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Chapter 10

Geostrophic Currents

Within the ocean’s interior away from the top and bottom Ekman layers, for
horizontal distances exceeding a few tens of kilometers, and for times exceeding
a few days, horizontal pressure gradients in the ocean almost exactly balance
the Coriolis force resulting from horizontal currents. This balance is known as
the geostrophic approximation.

The dominant forces acting in the vertical are the vertical pressure gradient
and the weight of the water. The two balance within a few parts per million.
Thus pressure at any point in the water column is due almost entirely to the
weight of the water in the column above the point. The dominant forces in the
horizontal are the pressure gradient and the Coriolis force. They balance within
a few parts per thousand over large distances and times (See Box).

Both balances require that viscosity and nonlinear terms in the equations
of motion be negligible. Is this reasonable? Consider viscosity. We know that
a rowboat weighing a hundred kilograms will coast for maybe ten meters after
the rower stops. A super tanker moving at the speed of a rowboat may coast
for kilometers. It seems reasonable, therefore that a cubic kilometer of water
weighing 1015 kg would coast for perhaps a day before slowing to a stop. And
oceanic mesoscale eddies contain perhaps 1000 cubic kilometers of water. Hence,
our intuition may lead us to conclude that neglect of viscosity is reasonable. Of
course, intuition can be wrong, and we need to refer back to scaling arguments.

10.1 Hydrostatic Equilibrium
Before describing the geostrophic balance, let’s first consider the simplest solu-
tion of the momentum equation, the solution for an ocean at rest. It gives the
hydrostatic pressure within the ocean. To obtain the solution, we assume the
fluid is stationary:

u = v = w = 0; (10.1)

the fluid remains stationary:
du

dt
=
dv

dt
=
dw

dt
= 0; (10.2)
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Scaling the Equations: The Geostrophic Approximation

We wish to simplify the equations of motion to obtain solutions that describe the
deep-sea conditions well away from coasts and below the Ekman boundary layer at
the surface. To begin, let’s examine the typical size of each term in the equations
in the expectation that some will be so small that they can be dropped without
changing the dominant characteristics of the solutions. For interior, deep-sea
conditions, typical values for distance L, horizontal velocity U , depth H, Coriolis
parameter f , gravity g, and density ρ are:

L ≈ 106 m f ≈ 10−4 s−1

U ≈ 10−1 m/s g ≈ 10 m/s2

H ≈ 103 m ρ ≈ 103 kg/m3

From these variables we can calculate typical values for vertical velocity W ,
pressure P , and time T :

∂W

∂z
= −

(
∂U

∂x
+

∂v

∂y

)

W

H
=

U

L
; W =

UH

L
=

10−1 103

106
m/s = 10−4m/s

P = ρgz = 103 101 103 = 107 Pa

T = L/U = 107 s

The momentum equation for vertical velocity is therefore:

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ 2Ω u cos ϕ − g

W

T
+

UW

L
+

UW

L
+

W 2

L
=

P

ρ H
+ f U − g

10−11 + 10−11 + 10−11 + 10−14 = 10 + 10−5 − 10

and the only important balance in the vertical is hydrostatic:

∂p

∂z
= −ρg Correct to 1 : 106.

The momentum equation for horizontal velocity in the x direction is:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂P

∂x
+ fv

10−8 + 10−8 + 10−8 + 10−8 = 10−5 + 10−5

Thus the Coriolis force balances the pressure gradient within one part per thou-
sand. This is called the geostrophic balance, and the geostrophic equations are:

1

ρ

∂p

∂x
= fv;

1

ρ

∂p

∂y
= −fu;

1

ρ

∂p

∂z
= −g

This balance applies to oceanic flows with horizontal dimensions larger than
roughly 50 km and times greater than a few days.
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and, there is no friction:

fx = fy = fz = 0. (10.3)

With these assumptions, (7.18) becomes:

1
ρ

∂p

∂x
= 0;

1
ρ

∂p

∂y
= 0;

1
ρ

∂p

∂z
= − g(ϕ, z) (10.4)

where we have explicitly noted that gravity g is a function of latitude ϕ and
height z. We will show later why we have kept this explicit.

Equations (10.4a) require surfaces of constant pressure to be level surface.
A surface of constant pressure is an isobaric surface. The last equation can be
integrated to obtain the pressure at any depth h. Recalling that ρ is a function
of depth for an ocean at rest.

p =
∫ 0

−h

g(ϕ, z) ρ(z) dz (10.5)

Later, we will show that (10.5) applies with an accuracy of about one part per
million even if the ocean is not at rest.

10.2 Geostrophic Equations
The geostrophic balance requires that the Coriolis force balance the horizontal
pressure gradient. The equations for geostrophic balance are derived from the
equations of motion assuming the flow has no acceleration, du/dt = dv/dt =
dw/dt = 0; that horizontal velocities are much larger than vertical, w � u, v;
that the only external force is gravity; and that friction is small. With these
assumptions (7.15) become

∂p

∂x
= ρfv;

∂p

∂y
= −ρfu; ∂p

∂z
= −ρg (10.6)

where f = 2Ω sinϕ is the Coriolis parameter. These are the geostrophic equa-
tions.

The equations can be written:

u = − 1
fρ

∂p

∂y
; v =

1
fρ

∂p

∂x
(10.7a)

p = p0 +
∫ ζ

−h

g(ϕ, z)ρ(z)dz (10.7b)

where p0 is atmospheric pressure at z = 0, and ζ is the height of the sea surface.
Note that we have allowed for the sea surface to be above or below the surface
z = 0; and the pressure gradient at the sea surface is balanced by a surface
current us.
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Figure 10.1 Sketch defining ζ and r, used for calculating pressure just below the sea surface.

Substituting (10.7b) into (10.7a) gives:

u = − 1
fρ

∂

∂y

∫ 0

−h

g(ϕ, z) ρ(z) dz − g

f

∂ζ

∂y

u = − 1
fρ

∂

∂y

∫ 0

−h

g(ϕ, z) ρ(z) dz − us (10.8a)

where we have used the Boussinesque approximation, retaining full accuracy for
ρ only when calculating pressure.

In a similar way, we can derive the equation for v.

v =
1
fρ

∂

∂x

∫ 0

−h

g(ϕ, z) ρ(z) dz +
g

f

∂ζ

∂x

v =
1
fρ

∂

∂x

∫ 0

−h

g(ϕ, z) ρ(z) dz + vs (10.8b)

If the occean is homogeneous and density and gravity are constant, the first
term on the right-hand side of (10.8) is equal to zero; and the horizontal pressure
gradients within the ocean are the same as the gradient at the surface.

If the ocean is stratified, the horizontal pressure gradient has two compo-
nents, one due to the slope at the sea surface, and an additional term due to
horizontal density differences. The first term on the right-hand side of (10.8) is
called the relative velocity. Thus calculation of geostrophic currents from the
density distribution requires the velocity (u0, v0) at the sea surface or at some
other depth.

10.3 Surface Geostrophic Currents From Altimetry
The geostrophic approximation applied at the sea surface leads to a very simple
relation between surface slope and surface current. Consider a level surface
slightly below the sea surface, say two meters below the sea surface, at z = −r.
A level surface is a surface of constant gravitational potential, and no work is
required to move along a frictionless, level surface (Figure 10.1).

The pressure on the level surface is:

p = ρ g (ζ + r) (10.9)
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z = ζ

Vs = g
f

d ζ
dx

Sea Surface

Geoid

Vs 1 m

100 km

⊗

x

Figure 10.2 The slope of the sea surface relative to the geoid (∂ζ/∂x) is directly related to
surface geostrophic currents vs. The slope of 1 meter per 100 kilometers (10 µrad) is typical
of strong currents.

assuming ρ and g are essentially constant in the upper few meters of the ocean.
Substituting this into (10.8a, b), gives the two components (us, vs) of the

surface geostrophic current:

us = − g
f

∂ζ

∂y
; vs =

g

f

∂ζ

∂x
(10.10)

where g is gravity, f is the Coriolis parameter, and ζ is the height of the sea
surface above a level surface.

