
Chapter 8

Equations of Motion With
Viscosity

Throughout most of the interior of the ocean and atmosphere friction is rel-
atively small, and we can safely assume that the flow is frictionless. At the
boundaries, friction, in the form of viscosity, becomes important. This thin,
viscous layer is called a boundary layer. Within the layer, the velocity of the
flow slows from values typical of the interior to zero at a solid boundary. If the
boundary is not solid, then the boundary layer is a thin layer of rapidly chang-
ing velocity whereby velocity on one side of the boundary changes to match the
velocity on the other side of the boundary. For example, there is a boundary
layer at the bottom of the atmosphere, the planetary boundary layer we de-
scribed in Chapter 3. In the planetary boundary layer, velocity goes from many
meters per second in the free atmosphere to tens of centimeters per second at
the sea surface. Below the sea surface, another boundary layer, the Ekman layer
described in Chapter 9, matches the flow at the sea surface to the deeper flow
inside the ocean.

In this chapter we consider the role of friction in fluid flows, and the stability
of the flows to small changes in velocity or density.

8.1 The Influence of Viscosity
In the last chapter we wrote the x–component of the momentum equation for a
fluid in the form:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ

∂P

∂x
+ 2 Ω v sinϑ+ Fx (8.1)

where Fx was a frictional force per unit mass. Now we can consider the form of
this term if it is due to viscosity.

Molecules in a fluid close to a solid boundary can strike the boundary and
transfer momentum to the boundary (Figure 8.1). Molecules further from the
boundary collide with molecules that have struck the boundary, further trans-
ferring the change in momentum into the interior of the fluid. This transfer of
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Figure 8.1 Molecules colliding with the wall and with each other transfer momentum from
the fluid to the wall, slowing the fluid velocity.

momentum is molecular viscosity. Molecules, however, travel only micrometers
between collisions, and the process is very inefficient for transferring momen-
tum even a few centimeters. Molecular viscosity is important only within a few
millimeters of a boundary.

Molecular viscosity is the ratio of the stress Tx tangential to the boundary
of a fluid and the shear of the fluid at the boundary. So the stress has the form:

Tx = ρν
∂u

∂z
(8.2)

where ν is the kinematic molecular viscosity. Typical value of ν for water at
20◦C is 10−6 m2/s.

Generalizing (8.2) to three dimensions leads to a stress tensor giving the
nine components of stress at a point in the fluid, including pressure, which is
a normal stress, and shear stresses. A derivation of the stress tensor is beyond
the scope of this book, but you can find the details in Lamb (1945: §328) or
Kundu (1990: p. 93). For an incompressible fluid, the frictional force per unit
mass in (8.1) takes the from:

Fx = ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
(8.3)

8.2 Turbulence
If molecular viscosity is important only over distances of a few millimeters, and if
it is not important for most oceanic flows, unless of course you are a zooplankter
trying to swim in the ocean, how then is the influence of a boundary transferred
into the interior of the flow? The answer is: through turbulence.

Turbulence arises from the non-linear terms in the momentum equation
(u ∂u/∂x, etc.). The importance of these terms is given by a non-dimensional
number, the Reynolds Number, which is the ratio of the non-linear terms to the
viscous terms:

Reynolds Number = Re =
Non-linear Terms
Viscous Terms

=

(
u
∂u

∂x

)
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ν
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∂x2

) ≈
U
U

L

ν
U
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Figure 8.2 Upper: Reynolds apparatus for investigating the transition to turbulence in pipe
flow. Lower: Photographs of near-laminar flow (left) and turbulent flow (right) in a clear
pipe much like the one used by Reynolds. (From Binder 1953).

Re =
UL

ν
(8.4)

where, U is a typical velocity of the flow and L is a typical length describing
the flow. You are free to pick whatever U,L might be typical of the flow. For
example L can be either a typical cross-stream distance, or an along-stream dis-
tance. Typical values in the open ocean are U = 0.1 m/s and L = 1 megameter,
so Re = 1011. Because non-linear terms are important if Re > 10 – 1000, they
are certainly important in the ocean. The ocean is turbulent.

The Reynolds number is named after Osborne Reynolds (1842–1912) who
conducted experiments in the late 19th century to understand turbulence. In
one famous experiment (Reynolds 1883), he injected dye into water flowing at
various speeds through a tube (Figure 8.2). If the speed was small, the flow
was smooth. This is called laminar flow. At higher speeds, the flow became
irregular and turbulent. The transition occurred at Re = V D/ν ≈ 2000, where
V is the average speed in the pipe, and D is the diameter of the pipe.

