
CHAPTER 12

THERMODYNAMICS OF MAGNETIC SYSTEMS

12.1 Introduction

Thermodynamics applies to much more than just simple compressible sub-

stances. We’ve dealt briefly with magnetic work. In this chapter, we’ll discuss

in more depth the thermodynamics of materials on which magnetic work can

be done.

12.2 The Simple Magnetic Substance

Magnetic fields can interact with some materials, causing work to be done on or

by them. Here we consider the simplest case, when magnetic work is the only

possible reversible work mode.

If a substance contains molecules or ions which have permanent magnetic

dipole moments (for example, O2 or rare-earth ions), then an external magnetic

field can do work on the sample by turning these dipoles to align with the field.

Such materials are known as paramagnetic.

A magnetic field can also do work on a substance by inducing electrical

currents to flow. These currents may be macroscopic ones, like those induced

in the surface layer of a perfect conductor when a magnetic field is applied, or

atomic-scale ones due to slight changes in the motion of the electrons orbiting

about the nuclei due to the magnetic field. In either case, materials in which

currents are induced when a magnetic field is applied are called diamagnetic.

The net magnetic dipole moment of a sample per unit volume defines the

magnetization ~M . Note that ~M is a vector. For the paramagnetic case, it is the

vector sum of all individual magnetic dipole moments. If they point in random

directions (as they do with no applied field), then their vector sum is zero and
~M = 0. But if a field is applied so they are at least partially aligned, then there

is a net magnetization pointing in the direction of the applied field. (They are

not perfectly aligned since collisions with other molecules or with the lattice in

a solid tend to upset the alignment.)

For diamagnetic materials, there is also a magnetization, since current loops

have a magnetic moment associated with them. It may be shown that the
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magnetization of a diamagnetic material points opposite to the direction of the

magnetic field.

All materials have some diamagnetic response, but it is usually weak. Ex-

cept in extremely strong fields, most diamagnetic materials can be considered

nonmagnetic. If the material contains permanent magnetic dipoles, then the

paramagnetic response is usually much larger and the diamagnetism can be

neglected.

Finally, the most familiar form of magnetism is ferromagnetism. Permanent

magnets, which by definition are magnetized even in zero applied field, are made

of ferromagnetic materials. Only the elements Fe, Co, Ni, and Gd exhibit ferro-

magnetism, and all permanent magnets contain at least one of these elements.

The ferromagnetic elements have permanent magnetic dipoles, like paramag-

netic materials. The difference is that the dipoles exert forces on one another

which tend to lock them into alignment even without an external magnetic field.

If a ferromagnetic material is heated, beyond a certain temperature the forces

between dipoles are overcome, and the material becomes paramagnetic. This

temperature is known as the Curie Point, and for iron it is 770 ◦C.

In general, a paramagnetic, diamagnetic, or ferromagnetic substance may

have other work modes too. For example, oxygen gas is paramagnetic but also

is compressible. A liquid oxygen droplet will have a surface tension, so deform-

ing the droplet is another work mode. But in most cases, magnetic materials

are solid, and reasonably incompressible. In this case, the only important work

mode is magnetic work, and we may then treat the substance as a simple mag-

netic substance. This is the only case we will consider here.

When an external magnetic field is applied to a sample, the response of the

sample (turning dipoles or induced currents) modifies the local value of the field

within the sample. We define ~H to represent the applied field which would exist

without the sample, and ~B to represent the true field value in the sample. The

quantities ~B, ~H, and ~M are related by 1

~B = µ0( ~H + ~M). (12.1)

The value of the field without the sample is really µ0
~H, but since µ0 is just a

constant (4π × 10−7 tesla-m/amp) we can treat ~H as representing the applied

magnetic field.

1This equation depends on the unit system. The form here is for the Rationalized MKS
system, which is the one used most commonly in applied science and engineering. In another
unit system widely used in physics (cgs), ~B and ~H have the same units and equation 12.1 is

replaced by ~B = ~H + 4π ~M
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We’ve shown previously that the work required to reversibly magnetize a

magnetic substance is

d̄W = µ0
~H · d( ~MV ). (12.2)

The Gibbs equation for a simple magnetic substance may be derived by con-

sidering a reversible process in which magnetic work d̄W is done and heat

d̄Q = TdS is added. Since dU = d̄Q+ d̄W ,

dU = TdS + µ0
~H · d( ~MV ). (12.3)

On a unit mass basis,

du = Tds+ µ0
~H · d( ~Mv). (12.4)

We can simplify the notation by defining

~m = µ0v ~M. (12.5)

Also, the magnetization is generally either parallel to ~H (paramagnetic sub-

stances) or anti-parallel (diamagnetic substances). Therefore, ~H · d~m = Hm,

where m < 0 in the diamagnetic case.