The Oceanic Topography In §3.4 we define the topography of the sea surface
ζ to be the height of the sea surface relative to a particular level surface, the
geoid; and we defined the geoid to be the level surface that coincided with the
surface of the ocean at rest. Thus, according to (10.10) the surface geostrophic
currents are proportional to the slope of the topography (Figure 10.2), a quantity
that can be measured by satellite altimeters if the geoid is known.

Because the geoid is a level surface, it is a surface of constant geopoten-
tial. To see this, consider the work done in moving a mass m by a distance
h perpendicular to a level surface. The work is W = mgh, and the change of
potential energy per unit mass is gh. Thus level surfaces are surfaces of constant
geopotential, where the geopotential Φ = gh.

Topography is due to process that cause the ocean to move: tides, ocean
currents, and the changes in barometric pressure that produce the inverted
barometer effect. Because the ocean’s topography is due to dynamical processes,
it is usually called dynamic topography. The topography is approximately one
hundredth of the geoid undulations. This means that the shape of the sea surface
is dominated by local variations of gravity. The influence of currents is much
smaller. Typically, sea-surface topography has amplitude of ±1 m. Typical
slopes are ∂ζ/∂x ≈ 1–10 microradians for v = 0.1–1.0 m/s at mid latitude.

Errors in knowing the height of the geoid are larger than the topographic
signal for wavelengths shorter than roughly 1600 km (Nerem, et al. 1994). The
height of the geoid, smoothed over horizontal distances greater than roughly
1,600 km, is known with an accuracy of ±15 cm (Tapley, et al. 1994a). The
unsmoothed geoid is less well known. The height of the unsmoothed, local geoid
is known with an accuracy of only around ±50 cm (Figure 10.3).
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Figure 10.3 Topex/Poseidon altimeter observations of the Gulf Stream. When the altimeter
observations are subtracted from the local geoid, they yield the oceanic topography, which is
due primarily to ocean currents in this example. The gravimetric geoid was determined by
the Ohio State University from ship and other surveys of gravity in the region. From Center
for Space Research, University of Texas.

Satellite Altimetry Very accurate, satellite-altimeter systems are needed for
measuring the oceanic topography. The first systems, carried on Seasat, Geosat,
ers–1, and ers–2 were designed to measure the variability of currents with
horizontal dimensions of less than a thousand kilometers. Only Topex/Poseidon,
launched in 1992, was designed to make the much more accurate measurements
necessary for observing the permanent (time-averaged) surface circulation of the
oceans, tides, and the variability of gyre-scale currents.

Because the geoid is not well known locally, altimeters are usually flown in
orbits that have an exactly repeating ground track. Thus Topex/Poseidon flies
over the same ground track every 9.9156 days. By subtracting sea-surface height
from one traverse of the ground track from height measured on a later traverse,
changes in topography can be observed without knowing the geoid. The geoid is
constant in time, and the subtraction removes the geoid, revealing changes due
to changing currents, such as mesoscale variability, assuming tides have been
removed from the data (Figure 10.4). Mesoscale variability includes eddies with
diameters between roughly 20 and 500 km.

The great accuracy and precision of Topex/Poseidon’s altimetric system al-
low the measurements of the oceanic topography over ocean basins with an
accuracy of ±5 cm. Such an accurate satellite-altimeter system can measure:

1. Changes in the global mean volume of the ocean (Born et al. 1986, Nerem,
1995);
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Topography Variability (cm)

20E 60E 100E 140E 180E 140W 100W 60W 20W 20E
64S

32S

EQ

32N

64N

15

15

15

15
15

15

15

15

15

10

8

8

6

6

Figure 10.4 Global distribution of variance of topography from Topex/Poseidon altimeter
data from 10/3/92 to 10/6/94. The height variance is an indicator of variability of currents.
(From Center for Space Research, University of Texas).

2. Seasonal heating and cooling of the ocean (Chambers, Tapley, and Stew-
art, 1998);

3. Tides (Andersen, Woodworth, and Flather, 1995);

4. The permanent surface geostrophic current system (Figure 10.5);

5. Changes in surface geostrophic currents on all scales (Figure 10.4); and

6. Variations in topography of equatorial current systems such as those as-
sociated with El Niño (Figure 10.6).

Altimeter Errors (Topex/Poseidon) The most accurate observations of the
sea-surface topography are from Topex/Poseidon. Errors for this satellite al-
timeter system are due to:

1. Instrument noise, ocean waves, water vapor, free electrons in the iono-
sphere, and mass of the atmosphere. Topex/Poseidon carries a precise
altimeter system able to observed the height of the satellite above the sea
surface between ±66◦latitude with a precision of ±2 cm and an accuracy
of ±3.2 cm (Fu, et al. 1994). The system consists of a two-frequency radar
altimeter to measure height above the sea, the influence of the ionosphere,
and wave height. The system also included a three-frequency microwave
radiometer able to measure water vapor in the troposphere.

2. Tracking errors. The satellite carries three tracking systems that enable
its position in space, its ephemeris, to be determined with an accuracy of
±3.5 cm (Tapley et al. 1994a).

3. Sampling error. The satellite measures height along a ground track that
repeats within ±1 km every 9.9156 days. Each repeat is a cycle. Because
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Figure 10.5 Global distribution of time-averaged topography of the ocean from Topex/Pos-
eidon altimeter data from 10/3/92 to 10/6/99 relative to the jgm–3 geoid. Geostrophic
currents at the ocean surface are parallel to the contours. Compare with Figure 2.8 calculated
from hydrographic data. (From Center for Space Research, University of Texas).

currents are measured only along the subsatellite track, there is a sampling
error. The satellite cannot map the topography between ground tracks,
nor can it observe changes with periods less than 2× 9.9156 d (see §17.3).

4. Geoid error. The permanent topography is not well known over distances
shorter than 1,600 km because geoid errors dominate for shorter distances.
Maps of the topography smoothed over 1,600 km are used to study the
dominant features of the permanent geostophic currents at the sea surface
(Figure 10.5).

Taken together, the measurements of height above the sea and the satellite
position give sea-surface height in geocentric coordinates with an accuracy of
±4.7 cm. The geoid error adds further errors that depend on the size of the
area being measured.

10.4 Geostrophic Currents From Hydrography
The geostrophic equations are widely used in oceanography to calculate currents
at depth. The basic idea is to use hydrographic measurements of temperature,
salinity or conductivity, and pressure to calculate the density field of the ocean
using the equation of state of sea water. Density is used in (10.7b) to calculate
the internal pressure field, from which the geostrophic currents are calculated
using (10.8a, b). Usually, however, the constant of integration in (10.8) is not
known, and only the relative velocity field can be calculated.

At this point, you may ask, why not just measure pressure directly as is done
in meteorology, where direct measurements of pressure are used to calculate
winds. And, aren’t pressure measurements needed to calculate density from
the equation of state? The answer is that very small changes in depth make
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Figure 10.6 Time-longitude plot of sea-level anomalies in the Equatorial Pacific observed
by Topex/Poseidon. Warm anomalies are light gray, cold anomalies are dark gray. The
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large changes in pressure because water is so heavy. Errors in pressure caused
by errors in determining the depth of a pressure gauge are much larger than
the pressure signal due to currents. For example, using (10.7a), we calculate
that the pressure gradient due to a 10 cm/s current at 30◦latitude is 7.5× 10−3

Pa/m, which is 750 Pa in 100 km. From the hydrostatic equation (10.5), 750
Pa is equivalent to a change of depth of 7.4 cm. Therefore, for this example, we
must know the depth of a pressure gauge with an accuracy of much better than
7.4 cm. This is not possible.

While simple in concept, the calculation of geostrophic currents from hydro-
graphic data is difficult, and the difficulties lie in the details. The first detail is
to understand how variations in gravity influence pressure.

Geopotential Surfaces Within the Ocean Calculation of pressure gradients
within the ocean must be done along surfaces of constant geopotential just as
we calculated pressure gradients on the geoid at the sea surface to calculate
surface geostrophic currents. As long ago as 1910, Vilhelm Bjerknes (1910)
realized that such surfaces are not at fixed heights in the atmosphere because g
is not constant; and (10.4c) must include the variability of gravity in both the
horizontal and vertical directions.