As Reynolds number increases above some critical value, the flow becomes
more and more turbulent. Note that flow pattern is a function of Reynold’s
number. All flows with the same geometry and the same Reynolds number have
the same flow pattern. Thus flow around all circular cylinders, whether 1 mm
or 1 m in diameter, look the same as the flow at the top of Figure 8.3 if the
Reynolds number is 20. Furthermore, the boundary layer is confined to a very
thin layer close to the cylinder, in a layer too thin to show in the figure.

Turbulent Stresses: The Reynolds Stress Those who studied fluid me-
chanics in the early 20th century hypothesized that parcels of fluid in a turbu-
lent flow played the same role in transferring momentum within the flow that
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Figure 8.3 Flow past a circular cylinder as a function of Reynolds number between one and
a million (From Richardson 1961). The appropriate flows are: A—a toothpick moving at 1
mm/s; B—finger moving at 2 cm/s; F—hand out a car window at 60 mph. All flow at the
same Reynolds number has the same streamlines. Flow past a 10 cm diameter cylinder at 1
cm/s looks the same as 10 cm/s flow past a cylinder 1 cm in diameter because in both cases
Re = 1000.

molecules played in laminar flow. The work led to the idea of turbulent stresses.
To see how these stresses might arise, consider the momentum equation for

a flow with mean and a turbulent components of flow:

u = U + u′ ; v = V + v′ ; w = W + w′ ; p = P + p′ (8.5)

where the mean value U is calculated from a time or space average:

〈u〉 =
1
T

∫ T

0

u(t) dt or 〈u〉 =
1
X

∫ X

0

u(x) dx (8.6)

The non-linear terms in the momentum equation can be written:〈
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(8.7)
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The second equation follows from the first because both 〈U ∂u′/∂x〉 = 0 and
〈u′ ∂U/∂x〉 = 0, which follow from the definition of U : 〈U∂u′/∂x〉 = U∂〈u′〉/∂x
= 0.

Using (8.7), the continuity equation splits into two equations:

∂U

∂x
+
∂V

∂x
+
∂W

∂x
= 0 (8.8a)

∂u′

∂x
+
∂v′

∂x
+
∂w′

∂x
= 0 (8.8b)

And the x-component of the momentum equation becomes:

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
+W

∂U

∂z
=

− 1
ρ

∂P

∂x
+ 2ΩV sinϕ− ∂

∂x
〈u′u′〉 − ∂

∂y
〈u′v′〉 − ∂

∂z
〈u′w′〉

(8.9)

where 2Ωv′ sinϕ has been dropped because it is small. Thus the turbulent
frictional term is

Fx = − ∂

∂x
〈u′u′〉 − ∂

∂y
〈u′v′〉 − ∂

∂z
〈u′w′〉 (8.10)

The terms ρ〈u′u′〉, ρ〈u′v′〉, and ρ〈u′w′〉 transfer momentum in the x, y, and
z directions. For example, the term ρ〈u′w′〉 gives the downward transport of
eastward momentum across a horizontal plane. Because they transfer momen-
tum, and because they were first derived by Osborne Reynolds, they are called
Reynolds Stresses.

8.3 Calculation of Reynolds Stress:
The friction terms such as ∂〈u′w′〉/∂z are virtual stresses (cf. Goldstein, 1965:
69 & 80). We now assume that they play the same role as the viscous terms
in the equation of motion. The problem becomes one of obtaining values or
functional form for the Reynolds stress. Several approaches are used.

By Analogy with Molecular Viscosity Let’s return to the simple example
shown in figure 8.1, which shows a boundary layer above a flat plate in the x,
y plane. Now let’s assume that the flow above the plate is turbulent. This
is a very common type of boundary layer flow, and it a type of flow that we
will describe various times in later chapters. It can be wind flow above the sea
surface or flow at the bottom boundary layer in the ocean or flow in the mixed
layer at the sea surface.

