
Chapter 11

Wind Driven Ocean
Circulation

What drives the ocean currents? At first, we might answer, the winds drive
the circulation. But if we think more carefully about the question, we might
not be so sure. We might notice, for example, that strong currents, such as the
North Equatorial Countercurrents in the Atlantic and Pacific Oceans go upwind.
Spanish navigators in the 16th century noticed strong northward currents along
the Florida coast that seemed to be unrelated to the wind. How can this happen?
And, why are strong currents found offshore of east coasts but not offshore of
west coasts?

Answers to the questions can be found in a series of three remarkable papers
published from 1947 to 1951. In the first, Harald Sverdrup (1947) showed that
the circulation in the upper kilometer or so of the ocean is directly related to
the curl of the wind stress. Henry Stommel (1948) showed that the circulation
in oceanic gyres is asymmetrical because the Coriolis force varies with latitude.
Finally, Walter Munk (1950) added eddy viscosity and calculated the circulation
of the upper layers of the Pacific. Together the three oceanographers laid the
foundations for a modern theory of ocean circulation.

11.1 Sverdrup’s Theory of the Oceanic Circulation
While Sverdrup was analyzing observations of equatorial currents, he came upon
(11.7) below relating the curl of the wind stress to mass transport within the
upper ocean. In deriving the relationship, Sverdrup assumed that the flow is
stationary, and that the non-linear terms and lateral friction in the momentum
equation are small. He assumed also that the flow is baroclinic and that the
wind-driven circulation vanishes at some depth of no motion. From (8.9 and
8.14 a,b) the horizontal components of the momentum equation are:
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Sverdrup integrated these equations from the surface to a depth −D equal
to or greater than the depth at which the horizontal pressure gradient becomes
zero. He defined:
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where Mx,My are the mass transports in the wind-driven layer extending down
to an assumed depth of no motion.

The horizontal boundary condition at the sea surface is the wind stress, and
the boundary at depth −D is zero stress because the currents go to zero:(
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where Tx and Ty are the components of the wind stress.
Using these definitions and boundary conditions, (11.1) become:

∂P

∂x
= f My + Tx (11.4a)

∂P

∂y
= −f Mx + Ty (11.4b)

In a similar way, Sverdrup integrated the continuity equation (7.10) over the
same vertical depth, assuming the vertical velocity at the surface and at depth
−D are zero, to obtain:

∂Mx
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+
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= 0 (11.5)

Differentiating (11.4a) with respect to y and (11.4b) with respect to x, sub-
tracting, and using (11.5) gives:

β My =
∂Ty

∂x
− ∂Tx

∂y

β My = curlz(T ) (11.6)

where β ≡ ∂f/∂y is the rate of change of Coriolis parameter with latitude, and
where curlz(T ) is the vertical component of the curl of the wind stress.
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This is an important and fundamental result—the northward mass transport
of wind driven currents is equal to the curl of the wind stress. Note that Sverdrup
allowed f to vary with latitude. We will see later that this is essential.

If f varies only with latitude, then:

∂f

∂x
= 0

β ≡ ∂f

∂y
=

2 Ω cosϕ
R

(11.7)

∂2f
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(11.8)

where R is Earth’s radius and ϕ is latitude.
Over much of the open ocean, especially in the tropics, the wind is zonal

and ∂Ty/∂x is sufficiently small that

My ≈ − 1
β

∂Tx

∂y
(11.9)

Substituting (11.9) into (11.5), Sverdrup obtained:
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Sverdrup integrated this equation from a north-south eastern boundary at
x = 0, assuming no flow into the boundary. This requires Mx = 0 at x = 0.
Then
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(11.11)

where ∆x is the distance from the eastern boundary of the ocean basin, and
brackets indicate zonal averages of the wind stress.

To test his theory, Sverdrup compared transports calculated from known
winds in the eastern tropical Pacific with transports calculated from hydro-
graphic data collected by the Carnegie and Bushnell in October and November
1928, 1929, and 1939 between 22◦N and 10◦S along 80◦W, 87◦W, 108◦W, and
109◦W. The hydrographic data were used to compute P by integrating from a
depth of D = −1000 m. The comparison, Figures 11.1 and 11.2, showed not
only that the transports can be accurately calculated from the wind, but also
that the theory predicts wind-driven currents going upwind.