The magnetic Gibbs equation then becomes

du = Tds+Hdm. (12.6)

Starting from this equation, we can carry out an analysis very similar to the one

in chapter 6 for a simple compressible substance. The only difference is that we

replace −v by m, and P by H. For example, we can define a magnetic enthalpy,

Helmholtz free energy, and Gibbs free energy by

h = u−Hm (12.7)

f = u− Ts (12.8)

g = h − Ts = u− Ts−Hm. (12.9)

Although we use the same symbols for these as we did for a simple compressible

substance, it’s important to keep in mind the difference in definition (e.g. h =

u−Hm, not h = u+Pv) since the reversible work mode is now magnetization,

not compression.

The differential equations of state for these properties are:

dh = Tds−mdH (12.10)

df = −sdT +Hdm (12.11)

dg = −sdT −mdH (12.12)
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Integratings these equations would yield u(s,m), h(s,H), f(T,m), and g(T,H),

all of which are fundamental relations. Experimentally, it is usually easiest to

work with temperature and magnetic field strength as independent variables, so

g(T,H) is in many cases the most useful of these fundamental relations.

Of course, analogs of the Maxwell relations may be easily written down.

The above differential equations of state are general and apply to any simple

magnetic substance. To determine the specific properties of a particular sub-

stance, we need to know the functional form of one of the fundamental relations

[say, g(T,H)] or else a set of experimental equations of state like m(T,H) and

cH(T,H). Let’s look at a couple of important magnetic substances.

12.2.1 The Curie Substance

For paramagnetic materials, the tendency for the dipoles to be aligned with

the field is balanced by the effects of random collisions (in a gas) or vibrations

of the lattice (in a solid), which tend to randomize the direction the dipole

points. Since the energy associated with the random, thermal motion scales

with temperature, we expect that the magnetization of a paramagnetic material

will increase withH at constant T , and decrease with T at constant H. In fact it

is found that M = f(H/T ). The function f(H/T ) is linear for small H/T , and

saturates at an asymptotic value for large H/T , since in this limit the dipoles

are perfectly aligned and therefore M can’t increase further.

A Curie substance is defined as any substance which obeys

~M = C
~H

T
. (12.13)

All paramagnetic substances have this behavior for small H/T . In terms of m,

or

m = C ′
~H

T
, (12.14)

where C ′ = µ0vC.

Like an ideal gas, a Curie substance has an internal energy which depends

only on temperature. The proof follows exactly the procedure we used to prove

u = u(T ) for an ideal gas. First solve Eq. (12.6) for ds:

ds =
1

T
du−

H

T
dm. (12.15)

Substituting for H/M ,

ds =
1

T
du−

1

C ′
mdm. (12.16)
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Equating mixed partial derivatives,

∂

∂m

[
1

T

]
u

= −
1

C ′

(
∂m

∂u

)
m

(12.17)

But (∂m/∂u)m = 0, so 1/T depends only on u, not on m. Therefore, T = T (u),

and inverting this we have u = u(T ).

In fact, it can be seen from this analysis that any material which obeys

m = f(H/T ) (12.18)

will have an internal energy which is a function of temperature alone.

Knowing that u = u(T ), we may now integrate the Gibbs equation and find

the entropy of a Curie substance.

ds =

(
1

T

)(
du

dT

)
dT −

H

T
dm. (12.19)

The coefficient multiplying dT is (∂s/∂T )m, which by definition is cm/T , where

cm is the specific heat at constant magnetization. Therefore, we see

cm(T ) =
du(T )

dT
(12.20)

which is a function only of temperature for a Curie substance. The Gibbs

equation then is

ds =
cm(T )

T
dT −

H

T
dm. (12.21)

Since m = C ′H/T ,

ds =
cm(T )

T
dT −

m

C ′
dm. (12.22)

Integrating this,

s(T1, m1)− s(T0, m0) =

∫ T1

T0

cm(T )

T
dT −

1

2C ′
(
m2

1 −m
2
0

)
, (12.23)

or in terms of M ,

s(T1,M1)− s(T0,M0) =

∫ T1

T0

cm(T )

T
dT −

µ0v

2C

(
M2

1 −M
2
0

)
, (12.24)
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Note that the entropy decreases if a Curie substance is magnetized isothermally.

This makes sense physically: as individual atomic magnetic dipoles become

more aligned with the field (increasing M), the sample becomes more ordered.

