = ∆Ek. (2.9)

The thermodynamic interpretation of this equation is shown in Fig. 2.2 and is

similar to that of Eq. (2.5): work is regarded as a transfer of energy to the

system (the particle), and the energy stored in the system increases by the

amount transferred in. (Again, if W < 0, then the direction of energy transfer

is really from the system to the environment, and in this case ∆Ek < 0.)

If two forces act simultaneously on the particle, then the total applied force

is the vector sum: F = F1 + F2. In this case, Eq. (2.9) becomes

W1 +W2 = ∆Ek, (2.10)

where W1 =
∫
path

F1 · dx and W2 =
∫
path

F2 · dx.4 The generalization to N

forces is obvious: the work done by all N forces must be considered to compute

∆Ek.

4For now we’re considering a point particle, so the path followed is the same for both forces;
this won’t be true for extended objects, which will be considered in section 2.4.
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2.3 Evaluation of Work

Since in general a force may depend on factors such as the instantaneous particle

position x, the instantaneous velocity v, or may depend explicitly on time, the

work done by the force will clearly depend on the path the particle takes from

A to B, how fast it travels, and the particular time it passes each point. Since

there are infinitely many possible trajectories x(t) which start at point A at

some time and pass through point B at some later time, there are infinitely

many possible values for W =
∫
path

d̄W ; we need additional information [i.e.,

x(t)] to evaluate W .

This is the reason we put the bar through d̄W but not through d(Ek). It’s

always true that
∫
path

d(Q) may be formally evaluated to yield QB−QA, where

Q is some function of the state (position, velocity, etc.) of the particle and of

time, and QA and QB denote the values of Q when the particle is at endpoints

of the path.

But d̄W is not like this: it’s only the symbol we use to denote “a little

bit of work.” It really equals F · dx, which is not of the form d(Q), so can’t

be integrated without more information. Quantities like d̄W are known as

“inexact differentials.” We put the bar in d̄W just to remind ourselves that

it is an inexact differential, and so its integral depends on the particular path

taken, not only on the state of the particle at the beginning and end of the path.

Example 2.1 The position-dependent force

F(x, y, z) =

{
+iC if y > 0
−i2C if y ≤ 0

is applied to a bead on a frictionless wire. The bead sits initially at the origin,

and the wire connects the origin with (L, 0, 0). How much work does F do to

move the bead along wire A? How much along wire B? Does the contact force

of the bead against the wire do any work?

y

xL

A

B
Solution:

W =

∫
path

F(x, y, z) · dx.



CHAPTER 2. ENERGY, WORK, AND HEAT 12

Since F always points in the x direction,

F(x, y, z) · dx = Fx(x, y, z)dx

Therefore, along path A, W = CL, and along path B, W = −2CL.

Along path A, the force does work on the particle, while along path B the

particle does work on whatever is producing the force. Of course, for motion

along path B to be possible at all, the particle would have to have an initial

kinetic energy greater than 2CL. The contact force does no work, since it is

always perpendicular to the wire (and therefore to dx), so Fcontact · dx = 0.

If we do know x(t), we can convert the path integral definition of work

[Eq. (2.8)] into a time integral, using dx = v(t)dt:

W =

∫ tB

tA

F(x(t),v(t), t) · v(t) dt (2.11)

This is often the easiest way to evaluate work. Note that the integrand is F ·v.

Therefore, F · v is the rate at which force F does work, or in other words the

instantanteous power being delivered by F. We denote the power by Ẇ :

Ẇ = F · v (2.12)

Example 2.2

FFd a
M x(t)

t

L

T

A ball initially at rest at x = 0 in a viscous fluid is pulled in a straight line

by a string. A time-dependent force Fa(t) is applied to the string, which causes

the ball to move according to

x(t) =
L

2

[
1− cos

(
πt

T

)]
.

At time t = T , the ball comes to rest at x = L and the force is removed. As

the ball moves through the fluid, it experiences a drag force proportional to its
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speed: Fd = −Cẋ(t). How much work is done by the applied force to move the

ball from x = 0 to x = L?

Solution: Newton’s second law requires

Fa + Fd = mẍ(t), (2.13)

so

Fa(t) = mẍ(t) + Cẋ(t). (2.14)

Since we know x(t), we can differentiate to find

ẋ(t) =
L

2

(π
T

)
sin τ (2.15)

and

ẍ(t) =
L

2

(π
T

)2

cos τ (2.16)

where τ = πt/T . Substituting these expressions into Eq. (2.14) results in

Fa(t) =
CL

2

( π
T

)
sin τ +

mL

2

(π
T

)2

cos τ.

To calculate the work done by Fa(t), we need to evaluate

Wa =

∫
path

Fa · dx =

∫ L

0

Fa dx.

Since we know both Fa(t) and x(t), it is easiest to convert this path integral to

a time integral using dx = ẋ(t)dt:

Wa =

∫ T

0

Fa(t)ẋ(t) dt.

Changing the integration variable to τ (dτ = (π/T )dt),

Wa =

(
L

2

)2
π

T

∫ π

0

[
C sin2 τ +

( π
T

)
sin τ cos τ

]
dτ.

Since
∫ π

0 sin2 τ dτ = π/2 and
∫ π

0 sin τ cos τ dτ = 0,

Wa =
π2CL2

8T
.

If there were no drag (C = 0), then the work would be zero, since the work

done to accelerate the ball for t < T/2 would be fully recovered in decelerating

the ball for t > T/2. But in the presence of a drag force, a finite amount of work

must be done to overcome drag, even though the ball ends as it began with no

kinetic energy.
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Figure 2.3: External and internal forces acting on two masses of a rigid body.

Note that the work is inversely proportional to the total time T . It takes

more work to push the ball rapidly through the fluid (short T ) than slowly.

By carrying out the process very slowly, it is possible to make Wa as small as

desired, and in the limit of T →∞ the process requires no work. This behavior

is characteristic of systems which exhibit viscous drag.

2.4 Energy Accounting for Rigid Bodies

Up until now we have only considered how to do energy accounting for point

masses. To develop energy accounting methods for macroscopic matter, we can

use the fact that macroscopic objects are composed of a very large number

of what we may regard as point masses (atomic nuclei), connected by chem-

ical bonds. In this section, we consider how to do energy accounting on a

macroscopic object if we make the simplifying assumption that the bonds are

completely rigid. We’ll relax this assumption and complete the development of

energy accounting for macroscopic matter in section 2.8.

Consider a body consisting of N point masses connected by rigid, massless

rods, and define the system to consist of the body (Fig. 2.3). The rods will

transmit forces between the masses. We will call these forces internal forces,

since they act between members of the system. We will assume the internal

forces are directed along the rods. The force exerted on (say) mass j by mass i

will be exactly equal in magnitude and opposite in direction to that exerted on

mass i by mass j (Fij = −Fji), since otherwise there would be a force imbalance

on the rod connecting i and j. No force imbalance can occur, since the rod is

massless and therefore would experience infinite acceleration if the forces were

unbalanced. (Note this is Newton’s third law.)

Let the masses composing the body also be acted on by arbitrary external

forces from the environment. The external force on mass i will be denoted
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Fext,i.

The energy balance in differential form for one mass, say mass i, is

d̄Wext,i +

∑
j

Fji

 · dxi = d(Ek,i), (2.17)

where d̄Wext,i = Fext,i · dxi and of course Fii = 0. Summing the energy

balances for all masses results in an energy balance for the entire system:∑
i

d̄Wext,i +
∑
i

∑
j

Fji · dxi = d(Ek), (2.18)

where

d(Ek) =
∑
i

d(Ek,i) =
∑
i

d(miv
2
i /2) (2.19)

is the change in the total kinetic energy of the body.

Equation (2.18) can be simplified considerably, since the second term on the

left is exactly zero. To see this, recall that the rods are rigid, so

d(|xi − xj|) = 0 (2.20)

for all i and j. Equation (2.20) can be written as

(xi − xj) · d(xi − xj) = 0. (2.21)

Now Fij is parallel to (xi − xj), so multiplying Eq. (2.21) by |Fij|/|xi − xj |

results in

Fij · d(xi − xj) = 0. (2.22)

Since Fji = −Fij , we can re-write this as

Fji · dxi = −Fij · dxj. (2.23)

Therefore, because the body is rigid, the work done by Fji on mass i is precisely

equal to the negative of the work done by Fij on mass j. Thus, the internal

forces Fij cause a transfer of kinetic energy from one mass within the body to

another, but considering the body as a whole, do no net work on the body.