Comments on Sverdrup’s Solutions

1. Sverdrup assumed i) The internal flow in the ocean is geostrophic; ii) there
is a uniform depth of no motion; and iii) Ekman’s transport is correct. We
have examined Ekman’s theory in Chapter 9, and the geostrophic balance
in Chapter 10. We know little about the depth of no motion in the tropical
Pacific.
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Figure 11.1 Mass transport in the eastern Pacific calculated from Sverdrup’s theory using
observed winds with 11.9 and 11.11 (solid lines) and pressure calculated from hydrographic
data from ships with 11.4 (dots). Transport is in tons per second through a section one meter
wide extending from the sea surface to a depth of one kilometer. Note the difference in scale
between My and Mx (From Reid, 1948).

2. The solutions tend to be limited to the east side of the oceans because
Mx grows with x. The result stems from neglecting friction which would
eventually balance the wind-driven flow. Nevertheless, Sverdrup solutions
have been used for describing the global system of surface currents. The

Figure 11.2 Streamlines of mass transport in the eastern Pacific calculated from Sverdrup’s
theory using mean annual wind stress (From Reid 1948).
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Figure 11.3 Depth-integrated Sverdrup transport applied globally using the wind stress from
Hellerman and Rosenstein (1983). Contour interval is 10 Sverdrups. (From Tomczak and
Godfrey, 1994)

solutions are applied throughout each basin all the way to the western
limit of the basin. There, conservation of mass is forced by including
north-south currents confined to a thin, horizontal boundary layer (Figure
11.3).

3. Only one boundary condition can be satisfied, no flow through the eastern
boundary. More complete descriptions of the flow require more complete
equations.

4. The solutions give no information on the vertical distribution of the cur-
rent.

5. Results were based on data from one cruise plus climatological wind data
assuming a steady state. Yet the flow varies in time and space, and the
agreement of theory with observations could be due to chance.

6. Later calculations by Leetma, McCreary, and Moore (1981) using more
recent wind data produces solutions with seasonal variability that agrees
well with observations provided the level of no motion is at 500 m. If
another depth were chosen, the results are not as good.

7. Wunsch (1996: §2.2.3) after carefully examining the evidence for a Sver-
drup balance in the ocean concluded we do not have sufficient information
to test the theory. He writes

The purpose of this extended discussion has not been to disapprove
the validity of Sverdrup balance; rather, it was to emphasize the gap
commonly existing in oceanography between a plausible and attrac-
tive theoretical idea and the ability to demonstrate its quantitative
applicability to actual oceanic flow fields.—Wunsch (1996).

Wunsch, however, notes

Sverdrup’s relationship is so central to theories of the ocean circu-
lation that almost all discussions assume it to be valid without any
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comment at all and proceed to calculate its comsequences for higher-
order dynamics . . . it is difficult to overestimate the importance of
Sverdrup balance—Wunsch (1996).

And the gap is shrinking. Measurements of mean stress in the equatorial
Pacific (Yu and McPhaden, 1999) show that the flow there is in Sverdrup
balance.

Stream Lines, Path Lines, and the Stream Function Before discussing
further progress in understanding the ocean’s wind-driven circulation, we need
to introduce the concept of stream lines and the stream function (see Kundu,
1990: 51 & 66).

At each instant in time, we can represent the flow field in a fluid by a vector
velocity at each point in space. The instantaneous curves that are everywhere
tangent to the direction of the vectors are called the stream lines of the flow. If
the flow is unsteady, the pattern of stream lines change with time.

The trajectory of a fluid particle, the path followed by a Lagrangean drifter,
is called the path line in fluid mechanics. The path line is the same as the stream
line for steady flow, and they are different for an unsteady flow.

We can simplify the description of two-dimensional, incompressible flows by
use of the stream function ψ defined by:

u ≡ ∂ψ

∂y
, v ≡ −∂ψ

∂x
, (11.12)

The stream function is often used because it is a scalar from which the vector
velocity field can be calculated. This leads to simpler equations for some flows.

Stream functions are also useful for visualizing the flow. At each instant,
the flow is parallel to lines of constant ψ. Thus if the flow is steady, the lines of
constant stream function are the paths followed by water parcels.

The volume rate of flow between any two stream lines of a steady flow is
dψ, and the volume rate of flow between two stream lines ψ1 and ψ2 is equal
to ψ1 − ψ2. To see this, consider an arbitrary line dx = (dx, dy) between two
stream lines (Figure 11.4). The volume rate of flow between the stream lines is:

v dx + (−u) dy = −∂ψ

∂x
dx− ∂ψ

∂y
dy = −dψ (11.13)

and the volume rate of flow between the two stream lines is numerically equal
to the difference in their values of ψ.