The geopotential Φ is:

Φ =
∫ z

0

gdz (10.11)

and in SI units, Φ/9.8 has almost the same numerical value as height in meters.
The meteorological community accepted Bjerknes’ proposal that height be re-
placed by dynamic meters D = Φ/10 to obtain a natural vertical coordinate.
Later, this was replaced by the geopotential meter (gpm) Z = Φ/9.80. The
geopotential meter is a measure of the work required to lift a unit mass from
sea level to a height z against the force of gravity. Harald Sverdrup, Bjerknes’
student, carried the concept to oceanography; and depths in the ocean are of-
ten quoted in geopotential meters. Hence, geopotential surfaces in the ocean
are defined by different values of Φ, and the geometric distance between two
geopotential surfaces cannot be constant over thousands of kilometers.

Gravity can be written as the product of a term that varies with latitude
times a term that varies with height (List, 1966: 217 & 488):

g = g(ϕ, z) = gϕ

(
a

a+ z

)2

(10.12a)

gϕ = 9.806160
[
1 − 2.64 × 10−3 cos 2ϕ+ 5.9 × 10−6 cos2 ϕ

]
(10.12b)

a = 6, 378, 134.9 m (10.12c)

where a is the Earth’s equatorial radius, and ϕ is latitude. Here z is measured
from the geoid, and it is negative downward. The difference between depths of
constant vertical distance and constant potential can be relatively large. For
example, the geometrical depth of the 1000 dynamic meter surface is 1017.40 m
at the north pole and 1022.78 m at the equator, a difference of 5.38 m.
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Depth in geopotential meters, depth in meters, and pressure in decibars are
almost the same numerically, where a decibar is 104 Pa (Table 10.1), and a
pascal (Pa) is the SI unit for pressure. For this reason, oceanographers prefer to
state pressure in decibars. At a depth of 1 meter the pressure is approximately
1.007 decibars and the depth is 1.00 geopotential meters.

Table 10.1 Units of Pressure

1 Pa = 1 N/m2 = 1 kg.s−2.m−1

1 Bar = 105 Pa
1 decibar = 104 Pa
1 millibar = 100 Pa

Dutton (1995: §4.2) shows that by writing Z = Φ/g38, where g38 = 9.80
m/s2, and Z = geopotential height, then the hydrostatic equation is ∂P/∂Z =
g38ρ. Writing z for Z, and g for 9.8 m/s2, we obtain the hydrostatic equation
in familiar form: ∂p/∂z = −gρ.
Equations for Geostrophic Currents Within the Ocean To calculate geo-
strophic currents, we need to calculate the horizontal pressure gradient within
the ocean. This can be done using either of two approaches:

1. Calculate the slope of an isobaric surface. We used this approache when
we used sea-surface slope from altimetry to calculate surface geostrophic
currents. The sea surface is an isobaric surface.

2. Calculate the change in pressure on a surface of constant geopotential.
Such a surface is called a geopotential surface.

Oceanographers usually calculate the slope of isobaric surfaces. The impor-
tant steps are:

1. Calculate differences in heights (ΦA − ΦB) between two isobaric surfaces
(P1, P2) at hydrographic stations A and B (Figure 10.7). This is similar
to the calculation of ζ of the surface layer.

2. Calculate the slope of the upper isobaric surface relative to the lower.

β

ΦB − ΦA}

ΦA = Φ(P1A) − Φ(P2A) ΦB = Φ(P1B) − Φ(P2B)

P2

P1

A B
L

Figure 10.7. Sketch of geometry used for calculating geostrophic current from hydrography.
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3. Calculate the geostrophic current at the upper surface relative to the cur-
rent at the lower. This is the current shear.

4. Integrate the current shear from some depth where currents are known
to obtain currents as a function of depth. For example, from the sur-
face downward, using surface geostrophic currents observed by satellite
altimetry, or upward from an assumed level of no motion.

To calculate geostrophic currents oceanographers use a modified form of the
hydrostatic equation. The vertical pressure gradient (10.3c) is written

δp

ρ
= α δp = −g δz (10.13a)

α δp = δΦ (10.13b)

where α = α(S, t, p) is the specific volume; and (10.13b) follows from (10.11).
Differentiating (10.13b) with respect to horizontal distance x allows the geostro-
phic balance to be written in terms of the slope of the isobaric surface:

α
∂p

∂x
=

1
ρ

∂p

∂x
= −2 Ω v sinϕ (10.14a)

∂Φ (p = p0)
∂x

= −2 Ω v sinϕ (10.14b)

where Φ is the geopotential height of an isobaric surface. Note that the termi-
nology is a little confusing; Φ is not necessarily a geopotential surface.

Now let’s see how hydrographic data are used for evaluating ∂Φ/∂x. Con-
sider two isobaric surfaces (P1, P2) in the ocean as shown in Figure 10.7. The
geopotential difference between two isobaric surfaces at station A is:

Φ (P1A) − Φ (P2A) =
∫ P2A

P1A

α (S, t, p) dp (10.15)

The specific volume anomaly is written as the sum of two parts:

α(S, t, p) = α(35, 0, p) + δ (10.16)

where α(35, 0, p) is the specific volume of sea water with salinity of 35 psu,
temperature of 0◦C, and pressure p. The second term δ is the specific volume
anomaly. Using (10.11) in (10.10) gives:

Φ(P1A) − Φ(P2A) =
∫ P2A

P1A

α(35, 0, p) +
∫ P2A

P1A

δ dp

Φ(P1A) − Φ(P2A) = (Φ1 − Φ2)std + ∆ΦA

where (Φ1 − Φ2)std is the standard geopotential distance between two isobaric
surfaces P1 and P2; and

∆ΦA =
∫ P2A

P1A

δ dp (10.17)
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is the anomaly of the geopotential distance between the surfaces. It is called
the geopotential anomaly. If pressure is in decibars, the standard geopoten-
tial distance is numerically approximately z, where z is the geometric distance
between the two surfaces. The geopotential anomaly is much smaller, being
approximately 0.1% of the standard geopotential distance.

Consider now the geopotential anomaly between two pressure surfaces P1

and P2 calculated at two hydrographic stations A and B a distance L meters
apart (Figure 10.7). For simplicity we assume the lower isobaric surface is a
level surface. Hence the isobaric and geopotential surfaces coincide, and there
is no geostrophic velocity at this depth. The slope of the upper surface is

∆ΦB − ∆ΦA

L
= slope of isobaric surface P2

because the standard geopotential distance is the same at stations A and B.
The geostrophic velocity at the upper surface calculated from (10.14b) is:

V =
(∆ΦB − ∆ΦA)

2ΩL sinϕ
(10.18)

where V is the velocity at the upper geopotential surface. The velocity V is
perpendicular to the plane of the two hydrographic stations and directed into
the plane of Figure 10.7 if the flow is in the northern hemisphere. A useful
rule of thumb is that the flow is such that warmer, lighter water is to the right
looking downstream in the northern hemisphere.

If the pressure is measured in decibars, and L in meters, (10.18) becomes:

V =
10 (∆ΦB − ∆ΦA)

2ΩL sinϕ
(10.19)

Note that we could have calculated the slope of the isobaric surfaces using
density ρ instead of specific volume α. We have chosen to use α because it is the
common practice in oceanography, and tables of specific volume anomalies and
computer code to calculate the anomalies are widely available. The common
practice follows from numerical methods developed before calculators and com-
puters were available, when all calculations were done by hand or by mechanical
calculators with the help of tables and nomograms. Because the computaions
must be done with an accuracy of a few parts per million, and because all sci-
entific fields tend to be conservative, the common practice has continued to use
specific volume anomalies rather than density anomalies.

