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Chapter 5: Kinetics: The Pace of Things

5.1 Introduction
hermodynamics concerns itself with the distribution of components among the various phases
and species of a system at equilibrium.  Kinetics concerns itself with the path  the system takes
in achieving equilibrium.  Thermodynamics allows us to predict the equilibrium state of a sys-

tem.  Kinetics, on the other hand, tells us how and how fast equilibrium will be attained.  Though
thermodynamics is a macroscopic science, we found it often useful to consider the microscopic view-
point in developing thermodynamics models.  Because kinetics concerns itself with the path a system
takes, what we will call reaction mechanisms, the microscopic perspective becomes essential, and we
will very often make use of it.

Our everyday experience tells one very important thing about reaction kinetics: they are generally
slow at low temperature and become faster at higher temperature.  For example, sugar dissolves much
more rapidly in hot tea than it does in ice tea.  Good instructions for making ice tea might then incor-
porate this knowledge of kinetics and include the instruction to be sure to dissolve the sugar in the hot
tea before pouring it over ice.  Because of this temperature dependence of reaction rates, low tempera-
ture geochemical systems are often not in equilibrium.  A good example might be clastic sediments,
which consist of a variety of phases.  Some of these phases are in equilibrium with each other and
with porewater, but most are not.  Another example of this disequilibrium is the oceans.  The surface
waters of the oceans are everywhere oversaturated with respect to calcite, yet calcite precipitates
from seawater only through biological activity.  At a depth of 2500 m, the ocean is undersaturated
with calcite, yet calcite shells of micro-organisms persist in sediments deposited at these depths
(though they do dissolve at greater depths).  Thus, great care must be used in applying thermody-
namics to such systems.  Even in the best of circumstances, thermodynamics will provide only a lim-
ited understanding of low temperature geochemical systems.  A more complete understanding requires
the application of kinetic theory.  Indeed for such systems, kinetics is the deciding factor controlling
their state and evolution.  Even in metamorphic systems, with temperatures in the range of 300-700¡
C, kinetics factors are crucially important in determining their final states.

High temperature geochemical systems, such as magmas, are more likely to be equilibrium, and
thermodynamics provides a reasonable understanding of these systems.  However, even at high tem-
peratures, kinetic factors remain important and can inhibit equilibrium.  One obvious example of dis-
equilibrium at high temperature is the formation of volcanic glasses.  Thermodynamics predicts tha t
magmas should crystallize as they cool.  But where cooling is rapidly enough, this does not occur.
Glasses, which in many ways are simply extremely viscous liquids, form instead.

It is perhaps ironic that it is kinetic factors, and a failure to achieve equilibrium, that in the end
allow us to use thermodynamics to make statements about the Earth's interior.  As we pointed out in
the preceding chapter, if equilibrium were always achieved, the only rocks we could collect at the
surface of the Earth (which is, after all, the only place we can collect them) would consist of quartz,
clays, serpentine, etc.; their petrology would tell us nothing about their igneous or metamorphic his-
tories.  Fortunately, kinetic factors allow the original minerals and textures of gneisses, peridotites,
lavas, etc. to be preserved for our study.

The foregoing might suggest that kinetics and thermodynamics are entirely unrelated subjects, and
further, that what we have learned about thermodynamics is of little use in many instances.  This is
certainly not the case.  As we shall see, transition state theory provides a very strong link between
kinetics and thermodynamics.  What we have learned about thermodynamics will prove very useful
in our brief study of kinetics.  Furthermore, chemical systems are always governed by a combination of
thermodynamics and kinetics, so a full understanding of the Earth requires the use of both thermody-
namic and kinetics tools.  The goal of this chapter is to add the latter to our geochemical toolbox.

T
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5.2 Reaction Kinetics
5.2.1 Elementary and Overall Reactions

In thermodynamics, we found that the equilibrium state of a system is entirely independent of the
path taken to reach that state.  The goal of kinetics is a description of the manner in which the equi-
librium state is achieved.  This description is inherently path-dependent.  Consider for example, the
weathering of anorthite.  We can write an overall reaction for this process as:

CaAl2Si2O8 + 3H2O +CO2(g) → CaCO3 + 2Al(OH)3 + 2SiO2(qz) 5.1
In nature, however, this process will involve several intermediate steps.  These intermediate steps

can include:
H2O +CO2(g) → H2CO3(aq) 5.2

H2CO3 → HCO3( )
–

aq + H+ 5.3

CaAl2Si2O8 + H2O +2H+ → Si2Al 2O5(OH)4 + Ca( )aq
2+ 5.4

H2O + Si2Al 2O5(OH)4 → 2SiO2(qz) + 2Al(OH)3 5.5

HCO3( )
–

aq → CO3
2

( )aq
− + H+ 5.6

CO3
2

( )aq
− + Ca( )aq

2+ → CaCO3 5.7

In thermodynamics, equation 5.1 is a perfectly adequate description of the reaction.  In kinetics, a
description of an overall  reaction such as 5.1, requires a knowledge of the path taken, that is a
knowledge of the steps involved.  Reactions 5.2 through 5.7 thus describe the overall reaction 5.1.
Reactions 5.2, 5.3, and 5.6 are elementary reactions in that they involve only one step and the reaction
as written describes what occurs on the microscopic level.  The remaining reactions are not elementary
in that they each consist of a number of more elementary steps.  