Therefore, we would expect s to decrease, as it does.

This also means that heat must be removed from the sample during isother-

mal magnetization. If a sample is magnetized reversibly at T from zero magne-

tization to some value M ,

Q =
µ0vM

2

2C
(12.25)

must be rejected to the environment. If instead the sample is magnetized adia-

batically, then it will increase in temperature. Similarly, if a Curie substance is

demagnetized (M decreased) at constant temperature, heat must be supplied.

If demagnetization is carried out adiabatically, the temperature will decrease.

Thus, magnetizing a Curie substance is similar to compressing a gas, and

demagnetizing a Curie substance is similar to expanding a gas. This analogy

suggests it should be possible to construct a heat pump or a heat engine by

taking a Curie substance through a sequence of states in the (T,m) plane (or

equivalently, the (T,H) plane) returning to the initial state. While no known

practical heat engine operates on this cycle, it is in fact used as a heat pump

(refrigerator) to reach very low temperatures near absolute zero. Temperatures

as low as 10−8 K have been reached using magnetic refrigerators. To reach

these very low temperatures, nuclear magnetic moments (rather than atomic

ones) are employed.

12.3 Superconductors

Many metals exhibit superconductivity when cooled to very low temperatures.

This effect was first discovered by Onnes in 1911, shortly after he succeeded in

liquifying helium. Until 1986, all known superconductors required cooling be-

low 20 K before they would become superconductors. Beginning in 1986, some

ceramic materials which become superconductors at abnormally high temper-

atures (above 100 K) were discovered. One of the most useful ones is yttrium

barium copper oxide: YBa2Cu3O7−x. The discovery of high temperature su-

perconductors has enormous practical consequences, since their transition tem-

peratures are above the boiling point of N2 at 1 atm. Therefore, inexpensive

liquid nitrogen can be used to keep these materials superconducting, rather than

expensive liquid helium which is required for most lower-temperature supercon-

ductors.

Superconductors exhibit several strange properties. As they are cooled below
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the transition temperature Tc, the electrical resistance drops suddenly to exactly

zero. If a current is set up in a superconducting ring (for example by cooling it

below Tc in a magnetic field and then removing the field), it persists indefinitely.

Measurements have been done which show currents remaining unchanged for

months. This can only be possible if the resistance is really zero, not just very

small.

If a superconductor is brought into a magnetic field, currents will flow in

the surface layer of the superconductor, which perfectly shield the the magnetic

field from the interior, so that the magnetic field inside is zero. This is the

behavior predicted from EM theory for any perfect conductor. In contrast, for

a real conductor with finite resistance, the induced currents would eventually

die out and the field would penetrate.

But superconductors display an additional property which is not simply

a consequence of zero resistance. If a superconducting material is cooled from

above Tc to below Tc in a magnetic field, the magnetic field is completely expelled

from the interior at Tc. Since the magnetic field penetrates above Tc, there

would be no reason for currents to start flowing in the surface to shield the

interior from the magnetic field, if a superconductor were just like a metal with

zero resistance.

But the currents do start flowing in the surface layer at Tc, and the field

is expelled. Evidently, there is something intrinsic about the superconducting

state which is incompatible with the presence of a magnetic field inside. This ef-

fect, first discovered in 1933 by Meissner and Ochsenfeld, is called the Meissner

effect. This is what causes a permanent magnet to levitate above a supercon-

ducting dish, and is employed in several schemes for magnetic levitation trains.

Thermodynamics can be used to understand some of the properties of super-

conductors. When a superconductor expels a magnetic field it does magnetic

work on the external currents producing the field, so magnetic work is a relevant

work mode for a superconductor. In principle, we could include −Pdv work too,

but it is usually acceptable to assume the superconductor is incompressible. In

this case, a superconductor is a simple magnetic substance.

It is found that applying a sufficiently strong magnetic field to a supercon-

ductor can destroy the superconductivity, causing it to revert to the “normal”

state. We may regard the superconducting state exactly like a thermodynamic

phase. The phase diagram for a superconductor looks something like shown

below.



CHAPTER 12. THERMODYNAMICS OF MAGNETIC SYSTEMS 296

super-
conducting

normal

H

T

Tc

Hc,0

What is the magnetic equation of state of a superconductor? Since we know
~B = 0 in a superconductor, and also

~B = µ0( ~H + ~M) (12.26)

the magnetic equation of state in the superconducting state is

~M = − ~H. (12.27)

In contrast, in the normal state, ~M = 0 since typically metals which become

superconducting do not contain paramagnetic ions.

