
CHAPTER 11

ONE-DIMENSIONAL COMPRESSIBLE FLOW

11.1 Introduction

Thermodynamics plays an important role in fluid mechanics, particularly when

the flow speed is high (comparable to the speed of sound). High-speed flow in

gases is called compressible flow, since it turns out that only in this case does

the density vary much from point to point in the flow; if the velocity is much less

than the speed of sound in a gas, then the density is nearly constant everywhere.

In this chapter, we introduce some of the basic ideas of compressible flow.

11.2 The Momentum Principle

To analyze fluid flow, we need a principle from mechanics to supplement the

laws of thermodynamics. This is the momentum principle. When fluid enters

or leaves a control volume, it carries momentum with it. Since a packet of

fluid of mass δm moving with velocity ~V has momentum (δm)~V , the specific

momentum (momentum per unit mass) of the fluid packet is simply equal to

the velocity ~V . Therefore, if fluid is flowing into a control volume with a mass

flow rate of ṁ kg/s and each kg brings momentum ~V with it, the momentum

inflow rate is ṁ~V .

The momentum principle is simply Newton’s second law applied to a control

volume. It states that the net force on a control volume is equal to the net

rate of momentum outflow from the control volume, plus the rate of change of

momentum stored inside. The momentum stored inside the control volume only
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Figure 11.1: Flow in a curved tube.
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changes in unsteady flows, which we will not consider here.

Consider the steady flow in a curved tube shown in Fig. 11.1. The flow is

assumed to be one-dimensional at points 1 and 2, which means that the velocity

is constant over any cross-section and is oriented perpendicular to the cross-

section. In this flow, the momentum inflow rate is ṁ~V1, and the momentum

outflow rate is ṁ~V2. The net momentum outflow rate is ṁ(~V2− ~V1). Therefore,

the momentum principle states that the net force ~F on the control volume is

~F = ṁ
(
~V2 − ~V1

)
. (11.1)

Note that ~F is the resultant of all forces applied to the control volume. The

momentum principle doesn’t tell us anything about where these forces appear,

just their vector sum. In general, the forces on the control volume result both

from pressure in the fluid where the control surface intersects the fluid, and from

stresses in the tube walls where the control surface intersects the walls.

11.3 The Speed of Sound

Sound waves are small pressure disturbances, which travel through a fluid with

a characteristic speed. As long as the wavelength of the sound wave λ is long

compared to the mean free path in the fluid,1 the speed of propagation does not

depend on the wavelength. (If you listen to a concert from far away the high

notes and the low notes both reach you at the same time.)

To calculate the speed of sound, consider the situation shown in Fig. 11.2.

A piston at the end of a long tube is suddenly displaced a small distance to the

left, locally compressing the gas next to it. This launches a wave down the tube,

which travels at the speed of sound. If the piston displacement is very sudden,

then the density and pressure will change abruptly across the wavefront, from

the undisturbed values ρ and P to the perturbed values ρ + ∆ρ and P + ∆P

behind the wave. (If the piston were replaced by a loudspeaker, then both the

diaphram displacement and the disturbances would instead be periodic.)

Since the piston displacement is rapid, there is little time for heat transfer,

and consequently the compression process may be taken as adiabatic. Therefore,

the temperature rises to T + ∆T behind the wave. Since the gas behind the

wave is expanding, it is in motion; let its velocity be ∆V . (Note that ∆V � c;

the wave propagates into the undisturbed gas, much like a water wave moves

without transporting water with it.)

We want to determine the speed c the disturbance propagates with. To do

1The mean free path in air is about 10−7 m, so this condition is easily satisfied in air.
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Figure 11.2: The piston is rapidly pushed in a small distance, launching a sound
wave travelling to the left.
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Figure 11.3: The situation as seen by an observer moving with the wave at
speed c.
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this, it is convenient to switch to a reference frame travelling with the wave

(Fig. 11.3). Defining a control volume surrounding the wave, undisturbed fluid

enters the control volume from the left at speed c, passes through the wave, and

leaves the control volume at speed c−∆V .

If this wave propagates steadily, then there can be no mass buildup within

the control volume. The mass flow rate in the left is

ṁin = ρcA, (11.2)

where A is the tube cross-sectional area. The mass flow rate out the right side

is

ṁout = (ρ+ ∆ρ)(c−∆V )A. (11.3)

Equating ṁin and ṁout yields

c∆ρ− ρ∆V −∆ρ∆V = 0. (11.4)

The magnitudes of the pressure, density, and velocity disturbances in real

sound waves are very small. In fact, the sound speed is formally defined as

the speed infinitesimal disturbances propagate with. We will soon let all dis-

turbance quantities become infinitesimal, which means we can ignore the very

small ∆ρ∆V term in this equation. With this approximation, we have

∆V = c
∆ρ

ρ
. (11.5)

Since ∆ρ/ρ� 1, this justifies our claim above that ∆V � c.