For flow above a boundary, we assume that flow is constant in the x, y
direction, that the statistical properties of the flow vary only in the z direction,
and that the mean flow is steady. Therefore ∂/∂t = ∂/∂x = ∂/∂y = 0. The
stress term is:

Tx = ρ〈u′w′〉, Ty = ρ〈v′w′〉 (8.11)
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and

Fx = −1
ρ

∂Tx

∂z
= − ∂

∂z
〈u′w′〉, Fy = −1

ρ

∂Ty

∂z
= − ∂

∂z
〈v′w′〉 (8.12)

We now assume, in analogy with (8.2)

Tx = ρAz
∂U

∂z
(8.13a)

Ty = ρAz
∂V

∂z
(8.13b)

where Az is the eddy viscosity which replaces the molecular viscosity ν in (8.2).
Then

Fx =
1
ρ

∂Tx

∂z
=

∂

∂z

(
Az

∂U

∂z

)
≈ Az

∂2U

∂z2
(8.14a)

Fy =
1
ρ

∂Ty

∂z
=

∂

∂z

(
Az

∂V

∂z

)
≈ Az

∂2V

∂z2
(8.14b)

assuming Az is either constant or that it varies more slowly in the z direction
than ∂U/∂z. Thus, we will assume later that Az ≈ z.

With these assumptions, the x and y momentum equations are:

ρfV − ∂Tx

∂z
= 0 (8.15a)

−ρfU − ∂Ty

∂z
= 0 (8.15b)

where f = 2ω sinϕ is the Coriolis parameter.
The assumption that Az varies with distance from the boundary works well

for describing the flow over flat plates where U is a function of distance z from
the plate, and W , the mean velocity perpendicular to the plate is zero (See
the box Turbulent Boundary Layer Over a Flat Plate). This is the classical
approach first described in 1925 by Prandtl, who introduced the concept of a
boundary layer, and by others. Here Az is determined by an empirical fit to
data collected in wind tunnels or measured in the surface boundary layer at
sea. See Hinze (1975, §5–2 and §7–5) and Goldstein (1965: §80) for more on the
theory of turbulence flow near a flat plate.

Assumption (8.13) and the classical theory works well only where friction
is much larger than the Coriolis force. This is true for air flow within tens of
meters of the sea surface and for water flow within a few meters of the surface.
The application of the technique to other flows in the ocean is less clear. For
example, the flow in the mixed layer at depths below about ten meters is less
well described by the classical turbulent theory. Tennekes and Lumley (1970:
57) write:

Mixing-length and eddy viscosity models should be used only to gen-
erate analytical expressions for the Reynolds stress and mean-velocity
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The Turbulent Boundary Layer Over a Flat Plate

The theory for the mean velocity distribution in a turbulent boundary layer
over a flat plate was worked out independently by G.I. Taylor (1886–1975), L.
Prandtl (1875–1953), and T. von Karman (1818–1963) from 1915 to 1935. Their
empirical theory, sometimes called the mixing-length theory predicts well the mean
velocity profile close to the boundary. Of interest to us, it predicts the mean flow
of air above the sea. Here’s a simplified version of the theory applied to a smooth
surface.

We begin by assuming that the mean flow in the boundary layer is steady and
that it varies only in the z direction. Within a few millimeters of the boundary,
friction is important and (8.2) has the solution

U =
Tx

ρν
z (8.16)

and the mean velocity varies linearly with distance above the boundary. Usually
(8.16) is written in dimensionless form:

U

u∗ =
u∗z

ν
(8.17)

where u∗2 ≡ Tx/ρ is the friction velocity.
Further from the boundary, the flow is turbulent, and molecular friction is not

important. In this regime, we can use (8.13), and

Az
∂U

∂z
= u∗2 (8.18)

Prandtl and Taylor assumed that large eddies are more effective in mixing
momentum than small eddies, and therefore Az ought to vary with distance from
the wall. Karman assumed that it had the particular functional form Az = κzu∗,
where κ is a dimensionless constant. With this assumption, the equation for the
mean velocity profile becomes

κzu∗ ∂U

∂z
= u∗2 (8.19)

Because U is a function only of z, we can write dU = u∗/(κz) dz, which has the
solution

U =
u∗

κ
ln

(
z

z0

)
(8.20)

where z0 is distance from the boundary at which velocity goes to zero.
For airflow over the sea, κ = 0.4 and zo is given by Charnock’s (1955) relation

z0 = 0.0156 u∗2/g. The mean velocity in the atmospheric boundary layer just
above the sea surface described in §4.3 fits well the logarithmic profile of (8.20),
as does the mean velocity in the upper few meters of the sea just below the sea
surface. Furthermore, using (4.1) in the definition of the friction velocity, then
using (8.20) gives Charnock’s form of the drag coefficient as a function of wind
speed in Figure 4.6.
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profile if those are desired for curve fitting purposes in turbulent flows
characterized by a single length scale and a single velocity scale. The
use of mixing-length theory in turbulent flows whose scaling laws are not
known beforehand should be avoided.