Mathematically, the second term on the left of Eq. (2.18) is a sum over all

pairs of mass indices (i, j). Because of Eq. (2.23), for every i and j, the (i, j)

term in this sum will exactly cancel the (j, i) term, with the result that the

double sum is zero.

With this simplification (for rigid bodies), Eq. (2.18) reduces to∑
i

d̄Wext,i = d(Ek). (2.24)
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Figure 2.4: Some forces which do no work: (a) traction force on a rolling wheel;
(b) centrifugal force; (c) Lorentz force on a charged particle in a magnetic field

We see that to carry out an energy balance on a rigid body, we only need consider

work done by external forces, not by internal ones. We can always tell which

forces are external ones – they are the ones which cross the system boundary

on a sketch.

A macroscopic solid object is composed of a huge number of essentially point

masses (the atomic nuclei) connected by chemical bonds (actually rapidly mov-

ing, quantum-mechanically smeared out electrons). If we ignore for the moment

the fact that bonds are not really rigid, a solid object can be approximated as

a rigid body. If this approximation holds, then the appropriate energy balance

equation will be Eq. (2.24).

For simplicity, assume that the external forces act only at L discrete locations

on the surface of the object, where it contacts the environment.5 In this case,

the external work term in Eq. (2.24) becomes
∑L
`=1 F` · dx`, where dx` is the

displacement of the surface of the object at the point where the force F` is

applied. The energy balance Eq. (2.24) becomes

L∑
`=1

F` · dx` = d(Ek). (2.25)

It is very important to remember that the displacements to use in this equation

are those where the forces are applied, and may differ for each force. Do not

make the mistake of using the displacement of some other point (e.g. the center

of mass).

If a force is applied to a macroscopic object at a point where it is stationary,

the force does no work no matter how large the force is. (If you push against a

stationary wall, you may exert yourself, but you do no work on it.) Also, a force

5If the macroscopic force is exerted over some small but finite contact area, the macroscopic
force F` in Eq. (2.25) is simply the sum over the atomic-level forces Fext,i in Eq. (2.24) for
all atoms i in the contact area.



CHAPTER 2. ENERGY, WORK, AND HEAT 17

applied perpendicular to the instantaneous direction of motion of the contact

area can do no work.

Some common forces which do no work are shown in Fig. 2.4. A traction

force |Ft| = mg sin θ in the plane of the surface keeps a rolling wheel from

sliding down a hill; but since the wheel is instantaneously stationary where it

contacts the ground, Ft · dx = 0 and therefore the traction force does no work.

A centrifugal force and the Lorentz force a charged particle experiences in a

magnetic field are both perpendicular to the direction of motion, and thus can

do no work.

Example 2.3 A downward force F1 is applied to a rigid, horizontal lever a

distance L1 to the right of the pivot point. A spring connects the lever to the

ground at a distance L2 to the left of the pivot, and exerts a downward force

F2. An upward force Fp is exerted on the lever at the pivot. Evaluate the work

done by each force if end 2 is raised by dy2, and determine the value of F1 which

achieves this motion without changing the kinetic energy of the lever.

System
Boundary

L L 1

1

2

F

2F pFSpring

Solution: Define the system to consist of the lever only (a rigid body). The

body is acted on by three external forces, and so we must evaluate the work

input to the system from each force. Since the lever is rigid, if the height of

end 2 changes by dy2 while the height at the pivot point is unchanged, then the

height of end 1 must change by dy1 = −(L1/L2)dy2. So the three work inputs

are:

d̄W1 = (−jF1) · (−jL1dy2/L2) = (F1L1/L2)dy2 > 0 (2.26)

d̄W2 = (−jF2) · (+jdy2) = −F2dy2 < 0 (2.27)

d̄Wp = (+jFp) · (0) = 0. (2.28)

Note that the work due to the pivot force is zero, since the lever does not

move at the pivot. Force F1 does positive work on the lever, since the force

and displacement are in the same direction. The spring which produces force

F2 does negative work on the lever, since the force and displacement are in

opposite directions. In this case, we say that the lever does positive work on the

spring, since the force exerted by the lever on the spring is oppositely directed
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to F2 (Newton’s third law).

The energy balance on the lever is then

d̄W1 + d̄W2 + d̄Wp = d(Ek)

(F1L1/L2 − F2)dy2 = d(Ek). (2.29)

If we wish to move the lever without increasing its kinetic energy, then we must

choose

F1L1 = F2L2. (2.30)

This is the familiar law of the lever, but note that we obtained it from an energy

balance, not by balancing torques as would be done in mechanics.

2.5 Conservative Forces and Potential Energy

2.5.1 A Uniform Gravitational Field

Suppose a point particle near the surface of the earth is acted on by gravity,

which exerts a constant downward force Fg = −jmg. It is also acted on by an

arbitrary external applied force Fa(x, t).

F (x,t)
a

Fg

In this case, Eq. (2.10) becomes

Wa +Wg = ∆Ek (2.31)

where

Wa =

∫
path

Fa · dx (2.32)

is the work done by the applied force, and

Wg =

∫
path

Fg · dx (2.33)

is the work done by the gravitational force. Due to the special character of Fg

(a constant force), Wg can be evaluated for an arbitrary path from A to B:

Wg = −

∫
path

jmg · dx
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= −

∫ yB

yA

mgdy

= −mg(yB − yA) (2.34)

= −mg∆y. (2.35)

If ∆y < 0, gravity does work on the particle, and its kinetic energy increases. If

∆y > 0, Wg < 0, which means that the particle must do work against gravity.

In this case the kinetic energy decreases.

Note that Wg can be expressed solely in terms of the difference in a property

(the height) of the particle at the beginning and end of its trajectory: any path

connecting A and B would result in the same value for Wg. This is due to

the special nature of the force Fg, which is just a constant. Of course, for an

arbitrary force such as Fa(x, t), this would not be possible. The force Fg is the

first example of a conservative force.

Since Wg is independent of the particular path taken, we can bring it to the

other side of Eq. (2.31):

Wa = (−Wg) + ∆Ek

= mg∆y + ∆Ek

= ∆(Ek +mgy) (2.36)

We define mgy to be the gravitational potential energy Eg of the particle in

this uniform gravitational field:

Eg = mgy. (2.37)

With this definition, Eq. (2.31) becomes

Wa = ∆(Ek +Eg). (2.38)

Equations (2.31) and (2.38) are mathematically equivalent, but have different

interpretations, as shown in Fig. 2.5. In Eq. (2.31), the gravitational force

is considered to be an external force acting on the system; the work Wg it

does on the system is included in the energy balance but not any potential

energy associated with it. In (b), the source of the gravitational force (the

gravitational field) is in effect considered to be part of the system. Since it is

now internal to the system, we don’t include a work term for it, but do include

the gravitational potential energy (which we may imagine to be stored in the

field) in the system energy. It doesn’t matter which point of view we take – the

resulting energy balance is the same because ∆Eg is defined to be identical to
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(E  + E  ) 
k gWa(E )

kW

W

a

g
(a) (b)

Figure 2.5: Two energy accounting schemes to handle the effects of a constant
gravitational force. In (a), the gravitational field is considered to be external to
the system, while in (b) the field is part of the system.

−Wg . But remember not to mix these points of view: don’t include both Wg

and ∆Eg in an energy balance!

We may generalize this analysis to a macroscopic body. In this case, the

gravitational potential energy becomes

Eg =

∫
body

ρ(x)gy dV, (2.39)

where ρ(x) is the local mass density (kg/m3) at point x within the body. This

can be re-written as

Eg = Mgycm, (2.40)

where

M =

∫
body

ρ(x) dV (2.41)

is the total mass of the body and ycm is the y-component of the center of mass,

defined by

xcm =
1

M

∫
ρ(x)x dV. (2.42)

2.5.2 General Conservative Forces

A constant force, such as discussed above, is the simplest example of a conser-

vative force. The general definition is as follows:

a force is conservative if and only if the work done by it in going

from an initial position xA to a final position xB depends only on

the initial and final positions, and is independent of the path taken.

Mathematically, this definition may be stated as follows:

Wc =

∫
path

Fc · dx = f(xB)− f(xA), (2.43)
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where f is some single-valued scalar function of position in space.