Equation (11.5) resulted from doing a mass balance on the control volume;

let’s now see what results from applying the momentum principle. The x mo-

mentum leaving the control volume on the right is ṁ(c−∆V ); the x momentum

entering on the left is ṁc. Therefore, the net x momentum leaving the control

volume is −ṁ∆V .

The momentum principle says that this equals the net force in the x direction

on the control volume. The net force is due to pressure:

Fnet = AP − A(P + ∆P ) = −A∆P. (11.6)

Therefore, the momentum principle requires that

A∆P = ṁ∆V. (11.7)

Using ṁ = ρAc, this becomes

∆P = ρc∆V. (11.8)
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Substituting for ∆V from Eq. (11.5), we find

∆P = c2∆ρ. (11.9)

Finally, an energy balance on the control volume (including the kinetic en-

ergy in this reference frame) yields

h +
c2

2
= (h+ ∆h) +

(c −∆V )2

2
. (11.10)

Since the propagation is assumed to be adiabatic, there is no heat transfer term

Q in this equation.

To first order in ∆V , the energy balance becomes

∆h = c∆V. (11.11)

Using Eq. (11.5), this can be written

∆h = c2
∆ρ

ρ
. (11.12)

Now let us take the limit as the disturbances become infinitesimal. Equations

(11.9) and (11.12) become

dP = c2dρ, (11.13)

dh = c2
dρ

ρ
. (11.14)

(11.15)

At this point, it is interesting to ask what happens to the entropy of the gas

as it passes through the wave. We know

dh = Tds+ vdP = Tds+ dP/ρ, (11.16)

so solving for ds yields

ds =
1

T

(
dh−

dP

ρ

)
. (11.17)

Substituting from above for dh and dP ,

ds =
1

T

(
(c2dρ)−

(c2dρ/ρ)

ρ

)
= 0. (11.18)

Therefore,

the propagation of an infinitesimal sound wave is isentropic.
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(This would not be true for finite-sized disturbances, which are shock waves.)

With this result, we can use Eq. (11.13) to solve for c. Since s is constant,

dP/dρ for this process is equivalent to (∂P/∂ρ)s. Therefore,

c =

√(
∂P

∂ρ

)
s

(11.19)

Example 11.1 Estimate the speed of sound in liquid water at 400 K and 1

MPa.

Solution: using the WWW thermodynamic property calculator or TPX, for

these conditions ρ = 937.88 kg/m3. Now let’s perturb ρ by a small amount,

say 1.0 kg/m3. Holding s constant and setting ρ = 938.88 kg/m3, we find

P = 3.2676 MPa. Thus,

c ≈

(
2.2676× 106

1.0

)1/2

= 1506 m/s.

11.3.1 Speed of sound in an ideal gas

In an ideal gas with constant cp, Pv
k is constant for any isentropic process.

Therefore, since ρ = 1/v,

P = Cρk (11.20)

for an isentropic process. Differentiating this expression,(
∂P

∂ρ

)
s

= kCρk−1 =
kP

ρ
. (11.21)

Using P = ρRT , (
∂P

∂ρ

)
s

= kRT (11.22)

and therefore the speed of sound in an ideal gas is

c =
√
kRT . (11.23)

Recall that R is the gas constant per unit mass: R = R̂/M̂ .

Example 11.2 Calculate the speed of sound in air at 300 K.
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Figure 11.4: The stagnation state on an h− s plot

Solution: For air, k = 1.4 and M̂ = 28.97. Therefore,

c =
√

(1.4)(8314/28.97)(300) = 347 m/s. (11.24)

Note that the speed of sound in air is much less than in water.

The Mach Number M is defined to be the ratio of the fluid velocity to the

local speed of sound:

M =
V

c
. (11.25)

If M < 1, the flow is subsonic, and if M > 1 the flow is supersonic.

