
CHAPTER 10

CHEMICAL REACTIONS AND CHEMICAL EQUILIBRIUM

10.1 Introduction

(NOTE: This chapter is incomplete; consult the hand-written notes I passed

out in class.)

Chemically-reacting flows are vital to many engineering applications, in-

cluding almost all aerospace and terrestrial propulsion systems, and all systems

which produce power by burning fossil fuels. Solving current technological prob-

lems, such as how to reduce undesirable pollutant emission from these devices,

requires an understanding of some of the chemistry occurring in these systems.

10.2 The Reaction A + B ⇀↽ AB

Consider a mixture of 2 chemically-reactive elemental species, A and B. Suppose

that these can react with one another to form a molecule AB:

A + B→ AB. (10.1)

Once an AB molecule is formed, it may break up again via

AB→ A + B. (10.2)

We can write a short-hand notation for these two reactions as follows:

A + B ⇀↽ AB. (10.3)

Suppose we introduce NA,0 moles of A and NB,0 moles of B into a container

with volume V at time t = 0. We allow the system to evolve with no interaction

with the surroundings (isolated). As time proceeds, we find that the mole

numbers change, due to formation of AB molecules. If we wait long enough, the

mole numbers come to steady-state values, which we will denote N∗A, N∗B , and

N∗AB . Evidently, once steady state is reached, the rate at which AB is formed

by reaction (10.1) just balances the rate at which it is destroyed by reaction

(10.2).

When this condition is reached, we say the system is in chemical equilibrium.

Depending on the nature of the chemical reaction, and also on the temperature
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and pressure, chemical equilibrium may be reached in microseconds (explosions)

or may take thousands of years. Determining the rate at which the reaction

proceeds is the subject of chemical kinetics. However, the final state achieved

at long times does not depend on kinetics, but only on the thermodynamic

properties of the atoms or molecules involved.

To determine the condition for chemical equilibrium, we apply the same basic

principle we have used to determine other equilibrium conditions: the system

will attain the state for which the entropy is maximal, compared to all other

possible states with the same total U , V , NA,0, and NB,0.

In our previous discussions of equilibrium, we have imagined a system di-

vided by a partition, which can pass energy, volume, or molecules. For the

present problem, the “constraint” we will relax is somewhat different. Let us

imagine that we can turn a knob on the system which can (somehow) stop the

reaction from occurring, or can run it in the forward direction [reaction (10.1)]

or in the reverse direction [reaction (10.2)]. We will turn the knob back and

forth, calculating the entropy of the system for each set of conditions, and find

the state which maximizes S. This then must be the equilibrium state the

system will come to when “unconstrained.”

Suppose we initially set the knob so that the reaction is stopped, and the

mole numbers are NA, NB , and NAB . We now turn the knob to allow the

reaction to proceed infinitesimally in the forward direction, and then reset it

to stop the reaction at this new condition. We find that NAB has increased

by an amount dNAB. Since the only way to increase NAB is by consuming an

equivalent amount of A and B atoms, we must have that

dNA = −dNAB (10.4)

dNB = −dNAB. (10.5)

How much has S(U, V,NA, NB, NAB) changed? Using the chain rule,

dS =

(
∂S

∂NA

)
U,V,NB,NAB

dNA +

(
∂S

∂NB

)
U,V,NA,NAB

dNB

+

(
∂S

∂NAB

)
U,V,NA,NB

dNAB . (10.6)

We know that the chemical potential is defined by(
∂S

∂Ni

)
U,V,Nj

= −
µi

T
. (10.7)
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Therefore, if we also use equations (10.4) and (10.5) to substitute for dNA and

dNB , Eq. (10.6) becomes

dS =
1

T
[µA + µB − µAB ]dNAB . (10.8)

At the equilibrium state, S will be maximal with respect to NAB , and therefore

dS = 0. The chemical equilibrium condition for this reaction is then

µAB − µA − µB = 0. (10.9)

This equilibrium condition is very general, and applies whatever type of solution

the species A, B, and AB form. For example, it could be a liquid or even a

solid solution. By using the form for the chemical potential appropriate for the

phase of the mixture, we can develop an explicit condition for equilibrium in

terms of experimental parameters, such as the mole numbers, temperature, and

pressure.