For the special case of a closed path (xB = xA), Eq. (2.43) reduces to∮
Fc · dx = 0, (2.44)

where
∮

denotes integrating all the way around the path. Therefore, the work

done by a conservative force on a particle traversing any arbitrary closed loop

is exactly zero. Either Eq. (2.43) or Eq. (2.44) may be taken as the definition

of a conservative force.

Only very special functions F(x,v, t) can satisfy the conditions for a con-

servative force. First of all, consider the dependence on velocity. The only way

Eq. (2.44) can be satisfied by a velocity-dependent force for all possible loops,

traversing the loop in either direction at arbitrary speed, is if the velocity-

dependent force does no work. This is possible if F(x,v, t) is always perpendic-

ular to v. Thus, any conservative force can have an arbitrary velocity-dependent

force Fv added to it and still be conservative as long as Fv · v = 0 at all times.

It seems that in nature there is only one velocity-dependent conservative

force, which is the Lorentz force felt by a charged particle moving through a

magnetic field B. This Lorentz force is given by

FL = qv ×B, (2.45)

which is always perpendicular to both v and B. Unless stated otherwise, we will

assume from here on that conservative forces do not have a velocity-dependent

part, keeping in mind that the Lorentz force is the one exception.

Having dealt with the allowed type of velocity dependence, consider now the

time dependence. It is clear that Fc can have no explicit time dependence (i.e.,

F(x(t)) is OK but F(x(t), t) is not). If Fc depended explicitly on time, then the

result for Wc would too, rather than on just the endpoint positions in space. So

we conclude that a conservative force (or at least the part which can do work)

can depend explicitly only on position: Fc(x).

2.5.3 How to Tell if a Force is Conservative

If we are given a force function F(x), how can we tell if it is conservative?

First consider the inverse problem: If we know the function f(x), can we derive

what Fc must be? Consider a straight-line path which has infinitesimal length:

xB = xA + dx. Then equation 2.43 reduces to

Fc(xA) · dx = f(xA + dx)− f(xA). (2.46)
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Since dx is infinitesimal, we may expand f(xA + dx) in a Taylor series:6

f(xA + dx) = f(xA) +∇f(xA) · dx + O(|dx|2), (2.47)

where the gradient of f is defined by

∇f = i
∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z
. (2.48)

As we let |dx| go to zero, the higher-order terms go to zero rapidly, so Eq. (2.46)

becomes

Fc(x) · dx = ∇f(xA) · dx (2.49)

The only way this equation can hold for arbitrary xA and dx is if

Fc(x) = ∇f(x). (2.50)

Therefore, a conservative force which depends only on position must be the

gradient of some scalar function of position in space f(x).

How can we tell if a given vector function F(x) is the gradient of some

unknown scalar function f(x)? The easiest way is to write them both out

explicitly:

F(x, y, z) = iFi(x, y, z) + jFj(x, y, z) + kFk(x, y, z) (2.51)

∇f(x, y, z) = i
∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z
. (2.52)

If these are equal, then each component must be equal, so

Fi(x, y, z) = ∂f(x, y, z)/dx (2.53)

Fj(x, y, z) = ∂f(x, y, z)/dy (2.54)

Fk(x, y, z) = ∂f(x, y, z)/dz. (2.55)

Consider now the mixed second derivatives of f(x, y, z). It doesn’t matter

which order we do the differentiation:

∂

∂x

(
∂f

∂y

)
=

∂

∂y

(
∂f

∂x

)
=

∂2f

∂x∂y
, (2.56)

with similar results for the partial derivatives involving z. Therefore, if F = ∇f ,

we may substitute eqs. (2.53) and (2.54) into Eq. (2.56) and obtain

∂Fj
∂x

=
∂Fi
∂y

. (2.57)

6If this is not clear to you in vector form, write it out component by component.
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Similarly,
∂Fi
∂z

=
∂Fk
∂x

, (2.58)

and
∂Fj
∂z

=
∂Fk
∂y

, (2.59)

Equations (2.57)–(2.59) provide a simple test to determine if F(x) is conserva-

tive. If F passes this test, it should be possible to integrate equations (2.53)–

(2.55) and find a function f(x) such that F = ∇f . If F fails the test, then no

such f(x) exists.

2.5.4 Energy Accounting with Conservative Forces

We can easily generalize the analysis of the mass in a constant gravitational

field to handle an arbitrary conservative force acting on a particle. The energy

balance is

Wa +Wc = ∆Ek. (2.60)

Since the force is conservative, Wc = f(xB)− f(xA) = ∆f . Therefore, we may

write the energy balance as

Wa = ∆Ek −∆f = ∆(Ek − f). (2.61)

Now define the potential energy associated with this conservative force as

follows:

Ep(x) = −f(x) +C. (2.62)

Since only differences in potential energy have any physical significance, we can

set the additive constant C to any convenient value. The energy balance now

becomes

Wa = ∆(Ek +Ep). (2.63)

As with the gravitation example, the energy balances (2.60) and (2.63) are

completely equivalent mathematically, and we can use whichever one we prefer.

They differ only in interpretation. Using Eq. (2.60), we regard whatever pro-

duces the conservative force (e.g. a gravitational, electric, or magnetic field, a

frictionless spring, etc.) as part of the environment – external to the system.

Therefore, we include the work Wc done by this force on our system when we

do energy accounting. If we write the energy balance as in Eq. (2.63), we are

regarding the source of the conservative force as part of the system. Since in

this case the force becomes an internal one, we don’t include the work Wc in

the energy balance, but we must account for the potential energy stored in the

field or spring as part of the system energy.
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2.6 Elementary Forces and Conservation of Energy

Elementary forces are those forces which are part of the basic structure of

physics, such as the gravitational force, electromagnetic forces, nuclear forces,

etc. These forces are responsible for all atomic-level or subatomic behavior,

including chemical and nuclear bonding and the forces atoms feel when they

collide with one another. (But quantum mechanics, rather than classical me-

chanics, must be used to correctly predict these features).

As far as we know now, every elementary force of nature is conservative -

that is, it may be derived from some potential energy function. Considering how

special conservative forces are (there are infinitely more functions F(x) which

are not the gradient of some f(x) than there are functions which are), this can

be no accident – it must be a deep principle of physics.

The universe can be thought of as a very large number of elementary par-

ticles interacting through conservative, elementary forces. If we do an energy

accounting for the entire universe, treating the conservative interactions between

particles by adding appropriate potential energy terms to the system energy as

discussed in section 2.5.4, we find7

∆(Ek + Ep) = 0, (2.64)

where Ek and Ep represent the kinetic and potential energies, respectively, of

the entire universe. Of course there can be no external work term, since the

entire universe is inside our system!

Therefore, the total energy of the universe (kinetic + all forms of potential)

is constant. Everything that has happened since the birth of the universe — its

expansion, the condensation of protons and electrons to form hydrogen gas, the

formation of stars and heavy nuclei within them, the formation of planets, the

evolution of life on earth, you reading this book — all of these processes simply

shift some energy from one type to another, never changing the total.

The constancy of the energy of the universe is the principle of conservation

of energy. Of course, any small part of the universe which is isolated from the

rest in the sense that no energy enters or leaves it will also have constant total

energy. Another way of stating the principle of conservation of energy is that

there are no sinks or sources for energy — you can move it around or change

its form, but you can’t create it, and you can’t destroy it.

7Of course, to calculate Ek and Ep correctly we would have to consider not only quantum
mechanics but general relativity. These change the details in important ways, but not the
basic result that the energy of the universe is constant.
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Why is the energy of the universe constant? This is equivalent to asking

why all elementary forces are conservative. Quantum mechanics provides some

insight into this question. In quantum mechanics, a system has a well-defined

constant total energy if two conditions are met: a) there are no interactions with

external forces, and b) the laws governing the elementary forces are constant

in time. If this is applied to the whole universe condition a) is automatically

satisfied, and b) says simply that the basic laws of physics have always been

the same as they are now. As far as we know, this is true – the laws of physics

don’t depend on time.

2.7 Non-Conservative Forces

Since all elementary forces are conservative, it might be thought that any macro-

scopic forces between macroscopic objects (which, after all, are composed of ele-

mentary particles interacting through elementary forces) should be conservative.

This is actually not true, as a simple thought experiment demonstrates.

