
APPENDIX A

STATISTICAL MECHANICS OF THE MONATOMIC IDEAL
GAS

NOTE: this appendix is taken unmodified from some older lecture

notes I wrote for a different class. The notation may be a little

different.

Consider a container of volume V which contains N atoms, which we will

assume are ”structureless” – that is, they contain no internal energy modes (vi-

bration, rotation, or electronic excitation). Let us also assume that the potential

energy due to interatomic forces is negligible compared to the kinetic energy of

the atoms. These assumptions define the ”monatomic ideal gas.”

For simplicity, let the container be a cube of side length L, such that V = L3.

(The results we obtain will be independent of the assumed container geometry.)

The microstate of the system is specified by the positions and momenta of

all atoms. If there are N atoms, then 3N coordinates (3 for each atom) must be

specified, and 3N momenta, for a total of 6N degrees of freedom. The microstate

of the gas is then fully specified by the 6N numbers {x1, . . . , x3N , p1, . . . , p3N}.

We may represent the microstate geometrically as a point in a 6N -dimensional

space, where the space is spanned by 3N orthogonal spatial coordinate axes

xi and 3N orthogonal momentum axes pi. We call this 6N -dimensional space

”phase space.”

It is also useful to consider 2 subspaces of phase space. We will define

“coordinate space” to be that space spanned by the 3N coordinate axes, and

“momentum space” to be that space spanned by the 3N momentum axes.

In order keep the number of microstates finite, we divide up each coordinate

axis into segments of length ∆x, and each momentum axis into segments of

length ∆p. We can then construct a grid, or lattice, which divides phase space

into small hypercubes of volume ∆W = (∆x∆p)3N . We will take all points

within a given cube to correspond to one microstate. The number of microstates

in a region of phase space with volume W is then simply

Ω = W/∆W. (A.1)

Therefore, rather than trying to count microstates directly (counting becomes
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difficult when the numbers get very large!), we can find the volume of the region

of phase space which satisfies some criteria, and then get Ω from Eq. (A.1).

Of course, the number of microstates will depend upon our choices of ∆x

and ∆p. We’ll see later that the only implication of this is that the entropy

can only be determined to within some additive constant. But this was also

true in thermodynamics – for the ideal gas, we integrated the Gibbs equation to

get the entropy, which introduced an arbitrary integration constant s0. Recall

that we introduced a postulate (the 3rd law of thermodynamics) which fixed the

entropy at one temperature (T = 0) and removed the ambiguity. In statistical

mechanics, no such postulate is needed – the problem is taken care of by a

proper quantum-mechanical treatment of the problem.

Our objective is to count how many microstates (i.e., cubes in phase space)

there are which are consistent with our macroscopic knowledge of the state of

the system, for example the volume V and the internal energy U . Some of the

microstates are consistent with our macroscopic specifications, but many are

not (for example, those for which one or more atom lies outside the container).

There are two constraints on the system, which determine the region of phase

space we are interested in. The first is that all atoms are located within the

container:

0 < xi < L, i = 1, . . . , 3N. (A.2)

The second constraint is the specification of the total internal energy of the

system. The total kinetic energy E of the gas is given by

E =
3N∑
i=1

1

2
mv2

i =
3N∑
i=1

p2
i

2m
, (A.3)

where m is the mass of one atom. This equation shows that microstates with

a given kinetic energy all lie on a sphere of radius R =
√

2mE in momentum

space.

Since we are assuming that translational kinetic energy is the only contri-

bution to the total internal energy U of the gas (no potential energy or internal

energy modes), the specification of the energy of the system is that E = U .

Actually, we will assume that there is a very small, but non-zero, uncertainty

in the energy. That is, the constraint on energy is

U − δU < E < U, (A.4)

where δU � U . We’ll assume that ∆x and ∆p are chosen to be small enough

that there are very many microstates with kinetic energy in this range.
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Let us now find the volume W of the region of phase space satisfying

eqs. (A.2) and (A.4). This volume may be expressed as a multidimensional

integral:

W =

∫ L

0

dx1

∫ L

0

dx2 . . .

∫ L

0

dx3NWshell (A.5)

where Wshell is the volume of the spherical shell in momentum space defined by

Eq. (A.4). Since the kinetic energy does not depend on the spatial coordinates (it

only depends on the momentum coordinates), the integral in momentum space

defining Wshell is independent of the coordinate values, and we may reverse

the order of integration and do the coordinate integrals first. Each of these

contributes a factor L, and therefore

W = L3NWshell = V NWshell (A.6)

where V = L3 is the container volume (in real 3D space).

To determine Wshell we may use a result from mathematics for the volume

Wn(R) of a sphere of radius R is n-dimensional space. It may be shown that

Wn(R) =

(
πR2

)n/2(
n
2

)
!

. (A.7)

Note that if n is odd we can evaluate (n/2)! in terms of the Gamma function:

z! = Γ(z + 1) for any z. The Gamma function is defined by

Γ(z) =

∫ ∞
0

tz−1e−tdt (A.8)

and satisfies the recurrence formula Γ(z + 1) = zΓ(z). Therefore, Γ(n/2) may

be determined from this recurrence formula, given that Γ(3/2) =
√
π/2.