11.4 Stagnation Properties

When a high-speed flowing gas is decelerated to zero velocity (for example in

a diffuser, or when the gas must deflect around an object inserted into it), its

temperature, pressure, and density increase, since as a fluid packet decelerates

the kinetic energy in the flow is expended by doing compression work on the fluid

packet. The state reached by decelerating a fluid moving at speed V reversibly

and adiabatically to zero velocity is called the stagnation state. The stagnation

process is shown in Fig. 11.4.

The stagnation state is defined by the two equations

h0 = h+
V 2

2
(11.26)

and

s0 = s. (11.27)
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Here the subscript 0 denotes the stagnation state, and h0 is known as the

stagnation enthalpy. The pressure attained in the stagnation state is the stag-

nation pressure P0 = P (h0, s0), and the temperature T0 = T (h0, s0) is the

stagnation temperature. Note that given h, s, and V it is always possible to

calculate h0, s0, P0, and T0, whether or not the problem at hand actually in-

volves decelerating the fluid to a stationary state; the stagnation state is the

state which would result if we were to do it. We may regard the stagnation

properties as properties of the flowing fluid.

Example 11.3 Determine the stagnation temperature and pressure for nitrogen

at 10 MPa and 300 K, with speed V = 200 m/s.

Solution: Using the WWW calculator, we find h = 442.14 kJ/kg (4.4214×105

J/kg) and s = 2.988 kJ/kg-K. Therefore, h0 = 4.4214 × 105 + (300)2/2 =

4.8714× 105 J/kg. Using h0 = 487.14 kJ/kg, and s0 = s = 2.988 kJ/kg-K, the

WWW calculator finds T0 = 343.44 K, and P0 = 15.83 MPa.

For the special case of an ideal gas with constant cp, Eq. (11.26) becomes

cpT0 = cpT +
V 2

2
. (11.28)

We can re-write this equation in terms of k and Mach number, using cp =

kR/(k − 1), c =
√
kRT , and M = V/c:

T0

T
= 1 +

k − 1

2
M2 (11.29)

For any isentropic process in an ideal gas with constant cp,

P2

P1
=

(
T2

T1

)k/k−1

. (11.30)

Taking state 1 to be the state with velocity V and state 2 to be the stagnation

state,

P0

P
=

(
T0

T

)k/k−1

=

(
1 +

k − 1

2
M2

)k/k−1

(11.31)

If we consider the reverse situation, in which a stationary gas at T0 and P0

is accelerated in a nozzle to speed V , Eq. (11.28) still applies, and sets an upper

limit on the attainable speed, since T cannot be negative.
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Setting T = 0,

Vmax =
√

2cpT0. (11.32)

This can be rewritten as

Vmax =

√
2

k − 1
c0, (11.33)

where c0 =
√
kRT0 is the sound speed upstream of the nozzle. For k = 1.4, this

becomes Vmax = 2.2c0. Therefore, the maximum velocity air can be accelerated

to using an adiabatic nozzle is a little more than twice the upstream sound

speed. Of course, since T is dropping as the gas accelerates, the local sound

speed c is going down, and the local Mach number M = V/c diverges to infinity

as V → Vmax.

11.5 Isentropic Flow with Area Change

Consider one-dimensional, steady, flow down a tube with an area A(x) which

changes with distance. We will assume the irreversible processes of viscous

friction and heat conduction are negligible, in which case the flow is isentropic.

First of all, conservation of mass requires that

ρ(x)V (x)A(x) = constant. (11.34)

Differentiating this and dividing by ρV A yields

dρ

ρ
+
dV

V
+
dA

A
= 0. (11.35)

Conservation of energy requires that

h(x) +
V 2(x)

2
= constant. (11.36)

Differentiating yields

dh = −V dV. (11.37)

We also know from basic thermodynamic principles that

dh = Tds+ vdP = Tds+ (1/ρ)dP. (11.38)
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Since the flow is isentropic, ds = 0, and therefore

dh =
dP

ρ
(11.39)

Equating Eq. (11.37) and Eq. (11.39),

dP = −ρV dV. (11.40)

This relationship makes sense qualitatively, since if the pressure decreases down

the tube (dP/dx < 0), we expect the fluid to accelerate (dV/dx > 0), and visa

versa.

Let’s now find how the density changes with distance. Since the flow is

isentropic,

dP =

(
∂P

∂ρ

)
s

dρ. (11.41)

But (∂P/∂ρ)s = c2, so

dP = c2dρ. (11.42)

Putting this into Eq. (11.39), we find

dρ

ρ
= −

V dV

c2
= −M

dV

c
. (11.43)

Therefore, the density decreases if the flow accelerates and visa versa (dρ <

0 ⇐⇒ dV > 0). Note that the relative change in density for a given dV is

greater at high Mach number than at low.