5.2.2 Reaction Mechanisms

Reaction 5.4 describes the breakdown of anorthite to form kaolinite plus a free calcium ion.  This
reaction involves profound structural changes in the solid phase that are not described by equation
5.4.  A full kinetic description of 5.4 will require some knowledge of the steps involved in these struc-
tural changes.  One possibility is that all components are in solution at an intermediate state:

CaAl2Si2O8 + 6H2O + 2H+ → 2H4SiO4(aq) + 2Al(OH)2( )aq
+ + Ca( )aq

2+ + 2OH– 5.4a

2H4SiO4(aq) + 2Al(OH)2( )aq
+ + 2OH– → Si2Al 2O5(OH)4 +  5H2O 5.4b

Reaction 5.5, the breakdown of kaolinite to quartz and gibbsite, could involve SiO2 dissolving, sub-
seqeuntly precipitatingn as opaline silica, and later transform ing to quartz:

Si2Al 2O5(OH)4  + 5H2O→ 2H4SiO4(aq) + 2Al(OH)3 5.5a

H4SiO4(aq)  → SiO2(opal) + 2H2O 5.5b

SiO2(opal)  → SiO2(qz) 5.5c
The description of an overall reaction in terms of elementary reactions is called the reaction mech-

anism.  The rates of truly elementary reactions are path-independent because there is only one possi-
ble path.  In this sense, elementary reactions are somewhat analogous to state functions in thermody-
namics.  Clearly then, an important step in any kinetic study is determination of the reaction mecha-
nism, that is, to describe the process in terms of elementary reactions.  As we shall see, there may be
more than one possible path for an overall reaction, and that several paths may be simultaneously
involved.  Kinetics can only provide an accurate description of a process if all these paths are known.
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5.2.3 Reaction Rates

Consider a reaction such as the precipitation of dolomite from a solution.  We can describe this as:

Ca2+ + Mg2+ + 2CO3
2−® CaMg(CO3)2

  We define the rate of this reaction, ℜ , as the rate at which dolomite is produced:

ℜ  ≡ 
d[CaMg(CO3)2]

dt  

 Clearly, if dolomite is to be formed, CO 3
2− must be consumed in this reaction twice as fast as Ca or Mg.

For every mole of Ca or Mg consumed, exactly two moles of CO 3
2− will also be consumed and one mole of

dolomite produced.  This being the case, we could equally well express the reaction rate as:

ℜ  = – 
1
2

3
2d CO

dt
[ ]−

or ℜ  = – 
d Ca

dt
[ ]2+

= – 
d Mg

dt
[ ]2+

We can now formulate the general rule.  For any reaction such as:
aA + bB → cC + dD 5.8

The reaction rate, ℜ , is defined as the change in composition of the reaction mixture with time:
  

ℜℜ ≡ –
1
a

d[A]
dt

= –
1
b

d[B]
dt

=
1
c

d[C]
dt

=
1
d

d[D]
dt

5.9

The brackets denote the concentrations of the species and the negative sign indicates that reactants
are consumed as the reaction proceeds.  Thus the rate of a reaction is simply the rate at which a reac-
tant is consumed or product produced divided by its stoichiometric coefficient.

5.2.3.1 The Reaction Rate for an Elementary Reaction: Composition Dependence

Reaction rates will, in general, depend on the concentration of the reactant.  To understand this,
consider the reaction:

N° + O2 ® NO + O 5.10
This reaction between free nitrogen atoms and oxygen molecules occurs in the stratosphere (where N¡
is produced by high energy collisions involving N2) and contributes to the production of nitrous oxide.
LetÕs assume that reaction 5.10 is an adequate description of this reaction.  In other words, we are as-
suming that 5.10 is an elementary reaction and the reaction mechanism for the production of NO from
nitrogen and oxygen gas is collision of a N¡ molecule and O2 molecule.   For the reaction to occur, the ni-
trogen and oxygen molecules must collide with enough kinetic energy that the mutual repulsion of the
electron clouds is overcome and the electrons can be redistributed into new covalent orbits.  The repul-
sive force represents an energy barrier, EB, which will prevent low energy nitrogen and oxygen atoms
from reacting.  Figure 5.1 illustrates this point.  The reaction rate will therefore depend on 1.) the
number of collisions per unit time, and 2.) the fraction of N and O molecules having energy greater
than the barrier energy.