For the familiar cases of n = 2 and n = 3, Eq. (A.7) reduces to W2 = πR2

and W3 = (4/3)πR3, respectively, as expected.

Wshell may be determined by the difference of two sphere volumes:

Wshell = W3N(
√

2mU)−W3N

(√
2m(U − δU)

)
(A.9)

Or, using Eq. (A.7),

Wshell = W3N(
√

2mU)

[
1 +

(
1−

δU

U

)3N/2
]
. (A.10)

Note that the term (1− δU/U) is very slightly less than one. Therefore, for any

finite (but very small) δU , we have that

lim
N→∞

(
1−

δU

U

)3N/2

= 0 (A.11)
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and therefore

lim
N→∞

Wshell = W3N(
√

2mU). (A.12)

This seemingly-paradoxical result states that in the limit of large N , the shell

volume equals the volume of the entire sphere! This is in fact the case: as

the dimensionality of the space increases, the distribution of the volume of the

sphere with radius becomes highly peaked near the surface of the sphere. For

any small but finite shell width, if n is large enough then virtually all of the

sphere volume is located within the shell.

This means that for large N , the number of microstates available to a gas

which have kinetic energy very close to U is overwhelmingly larger than the

number of microstates which have kinetic energy less than U . In the large N

limit (which is what we are interested in), we have then that

Ω = W3N(
√

2mU)/∆W (A.13)

or

Ω =
(2πmU)3N/2

∆W
(

3N
2

)
!
. (A.14)

Actually, there is one correction we need to make to Eq. (A.14). In counting

microstates by integrating over phase space, we have implicitly assumed that

the atoms are distinguishable. That is, suppose we interchange the position and

momentum coordinates of particles 1 and 2. Then if the original microstate was

{x1, x2, x3︸ ︷︷ ︸
atom 1

, x4, x5, x6︸ ︷︷ ︸
atom 2

, x7, . . . , x3N , p1, p2, p3︸ ︷︷ ︸
atom 1

, p4, p5, p6︸ ︷︷ ︸
atom 2

, p7, . . . , p3N},

the microstate with atoms 1 and 2 interchanged will be

{x4, x5, x6︸ ︷︷ ︸
atom 2

, x1, x2, x3︸ ︷︷ ︸
atoms 1

, x7, . . . , x3N , p4, p5, p6︸ ︷︷ ︸
atom 2

, p1, p2, p3︸ ︷︷ ︸
atom 1

, p7, . . . , p3N}.

The second microstate is different from the first unless atoms 1 and 2 happen to

have the same position and momentum vectors, such that x1 = x4, etc. For a

low-density gas, this is extremely unlikely, so in general exchanging atoms 1 and

2 produces a different microstate of the gas, which corresponds to a different

point in phase space. Since this microstate satisfies the macroscopic constraints

[eqs. Eq. (A.2) and Eq. (A.4)], both of the above microstates are in the accessible

region of phase space, and therefore we have counted both of them in Ω.

This is correct if atoms 1 and 2 are distinguishable, so that exchanging

them really does produce a new microstate of the gas. However, it turns out
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that atoms which are identical (i.e., the same isotope of the same element) are

actually indistinguishable in nature. That is, exchanging them does not produce

a new microstate of the system.

Since we have in effect treated the atoms as distinguishable when counting

microstates, we have overcounted the number of microstates, and need to correct

our expression for Ω. Let us assume that the gas density is low enough that

we can neglect the possibility that any 2 atoms are at the same position (to

within ∆x) and have the same momentum (to within ∆p). Then we simply

need to divide Ω by the number of ways to permute the atom labels among the

N atoms, which is N !. Therefore, the correct expression for Ω is

Ω =
(2πmU)3N/2

∆WN !
(

3N
2

)
!
. (A.15)

Using Stirling’s formula to approximate the factorial terms (n! ≈ nne−n),

we have

Ω =

(
eV

N

)N [
4πemU

3N

]3N/2
1

(∆x∆p)3N
(A.16)

Let us take the product ∆x∆p to be some constant a. Then the entropy is

S = k ln Ω (A.17)

= Nk

[
ln v̂ +

3

2
ln

(
4πmû

3a2

)
+

5

2

]
(A.18)

where v̂ = V/N and û = U/N . Since this expresses S as a function of U , V ,

and N , we have succeeded in deriving a fundamental relation for the ideal gas.

The only uncertainty remaining is the additive constant resulting from the

unknown value of a. If we had analyzed this problem from the point of view of

quantum mechanics (rather than classical mechanics), we would have found the

same result for S as in Eq. (A.18), but with the constant a replaced by Planck’s

constant h, which is a fundamental constant, given by

h = 6.626× 10−34 J-s. (A.19)

With the substitution a = h, we then have

ŝ = k

[
ln v̂ +

3

2
ln

(
4πmû

3h2

)
+

5

2

]
. (A.20)

(Note that the units of ŝ are J/molecule/K. If we would rather work with moles,

we only need replace k by R̂.)
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Evaluating the temperature from 1/T = (∂ŝ/∂û)v̂ we find

û =
3

2
kT. (A.21)

Therefore, Eq. (A.20) may also be expressed as

ŝ = k

[
ln v̂ +

3

2
ln

(
2πmkT

h2

)
+

5

2

]
. (A.22)