Imagine sliding an object around in a circle on a table, returning to the

starting point. If the table were perfectly frictionless, it would take no net work

to do this, since any work you do to accelerate the object would be recovered

when you decelerate it. But in reality, you have to apply a force just to overcome

friction, and you have to do net work to slide the object in a circle back to its

original position. Clearly, friction is not a conservative force.

If we were to look on an atomic scale at the interface between the object

and the table as it slides, we don’t see a “friction force” acting at all. Instead,

we would notice the roughness of both the table and the object – sometimes

an atomic-scale bump sticking out of the object would get caught behind an

atomic-scale ridge on the table. As the object continued to move, the bonds to

the hung-up atoms stretch or bend, increasing their potential energy (like springs

or rubber bands); finally, the stuck atoms break free and vibrate violently, as

the energy due to bond stretching is released. The increased vibrational kinetic

energy of these few atoms is rapidly transferred through the bonds to all of the

other atoms in the object, resulting in a small increase in the random, thermal

energy of the object.8

If we reverse the direction we slide the object, the apparent friction force

8Essentially the same process happens in earthquakes as one plate of the earth’s crust
attempts to slide past another one along faults (such as the San Andreas fault or the many
other faults below the LA basin). The sliding slabs of rock get hung up, and as the plates
keep moving, huge strain energy is built up. Eventually, the plates break free, converting the
pent-up strain energy (potential energy) into the kinetic energy of ground motion, which we
experience as an earthquake. Sliding friction is a microscopic version of an earthquake!
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reverses direction too, always opposing the direction of motion. This means

that the friction force depends on the velocity of the object. For sliding friction,

the dependence is usually only on the direction of the velocity vector (not its

magnitude). But viscous drag in a fluid (also a type of friction) depends on the

magnitude also, increasing with speed. This behavior is in sharp contrast to

conservative forces, which only depend on position. For example, the gravita-

tional force on an object of mass m is always mg directed in the same direction

(toward the center of the earth) no matter what the velocity of the object is.

We see then that macroscopic forces which are non-conservative (friction) are

actually “effective” forces which result from very complex atomic-level motion.

Frictional forces always result in an irreversible conversion of macroscopic kinetic

energy (the motion of the object) to disorganized, random thermal energy, and

always oppose the direction of motion, so Fnc · dx is always negative.

2.8 The First Law of Thermodynamics

We now wish to do energy accounting for arbitrary macroscopic material sys-

tems. We’re already part way there – in Section 2.4 we developed an energy

balance equation for macroscopic matter valid if the bonds between atoms were

rigid. Unfortunately, this is not really the case. Bonds in solids can stretch and

bend like springs, so the atoms are continually vibrating. This means that a

solid will have kinetic energy associated with this motion, and potential energy

due to stretching bonds. In liquids and gases, molecules can move and rotate,

as well as vibrate.

In this section, we extend our previous analysis to account for these effects,

and develop a purely macroscopic statement of energy accounting, which is the

celebrated First Law of Thermodynamics.

2.8.1 The Internal Energy

Consider a macroscopic sample of matter (solid, liquid, or gaseous) at rest.

Although no motion is apparent, on a microscopic level the atoms composing

the sample are in continual, random motion. The reason we don’t perceive

this motion, of course, is that all macroscopic measurements we can do average

over a huge number of atoms. Since the atomic motion is essentially random,

there are just as many atoms travelling to the right with a given speed as to

the left. Even though individual atomic speeds may be hundreds of meters per

second, the atomic velocities tend to cancel one another when we sum over a

large number of atoms.

But the kinetic energies due to the atomic motion don’t cancel, since the
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Figure 2.6: Potential energy of a chemical bond as a function of bond length r.
The unstretched length is r0.

kinetic energies are all positive, scalar numbers. Even a sample of matter at

rest (no center-of-mass motion) has microscopic kinetic energy, which we will

call the internal kinetic energy:

Ek,int =
∑
j

mjv
2
j/2, (2.65)

where the sum is over all atoms in the sample.

The sample has microscopic potential energy too. As the atoms move, they

stretch or compress the bonds holding them together. The bonds may be mod-

eled as springs, although ones with a spring constant which depends on bond

length. The potential energy of these “springs” as a function of length typically

looks something like the curve in Fig. 2.6. If the bond is compressed so that

it is shorter than r0, the potential energy rises rapidly. If it is stretched, the

potential energy rises, too. The bond can be broken (r →∞) if work ∆ is done

to pull the atoms apart.

Other types of interactions between atoms can be modeled in a similar way.

Molecules in a gas hardly feel any force from other molecules far away, but when

two molecules approach closely (collide) the potential energy rises rapidly, caus-

ing them to repel one another and move apart again. Similarly, the interaction

of two atoms which are charged may be described by a repulsive or attrac-

tive electrostatic potential energy which depends on their separation. If the

atoms or molecules have a magnetic moment (e.g. iron or nickel atoms, oxygen

molecules), then their interaction is described by a potential energy function

which depends on their separation and the relative alignment of their magnetic

moment vectors. In fact, every atomic-level interaction between atoms can be

described in terms of some potential energy function. We know this is possible,

since we know atomic-level forces are conservative.

At any instant in time, the sample has a microscopic, internal potential

energy, which is the sum of all of the potential energy contributions describing
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the interactions between the atoms or molecules:

Ep,int =
∑
k

Ep,k. (2.66)

The index k runs over all pairs 9 of atoms which exert forces on one another in

any way.

Of course, since the particles are constantly moving and interacting, both

the atomic positions and atomic velocities keep changing. Hence, both Ek,int

and Ep,int are constantly changing, as energy shifts from kinetic to potential

and back again (for example, as two atoms in a gas collide and rebound).

In doing energy accounting for this sample, we will first of all choose the

system to consist of the sample itself (a closed system). We will furthermore

choose to treat the conservative interactions between atoms within it by includ-

ing Ep,int in the system energy, rather than accounting explicitly for the work

done by these forces. Therefore, the only work terms which will appear are

those due to external forces.

If no external forces act on the atoms of the sample (if it is completely

isolated from the environment), then energy accounting leads to the conclusion

that the sum of Ek,int and Ep,int must be constant:

∆(Ek,int+ Ep,int) = 0. (2.67)

We define the internal energy U by

U = Ek,int + Ep,int, (2.68)

For a stationary sample which is isolated from the environment ∆U = 0.

The internal energy includes all of the kinetic energy associated with the

atomic-level, random motion of the atoms of the system, and all of the potential

energy associated with all possible interactions between the atoms. Since the

potential energy associated with chemical bonds is included in Ep,int, chemical

energy is part of the internal energy. Chemical energy is essentially the energy

required to break chemical bonds (∆ in Fig. 2.6). Since ∆ differs for every

different type of bond, if a chemical reaction occurs which breaks bonds of one

type and forms bonds of another type, Ep,int may go up or down. If the system

is isolated, U must be constant, and therefore Ek,int must change oppositely to

9The potential energy of some interactions – for example, bending of chemical bonds – may
depend on the positions of three or more atoms. This doesn’t change anything – we simply
add these terms too to Ep,int .
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the change in Ep,int. The change in Ek,int would be experienced as a change in

temperature. 10

Example 2.4 At sufficiently low density and a temperature of 300 K, the

internal energy of gaseous H2 is -2441 kJ/kmol11 and the internal energy of

gaseous I2 is 59,993 kJ/kmol. (We will show later that in the limit of low

density the internal energy per mole of a gas is a function only of temperature –

assume this limit applies here.) The internal energy of gaseous hydrogen iodide

HI is given by the formula

UHI = 17, 655 + 21.22T kJ/kmol (2.69)

which is valid for 300 < T < 600 K.

If one kmol of H2 is reacted with one kmol of I2 to form two kmol of HI in a

closed, constant-volume container with no energy transfer to the environment,

what is the final temperature if the initial temperature is 300 K?

Solution: The internal energy of the initial mixture of H2 and I2 at 300 K

is

U = (1 kmol)(-2441 kJ/kmol) + (1 kmol)(59,993 kJ/kmol) = 57,552 kJ.

(2.70)

Since the system is isolated (no energy transfer to the environment), U does not

change during the reaction. The final state consists of 2 kmol of HI, so the final

internal energy per kmol of HI is 28,776 kJ/kmol. From Eq. (2.69), the final

temperature is 524 K.