We may eliminate density from Eq. (11.35) by substituting from Eq. (11.43):

−
V dV

c2
+
dV

V
+
dA

A
= 0 (11.44)

or
dA

A
= −

dV

V

[
1−

(
V

c

)2
]
. (11.45)

In terms of the Mach number,

dA

A
= −

dV

V

(
1−M2

)
(11.46)

Note that we have not made any ideal gas assumption, so this equation applies

for one-dimensional, isentropic flow of any fluid.
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Figure 11.5: Flow in a converging nozzle.

Equation (11.46) tells us how the velocity of the fluid changes as it passes

down the tube. An interesting result of this equation is that whether the fluid

accelerates (dV > 0) or decelerates (dV < 0) as the tube area changes depends

on whether the Mach number is greater than or less than 1.0 (supersonic or

subsonic). We may identify 3 cases:

Subsonic Flow: M < 1. In this case, a converging tube (dA < 0) causes the gas

to accelerate (dV > 0), and a diverging tube causes the gas to decelerate.

Therefore, a subsonic nozzle is a converging tube, and a subsonic diffuser

is a diverging tube.

Supersonic Flow: M > 1. Now the sign of the right-hand side of Eq. (11.46) is

positive, so a converging tube causes the gas to decelerate, and a diverging

tube causes the gas to accelerate. Therefore, a nozzle to accelerate a

supersonic flow must be constructed as a diverging tube, and a supersonic

diffuser must be converging.

Sonic Flow: M = 1. If the Mach number equals one, then the right-hand side

becomes zero for any dV . Therefore, sonic flow requires dA = 0: it is not

possible to have M = 1 in a portion of the tube where the area

is changing with x.

11.6 Flow in a Converging Nozzle

Suppose gas is escaping from a gas tank at pressure P0 through a small converg-

ing nozzle, as shown in Fig. 11.5. The pressure of the surroundings is PB < P0

(the “back pressure”). The pressure at the exit plane of the nozzle is PE .

Since the nozzle is converging, dA/dx < 0 and therefore the accelerating

flow in the nozzle must be subsonic – it is impossible for supersonic flow to exist

in this nozzle. At the end, the flow area expands abruptly. We will assume
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that dA/dx = 0 at some point very close to the nozzle exit, since the lip will

inevitably be at least a little rounded.

Let us consider the flow in the nozzle as a function of PB for given P0. If

PB = P0, then the system is in mechanical equilibrium, and there is no flow, so

ṁ = 0. For PB slightly less than P0, gas will flow, and the pressure through the

nozzle will fall continuously from P0 to PE = PB . As PB is lowered further, ṁ

increases, and still PE = PB.

But at some PB the flow becomes sonic at the exit; call this value P ∗. What

happens if PB is now reduced below P ∗? The way the flow “communicates”

the change in PB to the flow upstream is through acoustic waves, which travel

at the sound speed. As long as the flow is everywhere subsonic, it is possible

for sound waves to propagate upstream, and the flow everywhere in the nozzle

adjusts to the change in PB.

But at PB = P ∗, the exit flow is coming out at the local speed of sound.

Sound waves propagate upstream with this speed relative to the moving gas. In

the lab frame, the sound waves get nowhere – it is analogous to a fish trying to

swim upstream in a river when the river is flowing downstream as fast as the

fish can swim upstream.

Therefore, the information that PB is now below P ∗ can’t be conveyed to

the flow in the nozzle; it is unaware of the change. Therefore, everything about

the flow in the nozzle – the total mass flow rate, P (x), V (x), etc. – is identical

to the results for PB = P ∗, even though now PB < P ∗.

In particular, PE = P ∗, not PB. Once the gas emerges from the nozzle,

it finds itself suddenly at higher pressure than the surroundings. It rapidly

adjusts to PB through a set of complex, three-dimensional expansion waves.

The pressure distribution would look something like that shown in Fig. 11.6.

11.7 Choked Flow

Once the flow at the exit of a converging nozzle becomes sonic, the downstream

conditions no longer affect the flow upstream of the shock wave. Therefore, the

mass flow rate through the nozzle is unaffected by downstream pressure once

M = 1 at the nozzle exit. When this occurs, we say the flow is choked.