Since the Gibbs free energy is particularly useful if T and H are held con-

stant, let’s calculate g for the normal and superconducting phases. We can do

this by integrating the differential equation of state

dg = −sdT −mdH, (12.28)

using the appropriate magnetic equation of state for the normal and supercon-

ducting phases (m = 0 or m = −µ0vH).

For the normal phase, m = 0, and therefore Hdm = 0 so it is impossible to

do magnetic work on the substance when it is in the normal phase. As in the

case of an incompressible fluid, this means that the properties of the substance

in the normal state are fixed by only one quantity, the temperature. For the

free energy we have

dgn = −sn(T )dT. (12.29)

Therefore,

gn(T1) − gn(T0) = −

∫ T1

T0

sn(T ) dT. (12.30)
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For the superconducting phase,

dgs = −ssdT −msdH = −ssdT + (µ0vH)dH. (12.31)

If we equate the mixed partial derivatives of the coefficients in this equation,

−

(
∂ss
∂H

)
T

= µ0v

(
∂H

∂T

)
H

= 0, (12.32)

we see that the entropy in the superconducting phase has no dependence on H,

and therefore depends only on T . Thus, s is a function just of T for both the

superconducting and normal phases. (Note that this was not true for the Curie

substance.)

With this information, we can proceed to integrate Eq. (12.31) to find the

Gibbs free energy of a superconductor.

gs(T1, H1) − gs(T0, H0) = −

∫ T1

T0

ss(T ) dT +
µ0v

2

(
H2

1 −H
2
0

)
. (12.33)

We showed in Chapter six that the stable phase of a simple compressible

substance at specified (T, P ) is the one with the lowest Gibbs free energy g =

u+ Pv− Ts. The same analysis can be repeated for the magnetic case, simply

replacing P with H and v with −m to show that the stable phase of a simple

magnetic substance at specified (T,H) is the one with lowest magnetic Gibbs

free energy g = u−Hm− Ts.

Therefore, in the region of the (H, T ) plane where the superconducting phase

is thermodynamically stable, gs < gn; outside this region gn < gs. On the

coexistence line where they can exist in equilibrium with one another gs = gn.

Let’s consider a temperature T < Tc, where the superconducting phase is

stable for H = 0, and so gs(T, 0) < gn(T ). Consider what happens as the

magnetic field is increased from zero. The Gibbs free energy of the normal

phase (metastable at H = 0) is not affected by H. But the Gibbs free energy of

the superconducting phase increases quadratically with H. As shown in Figure

12.1, gs(T,H) becomes equal to gn(T ) at some value of H; this defines the value

of the critical magnetic field strength Hc(T ), above which the superconductor

reverts to the normal phase:

gs(T,Hc) = gn(T )

gs(T, 0) +
µ0vH

2
c

2
= gn(T ). (12.34)

(12.35)
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Figure 12.1: Gibbs free energy for the superconducting and normal phases.

Therefore,

H2
c (T ) =

2

µ0v
(gn(T )− gs(T, 0)) . (12.36)

Note that the work done by the superconductor on the surroundings to keep

the magnetic field out as the external field is raised from zero to H is

W = −

∫ H

0

Hdm = +µ0v

∫ H

0

HdH =
µ0v

2
H2. (12.37)

So the increase in Gibbs free energy of the superconductor is due to the work

it has to do to keep the field out; eventually, (at Hc) it is no longer worth it

energetically and the substance reverts to the normal phase and lets the field

in.

Now consider the latent heat associated with the normal to superconducting

transition. Doing entropy accounting for a substance which undergoes a phase

change from the normal to the superconducting state,

ss(T ) = sn(T ) +
Q

T
, (12.38)

where Q is the heat added to bring about the normal→ superconducting tran-

sition.

Since s = −(∂g/∂T )H ,

Q = T (ss(T )− sn(T ))

= −T

(
∂(gs(T,H) − gn(T ))

∂T

)
= −T

(
∂(gs(T, 0) + µ0vH

2 − gn(T ))

∂T

)
= −T

(
d(gs(T, 0) − gn(T ))

dT

)
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= T

(
d(µ0vH

2
c (T )/2)

dT

)
(12.39)

(12.40)

Therefore,

Q = µ0vTHc(T )
dHc(T )

dT
(12.41)

From the phase diagram, we see that Hc = 0 at Tc, and the transition occurs

at T < Tc if a field is applied. Therefore, from Eq. (12.41), at zero applied field

the normal → superconducting transition has a latent heat of zero. Also, as

T → 0, Q → 0, so |Q| must have a maximum at a temperature between 0 and

Tc. Since dHc(T )/dT < 0, Q < 0 for non-zero H. Thus, when a substance is

cooled and becomes superconducting, heat is given off, similar to when a gas

condenses to form a liquid.