Now, lets apply the concepts to satellite-altimeter maps of the oceanic topog-
raphy. Referring back to the discussion of surface geostrophic currents observed
by satellite altimeters, we wrote (10.10)

us = − g

f

∂ζ

∂y

vs =
g

f

∂ζ

∂x
(11.14)
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Figure 11.4 Volume transport between stream lines in a two-dimensional, steady flow (From
Kundu, 1990).

Comparing (11.14) with (11.12) it is clear that

ψ = − g

f
ζ (11.15)

and the sea surface is a stream function scaled by g/f . Turning to Figure
10.6, the lines of constant height are stream lines, and flow is along the lines.
The surface geostrophic transport is proportional to the difference in height,
independent of distance between the stream lines. The same statements apply
to Figure 10.9, except that the transport is relative to transport at the 1000
decibars surface, which is roughly one kilometer deep.

In addition to the stream function, oceanographers use the mass-transport
stream function Ψ defined by:

Mx ≡ ∂Ψ
∂y

, My ≡ −∂Ψ
∂x

(11.16)

This is the function shown in Figures 11.2 and 11.3.

11.2 Stommel’s Theory of Western Boundary Currents
At the same time Sverdrup was beginning to understand circulation in the
eastern Pacific, Stommel was beginning to understand why western boundary
currents occur in ocean basins. To study the circulation in the North Atlantic,
Stommel (1948) used essentially the same equations used by Sverdrup (11.1,
11.2, and 11.3) but he added a simple bottom stress proportional to velocity to
(11.3):(
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= −Rv (11.17b)

where F and R are constants.
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Stommel calculated steady-state solutions for flow in a rectangular basin
0 ≤ y ≤ b, 0 ≤ x ≤ λ of constant depth D filled with water of constant density.
His first solution was for a non-rotating Earth. This solution had a symmet-
ric flow pattern with no western boundary current (Figure 11.5, left). Next,
Stommel assumed a constant rotation, which again led to a symmetric solution
with no western boundary current. Finally, he assumed that the Coriolis force
varies with latitude. This led to a solution with western intensification (Figure
11.5, right). Stommel suggested that the crowding of stream lines in the west
indicated that the variation of Coriolis force with latitude may explain why the
Gulf Stream is found in the ocean. We now know that the variation of Coriolis
force with latitude is required for the existence of the western boundary current,
and that other models for the flow which use different formulations for friction,
lead to western boundary currents with different structure. Pedlosky (1987,
Chapter 5) gives a very useful, succinct, and mathematically clear description
of the various theories for western boundary currents. Müller (1995) gives a
more mathematical description.

In the next chapter, we will see that Stommel’s results can also be explained
in terms of vorticity—wind produces clockwise torque (vorticity), which must
be balanced by a counterclockwise torque produced at the western boundary.

11.3 Munk’s Solution

Sverdrup’s and Stommel’s work suggested the dominant processes producing a
basin-wide, wind-driven circulation. Munk (1950) built upon this foundation,
adding information from Rossby (1936) on lateral eddy viscosity, to obtain a
solution for the circulation within an ocean basin. Munk used Sverdrup’s idea
of a vertically integrated mass transport flowing over a motionless deeper layer.
This simplified the mathematical problem, and it is more realistic. The ocean
currents are concentrated in the upper kilometer of the ocean, they are not
barotropic and independent of depth. To include friction, Munk used lateral
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Figure 11.5 Stream function for flow in a basin as calculated by Stommel (1948). Left: Flow
for non-rotating basin or flow for a basin with constant rotation. Right: Flow when rotation
varies linearly with y.
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eddy friction with constant AH = Ax = Ay. Equations (11.1) become:
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Munk integrated the equation from a depth −D to the surface at z = z0

which is similar to Sverdrup’s integration except that the surface is not at z = 0.
Munk assumed that currents at the depth −D vanish, and that (11.3) apply at
the horizontal boundaries at the top and bottom of the layer.