We can calculate the pressure ration P0/PB above which the flow becomes

choked, and the mass flow rate under choked conditions for the case of an ideal

gas with constant cp. Let the upstream conditions be T0 and P0, and denote

the conditions where M = 1 at the exit by T ∗ and P ∗. Then from Eqs. 11.29
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Figure 11.6: Pressure vs. distance for flow through a converging nozzle.

and 11.31,
T0

T ∗
= 1 +

k − 1

2
(11.47)

and
P0

P ∗
=

(
1 +

k − 1

2

)k/k−1

. (11.48)

For k = 1.4, these expressions become T0/T
∗ = 1.2 and P0/P

∗ = 1.89.

Thus, a pressure ratio from inlet to outlet of the tube of only 1.9 is sufficient to

choke the flow for air.

To solve for the choked mass flow rate, we may use the result that ṁ is equal

to ρV A at any cross-section of the nozzle. For simplicity let’s use the throat:

ṁ = ρ∗A∗c. (11.49)

Here A∗ is the area of the throat, and we have used the fact that the flow is

sonic at the throat. Using the expression for c for an ideal gas, we have

ṁ = A∗
P ∗

RT ∗

√
kRT ∗ (11.50)

=

[
P ∗

P0

√
k

R

T0

T ∗

]
P0A

∗

√
T0

(11.51)

The terms in brackets can be evaluated for a given k and M̂ (needed to calculate

R). For air, this expression reduces to

ṁ = 0.0404
A∗P0√
T0

(11.52)
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Figure 11.7: A converging-diverging nozzle.

in SI units.

Therefore, for a given gas, the maximum (choked) mass flow rate through a

nozzle depends only on three quantities: the area of the nozzle where the flow

is sonic, and the stagnation temperature and pressure upstream.

Example 11.4 Air enters a converging nozzle with an entrance diameter of 15

cm and an exit diameter of 2 cm. The entrance conditions are 6 MPa and 300

K. Treating air as an ideal gas with constant cp, determine the maximum mass

flow rate possible through the nozzle.

Solution: The maximum flow rate is the choked flow rate. From Eq. (11.52),

ṁmax = 0.0404
(π)(0.01 m)2(6 × 106 Pa)

√
300 K

= 4.39 kg/s.

11.8 Flow in a Converging-Diverging Nozzle

Consider now attaching a diverging section onto the converging nozzle of the

previous section, producing the situation shown in Fig. 11.7.

As before, upstream of the nozzle the flow velocity is negligible, and the

pressure and temperature are the stagnation values P0 and T0, respectively.

Outside the nozzle, the pressure is PB.

As PB is lowered below P0, gas begins to flow through the nozzle. In the

converging section, the flow accelerates and the pressure and temperature drop.

If the flow is still subsonic when it reaches the minimum-area position in the

nozzle (the “throat”), then as it passes into the diverging portion it decelerates,

with a corresponding rise in P and T . It emerges with Pe = PB, and Te =

T0− V 2
e /2cp. Note that this behavior is completely consistent with Eq. (11.46).

Since M 6= 1 at the throat where dA/dx = 0, it must be that dV/dx = 0 here,

as it is.

If PB is reduced further to P ∗, the flow at the throat will become sonic.

From Eq. (11.46), in this case it is no longer necessary for dV/dx = 0 at the
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Figure 11.8: Flow in a converging-diverging nozzle. If PB is low enough that
the flow at the throat is sonic (M∗ = 1), then the flow continues to expand
supersonically in the diverging portion (red line). In order to match PB at
the nozzle exit, at some point the flow suddenly transitions from supersonic to
subsonic in a shock wave, with a sudden rise in pressure. After the shock, the
diverging nozzle acts as a diffuser, and the pressure rises to PB . The location of
the shock depends on PB , beginning at the throat when PB is just low enough to
produce supersonic flow, and moving out toward the nozzle exit as PB decreases.

throat, so the flow can continue to accelerate into the diverging portion, where

(now that it is supersonic) it continues to be accelerated.

As the supersonic flow accelerates in the diverging portion, the pressure

continues to drop. The value of PB has no effect on the flow in this portion

of the nozzle, since any information about PB would propagate at the speed of

sound, and so would be swept downstream and would not reach the upstream

flow. Therefore, if the gas continues to accelerate isentropically to the exit of

the nozzle the pressure of the gas at the nozzle exit would not generally match

PB .

But somehow the pressure must come to PB at or after the nozzle exit. What

really happens is that if the pressure in the nozzle drops below PB , then at

some point in the diverging portion the gas undergoes a sudden and irreversible

transition to subsonic flow. This transition is known as a shock wave, and will

be discussed in the next section. Typically a shock wave normal to the flow

will stand somewhere in the diverging portion of the nozzle, at a position such

that Pe = PB. The pressure vs. distance plot for various PB values now looks

something like the plot shown in Fig. 11.8.