Finally, we can derive an expression for the difference between the specific

heats of the normal and superconducting phases. Since for both phases the en-

tropy is a function only of temperature, the specific heat is simply c = T (ds/dT ),

and is the same whether H or m is held constant.

Since ss(T ) − sn(T ) = Q/T , we have from Eq. (12.41)

ss(T )− sn(T ) = µ0vHc(T )
dHc(T )

dT
(12.42)

Differentiating with respect to T and multiplying by T ,

cs(T ) − cn(T ) = µ0vT

[(
dHc(T )

dT

)2

+Hc(T )
d2Hc

dT 2

]
. (12.43)

At zero field, the transition occurs at T = Tc. Since Hc = 0 in this case,

cs(Tc) − cn(Tc) = µ0vTc

(
dHc(T )

dT

)2

T=Tc

. (12.44)

This important formula, known as Rutger’s formula, shows that there will be

a jump in specific heat as the substance is cooled below Tc and becomes su-

perconducting. The magnitude of the jump depends only on v, Tc, and the

slope of the coexistence curve at T = Tc. The specific heat of tin is shown in

Figure 12.2, which illustrates the jump in specific heat when the tin becomes

superconducting.

This relationship provides a good way to determine how much of a sample is

superconducting. In many cases, a sample may have impurities or other phases
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Figure 12.2: The specific heat of tin as a function of temperature. Open circles:
no magnetic field; solid circles: H > Hc (normal phase); dotted line: elec-
tron contribution to normal specific heat; dashed line: lattice contribution to
normal specific heat. From W. Buckel, Superconductivity: Fundamentals and
Applications, VCH, 1991.
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present which do not become superconducting. As long as the superconducting

portion forms a continuous network, the electrical resistance will be zero, even

if the superconduction portion is very small. But the jump in specific heat is

dependent on the amount of the sample which undergoes the phase transition

(through v) and so can be used to determine the superconducting fraction.

12.3.1 Microscopic Interpretation

The results derived above were based on a few experimental observations, such

as the Meissner effect (M = −H). They did not require us to know anything

about what causes superconductivity, or why M = −H. In fact, these ther-

modynamic results were known long before a satisfactory microscopic theory of

superconductivity had been developed.

The theory which finally gave a clear microscopic picture of superconductiv-

ity was developed in the 1950’s by Bardeen, Cooper, and Schrieffer, and their

theory is known as the BCS theory. The BCS theory shows that the reason some

materials become superconducting at low temperature is that the electrons pair

up in quantum-mechanical bound states called “Cooper pairs.” The pairing is

brought about by an interaction between the electrons and the positivey-charged

lattice. Since an electron has negative charge, the lattice atoms near an electron

are attracted to it, leading to excess positive charge around an electron. This

positive charge in turn attracts another electron, which creates an “effective”

attractive interaction between the two electrons. Of course, the electrons also

repel one another, but in some cases the attractive interaction can be stronger

than the repulsion and the two electrons become bound together.

The situation is actually very similar to how two protons and two electrons

bind together to form an H2 molecule. Even though the electrons repel one

another and so do the protons, by keeping the electrons most of the time between

the protons, the electron-proton attraction is greater than the proton-proton

and electron-electron repulsion and a stable molecule forms. The electrons and

postively-charged lattice distortions (“phonons”) arrange themselves similarly

to form a stable Cooper pair. Just like a molecule, a Cooper pair requires energy

to break it up.

It turns out that the number of Cooper pairs nc(T ) is a function of temper-

ature, but hardly depends on H. The number of pairs goes continuously to zero

at T = Tc. This is why the specific heat of a superconductor is greater than

in the normal phase – it requires energy to break up some Cooper pairs if the

temperature is raised.

A Cooper pair has zero total angular momentum, and so are bosons obeying
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Bose-Einstein statistics (the individual electrons, in contrast are fermions and

obey Fermi-Dirac statistics). There is no restriction on the number of bosons

which can occupy a single quantum level. In fact, the BCS theory shows the

most-stable state of the system (the ground state) is one in which all Cooper

pairs occupy the same quantum state. Thus, a single quantum-mechanical

wavefunction which extends throughout the superconductor describes all of the

Cooper pairs, which are rigidly locked together in phase (much like photons in

laser light). It is this macroscopic quantum-mechanical aspect which is respon-

sible for all of the strange properties such as zero resistance.