It is worth noting that, although we imagined an isolated system to derive

Eq. (10.9), now that we have this equation we no longer need to restrict our

attention only to isolated systems. The condition expressed by Eq. (10.9) must

be satisfied at the equilibrium state, no matter how this state was reached.

It could have been reached in an isolated system (constant U and V ) or, for

example, by allowing the reaction to proceed at constant T and P , adding or

removing heat as necessary to keep T constant, and allowing the volume to

change to keep P constant.

10.3 Reactions in Ideal Gases

If the mixture of A, B, and AB is an ideal gas mixture, then we have already

derived the form of the equation for the chemical potential. In this case, recall

that

µi = ĝ(T, Pi) = ĝ0(T ) − R̂T ln

(
Pi

P0

)
(10.10)

That is, the chemical potential of species i in the mixture is the molar Gibbs

free energy (of the pure species i) evaluated at the partial pressure Pi.

Substituting this expression into Eq. (10.9), we have

ln

[
(PA/P0)(PB/P0)

(PAB/P0)

]
= −

ĝ0
AB(T ) − ĝ0

A(T )− ĝ0
B(T )

R̂T
(10.11)

or
PAPB

PAB
= P0e

−∆G0(T )/R̂T , (10.12)
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where

∆G0(T ) = ĝ0
AB(T ) − ĝ0

A(T )− ĝ0
B(T ) (10.13)

is the standard free energy of reaction for this reaction. We can re-write this

equation in terms of mole numbers as

N∗AN
∗
B

N∗AB
=

(
P0V

R̂T

)
e−∆G0(T )/RT . (10.14)

This equation provides us with one equation for the 3 unknowns N∗A, N∗B , and

N∗AB . The remaining 2 equations come from the atom conservation conditions:

N∗A +N∗AB = NA,0 (10.15)

and

N∗B +N∗AB = NB,0. (10.16)

These equations simply state that the number of moles of A atoms (independent

of whether they appear as free A atoms or in AB molecules) is the same as ini-

tially placed in the container, and similarly for B. These three equations together

allow solving uniquely for the values of N∗A, N∗B , and N∗AB at equilibrium.

10.4 A General Reaction

The above results are easily generalized to any chemical reaction. Let’s consider

a reaction such as

2H2 + O2 ⇀↽ 2H2O. (10.17)

We may write this reaction (or any other one) symbolically as∑
j

νjAj = 0, (10.18)

where Aj stands for the chemical symbol of the jth species (e.g., “H2”, “O2”, or

“H2O”) and νj is the stoichiometric coefficient for species j. The stoichiometric

coefficient is defined to be positive for products (H2O) and negative for reactants

(H2 and O2). Therefore, for this reaction

ν(H2) = −2 (10.19)

ν(O2) = −1 (10.20)

ν(H2O) = +2 (10.21)

To find the equilibrium condition for a general reaction such as reaction

(10.18), we again maximize the entropy at fixed U and V as we did above. For
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the general case, the stoichiometric relation among the mole numbers as the

reaction proceeds forward or backward is:

dNj
νj

= dÑ. (10.22)

That is, each mole number changes by an amount equal to νj multiplied by

the change in a species-independent “extent of reaction” variable Ñ . Note that

for the simple A + B ⇀↽ AB reaction considered above, Eq. (10.22) reduces to

equations (10.4) and (10.5).

The condition that S is maximal with respect to Ñ then leads to

r∑
j=1

µjνj = 0. (10.23)

This is the general form of the condition for chemical equilibrium for a single

reaction. (Note that νj is non-zero only for those species in the mixture which

participate in the reaction.)

For ideal gases, we can again substitute in the known form of the chemical

potential. This leads us to the generalization of Eq. (10.12):

r∏
j=1

(
Pj
P0

)νj
= e−∆G0(T )/R̂T , (10.24)

where

∆G0(T ) =
r∑
j=1

ĝ0
j (T )νj (10.25)

is again the standard free energy of reaction. Equation (10.24) is known as the

law of mass action.