In the isentropic portion of the flow (before the shock wave), we can use the

condition ρV A =constant to solve for the velocity at any position in the nozzle.
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Figure 11.9: Area ratio A/A∗ for k = 1.4.

We may write

ρV A = ρ∗cA∗ (11.53)

which using the ideal gas equation of state and c =
√
kRT becomes2

A

A∗
=

1

M

P ∗

P

√
T

T ∗
. (11.54)

If we now write this as

A

A∗
=

1

M

P ∗/P0

P/P0

√
T/T0

T ∗/T0
(11.55)

and use eqs. (11.29) and (11.29), we find

A

A∗
=

1

M

[(
2

k + 1

)(
1 +

k − 1

2
M2

)](k+1)/2(k−1)

. (11.56)

This equation is plotted in Fig. 11.9 for k = 1.4. Note that for a given

area ratio, there are two possible Mach numbers — one subsonic, and the other

supersonic.

11.9 Normal Shock Waves

Shock waves which stand perpendicular to the flow direction are called normal

shock waves, in contrast to oblique shock waves which can occur when two- and

2You should verify this.
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Figure 11.10: A steady shock wave. Note that ∆P , ∆ρ, and ∆T are not assumed
to be infinitesimal.

three-dimensional flow is considered. A shock wave is a discontinuity in the

pressure, velocity, density, and temperature of the gas. It may seem suprising

to you that these properties can be discontinuous, but in fact the equations

describing conservation of mass, momentum, and energy, along with the ideal

gas law, do admit discontinuous solutions.3

By carrying out balances of mass, momentum, and energy on a shock wave,

we may derive relationships between the gas properties on either side of the

shock. The approach is very much like that we did to derive the speed of sound,

except that now the perturbations are not infinitesimal.

Consider a situation in which gas with velocity V1 in the x direction passes

through a stationary normal shock and leaves with velocity V2. Conservation of

mass requires

ρ1V1 = ρ2V2. (11.57)

We have divided through by the tube area, since it is the same on each side of

the shock. The momentum principle states

(P1 − P2) = (ṁ/A)(V2 − V1), (11.58)

which can also be written

P1 + ρ1V
2
1 = P2 + ρ2V

2
2 , (11.59)

since ṁ/A = ρ1V1 = ρ2V2. The energy balance is

h1 +
V 2

1

2
= h2 +

V 2
2

2
, (11.60)

3A more detailed treatment considering viscosity and heat conduction would show that a
shock wave has a finite thickness, which is of order the mean free path.
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which is equivalent to

h0,1 = h0,2. (11.61)

Therefore, the stagnation enthalpy is constant across a shock.

Also, we can write equations of state that have to be satisfied in both states.

If the fluid may be treated as an ideal gas in both states, then

P1 = ρ1RT1, (11.62)

P2 = ρ2RT2 (11.63)

If state 1 is fully specified, the four equations (11.57), (11.59), (11.60), and

(11.63) may be used to solve for the four unknowns P2, T2, ρ2, and V2.

For the case of an ideal gas with constant cp, this set of equations may be

solved analytically. Equation (11.60) becomes

T0,1 = T0,2, (11.64)

which, using Eq. (11.29), may be written

T2

T1
=

1 + k−1
2 M2

1

1 + k−1
2
M2

2

(11.65)

Using ρ = P/RT , c =
√
kRT , and M = V/c, Eq. (11.59) reduces to

P2

P1
=

1 + kM2
1

1 + kM2
2

(11.66)

Equation (11.57) becomes

P2

P1
=

√
T2

T1

M2

M1
. (11.67)

Substituting eqs. (11.65) and (11.66) into Eq. (11.67), we can solve for M2:

M2
2 =

M2
1 + 2

k−1
2k
k−1M

2
1 − 1

(11.68)

Since there is no heat transfer in the shock, the entropy production rate as

the gas flows through the shock is simply

Ṗs = ṁ(s2 − s1) = ṁ(cp ln(T2/T1)− R ln(P2/P1)). (11.69)
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It may be shown that this is positive only ifM1 > 1. Therefore, the flow entering

the shock must be supersonic. Or, in the frame of reference of the gas upstream

of the shock, this is equivalent to saying the shock wave must propagate at a

supersonic (not subsonic) speed.