Barotropic and Baroclinic Flow: If the ocean were homogeneous with con-
stant density, then isobaric surfaces would always be parallel to the sea surface,
and the geostrophic velocity would be independent of depth. In this case the
relative velocity is zero, and hydrographic data cannot be used to measure the
geostrophic current. If density varies with depth, but not with horizontal dis-
tance, the isobaric surfaces are always parallel to the sea surface and the levels
of constant density, the isopycnal surfaces. In this case, the relative flow is also
zero. Both cases are examples of barotrophic flow.
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Barotropic flow occurs when levels of constant pressure in the ocean, the
isobaric surfaces, are always parallel to the surfaces of constant density, the
isopycnal surfaces. Note, some authors call the vertically averaged flow the
baroclinic component of the flow. Wunsch (1996: 74) points out that baroclinic
is used in so many different ways that the term is meaningless and should not
be used.

Baroclinic flow occurs when levels of constant pressure are inclined to sur-
faces of constant density. In this case, density varies with depth and horizontal
position. A good example is seen in Figure 10.12 which shows levels of constant
density changing depth by more than 1 km over horizontal distances of 100 km
at the Gulf Stream. Baroclinic flow varies with depth, and the relative cur-
rent can be calculated from hydrographic data. Note, constant-density surfaces
cannot be inclined to constant-pressure surfaces for a fluid at rest.

In general, the variation of flow in the vertical can be decomposed into a
barotropic component which is independent of depth, and a baroclinic compo-
nent which varies with depth.

10.5 An Example Using Hydrographic Data
Let’s now consider a specific numerical calculation of geostrophic velocity us-
ing generally accepted proceedures from Processing of Oceanographic Station
Data (jpots Editorial Panel, 1991). The book has worked examples using hy-
drographic data collected by the r/v Endeavor in the North Atlantic. Data
were collected on Cruise 88 along 71◦W across the Gulf Stream south of Cape
Cod, Massachusetts at stations 61 and 64. Station 61 is on the Sargasso Sea
side of the Gulf Stream in water 4260 m deep. Station 64 is north of the Gulf
Stream in water 3892 m deep. The measurements were made by a Conductivity-
Temperature-Depth-Oxygen Profiler, Mark III CTD/02, made by Neil Brown
Instruments Systems. It had a rosette of 24 1.2-liter Niskin water bottles. Salin-
ity and oxygen samples from the bottles were used to calibrate the ctd.

The ctd sampled temperature, salinity, and pressure 22 times per second,
and the digital data were averaged over 2 dbar intervals as the ctd was lowered
in the water. Data were tabulated at 2 dbar pressure intervals centered on
odd values of pressure because the first observation is at the surface, and the
first averaging interval extends to 2 dbar, and the center of the first interval
is at 1 dbar. Data were further smoothed with a binomial filter and linearly
interpolated to standard levels reported in the first three columns of Tables 10.2
and 10.3. All processing was done electronically.
δ(S, t, p) in the fourth column of Tables 10.2 and 10.3 is calculated from

the values of t, S, p in the layer. < δ > is the average value of specific volume
anomaly for the layer between standard pressure levels. It is the average of
the values of δ(S, t, p) at the top and bottom of the layer. The last column
(10−5∆Φ) is the product of the average specific volume anomaly of the layer
times the thickness of the layer in decibars. Therefore, the last column is the
geopotential anomaly ∆Φ calculated by integrating (10.17) between p1 at the
bottom of each layer and p2 at the top of each layer.
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Table 10.2 Computation of Relative Geostrophic Currents.

Data from Endeavor Cruise 88, Station 61

(36◦40.03’N, 70◦59.59’W; 23 August 1982; 1102Z)

Pressure t S σ(θ) δ(S, t, p) < δ > 10−5∆Φ

decibar ◦C psu kg/m3 10−8m3/kg 10−8m3/kg m2/s2

0 25.698 35.221 23.296 457.24
457.26 0.0046

1 25.698 35.221 23.296 457.28
440.22 0.0396

10 26.763 36.106 23.658 423.15
423.41 0.0423

20 26.678 36.106 23.658 423.66
423.82 0.0424

30 26.676 36.107 23.659 423.98
376.23 0.0752

50 24.528 36.561 24.670 328.48
302.07 0.0755

75 22.753 36.614 25.236 275.66
257.41 0.0644

100 21.427 36.637 25.630 239.15
229.61 0.0574

125 20.633 36.627 25.841 220.06
208.84 0.0522

150 19.522 36.558 26.086 197.62
189.65 0.0948

200 18.798 36.555 26.273 181.67
178.72 0.0894

250 18.431 36.537 26.354 175.77
174.12 0.0871

300 18.189 36.526 26.408 172.46
170.38 0.1704

400 17.726 36.477 26.489 168.30
166.76 0.1668

500 17.165 36.381 26.557 165.22
158.78 0.1588

600 15.952 36.105 26.714 152.33
143.18 0.1432

700 13.458 35.776 26.914 134.03
124.20 0.1242

800 11.109 35.437 27.115 114.36
104.48 0.1045

900 8.798 35.178 27.306 94.60
80.84 0.0808

1000 6.292 35.044 27.562 67.07
61.89 0.0619

1100 5.249 35.004 27.660 56.70
54.64 0.0546

1200 4.813 34.995 27.705 52.58
51.74 0.0517

1300 4.554 34.986 27.727 50.90
50.40 0.0504

1400 4.357 34.977 27.743 49.89
49.73 0.0497

1500 4.245 34.975 27.753 49.56
49.30 0.1232

1750 4.028 34.973 27.777 49.03
48.83 0.1221

2000 3.852 34.975 27.799 48.62
47.77 0.2389

2500 3.424 34.968 27.839 46.92
45.94 0.2297

3000 2.963 34.946 27.868 44.96
43.40 0.2170

3500 2.462 34.920 27.894 41.84
41.93 0.2097

4000 2.259 34.904 27.901 42.02

The distance between the stations is L = 110, 935 m; the average Coriolis
parameter is f = 0.88104×10−4; and the factor 10/fL in (10.19) is 1.0231 s/m.
This was used to calculate the relative geostrophic currents reported in Table
10.4 and plotted in Figure 10.8. The currents are calculated relative to the
current at 2000 decibars. Notice that there is no indication of Ekman currents
in the current profile. Ekman currents are not geostrophic, and they do not
contribute to the topography.
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Table 10.3 Computation of Relative Geostrophic Currents.

Data from Endeavor Cruise 88, Station 64

(37◦39.93’N, 71◦0.00’W; 24 August 1982; 0203Z)

Pressure t S σ(θ) δ(S, t, p) < δ > 10−5∆Φ

decibar ◦C psu kg/m3 10−8m3/kg 10−8m3/kg m2/s2

0 26.148 34.646 22.722 512.09
512.15 0.0051

1 26.148 34.646 22.722 512.21
512.61 0.0461

10 26.163 34.645 22.717 513.01
512.89 0.0513

20 26.167 34.655 22.724 512.76
466.29 0.0466

30 25.640 35.733 23.703 419.82
322.38 0.0645

50 18.967 35.944 25.755 224.93
185.56 0.0464

75 15.371 35.904 26.590 146.19
136.18 0.0340

100 14.356 35.897 26.809 126.16
120.91 0.0302

125 13.059 35.696 26.925 115.66
111.93 0.0280

150 12.134 35.567 27.008 108.20
100.19 0.0501

200 10.307 35.360 27.185 92.17
87.41 0.0437

250 8.783 35.168 27.290 82.64
79.40 0.0397

300 8.046 35.117 27.364 76.16
66.68 0.0667

400 6.235 35.052 27.568 57.19
52.71 0.0527

500 5.230 35.018 27.667 48.23
46.76 0.0468

600 5.005 35.044 27.710 45.29
44.67 0.0447

700 4.756 35.027 27.731 44.04
43.69 0.0437

800 4.399 34.992 27.744 43.33
43.22 0.0432

900 4.291 34.991 27.756 43.11
43.12 0.0431

1000 4.179 34.986 27.764 43.12
43.10 0.0431

1100 4.077 34.982 27.773 43.07
43.12 0.0431

1200 3.969 34.975 27.779 43.17
43.28 0.0433

1300 3.909 34.974 27.786 43.39
43.38 0.0434

1400 3.831 34.973 27.793 43.36
43.31 0.0433

1500 3.767 34.975 27.802 43.26
43.20 0.1080

1750 3.600 34.975 27.821 43.13
43.00 0.1075

2000 3.401 34.968 27.837 42.86
42.13 0.2106

2500 2.942 34.948 27.867 41.39
40.33 0.2016

3000 2.475 34.923 27.891 39.26
39.22 0.1961

3500 2.219 34.904 27.900 39.17
40.08 0.2004

4000 2.177 34.896 27.901 40.98

10.6 Comments on Geostrophic Currents
Knowing the theory of geostrophic currents and how the theory can be applied
to measurements to calculate currents, let’s now consider some of the limitations
of the theory and techniques.