To simplify the equations, Munk used the mass-transport stream function
(11.16), and he proceeded along the lines of Sverdrup. He eliminated the pres-
sure term by taking the y derivative of (11.18a) and the x derivative of (11.18b)
to obtain the equation for mass transport:

AH∇4Ψ︸ ︷︷ ︸
Friction

− β
∂Ψ
∂x

= − curlz︸ ︷︷ ︸
Sverdrup Balance

(11.19)

where

∇4 =
∂4

∂x4
+ 2

∂4

∂x2 ∂y2
+

∂4

∂y4
(11.20)

is the biharmonic operator. Equation (11.19) is the same as (11.6) with the
addition of the lateral friction term AH . The friction term is large close to a
lateral boundary where the horizontal derivatives of the velocity field are large,
and it is small in the interior of the ocean basin. Thus in the interior, the
balance of forces is the same as that in Sverdrup’s solution.

Equation (11.19) is a fourth-order partial differential equation, and four
boundary conditions are needed. Munk assumed the flow at a boundary is
parallel to a boundary and that there is no slip at the boundary:

Ψbdry = 0,
(

∂Ψ
∂n

)
bdry

= 0 (11.21)

where n is normal to the boundary. Munk then solved (11.19) with (11.21)
assuming the flow was in a rectangular basin extending from x = 0 to x = r,
and from y = −s to y = +s. He further assumed that the wind stress was zonal
and in the form:

T = a cosny + b sinny + c

n = j π/s, j = 1, 2, . . . (11.22)

Munk’s solution (Figure 11.6) shows the dominant features of the gyre-scale
circulation in an ocean basin. It has a circulation similar to Sverdrup’s in the
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Figure 11.6 Upper Left: Mean annual wind stress Tx(y) over the Pacific and the curl of
the wind stress. Upper Right: The mass transport stream function for a rectangular basin
calculated by Munk (1950) using observed wind stress for the Pacific. Contour interval is
10 × 106 m3/s = 10 Sverdrups. The total transport between the coast and any point x, y
is ψ(x, y).The transport in the relatively narrow northern section is greatly exaggerated.
Lower Right: North-South component of the mass transport. Bottom: The solution for a
triangular basin. (From Munk, 1950).

eastern parts of the ocean basin and a strong western boundary current in the
west. Using AH = 5× 103 m2/s gives a boundary current roughly 225 km wide
with a shape similar to the flow observed in the Gulf Stream and the Kuroshio
(Figure 11.7).

The transport in western boundary currents is independent of AH , and it
depends only on (11.6) integrated across the width of the ocean basin. Hence,
it depends on the width of the ocean, the curl of the wind stress, and β. Using
the best available estimates of the wind stress, Munk calculated that the Gulf
Stream should have a transport of 36 Sv and that the Kuroshio should have a
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Figure 11.7 Left: Northward mass transport X and transport per unit length X′/k in the
ocean calculated by Munk (1950). Right: Mass transport stream function y computed
from hydrographic data across the Kuroshio and Gulf Stream. The Gulf Stream data
were collected by the Atlantis at stations 1225–1231 in April 1931; the Kuroshio data were
collected by the Mansyu at stations 429–434 in January 1927. x = 0 is at the continental
shelf. (From Munk, 1950).

transport of 39 Sv. The values are about one half of the measured values of
the flow available to Munk. This is very good agreement considering the wind
stress was not well known.

Recent recalculations show good agreement except for the region offshore
of Cape Hattaras where there is a strong recirculation. Munk’s solution was
based on wind stress averaged aver 5◦squares. This underestimated the curl of
the stress. Leetma and Bunker (1978) used modern drag coefficient and 2◦× 5◦

averages of stress to obtain 32 Sv transport in the Gulf Stream, a value very
close to that calculated by Munk.

11.4 Observed Circulation in the Atlantic
The theories by Sverdrup, Munk, and Stommel describe a very simple flow. But
the ocean is much more complicated. To see just how complicated the flow is at
the surface, let’s look at a whole ocean basin, the North Atlantic. I have chosen
this region because it is the best observed, and because mid-latitude processes in
the Atlantic are similar to mid-latitude processes in the other oceans. Thus, for
example, we use the Gulf Stream as an example of a western boundary current.

Let’s begin with the Gulf Stream to see how our understanding of ocean
currents has evolved. Of course, we can’t look at all aspects of the flow. You can
find out much more by reading Tomczak and Godfrey (1994) book on Regional
Oceanography: An Introduction.