Since the right-hand side of Eq. (10.24) is a function only of temperature, it

is convenient to give it a symbol. We define the equilibrium constant Kp(T ) as

Kp(T ) = e−∆G0(T )/R̂T . (10.26)

We can write the law of mass action in terms of mole fractions, since Pj =

XjP . Making this substitution into Eq. (10.24), we have

r∏
j=1

X
νj
j =

(
P0

P

)∑r

j=1
νj

Kp(T ). (10.27)

We can also write the law of mass action in terms of mole numbers or concen-

trations Cj = Nj/V as follows:

r∏
j=1

C
νj
j =

(
P0

R̂T

)∑r

j=1
νj

Kp(T ), (10.28)
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and
r∏
j=1

N
νj
j =

(
P0V

R̂T

)∑r

j=1
νj

Kp(T ). (10.29)

All of the forms (10.27), (10.28), and (10.29) of the law of mass action have

an additional factor in front of Kp(T ), which arises due to the conversion from

pressure to mole fraction, concentration, or mole number units. The exponent

this factor is raised to is the net change in mole numbers as the reaction proceeds

from pure reactants to pure products. For example, for the reaction A+B ⇀↽ AB,∑r
j=1 νj = −1. On the other hand, for a reaction of the type A + B ⇀↽ C + D,

this sum is zero, and the factor in front of Kp(T ) does not appear.

Remember that P0 is the reference pressure at which the thermodynamic

properties are computed, not the actual pressure of the problem. It might

seem odd that P0 appears in the law of mass action, since the equilibrium

composition can’t depend on our choice of the reference pressure. In fact, it

does not, since ∆G0(T ) depends on P0 in just such a way that it cancels the P0

factor multiplying Kp(T ). (Recall that ĝ(T, P ) has an R̂T lnP term in it.)

If the reference pressure P0 = 1 atm, then

P0

R̂T
= 40.62

(
300

T

)
moles/m3. (10.30)

Let us see how this works in practice by looking at a simple example.

Example 10.1 Suppose oxygen gas (O2) is heated to 2500 K. We wish to know

the mole fraction of atomic oxygen O which forms at chemical equilibrium.

The reaction forming O is

O2 ⇀↽ 2O. (10.31)

Therefore,

∆G0 = 2ĝ(O) − ĝ(O2). (10.32)

We can look up the molar Gibbs functions in a table such as the JANAF tables,

or calculate them from polynomial fits (using ĝ = ĥ− T ŝ). Doing this, we find

that for T = 2500 K,

ĝ(O) = −219.13 kJ/mole (10.33)

ĝ(O2) = −614.67 kJ/mole. (10.34)

Therefore,

∆G0(2500) = 176.41 kJ/mole (10.35)

and

Kp(2500) = 2.06× 10−4. (10.36)
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The law of mass action then becomes

XO
2

XO2

=

(
P0

P

)+1

Kp(T ). (10.37)

The atom conservation condition, expressed in mole fraction units, is simply

XO +XO2 = 1. (10.38)

Therefore,
XO

2

1−XO
= 2.06× 10−4

(
P0

P

)
. (10.39)

We can solve this simple quadratic equation for the atomic oxygen mole fraction

if the pressure is specified. As P increases, the atomic oxygen mole fraction

decreases. For example, at P = 1 atm at 2500 K, we have that XO = 0.0142.

But at P = 0.01 atm, XO = 0.133.

The pressure dependence seen in Example 10.1 occurs because the mole

numbers change by +1 in this reaction. A reaction of the type A + B ⇀↽ C + D,

in which the mole numbers do not change, would have no pressure dependence

to the equilibrium mole fractions, since the term (P0/P ) in the law of mass

action would not appear (the exponent would be zero).

This is one example of Le Chatlier’s Principle, which states that when a

change is imposed on a system (such as increasing the pressure), the system

will respond in such a way to try to counteract the change. In this case, as

the pressure is increased, some O atoms recombine to O2 in order to reduce the

total number of moles, and therefore reduce the system pressure compared to

what it would be if the composition remained constant.