Problems with the eddy-viscosity approach:

1. Except in boundary layers a few meters thick, geophysical flows may be
influenced by several characteristic scales. For example, in the atmospheric
boundary layer above the sea, at least three scales may be important: i)
the height above the sea z, ii) the Monin-Obukhov scale L discussed in
§4.3, and iii) the typical velocity U divided by the Coriolis parameter U/f .

2. The velocities u′, w′ are a property of the fluid, while Az is a property of
the flow ;

3. Eddy viscosity terms are not symmetric:

〈u′v′〉 = 〈v′u′〉 ; but

Ax
∂V

∂x
�= Ay

∂U

∂y

From a Statistical Theory of Turbulence The Reynolds stresses can be
calculated from various theories which relate 〈u′u′〉 to higher order correlations
of the form 〈u′u′u′〉. The problem then becomes: How to calculate the higher
order terms? This is the closure problem in turbulence. There is no general
solution, but the approach leads to useful understanding of some forms of tur-
bulence such as isotropic turbulence downstream of a grid in a wind tunnel
(Batchelor 1967). Isotropic turbulence is turbulence with statistical properties
that are independent of direction.

The approach can be modified somewhat for flow in the ocean. In the ide-
alized case of high Reynolds flow, we can calculate the statistical properties of
a flow in thermodynamic equilibrium. Because the actual flow in the ocean is
far from equilibrium, we assume it will evolve towards equilibrium. Holloway
(1986) provides a good review of this approach, showing how it can be used to
derive the influence of turbulence on mixing and heat transports. One interest-
ing result of the work is that zonal mixing ought to be larger than meridional
mixing.

Summary The turbulent eddy viscosities Ax, Ay, and Az cannot be calculated
accurately for most oceanic flows.

1. They can be estimated from measurements of turbulent flows. Measure-
ments in the ocean, however, are difficult; and measurements in the lab,
although accurate, cannot reach Reynolds numbers of 1011 typical of the
ocean.

2. The statistical theory of turbulence gives useful insight into the role of
turbulence in the ocean, and this is an area of active research.
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Some Values for Viscosity

νwater = 10−6 m2/s

νtar at 15◦C = 106 m2/s

νglacier ice = 1010 m2/s

Ay = 104 m2/s

8.4 Stability
We saw in the last section that fluid flow with a sufficiently large Reynolds
number is turbulent. This is one form of instability. Many other types of
instability occur in the in the ocean. Here, let’s consider three of the more
important ones: i) static stability associated with change of density with depth,
ii) dynamic stability associated with velocity shear, and iii) double-diffusion
associated with salinity and temperature gradients in the ocean.

Static Stability and the Stability Frequency Consider first static stability.
If more dense water lies above less dense water, the fluid is unstable. The more
dense water will sink beneath the less dense. Conversely, if less dense water
lies above more dense water, the interface between the two is stable. But how
stable? We might guess that the larger the density contrast across the interface,
the more stable the interface. This is an example of static stability. Static
stability is important in any stratified flow where density increases with depth;
and we need some criterion for determining the importance of the stability.

Displaced Volume of Water V @ ρ2

Displacement Distance δz

Parcel with Density ρ'

Figure 8.4 Sketch for calculating static stability and stratification frequency.

Consider a parcel of water that is displaced vertically in a stratified fluid
(Figure 8.4). The buoyancy force F acting on the displaced parcel is the dif-
ference between its weight V gρ′ and the weight of the surrounding water V gρ2,
where V is the volume of the parcel:

F = V g (ρ2 − ρ′)

The acceleration of the displaced parcel is:

a =
F

m
=
g (ρ2 − ρ′)

ρ′
(8.21)
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but

ρ2 = ρ+
(
∂ρ

∂z

)
water

δz (8.22)

ρ′ = ρ+
(
∂ρ

∂z

)
parcel

δz (8.23)

Using (8.22) and (8.23) in (8.21), ignoring terms proportional to δz2, we obtain:

a = −g
ρ

[(
∂ρ

∂z

)
water

−
(
∂ρ

∂z

)
parcel

]
δz

We define stability ≡ E ≡ −a/g for δz = 1:

E = −1
ρ

[(
∂ρ

∂z

)
water

−
(
∂ρ

∂z

)
parcel

]
(8.24)

In the upper kilometer of the ocean stability is large, and the first term in
(8.24) is much larger than the second. The first term is proportional to the rate
of change of density of the water column; the second term is proportional to the
compressibility of sea water, which is very small. Neglecting the second term,
we can write the stability equation:

E = −1
ρ

∂ρ

∂z
(8.25)