Converting Relative Velocity to Velocity Hydrographic data give geostro-
phic currents relative to geostrophic currents at some reference level. How can
we convert the relative geostrophic velocities to velocities relative to the earth?

1. Assume a Level of no Motion: Traditionally, oceanographers assume there
is a level of no motion, sometimes called a reference surface, roughly 2,000
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Table 10.4 Computation of Relative Geostrophic Currents.

Data from Endeavor Cruise 88, Station 61 and 64

Pressure 10−5∆Φ61 Σ∆Φdz 10−5∆Φ64 Σ∆Φdz V

decibar m2/s2 at 61∗ m2/s2 at 64∗ (m/s)

0 2.1872 1.2583 0.95
0.0046 0.0051

1 2.1826 1.2532 0.95
0.0396 0.0461

10 2.1430 1.2070 0.96
0.0423 0.0513

20 2.1006 1.1557 0.97
0.0424 0.0466

30 2.0583 1.1091 0.97
0.0752 0.0645

50 1.9830 1.0446 0.96
0.0755 0.0464

75 1.9075 0.9982 0.93
0.0644 0.0340

100 1.8431 0.9642 0.90
0.0574 0.0302

125 1.7857 0.9340 0.87
0.0522 0.0280

150 1.7335 0.9060 0.85
0.0948 0.0501

200 1.6387 0.8559 0.80
0.0894 0.0437

250 1.5493 0.8122 0.75
0.0871 0.0397

300 1.4623 0.7725 0.71
0.1704 0.0667

400 1.2919 0.7058 0.60
0.1668 0.0527

500 1.1252 0.6531 0.48
0.1588 0.0468

600 0.9664 0.6063 0.37
0.1432 0.0447

700 0.8232 0.5617 0.27
0.1242 0.0437

800 0.6990 0.5180 0.19
0.1045 0.0432

900 0.5945 0.4748 0.12
0.0808 0.0431

1000 0.5137 0.4317 0.08
0.0619 0.0431

1100 0.4518 0.3886 0.06
0.0546 0.0431

1200 0.3972 0.3454 0.05
0.0517 0.0433

1300 0.3454 0.3022 0.04
0.0504 0.0434

1400 0.2950 0.2588 0.04
0.0497 0.0433

1500 0.2453 0.2155 0.03
0.1232 0.1080

1750 0.1221 0.1075 0.01
0.1221 0.1075

2000 0.0000 0.0000 0.00
0.2389 0.2106

2500 -0.2389 -0.2106 -0.03
0.2297 0.2016

3000 -0.4686 -0.4123 -0.06
0.2170 0.1961

3500 -0.6856 -0.6083 -0.08
0.2097 0.2004

4000 -0.8952 -0.8087 -0.09

∗ Geopotential anomaly integrated from 2000 dbar level.

Velocity is calculated from (10.18)

m below the surface. This is the assumption used to derive the currents
in Table 10.4. Currents are assumed to be zero at this depth, and relative
currents are integrated up to the surface and down to the bottom to
obtain current velocity as a function of depth. There is some experimental
evidence that such a level exists on average for mean currents (see for
example, Defant, 1961: 492), although current meters tend to measure
strong, variable currents at all levels.

Defant recommends choosing the reference level at the depth where the
current shear in the vertical is smallest, which is usually near 2 km. The as-
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Figure 10.8 Relative current as a function of depth calculated from hydrographic data
collected by the R/V Endeavor cruise south of Cape Cod in August 1982. The Gulf Stream
is the fast current shallower than 1000 decibars. The assumed depth of no motion is at 2000
decibars.

sumption leads to useful maps of surface currents because surface currents
tend to be faster than deeper currents. Figure 10.9 shows the geopoten-
tial anomaly and surface currents in the Pacific relative to the 1,000 dbar
pressure level. When the specific volume anomaly is integrated from the
level of no motion to the surface, the height of the surface is often called
the dynamic topography.

Note that even a small error in the assumed velocity at the level of no
motion leads to a large error in the calculation of transport, even though
the error in the calculation of near surface currents is small.

2. Use known currents: The known currents could be measured by current
meters or by satellite altimetry. Problems arise if the currents are not
measured at the same time as the hydrographic data. For example, the
hydrographic data may have been collected over a period of months to
decades, while the currents may have been measured over a period of
only a few months. Hence, the hydrography may not be consistent with
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Figure 10.9. Mean geopotential anomaly of the Pacific Ocean relative to the 1,000 dbar
surface based on 36,356 observations. Height is in geopotential centimeters. If the velocity
at 1,000 dbar were zero, the map would be the surface topography of the Pacific. (From
Wyrtki, 1974).

the current measurements. Sometimes currents and hydrographic data are
measured at nearly the same time (Figure 10.10). In this example, currents
were measured continuously by moored current meters (points) in a deep
western boundary current and from ctd data taken just after the current
meters were deployed and just before they were recovered (smooth curves).
The solid line is the current assuming a level of no motion at 2,000 m, the
dotted line is the current adjusted using the current meter observations
smoothed for various intervals before or after the ctd casts.

3. Use Conservation Equations: Lines of hydrographic stations across a strait
or an ocean basin may be used with conservation of mass and salt to
calculate currents. This is an example of an inverse problem (see Wunsch,
1996 on how inverse methods are used in oceanography). The solution
may not be unique, but bounds on the error can be calculated.
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Figure 10.10 Current meter measurements can be used with ctd measurements to determine
current as a function of depth avoiding the need for assuming a depth of no motion. Solid
line: profile assuming a depth of no motion at 2000 decibars. Dashed line: profile adjusted
to agree with currents measured by current meters 1–7 days before the ctd measurements.
(Plots from Tom Whitworth, Texas A&M University)

Disadvantage of Calculating Currents from Hydrographic Data Cur-
rents calculated from hydrographic data have provided important insights into
the circulation of the ocean over the decades from the turn of the 20th century
to the present. Nevertheless, it is important to review the limitations of the
technique.

1. Hydrographic data can be used to calculate only the current relative a
current at another level.

2. The assumption of a level of no motion may be suitable in the deep ocean,
but it is usually not a useful assumption when the water is shallow such
as over the continental shelf.

3. Geostrophic currents cannot be calculated from hydrographic stations that
are close together. Stations must be tens of kilometers apart.

4. Hydrographic stations must be repeated to obtain the mean and variable
components of the current. This is impractical, and geostrophic currents
calculated from hydrographic data have usually been used to map only
the time-averaged circulation of the oceans or the change in circulation
from decate to decade.

Limitations of the Geostrophic Equations We began this section by show-
ing that the geostrophic balance applies with good accuracy to flows that exceed
a few tens of kilometers in extent and with periods greater than a few days. The
balance cannot, however, be perfect. If it were, the flow in the ocean would never
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change because the balance ignores any acceleration of the flow. The important
limitations of the geostrophic assumption are:

1. Geostrophic currents cannot evolve with time.

2. The balance ignores acceleration of the flow, therefore it does not apply
to oceanic flows with horizontal dimensions less than roughly 50 km and
times less than a few days.