North Atlantic Circulation The North Atlantic is the most thoroughly stud-
ied ocean basin. There is an extensive body of theory to descibe most aspects of
the circulation, including flow at the surface, in the thermocline, and at depth,
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Figure 11.8 Schematic of currents in the North Atlantic showing major surface currents.
Values are transport in units of 106 m3/s (From Sverdrup, Johnson, and Fleming 1942: Fig.
187).

together with an extensive body of field observations. By looking at figures de-
picting the circulation, we can learn more about the circulation, and by looking
at the figures produced over the past few decades we can trace an ever more
complete understanding of the circulation.

Let’s begin with the traditional view of the time-averaged flow in the North
Atlantic based mostly on hydrographic observations of the density field (Figure
2.7). It is a contempory view of the mean circulation of the entire ocean based
on a century of more of observations. Because the figure includes all the oceans,
perhaps it is overly simplified. So, let’s look then at a similar view of the mean
circulation of just the North Atlantic (Figure 11.8).

The figure shows a broad, basin-wide, mid latitude gyre as we expect from
Sverdrup’s theory described in §11.1. In the west, a western boundary current,
the Gulf Stream, completes the gyre. In the north a subpolar gyre includes the
Laborador current. An equatorial current system and countercurrent are found
at low latitudes with flow similar to that in the Pacific. Note, however, the
strong cross equatorial flow in the west which flows along the northeast coast
of Brazil toward the Caribbean.

If we look closer at the flow in the far north Atlantic (Figure 11.9) we see
that the flow is still more complex. This figure includes much more detail of a
region important for fisheries and commerce. Because it is based on an extensive
base of hydrographic observations, is this reality? For example, if we were to
drop a Lagrangean float into the Atlantic would it follow the streamline shown
in the figure?

To answer the question, let’s look at the tracks of a 110 buoys drifting on the
sea surface compiled by Phil Richardson (Figure 11.10 top). The tracks give a
very different view of the currents in the North Atlantic. It is hard to distinguish
the flow from the jumble of lines, sometimes called spagetti tracks. Clearly, the
flow is very turbulent, especially in the Gulf Stream, a fast, western-boundary
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Figure 11.9 Detailed schematic of currents in the North Atlantic showing major surface
currents. The numbers give the transport in units on 106m3/s from the surface to a depth
of 106 m3/s. Eg: East Greenland Current; Ei: East Iceland Current; Gu: Gulf Sttream; Ir:
Irminger Current; La: Laborador Current; Na: North Atlantic Current; Nc: North Cape
Current; Ng: Norwegian Current; Ni: North Iceland Current; Po: Portugal Current; Sb:
Spitzbergen Current; Wg: West Greenland Current. Numbers within squares give sinking
water in units on 106m3/s. Solid Lines: Relatively warm currents. Broken Lines: Relatively
cold currents. (From Dietrich, et al. 1980).

current. Furthermore, the turbulent eddies seem to have a diameter of a few
degrees. This is much different that turbulence in the atmosphere. In the air,
the large eddies are called storms, and storms have diameters of 10◦–20◦. Thus
oceanic “storms” are much smaller than atmospheric storms.

Perhaps we can see the mean flow if we average the drifter tracks. What
happens when Richardson averages the tracks through 2◦ × 2◦ boxes? The
averages (Figure 11.10 bottom) begin to show some trends, but note that in
some regions, such as east of the Gulf Stream, adjacent boxes have very different
means, some having currents going in different directions. This indicates the
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flow is so variable, that the average is not stable; and 40 or more observations
do not yields a stable mean value. Overall, Richardson finds that the kinetic
energy of the eddies is 8 to 37 times larger than the kinetic energy of the mean
flow. Thus the oceanic turbulence is very different than laboratory turbulence.
In the lab, the mean flow is typically much faster than the eddies.

Further work by Richardson (1993) based on subsurface buoys freely drifting
at depths between 500 and 3,500 m, shows that the current extends deep below
the surface, and that typical eddy diameter is 80 km.

Gulf Stream Recirculation Region If we look closely at figure 11.9 we
see that the transport in the Gulf Stream increases from 26 Sv in the Florida
Strait (between Florida and Cuba) to 55 Sv offshore of Cape Hattaras. Later
measurements showed the transport increases from 30 Sv in the Florida Strait
to 150 Sv near 40◦N.

The observed increase, and the large transport off Hatteras, disagree with
transports calculated from Sverdrup’s theory. Theory predicts a much smaller
maximum transport of 30 Sv, and that the maximum ought to be near 28◦N.
Now we have a problem: What causes the high transports near 40◦N?