Note that the internal energy of H2 is negative at 300 K. This is not a

problem, since only differences in internal energy matter. It simply reflects a

particular choice for the arbitrary constant C in the internal potential energy

for H2.

Nuclear or even relativistic mass energy (E = mc2) could be included in U

if we like. A nuclear physicist would certainly want to do this. But since only

changes in energy have physical significance, we can disregard these forms of

energy if we don’t plan to consider processes in which they change.

The internal energy is defined in a reference frame in which the sample is at

rest. If this frame is moving and/or rotating with respect to the lab frame, then

the macroscopic kinetic energy associated with these motions must be added to

10Temperature will be formally introduced in the next chapter. For now, think of it as a
measure of the internal kinetic energy per atom. This would be exactly true if atomic motions
were really described by classical mechanics, but when quantum effects are important (and
the usually are) it is only approximately true.

11One kmol is 6.023×1026 molecules. The mass of 1 kmol in kg equals the molecular weight
of the molecule.
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U to determine the total sample energy E in the lab frame:

E = U +
1

2
Mv2

cm +
1

2
Iω2, (2.71)

where vcm is the center-of-mass speed and ω is the rotation rate (assumed to

be about a principal axis which has moment of inertia I).12

It is important to note that Ep,int does not include any potential energy

arising from interactions of atoms in the sample with gravitational, electric,

or magnetic fields produced by external sources. If we choose to include these

macroscopic potential energy terms in the sample energy, we have to add them

explicitly. If the sample is near the surface of the earth and has charge q, the

total energy including potential energy terms would be

E = U +
1

2
Mv2

cm +
1

2
Iω2 +Mgy + qE , (2.72)

where E is the value of the electrostatic potential (volts).

With macroscopic kinetic and potential energy modes, the energy balance

for an isolated sample is

∆E = 0, (2.73)

not ∆U = 0. For example, a rubber ball dropped onto a rigid table will even-

tually come to rest, even if there is no energy loss to the environment. The

gravitational potential energy Mgy is converted into an increase in U , which

would be experienced as an increase in temperature. E, however, remains con-

stant.

2.8.2 Atomic Level Energy Transfer: Microscopic Work

No sample of matter can really be completely isolated from the environment.

Usually, it is in contact with other matter (e.g., a container for a gas or liquid;

a table a solid rests on). Even if it were floating in interstellar space it would

still exchange energy with the environment through radiation.

We now need to consider how to do energy accounting for a macroscopic

sample allowing for external work done by forces from the environment. Con-

sider a sample of gas in a container such as shown in Fig. 2.7 which has one

movable wall (a piston). We will take the system to be the gas, and container

to be part of the environment.

On an atomic level, both the gas and container consist of atoms which are in

constant motion. The atoms of the gas are moving randomly in all directions,

12We assume here that all parts of the sample are moving or rotating macroscop-
ically together. If not, then the macroscopic kinetic energy must be determined as
(1/2)

∫
ρ(x)v(x)2 dV , where the integration is over the sample and ρ is the mass density.
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System Boundary

F

Gas

Figure 2.7: A gas in a container, as seen from the macroscopic and microscopic
points of view.

colliding with one another and occasionally with the container walls. The atoms

in the container are vibrating chaotically about their equilibrium positions as

they are buffeted by the neighboring atoms they are bonded to, or (at the

surface) by gas atoms.

When a gas atom collides with a wall atom, the gas atom may rebound with

either more or less kinetic energy than it had before the collision. If the wall

atom happens to be moving rapidly toward it (due to vibration) when they

hit, the gas atom may receive a large impulse and rebound with more kinetic

energy. In this case, the wall atom does microscopic work on the gas atom:

positive microscopic work is done by the environment on the system.

On the other hand, the wall atom may happen to be moving away when

the gas atom hits it, or it may rebound significantly due to the impact. In

this case, the gas atom will rebound with less kinetic energy than it had before

— therefore, the gas atom does microscopic work on the wall atom: negative

microscopic work is done by the environment on the system.

We see that collisions between the gas atoms and the walls can do microscopic

work even if macroscopically the walls appear stationary. If we let time dt elapse,
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then the energy balance on the gas is

d̄Wmicro = dU, (2.74)

where d̄Wmicro is the total work done on the gas by wall collisions during time

dt.

2.8.3 Energy Transfer as Heat

Suppose the piston is held fixed, but the container starts out “hotter” than the

gas, meaning that the container atoms have more kinetic energy per atom than

do the gas atoms.13 Then over time the gas atoms on average will pick up

kinetic energy from collisions with wall, and wall atoms will lose kinetic energy:

d̄Wmicro will be positive, Ugas will tend to go up, and Ucontainer will tend to go

down. Of course, if the gas started out hotter, then d̄Wmicro would be negative,

and the changes in internal energy would be reversed.

Eventually, when their kinetic energies per atom are comparable,14 the num-

ber of collisions per unit time which impart extra energy to the gas atoms will

just balance the number per unit time which remove energy from the gas atoms,

and Ugas and Uwall will stop changing on average. There would still be very

rapid statistical fluctuations about these average values, but for a reasonable

sized sample these fluctuations are not observable, since it can be shown from

statistics that random fluctuations like this have a relative magnitude propor-

tional to 1/
√
N . For example, if N = 1020, then δU/U ∼ 10−10: the internal

energy is constant to one part in 1010 in this case.

The process we have just described is energy transfer between the wall (part

of the environment) and the gas (the system) due to microscopic work. However,

macroscopically it doesn’t appear that any work is being done, since the piston

isn’t moving, and we can’t see the microscopic deflections due to atomic motion.

Therefore, there is no observable, macroscopic F ·dx, and no macroscopic work.

We call this process of energy transfer by microscopic work without observ-

able macroscopic work energy transfer as heat, or heat transfer for short. The

amount of energy transferred in this way is denoted by the symbol Q. For an

infinitesimal amount, we use the symbol d̄Q. As for work, the bar in d̄Q re-

minds us that it is not the differential of any function, it only means “a little

bit of heat.” (Or the other way to say it is that d̄Q, like d̄W , is an inexact

differential.)

13Of course, “hotness” is really related to temperature, which we’ll introduce in the next
chapter.

14More precisely, when their temperatures are equal.
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The energy balance for this process is then

d̄Q = dU. (2.75)

2.8.4 Energy Transfer as Macroscopic Work

Each collision of a gas atom with a wall delivers an impulse to the wall. At

typical gas densities, the number of collisions per unit area of wall per unit

time is very large. For example, objects sitting in room temperature ambient

air experience roughly 1024 collisions per cm2 per second. Macroscopically, it is

not possible to detect the individual impulses from so many frequent collisions.

Instead, a macroscopic force on the wall is felt, which is proportional to wall

area:

Fwall = PA. (2.76)

The propotionality constant P is the gas pressure.

Suppose the piston is now moved slowly toward the gas a distance dx. The

macroscopic work required to do this is

d̄Wmacro = F · dx = (PA)dx. (2.77)

The gas atoms which collide with the moving piston have their kinetic energy

increased on average slightly more than if the pison had been stationary; there-

fore, Ugas increases. If d̄Q = 0, then the energy balance is

dU = d̄Wmacro = PAdx. (2.78)

Of course, there may also be microscopic work occurring which is not visible

macroscopically (heat transfer). To account for this, we must write the energy

balance as

dU = d̄Q+ d̄Wmacro. (2.79)

For a more general system, macroscopic kinetic energy and potential energy

may also be part of the system energy. If energy is transferred to such a system

by macroscopic work and by heat transfer, the most general energy balance for

a closed system is

dE = d̄Q+ d̄W. (2.80)

We have to stipulate that the system is closed, since if matter were to enter

or leave the system, it would carry energy with it which is not accounted for
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EW Q

Figure 2.8: The First Law for a Closed System.

in Eq. (2.80). Note that we have removed the subscript “macro” on the work

term. In thermodynamics generally, and from here on in this book, the term

work means macroscopic work, unless otherwise stated.

Equation (2.80) is known as the First Law of Thermodynamics. The First

Law simply states that the change in the total energy of a system equals the

energy transfer to it as heat, plus the energy transfer to it as work. It is simply

a statement of conservation of energy for a macroscopic system.

Note that there is no formula for d̄Q like d̄W = F · dx. In practice, d̄Q is

determined from equation 2.80 once d̄W and dE have been evaluated.