3. The geostrophic balance does not apply near the equator where the Cori-
olis force goes to zero because sinϕ→ 0.

4. The geostrophic balance ignores the influence of friction.

Despite these problems, currents in the ocean are almost always very close to be-
ing in geostrophic balance even within a few degrees of the Equator. Strub et al.
(1997) showed that currents calculated from satellite altimeter measurements of
sea-surface slope have an accuracy of ± 3–5 cm/s. Later, Uchida, Imawaki, and
Hu (1998) compared currents measured by drifters in the Kuroshio with currents
calculated from satellite altimeter measurements of sea-surface slope assuming
geostrophic balance. Using slopes over distances of 12.5 km, they found the
difference between the two measurements was ± 16 cm/s for currents up to 150
cm/s, or about 10%. Johns, Watts, and Rossby (1989) measured the velocity of
the Gulf Stream northeast of Cape Hatteras and compared the measurements
with velocity calculated from hydrographic data assuming geostrophic balance.
They found that the measured velocity in the core of the stream, at depths
less than 500 m, was 10–25 cm/s faster than the velocity calculated from the
geostrophic equations using measured velocities at a depth of 2000 m. The
maximum velocity in the core was greater than 150 cm/s, so the error was
≈ 10%. When they added the influence of the curvature of the Gulf Stream,
which adds an acceleration term to the geostrophic equations, the difference in
the calculated and observed velocity dropped to less than 5–10 cm/s (≈ 5%).

10.7 Currents From Hydrographic Sections
Lines of hydrographic data along ship tracks are often used to produce contour
plots of density in a vertical section along the track. Cross-sections of currents
sometimes show sharply dipping density surfaces with a large contrast in density
on either side of the current. The baroclinic currents in the section can be
estimated using a technique first proposed by Margules (1906) and described by
Defant (1961: Chapter 14). The technique allows oceanographers to estimate
the speed and direction of currents perpendicular to the section by a quick look
at the section.

To derive Margules’ equation, consider the slope ∂z/∂y of the boundary
between two water masses with densities ρ1 and ρ2 (see Figure 10.11). To
calculate the change in velocity across the interface we assume homogeneous
layers of density ρ1 < ρ2 both of which are in geostrophic equilibrium. Although
the ocean does not have an idealized interface that we assumed, and the water
masses do not have uniform density, and the interface between the water masses
is not sharp, the concept is still useful in practice.
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The change in pressure on the interface is:

δP
∂P

∂x
δx+

∂P

∂z
δz, (10.20)

and the vertical and horizontal pressure gradients are obtained from (10.6):

∂P

∂z
= ρ1 g

∂P

∂z
= ρ1 f v1 (10.21)

Therefore:

δP1 = −ρ1fv1δx+ ρ1gdz (10.22a)
δP2 = −ρ2fv2δx+ ρ2gdz (10.22b)

The boundary conditions require δP1 = δP2 on the boundary. Equating (10.22a)
with (10.22b), dividing by δx, and solving for δz/δx gives:

δz

δx
≡ tan γ =

f

g

(
ρ2 v2 − ρ1 v1
ρ1 − ρ2

)

tan γ ≈ f

g

(
ρ1

ρ1 − ρ2

)
(v2 − v1) (10.23a)

tanβ1 = −f
g
v1 (10.23b)

tanβ2 = −f
g
v2 (10.23c)

Because the internal differences in density are small, γ ≈ 1000 tanβ. Thus
the slope of the interface between the two water masses is 1000 times larger
than the slope at the sea surface.

Consider the application of the technique to the Gulf Stream (Figure 10.12).
From the figure: ϕ = 36◦, ρ1 = 1026.6 kg/m3; and ρ2 = 1027.6 kg/m3. If we
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Figure 10.11 Inclination of the isobaric surfaces and interface between two homogeneous,
moving water layers in the Northern Hemisphere.
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Figure 10.12 Cross section of potential density σθ across the Gulf Stream along 63.66◦W
calculated from ctd data collected from Endeavor on 25–28 April 1986. The Gulf Stream is
centered on the steeply sloping contours shallower than 1000m between 40◦ and 41◦. Notice
that the vertical scale is 425 times the horizontal scale. (Data contoured by Lynn Talley,
Scripps Institution of Oceanography).

use the σt = 27.2 surface to estimate the slope between the two water masses,
we see that the surface changes from a depth of 450 m to a depth of 810 m
over a distance of 40.7 km. Therefore, tan γ = −8840 × 10−6 = 0.00884; and
∆v = v2 − v1 = −0.98 m/s. Assuming v2 = 0, then v1 = 0.98 m/s. This
rough estimate of the velocity of the Gulf Stream compares well with velocity
at a depth of 600m calculated from hydrographic data. Assuming a level of no
motion at 1200 m, the hydrographic calculation gives a velocity of 0.80 m/s.

The slope of the isopycnal surfaces are clearly seen in the figure. And plots
of isopycnal surfaces can be used to quickly estimate current directions and a
rough value for the speed. In contrast, the slope of the sea surface is 8.6× 10−6

or 0.86 m in 100 km. This is easily observed by an altimeter, but impossible to
see by eye.

Note that isopycnal surfaces in the Gulf Stream slope downward to the
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east, and that sea-surface topography slopes upward to the east. Isobaric and
isopycnal surfaces have opposite slope, current decreases as depth increases, and
currents are baroclinic.

If the sharp interface between two water masses reaches the surface, it is an
oceanic front. Such fronts have properties that are very similar to atmospheric
fronts.

Eddies in the vicinity of the Gulf Stream can have warm or cold cores (Fig-
ure 10.13). Application of Margules’ method these mesoscale eddies gives the
direction of the flow. Anticyclonic eddies (clockwise rotation in the northern
hemisphere) have warm cores (ρ1 is deeper in the center of the eddy than else-
where) and the isobaric surfaces bow upward. In particular, the sea surface is
higher at the center of the ring. Cyclonic eddies are the reverse.

ρ1
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ρ2
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Warm-core ring Cold-core ring

Figure 10.13 Shape of isobaric surfaces pi and the interface between two water masses of
density ρ1, ρ2 if the upper is rotating faster than the lower. Left: Anticylconic motion,
warm-core eddy. Right: Cyclonic, cold-core eddy. Note that the sea surface p0 slopes up
toward the center of the warm-core ring, and the isopycnal surfaces slope down toward the
center (From Defant, 1929).

10.8 Lagrangean Measurements of Currents
Oceanography and fluid mechanics distinguishes between two types of velocity:
Lagrangian and Eulerian velocities. Lagrangian velocity is the velocity of a
water particle. Eulerian velocity is the velocity of water at a fixed position.
Because of the importance of measurements of currents, many techniques have
been developed, although no one technique dominates.

Basic Technique Lagrangean techniques track the position of a drifter that
follows a water parcel either on the surface or deeper within the water column.
The mean velocity over some period is calculated from the distance between
positions at the beginning and end of the period divided by the period. Errors
are due to:

1. Errors in determining the position of the drifter.

2. The failure of the drifter to follow a parcel of water. We assume the
drifter stays in a parcel of water, but external forces acting on the drifter
can cause it to drift relative to the water.

3. Sampling errors. Drifters go only where drifters want to go. And drifters
want to go to convergent zones. Hence drifters tend to avoid areas of
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divergent flow.

Satellite Tracked Surface Drifters Surface drifters consist of a drogue plus
a float that is usually tracked by the Argos system on meteorological satellites.
The buoy carries a simple radio transmitter with a very stable frequency F0. A
receiver on the satellite receives the signal and determines the Doppler shift F
as a function of time t (Figure 10.14). The Doppler frequency is

F =
dR

dt

F0

c
+ F0

where R is the distance to the buoy, c is the velocity of light. The closer the
buoy to the satellite the more rapidly the frequency changes. When F = F0 the
range is a minimum. This is the time of closest approach, and the satellite’s
velocity vector is perpendicular to the line from the satellite to the buoy. The
time of closest approach and the time rate of change of Doppler frequency at
that time gives the bouy’s position relative to the orbit with a 180◦ambiguity.
Because the orbit is accurately known, and because the buoy can be observed
many times, its position can be determined without ambiguity.