Niiler (1987) summarizes the theory and observations. First, there is no
hydrographic evidence for a large influx of water from the Antilles Current
that flows north of the Bahamas and into the Gulf Stream. This rules out the
possibility that the Sverdrup flow is larger than the calculated value, and that
the flow bypasses the Gulf of Mexico. The flow seems to come primarily from
the Gulf Stream itself. The flow between 60◦W and 55◦W is to the south. The
water then flows south and west, and rejoins the Stream between 65◦W and
75◦W. Thus, there are two subtropical gyres: a small gyre directly south of the
Stream centered on 65◦W, called the Gulf Stream recirculation region, and the
broad, wind-driven gyre near the surface seen in figure 11.8 that extends all the
way to Europe.

The Gulf Stream recirculation carries two to three times the mass of the
broader gyre. Current meters deployed in the recirculation region show that
the flow extends to the bottom. This explains why the recirculation is weak
in the maps calculated from hydrographic data. Currents calculated from the
density distribution give only the baroclinic component of the flow, and they
miss the component that is independent of depth, the barotropic component.

The Gulf Stream recirculation is driven by the potential energy of the steeply
sloping thermocline at the Gulf Stream. The depth of the 27.00 sigma-theta
(σθ) surface drops from 250 meters near 41◦N in figure 10.12 to 800 m near
38◦N south of the Stream. Eddies in the Stream convert the potential energy
to kinetic energy through baroclinic instability. The instability leads to an
interesting phenomena: negative viscosity. The Gulf Stream accelerates not
decelerates. It acts as though it were under the influence of a negative viscosity.
The same process drives the jet stream in the atmosphere. The steeply sloping
density surface separating the polar air mass from mid-latitude air masses at the
atmosphere’s polar front also leads to baroclinic instability. For more on this
fascinating see Starr’s (1968) book on Physics of Negative Viscosity Phenomena.
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Figure 11.10 Top Tracks of 110 drifting buoys deployed in the western North Atlantic.
Botton Mean velocity of currents in 2◦ × 2◦ boxes calculated from tracks above. Boxes
with fewer than 40 observations were omitted. Length of arrow is proportional to speed.
Maximum values are near 0.6 m/s in the Gulf Straem near 37◦N 71◦W. (From Richardson
1983).

Let’s look at this process in the Gulf Stream (figure 11.11). The strong
current shear in the Stream causes the flow to begin to meander. The meander
intensifies, and eventually the Stream throws off a ring. Those on the south
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Figure 11.11 Gulf Stream meanders lead to the formation of a spinning eddy, a ring. Notice
that rings have a diameter of about 1◦ (From Ring Group, 1981).

side drift southwest, and eventually merge with the stream several months later
(figure 11.12). The process occurs all along the recirculation region, and satel-
lite images show nearly a dozen or so rings occur north and south of the stream
(figure 11.12). In the south Atlantic, there is another western boundary cur-
rent, the Brazil Current that completes the Sverdrup circulation in that basin.
Between the flow in the north and south Atlantic lies the equatorial circulation
similar to the circulation in the Pacific. Before we can complete our description
of the Atlantic, we need to look at the Antarctic Circumpolar Current.

11.5 Important Concepts
1. The theory for wind-driven, geostrophic currents was first outlined in a

series of papers by Sverdrup, Stommel, and Munk between 1947 and 1951.

2. They showed that realistic currents can be calculated only if the Coriolis
parameter varies with latitude.

3. Sverdrup showed that the curl of the wind stress is driven by a northward
mass transport, and that this can be used to calculate currents in the
ocean away from western boundary currents.

4. Stommel showed that western boundary currents are required for flow to
circulate around an ocean basin when the Coriolis parameter varies with
latitude.
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Figure 11.12 Sketch of the position of the Gulf Stream, warm core, and cold core eddies
observed im infrared images of the sea surface collected by the infrared radiometer on noaa-5
in October and December 1978 (from Tolmazin, 1985: 91).

5. Munk showed how to combine the two solutions to calculate the wind-
driven geostrophic circulation in an ocean basin. In all cases, the current
is driven by the curl of the wind stress.

6. The observed circulation in the ocean is very turbulent. many years of
observations may need to be averaged together to obtain a stable map of
the mean flow.

7. The Gulf Stream is a region of baroclinic instability in which turbulence
accelerates the stream. This creates a Gulf Stream recirculation. Trans-
ports in the recirculation region are much larger than transports calculated
from the Sverdrup-Munk theory.