Recalling that ρ(S, T, 0) − 1000 = σt, we can also write:

E = −1
ρ

∂σt

∂z
(8.26)

The approximation used to derive (8.25) and (8.26) is valid for E > 50×10−8/m.
Deep in the ocean, the change in density with depth is so small that we must
consider the small change in density of the parcel due to changes in pressure as
it is moved vertically. At these depths, a more accurate form of (8.26) is:

E = −1
ρ

[
∂ρ

∂S

∂S

∂z
+
∂ρ

∂θ

(
∂θ

∂z
+ Γ

)]
(8.27)

Γ =
(
∂θ

∂z

)
parcel

where Γ is the adiabatic temperature gradient. See Sverdrup, Johnson, and
Fleming (1942: 416) or Gill (1982: 50) for a more complete derivation.

Stability is defined such that

E > 0 Stable
E = 0 Neutral Stability
E < 0 Unstable
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Figure 8.5. Observed stratification frequency in the Pacific. Left: Stability of the deep
thermocline east of the Kuroshio. Right: Stability of a shallow thermocline typical of the
tropics. Note the change of scales.

In the upper kilometer of the ocean, z < 1, 000 m, E = (100—1000) × 10−8/m,
and in deep trenches where z > 7, 000 m, E = 1 × 10−8/m.

The influence of stability is usually expressed by a stability frequency N :

N2 = −g
ρ

∂ρ

∂z
(radians/s)2 (8.28)

The stability frequency is often called the Brunt-Vaisala frequency or the strat-
ification frequency. The frequency quantifies the importance of stability, and it
is a fundamental variable in the dynamics of stratified flow. In simplest terms,
the frequency can be interpreted as the vertical frequency excited by a vertical
displacement of a fluid parcel. Thus, it is the maximum frequency of internal
waves in the ocean. Typical values of N are a few cycles per hour (Figure 8.5).

Dynamic Stability and Richardson’s Number If velocity changes with
depth in a stable, stratified flow, then the flow may become unstable if the
change in velocity with depth, the current shear, is large enough. The simplest
example is wind blowing over the ocean. In this case, stability is very large across
the sea surface. We might say it is infinite because there is a step discontinuity
in ρ, and (8.28) is infinite. Yet, wind blowing on the ocean creates waves, and if
the wind is strong enough, the surface becomes unstable and the waves break.

This is an example of dynamic instability in which a stable fluid is made
unstable by velocity shear. Another example of dynamic instability, the Kelvin-
Helmholtz instability, occurs when the density contrast in a sheared flow is much
less than at the sea surface, such as in the thermocline or at the top of a stable,
atmospheric boundary layer (Figure 8.6).

The relative importance of static stability and dynamic instability is ex-
pressed by the Richardson Number :

Ri ≡
g E

(∂U/∂z)2
(8.29)



132 CHAPTER 8. EQUATIONS OF MOTION WITH VISCOSITY

Figure 8.6 Billow clouds showing a Kelvin-Helmholtz instability at the top of a stable
atmospheric boundary layer near Denver, Colorado (From Drazin and Reid 1981). Note that
the billows become large enough that more dense air overlies less dense air, and the billows
collapse into turbulence.

where the numerator is the strength of the static stability, and the denominator
is the strength of the velocity shear.

Ri > 0.25 Stable
Ri < 0.25 Velocity Shear Enhances Turbulence

Note that a small Richarson number is not the only criterion for instability.
The Reynolds number must be large and the Richardson number must be less
than 0.25 for turbulence. These criteria are met in some oceanic flows. The
turbulence mixes fluid in the vertical, leading to a vertical eddy viscosity and
eddy diffusivity. Because the ocean tends to be strongly stratified and currents
tend to be weak, turbulent mixing is intermittent and rare. Measurements of
density as a function of depth rarely show more dense fluid over less dense fluid
as seen in the breaking waves in Figure 8.6 (Moum and Caldwell 1985).

Double Diffusion and Salt Fingers In some regions of the ocean, less dense
water overlies more dense water, yet the water column is unstable even if there
are no currents. The instability occurs because the molecular diffusion of heat
is about 100 times faster than the molecular diffusion of salt. The instability
was first discovered by Melvin Stern in 1960 who quickly realized its importance
in oceanography.