We can integrate Eq. (2.80) for some finite change from an initial state to a

final one, yielding

∆E = Q+W (2.81)

where

W =

∫ f

i

d̄W =

∫ f

i

Fmacro · dxmacro (2.82)

and

Q =

∫ f

i

d̄Q. (2.83)

The interpretation of Eq. (2.81) is as shown in Fig. 2.8. Both work and heat rep-

resent energy transfers across the system boundary; the energy E stored within

the system (in whatever form) changes by the amount of energy transferred in.

Alternatively, we may divide Eq. (2.80) by the elapsed time dt to obtain

dE

dt
= Q̇+ Ẇ (2.84)
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where the ratio d̄Q/dt is the heat transfer rate Q̇ and the ratio d̄W/dt is the

power input or work rate we’ve defined previously.

All three equations (2.80), (2.81), and (2.84) are different forms of First Law

of Thermodynamics for a closed system. In solving problems involving the First

Law, you should carefully consider which form is most appropriate to use. If

the process occurs during an infinitesimal time dt, use Eq. (2.80). If you are

given initial and final states of the system, often Eq. (2.81) is the best choice.

If you are given a heat transfer or work rate, then probably Eq. (2.84) would be

easiest to use.

For many processes, both Q and W will be significant, and must be included

to correctly calculate the change in the system energy E from the First Law.

But in some cases, either Q or W may be very much smaller than the other.

In analyzing such processes, it is often acceptable to only include the dominant

energy transfer mechanism, although this all depends on how accurate an answer

is required for ∆E.

For example, if a solid is heated, it usually expands a little bit. But in many

cases the work done in the expansion against atmospheric pressure is so small

that W � Q. In this case, it might be OK to neglect W in calculating ∆E due

to heating.

The opposite case would occur, for example, if a rubber band were rapidly

stretched. Since heat transfer takes some time to occur, if the stretching is

rapid enough it might be OK to neglect Q in calculating the increase in internal

energy of the rubber band due to the work done to stretch it.15 Processes for

which Q = 0 are called adiabatic.

2.9 Reversible and Irreversible Work

An important concept in thermodynamics is the idea of reversible work. Work

d̄W = F(x,v) · dx is reversible if and only if the work done in moving dx is

exactly recovered if the motion is reversed. That is,

Forward: d̄Wforward = F(x,v) · dx (2.85)

Reverse: d̄Wreverse = − d̄Wforward = F(x,−v) · (−dx). (2.86)

Note that the velocity changes sign when the direction of motion is reversed.

This condition is satisfied if

F(x,v) · v = F(x,−v) · v. (2.87)

15You can verify for yourself that rubber bands heat up when stretched by rapidly stretching
one and holding it to your lip.
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Figure 2.9: (a) Quasi-static and (b) rapid compression and expansion of a gas.

Therefore, the condition is that the force component in the direction of v be the

same for forward and reverse motion. A force which depends only on position

x will satisfy this, and therefore work done by any F(x) is reversible.

Friction and drag forces always depend on velocity, and act opposite to the

direction of motion, changing sign when the direction of motion is reversed.

Therefore, work done on a system by a friction or drag force is always negative

(i.e., the system must do work against the friction force). Work done by or

against such forces is never reversible – work must always be done to overcome

friction, and you can never recover it.

Consider compressing a gas in a cylinder by pushing in a piston, as shown

in Fig. 2.9. As discussed above, the gas exerts a force on the piston due to

collisions of gas atoms with the piston surface. To hold the piston stationary, a

force F = PA must be applied. We will assume the piston is lubricated, and is

well-insulated so the compression process is adiabatic.
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The piston can be moved very slowly by applying a force just slightly greater

than PA. If the piston velocity is sufficiently small, then the work required to

overcome viscous drag in the lubricant will be negligible (example 2.2). Also, if

the piston speed is slow enough, the gas molecules which collide with the piston

have plenty of time to move away from it and distribute their excess energy with

other molecules through collisions before the piston has moved any significant

distance. In this case, the state of the gas is the same as would occur if the

piston were stationary at the instantaneous value of x: The gas molecules are

uniformly distributed in the cylinder, and the force on the piston is the same as

if the piston were not moving – it is PA.

In this limit of zero piston speed, the force on the piston approaches PA, no

matter whether the piston is moving in or out. In this limit, the compression

or expansion process is called quasi-static, since the force on the piston is the

same as if the piston were static. Therefore, the work done during quasi-static

compression of a gas is reversible work.

If the piston velocity is high, two things happen which make the process

irreversible. First, the work to overcome viscous drag in the lubricant may no

longer be negligible. Second, if the piston velocity is comparable to the average

molecular speed in the gas, then the piston will tend to sweep up molecules

near it, forming a high-density region just in front of it (similar to a snowplow).

Since the rate at which molecules collide with the piston is proportional to their

number per unit volume, the piston will experience more collisions at a given x

location than if it were moving slowly. Therefore, the applied force F to move

the piston must be greater than the quasi-static force, and thus the work to

compress the gas is greater than in the quasi-static limit. A typical plot of F (x)

for rapid compression is shown in Fig. 2.9(b).

If this process is now reversed and the gas is rapidly expanded, we still have

to do work to overcome viscous drag in the lubricant (not only do we not get

back the work done to overcome drag during compression, we have to do still

more work to overcome it during expansion). Also, there is now a low density

gas region near the piston, since the piston is moving away so fast the molecules

lag behind. So the gas pushes on the piston with less force than if the expansion

were done very slowly. Therefore, the work we get back in the expansion is less

than we put in during compression.

Since W =
∫

F · dx, the work input WAB to move the piston from A to B

is
∫ B
A Fcomp(x)fx, where Fcomp(x) is the force applied along the compression

part of the curve. This of course is simply the area under the Fcomp(x) curve.

The work input to expand the gas from B to A is WBA =
∫ A
B Fexp(x)dx =



CHAPTER 2. ENERGY, WORK, AND HEAT 38

−
∫ B
A
Fexp(x)dx.

If we consider the entire process A → B → A, then the total work input

W = WAB + WBA. In the quasi-static case Fcomp(x) = Fexp(x) = PA, so

W = WAB + (−WAB) = 0. No net work is required to return the piston to its

starting point. From the first law for this process (remember Q = 0)

W = ∆U = 0. (2.88)

Therefore, the gas internal energy returns to its starting value after quasi-static

compression followed by quasi-static expansion.

In the non-quasi-static case, Fcomp(x) > Fexp(x). Therefore, W > 0: net

work input must be done if the piston is rapidly moved from A to B and then

back to A. From the First Law then, ∆U > 0. The gas ends up with more

internal energy (hotter) at the end of the process than at the beginning.

2.10 Some Reversible Work Modes

There are several different ways of doing reversible (quasi-static) work on matter.

A few of these are described here.

2.10.1 Compression

We saw in the last section that if a gas is slowly compressed, the work required

to move the piston dx is d̄W = (PA)dx. The same analysis would apply if the

gas in the cylinder were replaced by any compressible substance, so this result

is quite general. The volume change of the substance is dV = −Adx, so we may

write this as

d̄Wqs = −PdV. (2.89)

We add the subscript “qs” since this only applies if the compression is done

quasi-statically. Note this expression is for the work done on the substance

(input to the system); For compression, dV < 0 and d̄Wqs > 0, for expansion

dV > 0 and d̄Wqs < 0.

2.10.2 Stretching a Liquid Surface

If a liquid film is suspended on a wire frame, as shown in Fig. 2.10, a force is

exerted on the wire that is proportional to its wetted length L that results from

a tensile force16 per unit length in the surface of the liquid. This is known as the

16A tensile force is the opposite of a compression force – it pulls, rather than pushes.
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Figure 2.10: Surface tension in a liquid.

surface tension σ, and has units of N/m. For example, for a water/air interface

at 25 ◦C, σ = 0.072 N/m.

The physical origin of the surface tension is that molecules in a liquid exert

attractive forces on one another, which hold the liquid together. These forces are

much weaker than covalent chemical bonds, but nevertheless have a dependence

on distance similar to that shown in Fig. 2.6. A molecule will have lower poten-

tial energy in the bulk, where it is surrounded by molecules on all sides, than

at the surface, where it feels the attractive force only on one side. Therefore,

surface molecules will try to move into the bulk, until as many have crowded

into the bulk as possible and there is a shortage of surface molecules left to cover

the area. The remaining surface molecules will be spaced slightly further apart

than ideal (r > r0), and therefore they will pull on their neighboring surface

molecules, resulting in the surface tension.