The accuracy of the position depends on the stability of the frequency trans-
mitted by the buoy. The Argos system tracks buoys with an accuracy of ±1–2

f0
f
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Figure 10.14 Satellite systems, especially System Argos, use radio signals transmitted from
surface buoys to determine the position of the buoy. The satellite S receives a radio signal
from the buoy B. The time rate of change of the signal, the Doppler shift, is a function
of buoy position and distance from the satellite’s track. The recorded Doppler signal is
transmitted to ground stations E, which relays the information to processing centers A via
control stations K. (From Dietrich et al., 1980)
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km, collecting 1–8 positions per day depending on latitude. Because 1 cm/s ≈
1 km/day, and because typical values of currents in the ocean range from one
to two hundred centimeters per second, this is an acceptable accuracy.

Holey-Sock Drifters Many types of surface drifters have been developed, cul-
minating with the holey-sock drifter now widely used to track surface currents.
The drifter consists of a circular, cylindrical drogue of cloth 1 m in diameter by
15 m long with 14 large holes cut in the sides. The weight of the drogue is sup-
ported by a submerged float set 3 m below the surface. The submerged float is
tethered to a partially submerged surface float carrying the Argos transmitter.

Niiler et al. (1995) carefully measured the rate at which wind blowing on
the surface float pulls the drogue through the water, and they found that the
buoy moves 12 ± 9◦ to the right of the wind at a speed

Us = (4.32 ± 0.67×) 10−2 U10

DAR
+ (11.04 ± 1.63)

D

DAR
(10.24)

where DAR is the drag area ratio defined as the drogue’s drag area divided by
the sum of the tether’s drag area and the surface float’s drag area, and D is the
difference in velocity of the water between the top of the cylindrical drogue and
the bottom. If DAR > 40, then the drift Us < 1 cm/s for U10 < 10 m/s.

Subsurface Drifters (Swallow and Richardson Floats) Subsurface drift-
ers are widely used for measuring currents below the mixed layer. Subsurface
drifters are neutrally buoyant chamber tracked by sonar using the sofar—
Sound Fixing and Ranging—system for listening to sounds in the sound channel.
The chamber can be a section of aluminum tubing containing electronics and
carefully weighed to have the same density as water at a predetermined depth.
Aluminum is chosen because it has a compressibility less than water.

The drifter has errors due to the failure of the drifter to stay within the same
water mass. Often the errors are sufficiently small that the only important error
is due to tracking accuracy.

The primary disadvantage of the neutrally buoyant drifter is that tracking
systems are not available throughout the ocean.

Subsurface Drifters (ALACE Drifters) : Autonomous Lagrangian Circu-
lation Explorer (alace) drifters (Figure 10.15) are designed to cycle between
the surface and some predetermined depth. The drifter spends roughly 30 days
at depth, and periodically returns to the surface to report it’s position and other
information using the Argos system (Davis et al., 1992). The drifter thus com-
bines the best aspects of surface and neutrally-buoyant drifters. It is able to
track deep currents, it is autonomous of acoustic tracking systems, and it can be
tracked anywhere in the ocean by satellite. The maximum depth is near 2 km,
and the drifter carries sufficient power to complete 70 30-day cycles to 1,000 m
or 50 30-day cycles to 2,000 m.

The drifters are widely used in the World Ocean Circulation Experiment
to determine mid-level currents in remote regions, especially the Antarctic Cir-
cumpolar Current.
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Figure 10.15 The Autonomous Lagrangian Circulation Explorer (ALACE) drifters are widely
used by the World Ocean Circulation Experiment to measure deeper currents within the
ocean. Left: Schematic of the drifter. To ascend, the hydraulic pump moves oil from an
internal reservoir to an external bladder, reducing the drifter’s density. To descend, the
latching valve is opened to allow oil to flow back into the internal reservoir. The antenna is
mounted to the end cap. Right: Expanded schematic of the hydraulic system. The motor
rotates the wobble plate actuating the piston which pumps hydraulic oil. (From Davis et al.,
1992).

Lagrangean Current Measurements Using Tracers Perhaps the best way
for following water parcels is to tag the parcel with molecules not normally found
in the ocean. Thanks to atomic bomb tests in the 1950s and the recent exponen-
tial production of chlorofluorocarbons, such tracers have been introduced into
the ocean in large quantities. See §13.5 for a list of tracers used in oceanography.
Surveys of the trace molecules are used for inferring the movement of the water.
The technique is especially useful for calculating velocity of deep water masses
averaged over decades and for calculating eddy diffusivities.

The distribution of trace molecules is calculated from the concentration of
the molecules in water samples collected on hydrographic sections and surveys.
Because the collection of data is expensive and slow, the number of repeated
sections is not large. Figure 10.16 shows two maps of the distribution of tri-
tium in the North Atlantic collected in 1972–1973 by the Geosecs Program and
in 1981, a decade later. The sections show that tritium, introduced into the
atmosphere during the atomic bomb tests in the atmosphere in the 1950s to
1972, penetrated to depths below 4 km only north of 40◦N by 1971 and to 35◦N
by 1981. This shows that deep currents are very slow, about 1.6 mm/s in this
example.

Because the deep currents are so small, we can question what process are
responsible for the observed distribution of tracers. Both turbulent diffusion
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Figure 10.16 Distribution of tritium along a section through the western basins in the North
Atlantic, measured in 1972 (Top) and remeasured in 1981 (Bottom). Units are tritium
units, where one tritium unit is 1018 (tritium atoms)/(hydrogen atoms) corrected to the
activity levels that would have been observed on 1 January 1981. Compare this figure to the
density in the ocean shown in Figure 13.9. From Toggweiler (1994)

and advection by currents can fit the observations. Hence, does Figure 10.16
give mean currents in the deep Atlantic, or the turbulent diffusion of tritium?

Another useful tracer is the temperature and salinity of the water. We will
consider these observations in Chapter 13 when we describe the core method
for studying the deep circulation. Here, we note that avhrr observations of
surface temperature of the ocean are an additional source of information about
currents.

Sequential infrared images of surface temperature are used to calculate the
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Figure 10.17 Ocean temperature and current patterns are combined in this avhrr analysis.
Surface currents were computed by tracking the displacement of small thermal or sediment
features between a pair of images. A directional edge-enhancement filter was applied here
to define better the different water masses. (From Ocean Imaging, Solana Beach, Caliornia,
with permission).

displacement of features in the images (Figure 10.17). The technique is espe-
cially useful for surveying the variability of currents near shore. Land provides
reference points from which displacement can be calculated accurately, and large
temperature contrasts can be found in many regions in some seasons.

There are two important difficulties.
1. Many regions have extensive cloud cover, and the ocean cannot be seen.
2. Flow is primarily parallel to temperature fronts, and strong currents can

exist along fronts even though the front may not move. It is therefore
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Figure 10.18 Trajectories that spilled rubber duckies would have followed had they been
spilled on January 10 of different years. Five trajectories were selected from a set of 48
simulations of the spill each year between 1946 and 1993. The trajectories begin on January
10 (T) and end 2 years later (double symbols). Large symbols enclosing dates are the
positions on November 16 of the year of the spill. Hence the circle with 92 inside is the
location where rubber ducks first came ashore near Sitka. The code at lower left gives the
dates of the trajectories: 1959, when the toys would have traveled in a loop around the Gulf
of Alaska gyre; 1961, the most southerly trajectory; 1984, when the toys would have looped
back to the northeast in an area of slow drift; 1990, when the toys would have traveled the
farthest westward north of Hawaii; and 1992, when the toys after passing Sitka would go
westward then northward through Unimak Pass into the Bering Sea. Note that the drifters
tended to follow only one track. They could not be used for mapping currents away from the
track. (From Ebbesmeyer and Ingraham, 1994).

essential to track the motion of small eddies embedded in the flow near
the front and not the position of the front.