Consider two thin layers a few meters thick separated by a sharp interface
(Figure 8.7). If the upper layer is warm and salty, and if the lower is colder and
less salty than the upper layer, the interface becomes unstable even if the upper
layer is less dense than the lower.
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Cold, Less Salty ρ2

Warm, Salty ρ1

Cold, Salty ρ > ρ2

Cold, Less Salty ρ2

Initial Density Density after a few minutes

Figure 8.7 Left: Initial distribution of density in the vertical. Right: After some time, the
diffusion of heat leads to a thin unstable layer between the two initially stable layers. The
thin unstable layer sinks into the lower layer as salty fingers. The vertical scale in the figures
is a few centimeters.

Here’s what happens. Heat diffuses across the interface faster than salt,
leading to a thin, cold, salty layer between the two initial layers. The cold
salty layer is more dense than the cold, less-salty layer below, and the water in
the layer sinks. Because the layer is thin, the fluid sinks in fingers 1–5 cm in
diameter and 10s of centimeters long, not much different in size and shape from
our fingers. This is salt fingering. Because two constituents diffuse across the
interface, the process is called double diffusion.

There are four variations on this theme. Two variables taken two at a time
leads to four possible combinations:

1. Warm salty over colder less salty: This process is called salt fingering. It
occurs in central waters of sub-tropical gyres, western tropical North At-
lantic, and the North-east Atlantic beneath the outflow from the Mediter-
ranean Sea. Salt fingering eventually leads to density increasing with
depth in a series of steps. Layers of constant-density are separated by
thin layers with large changes in density, and the profile of density as a
function of depth looks like stair steps. Schmitt et al (1987) observed 5–30
m thick steps in the western, tropical North Atlantic that were coherent
over 200–400 km and that lasted for at least eight months.

2. Colder less salty over warm salty: This process is called diffusive convec-
tion. It is much less common than salt fingering, and it us mostly found
at high latitudes. Diffusive convection also leads to a stair step of density
as a function of depth. Here’s what happens in this case. Double diffusion
leads to a thin, warm, less-salty layer at the base of the upper, colder,
less-salty layer. The thin layer of water rises and mixes with water in the
upper layer. A similar processes occurs in the lower layer where a colder,
salty layer forms at the interface. As a result of the convection in the up-
per and lower layers, the interface is sharpened; and any small gradients
of density in either layer are reduced. Neal et al (1969) observed 2–10 m
thick layers in the sea beneath the Arctic ice.

3. Cold salty over warmer less salty: Always statically unstable.
4. Warmer less salty over cold salty: Always stable and double diffusion

diffuses the interface between the two layers.

Double diffusion mixes ocean water, and it cannot be ignored. Merryfield
et al (1999), using a numerical model of the ocean circulation that included
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double diffusion, found that double-diffusive mixing changed the regional distri-
butions of temperature and salinity although it had little influence on large-scale
circulation of the ocean.

8.5 Mixing in the Ocean
Instability in the ocean leads to mixing. Because the ocean has stable strati-
fication and any vertical displacement must work against the buoyancy force,
vertical mixing requires more energy than horizontal mixing. The larger the
stability frequency the greater the work required for vertical mixing. As a re-
sult, horizontal mixing along surfaces of constant density is much larger than
vertical mixing across surfaces of constant density. The latter, however, usually
called diapycnal mixing, is very important because it changes the vertical struc-
ture of the ocean, and it controls to a large extent the rate at which deep water
eventually reaches the surface in mid and low latitudes.

In the ocean, mixing by turbulent eddies is far more important than mixing
by molecular diffusion (Munk 1966). The equation for vertical mixing by eddies
of a tracer Θ such as salt or temperature is:

∂Θ
∂t

+W
∂Θ
∂z

=
∂

∂z

(
Kz

∂Θ
∂z

)
+ S (8.30)

where Kz is the vertical eddy diffusivity, W is a mean vertical velocity, and S
is a source term.

Average Vertical Mixing Average mixing rates in the ocean have been cal-
culated for many years from the distribution of mean properties in the ocean.
Munk (1966) considered the important case of the thermocline. He noted that
measurements of temperature as a function of depth in the thermocline made
decades apart showed the same structure (Figure 8.8). For a steady-state ther-
mocline with no sources or sinks of heat, (8.30) reduces to:

W
∂T

∂z
= Kz

∂2T

∂z2
(8.31)

where T is temperature as a function of depth in the thermocline. The steady-
state thermocline requires that the downward mixing of heat by turbulence be
balanced by an upward transport of heat by a mean vertical current W .

The equation has the solution:

T ≈ T0 exp(z/H) (8.32)

where H = Kz/W is the scale depth of the thermocline, and T0 is the temper-
ature near the top of the thermocline. Observations of the shape of the deep
thermocline are indeed very close to a exponential function. An exponential
function fit through the observations of T (z) gives H, from which Kz can be
calculated if W is known.