Since the film has two surfaces, the force required to hold the movable wire

stationary is

F = 2σL. (2.90)

If the wire is now quasi-statically pulled, so that F is only infinitesimally greater

than 2σL, the work done to move dx is

d̄Wqs = 2σLdx. (2.91)

During this process the total surface area of the film has increased by 2Ldx.

Therefore, we may write

d̄Wqs = σdA. (2.92)

This expression for the work required to quasi-statically increase the surface

area of a liquid is valid for arbitrary geometry.
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Figure 2.11: Forces exerted by an electric field on a polar diatomic molecule.

2.10.3 Electric Polarization

Many materials are polar, which means that although they are electrically neu-

tral, they are composed of positively and negatively charged atoms. Any ionic

crystal (NaCl) is polar, as is water (the hydrogen atoms have positive charge,

and the oxygen atom has negative charge). If an electric field is applied to a

polar material, it is possible to do work on it.

Consider the situation shown in Fig. 2.11. A polar diatomic gas molecule is

oriented at a particular instant in time at an angle θ with respect to an applied

electric field. (Due to collisions between the gas molecules, at any instant in

time there is a distribution of orientations – they are not all lined up with the

field, except at absolute zero.)

The force on a charge q in an electric field E is given by

F = qE. (2.93)

Therefore, the positive end of the molecule at position x+ feels a force qE, and

the negative end at x− feels a force −qE. The molecule will turn and may be

stretched by the forces due to the electric field acting on each end. (The center

of mass motion is unaffected, since there is no net force.) If, due to the field,

the atoms move by dx+ and dx−, respectively, then the work done on this one

molecule is

d̄W1 = (qE · dx+) + (−qE · dx−) (2.94)

= qE · d(x+ − x−). (2.95)

The electric dipole moment p of the molecule is defined by

p = q(x+ − x−). (2.96)
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The dipole moment is a vector which points along the direction from the negative

charge to the positive charge. In terms of p, the work done is

d̄W1 = E · dp. (2.97)

This is the work done on one polar molecule; to determine the work done on

the entire polar gas, we must sum over all N molecules in the gas:

d̄W =
N∑
n=1

E · dpn = E · d

(
N∑
n=1

pn

)
. (2.98)

The quantity in parenthesis is the total dipole moment of the gas. This may be

rewritten in terms of purely macroscopic quantities by defining the polarization

P to be the dipole moment per unit volume:

P =
1

V

(
N∑
n=1

pn

)
. (2.99)

Then Eq. (2.98) becomes

d̄W = E · d(VP). (2.100)

Although we derived this equation for a polar gas, it is in fact completely general

and applies to polar solids and liquids also.

For static polarization, P is some function of E and temperature T . Except

in extremely strong fields, the dependence on E is linear, so that P may be

expressed as P = ε0χe(T )E. In Rationalized MKSA units (the most common

electromagnetic unit system for engineering work), ε0 = 8.90×10−12 C2· s2/kg·

m3. The dimensionless material property χe(T ) is the electric susceptibility.

The susceptibility for many materials may be expressed as

χe(T ) = A +B/T, (2.101)

where A and B are constants. The A term describes polarization due to stretch-

ing of polar chemical bonds, a process which is not strongly temperature de-

pendent. The B/T term describes orientation of polar molecules in a liquid or

a gas, as we considered above.

It is not hard to see why this orientation process should be temperature-

dependent. If E = 0, then the dipoles are oriented randomly, so just as many

point up as down. In this case, P = 0. For non-zero E, the field will try to align
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p for each molecule with E, but collisions between molecules will upset this

alignment, tending to randomize p. The net effect of the competition between

alignment by E and randomization by collisions is that molecules point in all

directions, but p · E is somewhat more likely to be positive than negative.

This means that there is non-zero polarization, with P directed along E. Since

higher E increases the tendency to align, and higher T increases the tendency

to randomize direction, P typically increases with increasing E, and decreases

with increasing T .

Example 2.5

A dielectric material is one which may be polarized, but has no mobile free

charges, so no electrical currents can flow through it. Dielectrics are often used

to fill the space between the plates in capacitors. A particular dielectric liquid,

which obeys Eq. (2.101) with A = 0, is quasi-statically polarized at constant

temperature starting at E = 0 and ending at E = E1. For this material, the

internal energy depends only on T . Determine the work and heat transfer during

this process.

Solution:

W =

∫
d̄W =

∫
E · d(VP). (2.102)

For quasi-static polarization, the static relationship between P, E, and T holds,

so

Wqs =

∫ E1

0

Ed(V ε0BE/T ) =
ε0V BE

2
1

2T
. (2.103)

Since this process is carried out isothermally, and for this particular material

U = U(T ), ∆U = 0 for this process. The first law applied to this system is

∆U = 0 = Q+Wqs, (2.104)

from which we conclude that Q = −ε0V BE2
1/2T . Therefore, heat must be re-

moved (Q < 0) to polarize this material at constant temperature; if no heat

were removed (adiabatic polarization), U would increase by Wqs, and the tem-

perature would increase.

2.10.4 Magnetization

Some materials are magnetic – that is, they contain atoms which have magnetic

dipole moments and behave just like atomic-scale magnets. Magnetic atoms are

usually ones with unpaired electrons, such as iron, nickel, or rare-earth elements.

Some molecules can have unpaired electrons also, for example O2.

An applied magnetic field can do work on magnetic materials. The analysis

is very similar to that for electric polarization. If a single magnetic dipole with
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dipole moment m is placed in a uniform magnetic field H, the field exerts a

torque on the dipole given by

τ = µ0m×H. (2.105)

where µ0 is a constant which depends on the unit system we use to measure m

and H known as the permeability of free space. In Rationalized MKSA units

µ0 = 4π × 10−7 kg· m/C2.

The work done by this torque is

d̄W1 = µ0H · dm. (2.106)

Summing over all magnetic dipoles in the material and defining the magnetiza-

tion M by

M =
1

V

N∑
n=1

mn, (2.107)

we obtain an expression for the work required to change the magnetization of a

magnetic material:

d̄W = µ0H · d(VM) (2.108)

Analogous to the discussion above for dielectrics, if a magnetic material

is placed in a static magnetic field, it will develop some static magnetization

M(H, T ), which results from the balance between the field trying to align the

dipoles and random thermal motion (collisions, vibrations) upsetting perfect

alignment. If the field is increased very slowly (quasi-statically), then this rela-

tion between M, H, and T will still hold, and we may write

d̄Wqs = µ0H · d [VM(H, T )] (2.109)

Example 2.6 A Curie substance is one for which the static magnetization is

M = C
H

T
, (2.110)

where C is a material-specific constant. Most magnetic materials behave as

Curie substances in the limit of high temperature and low field strength.

A Curie substance in a uniform magnetic field H0 is quasi-statically, isother-

mally magnetized by slowly increasing the field to H1 > H0. Calculate the work

done on the substance, and the change in its internal energy. It may be shown
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that for a Curie substance U = U(T ). Calculate the heat transfer which must

occur in this process.

Solution: Since the process is quasi-static, the static relationship M(H, T )

holds at every step in the process. Therefore,

W =

∫ H1

H0

µ0C

T
H · dH

=
µ0C

2T
(H2

1 −H
2
0). (2.111)

(2.112)

The First Law for this process is

∆U = Q+W. (2.113)

Since the process is isothermal and we are given U = U(T ), ∆U = 0. Therefore,

Q = −W = −(µ0C/2T )(H2
1 −H

2
0 ). (2.114)

Example 2.6 shows that heat must be given off to the environment in order

to quasi-statically (reversibly) magnetize a Curie substance at constant temper-

ature. If the process had been done adiabatically instead (Q = 0), the internal

energy and temperature of the substance would have increased. The reason for

this is that the microscopic torque exerted on the individual dipoles by the field

imparts to them some rotational kinetic energy, which is then transferred to the

rest of the substance by collisions. The reverse process of quasi-static isothermal

demagnetization require heat input to maintain the sample temperature; if no

heat is supplied (adiabatic demagnetization), the sample temperature drops.