An example of Langrangean Current Measurements: The Rubber
Duckie Spill On January 10, 1992 a 12.2-m container with 29,000 bathtub
toys (including rubber ducks) washed overboard from a container ship at 44.7◦N,
178.1◦E. Ten months later the toys began washing ashore near Sitka, Alaska.
A similar accident on May 27, 1990 released 80,000 Nike-brand shoes at 48◦N,
161◦W when waves washed containers from the Hansa Carrier(Figure 10.18).
The spill and the eventual recovery of the toys proved to be a good test of
a numerical model for calculating the trajectories of oil spills developed by
Ebbesmeyer and Ingraham (1992, 1994). They calculated the possible trajec-
tories of the spilled rubber ducks using the Ocean Surface Current Simulations
oscurs numerical model driven by winds calculated from the Fleet Numerical
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Figure 10.19 Left: An example of a surface mooring of the type deployed by the Woods
Hole Oceanographic Institution’s Buoy Group. Right: An example of a subsurface mooring
deployed by the same group. (From Baker, 1981).

Oceanography Center’s daily sea-level pressure data. The calculated trajecto-
ries agreed well with observed locations of drifters found on the shore. Using a
50% increase in windage coefficient and a 5◦ decrease in the angle of deflection
function, the toys arrived near Sitka, Alaska at the time of the first recoveries
on November 16, 1992.

10.9 Eulerian Measurements of Currents
Eulerian currents are measured using many types of current meters attached
to many types of moorings or ships. The instruments can be mechanical or
acoustic, and many different configurations and techniques have been used at
one time or another.

Moorings are deployed by ships, and they may last for months to longer than
a year (Figure 10.19). Because the mooring must be deployed and recovered by
deep-sea research ships, the technique is expensive. Yet, it is one of the most
widely used method for directly measuring currents. Submerged moorings are
preferred for several reasons: the surface float is not forced by high frequency,
strong, surface currents; the mooring is out of sight and it does not attract the
attention of fishermen; and the floatation is usually deep enough to avoid being
caught by fishing nets.

Errors in measurements of Eulerian currents arise from:
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1. Mooring motion. Subsurface moorings move least. Surface moorings in
strong currents move most, and are seldom used.

2. Inadequate Sampling. Moorings tend not to last long enough to give ac-
curate estimates of mean velocity or interannual variability of the velocity.

3. Fouling of the sensors by marine organisms, especially instruments de-
ployed for more than a few weeks close to the surface.

Moored Current Meters Moored current meters are perhaps the most com-
mon type of Eulerian current-measuring device. Many different types of me-
chanical current meters have been used. Examples include:

1. Aanderaa current meters which uses a vane and a Savonius rotor (Figure
10.20).

2. Vector Averaging Current Meters which uses a vane and propellers.

3. Vector Measuring Current Meters, which uses a vane and specially de-
signed pairs of propellers oriented at right angles to each other. The pro-
pellers are designed to respond to the cosine of the vector velocity (weller
and Davis, 1980).

Errors are due to the failure to accurately measure the flow past the instrument:
i) The response may be nonlinear; ii) the instrument may not respond to rapid
changes in the current; and iii) it may not respond accurately to flow that is
not horizontal. Special care must be taken in selecting meters to be used near
the surface where wave-produced currents are large.

Acoustic-Doppler Current Profiler: For many applications, mechanical cur-
rent meters are being replaced by acoustic current meters that measure the
Doppler shift of acoustic signals reflected from bubbles, phytoplankton and
zooplankton in the water in several directions and distances from the acoustic
transducer. One type of acoustic device is particularly useful, the Acoustic-
Doppler Current Profiler, commonly called the adcp. Ship-board instruments
are widely used for profiling currents within 200 to 300 m of the sea surface
while the ship steams between hydrographic stations. Instruments mounted on
ctds are used to profile currents from the surface to the bottom at hydrographic
stations.

The instrument measures Doppler shift in several directions using three to
four acoustic beams. Each beam gives the velocity in the direction of the beam,
and the combination of several beams gives two or three components of the
velocity.

The accuracy of the ship-borne instrument depends on the accuracy with
which the ship’s velocity and orientation are known. Note that the ship can
be headed in one direction, yet drift in a slightly different direction. Because
the ship’s velocity is much faster than the current, small errors in determining
the ship’s velocity can produce large errors in the measurement of current. The
error can be reduced by steaming along a closed, rectangular track. The net
flow into a rectangular box a kilometer on a side traversed in a few minutes
must be zero, and this can be used to infer the accuracy of the measurements.



10.9. EULERIAN MEASUREMENTS OF CURRENTS 189

Rotor

Acoustic
transducer
Electrical
penetrator

Thermistor Joining ring

Suspending rod

Vane Balancing Weight
Ball bearing

Joining ring

Clamp

Pressure
Canister

Figure 10.20 An example of a moored current meter with a Savonius roter to measure current
speed, a vane to measure current direction, and a pressure-resistant housing for power and
circuits to record the signal. The turns of the rotor are measured by the acoustic transducer.
(From Dietrich, et al. 1980)

Acoustic Tomography Another acoustic technique uses acoustic signals trans-
mitted through the sound channel to and from a few moorings spread out across
oceanic regions. The technique is expensive because it requires many deep moor-
ings and loud sound sources. It promises, however, to obtain information dif-
ficult to obtain by other means. The number of acoustic paths across a region
rises as the square of the number of moorings. And, the signal propagating
along the sound channel has many modes, some that stay near the axis of the
channel, others that propagate close to the sea surface and bottom (See Fig-
ure 3.16). The various modes give information about the vertical temperature
structure in the ocean, and the many paths in the horizontal give the spatial
distribution of temperature. If one mooring retransmits the signal it receives
from another mooring, the time for the signal to propagate in one direction mi-
nus the time for the signal to propagate in the reverse direction, the reciprocal
travel time, is proportional to current component parallel to the acoustic path.

Other Methods (Mostly of Historical Interest) A variety of techniques
widely used in the past, are now seldom used. One of the most popular for
a few years was the Geomagnetic ElectroKinetograph gek current meter. It
measured currents by measuring the electrical potential induced in sea water
when a conductor (sea water) moving in a magnetic field (Earth’s field). It
consisted of a pair of electrodes towed behind a ship. The electrodes were at
the beginning and end of line several hundred meters long. Or, the electrodes
were at ends of submarine telephone cables. The accuracy of the technique was
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difficult to quantify and the technique fell from favor. The primary error was
due to unknown shorting of current by conduction through the sea floor and in
still water below moving surface currents.

10.10 Important Concepts
1. Pressure distribution is almost precisely the hydrostatic pressure obtained

by assuming the ocean is at rest. Pressure is therefore calculated very
accurately from measurements of temperature and conductivity as a func-
tion of pressure using the equation of state of seawater. Hydrographic
data give the relative, internal pressure field of the ocean.

2. Flow in the ocean is in almost exact geostropic balance except for flow
in the upper and lower boundary layers. Corolis force almost exactly
balances the horizontal pressure gradient.

3. Satellite altimetric observations of the oceanic topography give the surface
geostrophic current. The calculation of topography requires an accurate
geoid, which is known with sufficient accuracy only over distances exceed-
ing a few thousand kilometers. If the geoid is not known, altimeters can
measure the change in topography as a function of time, which gives the
change in surface geostrophic currents.

4. Topex/Poseidon is the most accurate altimeter system, and it can measure
the topography or changes in topography with an accuracy of ±4.7 cm.

5. Hydrographic data are used to calculate the internal geostrophic currents
in the ocean relative to known currents at some level. The level can be
surface currents measured by altimetery or an assumed level of no motion
at depths below 1–2 m.

6. Flow in the ocean that is independent of depth is called barotropic flow,
flow that depends on depth is called baroclinic flow. Hydrographic data
give only the baroclinic flow.

7. Geostrophic flow cannot change with time, so the flow in the ocean is not
exactly geostrophic. The geostrophic method does not apply to flows at
the equator where the Coriolis force vanishes.

8. Slopes of constant density or temperature surfaces seen in a cross-section
of the ocean can be used to estimate the speed of flow through the section.

9. Measurements of the position of a parcel of water give the Lagrangean flow
in the ocean. The position can be determined using surface or subsurface
drifters, or chemical tracers such as tritium.

10. Measurements of the velocity of flow past a point gives the Eulearian flow
in the ocean. The velocity of the flow can be measured using moored
current meters or acoustic velocity profilers on ships, ctds or moorings.