Munk calculated W from the observed vertical distribution of 14C, a ra-
dioactive isotope of carbon, to obtain a vertical time scale. In this case, S =
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Figure 8.8 Potential temperature measured as a function of depth (pressure) near 24.7◦N,
161.4◦W in the central North Pacific by the Yaquina in 1966 (•), and by the Thompson in
1985 (�). Data from Atlas of Ocean Sections produced by Swift, Rhines, and Schlitzer.

−1.24 × 10−4 years−1. The length and time scales gave W = 1.2 cm/day and

〈Kz〉 = 1.3 × 10−4 m2/s Average Vertical Eddy Diffusivity (8.33)

where the brackets denote average eddy diffusivity in the thermocline.
Munk also used W to calculate the average vertical flux of water through the

thermocline in the Pacific, and the flux agreed well with the rate of formation
of bottom water assuming that bottom water upwells almost everywhere at a
constant rate in the Pacific.

Measured Vertical Mixing Direct observations of vertical mixing required
the development of techniques for measuring: i) the fine structure of turbulence,
including probes able to measure temperature and salinity with a spatial reso-
lution of a few centimeters (Gregg 1991), and ii) the distribution of tracers such
as sulpher hexafluoride (SF6) with concentrations of 10−15 mole.

Direct measurements of open-ocean turbulence and the diffusion of SF6 yield
an eddy diffusivity:

Kz ≈ 1 × 10−5 m2/s Open-Ocean Vertical Eddy Diffusivity (8.34)

For example, Ledwell, Watson, and Law (1991) injected 139 kg of SF6 in the
Atlantic near 26◦N, 29◦W 1200 km west of the Canary Islands at a depth of
310 m. They then measured the concentration for five months as it mixed
over hundreds of kilometers to obtaine a diapycnal eddy diffusivity of Kz =
1.1 ± 0.2 × 10−5 m2/s.



136 CHAPTER 8. EQUATIONS OF MOTION WITH VISCOSITY

These and other open-ocean experiments indicate that turbulent mixing is
driven by breaking internal waves and shear instability at boundaries. Further-
more, mixing by turbulence seems to be more important than double diffusion
(Gregg 1987).

The large discrepancy between the mean eddy diffusivity for vertical mixing
and the observed values in the open ocean led to further experiments to resolve
the difference. Two recent experiments are especially interesting.

1. Polzin et al. (1997) measured the vertical structure of temperature in
the Brazil Basin in the South Atlantic. They found Kz > 10−3 m2/s
close to the bottom when the water flowed over the western flank of the
mid-Atlantic ridge at the eastern edge of the basin.

2. Kunze and Toole (1997) calculated enhanced eddy diffusivity as large as
K = 10−3 m2/s above Fieberling Guyot in the Northwest Pacific and
smaller diffusivities along the flank of the seamount. Summing the influ-
ence over all Pacific seamounts, they found, however, that the mixing near
seamounts does not account for Munk’s basin-wide average.

The experiments indicate that over seamounts and ridges

Kz ≈ 10−3 m2/s Rough Bottom Vertical Eddy Diffusivity (8.35)

The results of these and other experiments show that mixing occurs mostly at
oceanic boundaries: along continental slopes, above seamounts and mid-ocean
ridges, at fronts, and in the mixed layer at the sea surface.

Measured Horizontal Mizing Eddies mix fluid in the horizontal, and large
eddies mix more fluid than small eddies. Eddies range in size from a few me-
ters due to turbulence in the thermocline up to several hunderd kilometers for
geostrophic eddies discussed in Chapter 10.

In general, mixing depends on Reynolds number R (Tennekes 1990: p. 11)

K

γ
≈ K

ν
∼ UL

ν
= R (8.36)

where γ is the molecular diffusivity of heat. Furthermore, horizontal eddy dif-
fusivities are ten thousand to ten million times larger than the average vertical
eddy diffusivity.

Equation (8.35) implies Kx ∼ UL. This functional form agrees well with
Joseph and Sender’s (1958) analysis, as reported in (Bowden 1962) of spreading
of radioactive tracers, optical turbidity, and Mediterranean Sea water in the
North Atlantic. They report

Kx = PL (8.37)
10 km < L < 1500 km
P = 0.01 ± 0.005 m/s

where L is the distance from the source, and U is a constant.
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The horizontal eddy diffusivity (8.36) also agrees well with more recent re-
ports of horizontal diffusivity. Work by Holloway (1986) who used satellite al-
timeter observations of geostrophic currents, Freeland et al. (1975) who tracked
sofar underwater floats, McWilliams (1976) and Ledwell et al (1998) who used
observations of currents and tracers to find

Kx ≈ 8 × 102 m2/s Geostrophic Horizontal Eddy Diffusivity (8.38)

Using (8.37) and the measured Kx implies eddies with typical scales of 80 km,
a value near the size of geostrophic eddies responsible for the mixing.