These processes may be combined to produce useful devices, such as mag-

netic engines or magnetic refrigerators. Magnetic refrigerators are used in prac-

tice to achieve very low temperatures (T < 1 K), where conventional refrigera-

tors cannot function.

2.10.5 Generalized Forces and Displacements

The expressions for quasi-static work are always of the general form FdX or F ·

dX: −PdV , σdA, E·dP, µ0H·dM, etc. We can think of these as generalizations

of F ·dx. We call the F terms (−P , σ, E, H) generalized forces and the X terms

(V , A, P, M) generalized displacements.

The work done by any of these for a finite change is

W =

∫
path

F · dX. (2.115)
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This is still a path integral, but note it is not an integral in physical coordinate

space, but in the space defined by X. For example, polarization work would

involve integrating E · dP along some P(t) trajectory.

2.11 Some Irreversible Work Modes

If any of the processes discussed in the last section are done too rapidly, the

work done will not be reversible. For example, if the magnetic field is increased

too rapidly, the induced magnetization will lag behind the static M(H, T ). This

will result in µ0H ·dM being greater than the quasi-static value for a given dM.

Therefore, more magnetization work must be done to effect a given change in

magnetization; less work is recovered during demagnetization.

Some other ways of doing work are inherently irreversible – if the direction

of the motion is reversed, the force changes sign, so you can’t recover any of

the work put in. As we’ve already discussed, work done to overcome friction or

viscosity is like this.

2.11.1 Stirring a Viscous Fluid

An example of purely irreversible work is stirring a viscous fluid.17 Work must

be done to turn the stirrer, no matter which direction it is turned. The fluid will

have some macroscopic kinetic energy for a while due to stirring, but eventually

it will come to rest, with the energy transfer as work to the system due to

stirring appearing finally as an increase in internal energy U .

In fact, the state of the fluid after it is stirred and has come to rest again

is no different than if the same amount of energy had been added to it as heat.

Fully irreversible work is equivalent to heat addition.

2.11.2 Electrical Current Flow Through A Resistor

Another common type of fully irreversible work is electrical current flow through

a resistor. As electrons move through a resistor with an electrical potential

∆E > ′ across it, they lose electrostatic potential energy in the amount |e∆E|

by doing this amount of irreversible work. The work is done by colliding with

atomic scattering centers within the resistor, which transfers energy to them,

increasing the internal energy of the resistor.

If the number of electrons flowing through the resistor per second is Ṅe, then

the rate at which irreversible work is done is

Ẇe = Ṅe|e∆E| = I·E . (2.116)

17All fluids, even water and gases, have some viscosity.
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where I = eṄe is the electrical current. The current through the resistor is

proportional to the voltage across it: I = ∆E/R, where R is the resistance.

Therefore, Eq. (2.116) can be also written Ẇe = I2R, or Ẇe = (∆E)2/R.

As was true for stirring a fluid, passing a current through a resistor is fully

irreversible, since changing the sign of the voltage also reverses the direction of

current flow. The irreversible electrical work done on the resistor is equivalent

thermodynamically to heat addition to the resistor.

Problems

2.1 A cart is sitting near the edge of a flat, horizontal table. The wheels of

the cart have radius r, and a lever of length R > r is attached to one

wheel. When the lever is straight down, it is pushed by a force ~F to the

left, causing the wheels to turn a small amount dθ and the cart to move

to the right. A traction force is also present on the wheels, which keeps

the cart from sliding when the force ~F is applied. Determine the work

done by force ~F and by the traction force. (Hint: calculate displacements

with respect to the table carefully, remembering the cart moves. Make

sure your answer is sensible when R = r.)

r

R

F

Ft

2.2 Which of the following forces are conservative? The forces are all two-

dimensional – the component in the z direction is zero. Here ı̂ is a unit

vector in the x direction, and ̂ is a unit vector in the y direction.

~F1 = iy − jx (2.117)

~F2 =
ix+ jy

x2 + y2
(2.118)

~F3 = i2xy + jx2 (2.119)

~F4 = i2x+ jx2 (2.120)
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~F5 = ia sin(ax) sin(by) − jb cos(ax) cos(by) (2.121)

~F6 = i sin(ax) cos(by) + j cos(ax) sin(by) (2.122)

2.3 Show that any force with the properties listed below which acts between

two particles must be conservative.

1. The force is directed along the line connecting the particles.

2. The force depends only on the distance r between the particles.

2.4 A ball of mass m is dropped at height y = H onto a plate which at the

moment the ball hits is at y = 0 and is travelling upward with constant

speed vp. Assuming the ball rebounds elastically and assuming air resis-

tance is negligible, how high does the ball bounce? How much work does

the plate do on the ball?

2.5 You are a scientist on your way to the new research station on Mars in the

year 2020. Your spacecraft has just undocked from the space station in

earth orbit, and is beginning to accelerate to cruising speed for the trip

to Mars. The ion engines are turned on at t = 0, and the engine thrust

begins to increase, producing for a while a spacecraft acceleration linear

in time: a = Ct. Within the spacecraft, the effects of the acceleration are

identical to those of a linearly-increasing gravitational field. Free-floating

objects at t = 0 begin “falling” toward the rear wall. You notice a ball

which at t = 0 is a distance H from the rear wall. In terms of the mass of

the ball, C, and H, what is the kinetic energy (in the local reference frame

within the spacecraft) of the ball when it strikes the wall? Is the concept

of potential energy useful to solve this problem? Why or why not?

2.6 An ideal gas is defined to be one which satisfies PV = NR̂T , where N is the

number of kg-moles (kmol) of gas, and R̂ = 8.3143 kJ/kmol/K. Consider

an ideal gas contained in a vertical cylinder, with a piston of mass M at

the top.

1. Initially, no external force is applied to the piston, and it comes to

some equilibrium height. If the atmospheric pressure is P0 and the

cylinder area is A, what is the gas pressure in the cylinder?

2. The gas is now heated quasi-statically at constant pressure until its

volume is tripled. How much work does the gas do against the envi-

ronment (which includes the massive piston) during this process?
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3. Finally, a force is applied to the top of the piston, and the gas is

quasi-statically, isothermally compressed back to its initial volume.

How much work must be done?

2.7 A Curie substance undergoes a three-step quasi-static process:

1. The substance is isothermally magnetized from (H0,M0) to (H1,M1),

where H1 = 2H0

2. The field is reduced back to H0, holding M fixed

3. The magnetization is reduced to M0, holding H fixed

At the end of this process, the substance is back in its initial state.

Sketch this process on a plot of H vs. M . For each step, determine

1. Whether work is done on or by the substance, and how much

2. Whether heat is transferred to or from the substance, and how much

3. The temperature at the end of the step.

Explain how this process might be used as the basis for a magnetic refrig-

erator.

2.8 For a particular dielectric material, the susceptibility is given by χe =

A + B/T . With ~E held constant, the material is cooled to half its initial

temperature, causing the polarization to increase. How much work is done

on the material by the electric field in this process?

2.9 Due to surface tension, the pressure inside a small water droplet will be

greater than the air pressure outside. Show that

∆P = Pi − Po =
2σ

r
,

where σ is the surface tension and r is the droplet radius. Hint: consider

a force balance in the x direction on the system defined by the dotted line,

which cuts the droplet in half.

Pi

Po

System

x
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Small water droplets in a fog may be only a few microns in size. Evaluate

numerically the pressure inside a water droplet for diameter D = 1 µm

and for D = 10 µm if the air pressure is 1 atm. (1 atm = 1.01325× 105

N/m2). Express your answer in atmospheres.

2.10 An ideal gas has the properties described in problem 2.6. In addition, for

monatomic ideal gases (He, Ar, etc.) the internal energy is related to N

and T by

U =
3

2
NR̂T.

Consider a process in which a monatomic ideal gas is quasi-statically adi-

abatically compressed from a state with V0, P0, T0 to a final state with

properties V, P, T .

1. Derive an expression for how the temperature varies with volume

during this process – that is, find the function T (V ). Do your analysis

systematically: draw a sketch showing the system and any energy

transfers from the environment, state any assumptions, invoke the

first law, use necessary property data, etc.

2. Using this formula, evaluate the final temperature (K), final pressure

(MPa), and work input (J) if argon at 300 K and 0.1 MPa is quasi-

statically, adiabatically compressed to one-fourth of its initial volume.

(Recall 1 Pa = 1 N/m2.)