Ledwell, Watson, and Law (1991) also measured a horizontal eddy diffusivity.
They found

Kx ≈ 1 – 3 m2/s Open-Ocean Horizontal Eddy Diffusivity (8.39)

over scales of meters due to turbulence in the thermocline probably driven by
breaking internal waves. This value, when used in (8.37) implies typical lengths
of 100 m for the small eddies responsible for mixing in this experiment.

Comments

1. Water in the interior of the ocean seems to move along sloping surfaces of
constant density with little local mixing until it reaches a boundary where
it is mixed vertically. The mixed water then moves back into the open
ocean again along surfaces of constant density (Gregg 1985).

One particular case is particularly noteworthy. When water mixed down-
ward through the base of the mixed layer flows out into the thermocline
along surfaces of constant density, the mixing leads to the ventilated ther-
mocline model of oceanic density distributions.

2. The observations of mixing in the ocean imply that numerical models of
the oceanic circulation should use mixing schemes that have different eddy
diffusivities parallel and perpendicular to surfaces of constant density, not
parallel and perpendicular to level surfaces of constant z as we used above.
Horizontal mixing along surfaces of constant z leads to mixing across lay-
ers of constant density because layers of constant density are inclined to
the horizontal by about 10−3 radians (see §10.7 and figure 10.13). Stud-
ies by Danabasoglu, McWilliams, and Gent (1994) show that numerical
models using isopycnal and diapycnal mixing leads to much more realistic
simulations of the oceanic circulation.

3. The observed mixing in the open ocean away from bundaries is too small
to account for the mixing calculated by Munk. Recent work reported at
the World Ocean Circulation Experiment Conference on Circulation and
Climate 1998 and by Munk and Wunsch (1998) indicate thet the dilemma
may be resolved several ways:

(a) First, separate studies by Gargett, Salmon, and Marotzke show that
we must separate the concept of deep convection from that of the
meridional overturning circulation (see chapter 13). Deep convection
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may mix properties not mass. The mass of upwelled water required
by Munk may be overestimated, and the vertical mixing needed to
balance the upwelling may be smaller than he calculated.

(b) Second, mixing probably takes place along boundaries or in the source
regions for thermocline waters (Gnadadesikan, 1999). For example,
water at 1200 m in the central North Atlantic could move horizon-
tally to the Gulf Stream, where it mixes with water from 1000 m.
The mixed water may then move horizontally back into the central
North Atlantic at a depth of 1100 m. Thus water at 1200 m and at
1100 m may reach their position along entirely different paths.

8.6 Important Concepts
1. Friction in the ocean is important only over distances of a few millimeters.

For most flows, friction can be ignored.

2. The ocean is turbulent for all flows whose typical dimension exceeds a
few centimeters, yet the theory for turbulent flow in the ocean is poorly
understood.

3. The influence of turbulence is a function of the Reynolds number of the
flow. Flows with the same geometry and Reynolds number have the same
streamlines.

4. Oceanographers assume that turbulence influences flows over distances
greater than a few centimeters in the same way that molecular viscosity
influences flow over much smaller distances.

5. The influence of turbulence leads to Reynolds stress terms in the momen-
tum equation.

6. The influence of static stability in the ocean is expressed as a frequency,
the stability frequency. The larger the frequency, the more stable the
water column.

7. The influence of shear stability is expressed through the Richardson num-
ber. The greater the velocity shear, and the weaker the static stability,
the more likely the flow will become turbulent.

8. Molecular diffusion of heat is much faster than the diffusion of salt. This
leads to a double-diffusion instability which modifies the density distribu-
tion in the water column in many regions of the ocean.

9. Instability in the ocean leads to mixing. Mixing across surfaces of constant
density is much smaller than mixing along such surfaces.

10. Calculations of the average eddy diffusivity in the interior of the ocean is
much smaller than measured diffusivity.

11. Measurements of eddy diffusivity indicate water is mixed vertically near
oceanic boundaries such as above seamounts and mid-ocean ridges. This
may explain the small measured values of open-ocean diffusivity.