LetÕs first consider the number of collisions per unit time.  In order for a ÔcollisionÕ to occur, the elec-
tron clouds must overlap, that is, they must approach within (rN + rO2), where rN and rO2 are the radii
of the nitrogen and oxygen molecules.  To make things simple, imagine the oxygen to be fixed and the
nitrogen in motion.  In other words, our reference frame will be that of the oxygen molecules.  We can
imagine the nitrogen sweeping out a cross-section with radius (rN + rO2) as it travels.  If the nitrogen is
travelling at velocity v, in time t, it will sweep out a cylindrical volume (Figure 5.2):

V = vπ(rN + rO2
)2 t 5.11
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Whether a collision occurs will de-
pend on whether the center of an
oxygen molecule falls within this
volume (Figure 5.2).  The number of
collisions that will occur in this
time will be:

C = nOvπ(rN + rO2
)2t 5.12

where nO is the number of oxygen
molecules per unit volume.  The num-
ber of collisions per unit time is then
simply:

C
t   = nOvπ(rN + rO2

)2 5.13

If there are nN nitrogen atoms and
the average velocity between nitro-
gen and oxygen molecules is  vÐ , then
the number of collisions per unit time
is:

  c = nNnO2
vπ(rN + rO2

)2 5.14

If we let    k = v π(rN + rO2
)2

then the rate at which collisions occur is:
  c = knNnO

5.15

Thus we see that the reaction rate in this case will depend on the concentration of nitrogen, oxygen
and a constant that depends on the nature of the reactants.  This is a general result.

5.2.3.2 The Reaction Rate for an Elementary Reaction: Temperature Dependence

  We now need to estimate the fraction of nitrogen and oxygen atoms having at least the barrier en-
ergy, EB.   For simplicity, we will assume that oxygen and nitrogen molecules have an identical energy
distribution.  The Boltzmann
Distribution Law, which we en-
countered in Section 2.6.4.1 (equ.
2.84), can be written to express
the average number of molecules
having energy level εiÊas:

  
ƒi = A e–εi/kT 5.16

where k is Boltzmann's constant
and A is a constant (comparing
with equation 2.84, we see tha t
A = n/Q where n is the total
number of molecules in the sys-
tem and Q is the partition func-
tion).  In plain English, this
equation tells us that the number
of molecules in some energy level
i decreases exponentially as the
energy of that level increases
(Figure 2.9).  We want to know

E <EB

E >EB

NO
+

O

N O

EB

N

N

O2

O2 O

E

Figure 5.1.  A nitrogen atom approaching an oxygen molecule
must have enough kinetic energy to pass through the region
where it is repelled by electrostatic repulsion of the electron
cloud of the oxygen.  Otherwise, it will not approach closely
enough so that its electrons can combine with those of oxygen.

v × t

r = rN + rO2 no collision

collision

no collision

Figure 5.2.  A nitrogen atom will sweep out a volume V = vπ(rN +
rO2

)2t in time t.  Whether a collision occurs will depend on whether
the center (indicated by black dot) of an oxygen atom falls within
this volume.
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the number of molecules with energy greater than EB.  In this case we are dealing with translational
energy.  The quantum spacings between translational energy levels are so small that they essentially
form a continuum, allowing us to integrate equation 5.16.  Fortunately for us, the integration of 5.16
from ε = EB to infinity has a simple solution:

   
ƒi d ε

EB

∞

= A e–εi/kT
d ε

EB

∞

= A kT e–EB/kT 5.17

The fraction of molecules with energy greater than EB is just:
   

A e–εi/kT
d ε

EB

∞

A e–εi/kT
d ε

0

∞
=

A kT e–EB/kT

A kT
= e–EB/kT 5.18

The rate of reaction will be the rate of collision times the fraction of molecules having energy greater
than EB:

   ℜ = nHnOvπ(rN + rO2
)2e–EB/kT 5.19

Now we just need to find a value for velocity.  The average velocity can be calculated from the Max-
well-Boltzmann Law*, which gives the distribution of velocities of molecules in a gas.  Doing so, we
find that the have velocity is:

  
v = 8kT

πµ 5.20

where µ is the reduced mass, µ = mNmO2/(mN + mO2).  Substituting 5.20 into 5.19, our equation for the
reaction rate is:

  
ℜ = nNnOπ rN + rO2

2 8kT
π µ e

–EB/kT 5.21

Redefining k as:    
k = π rN + rO2

2 8kT
π µ e

–EB/kT 5.22

our reaction rate equation is:    ℜ = k nNnO 5.23

Thus the reaction rate in this case depends on the concentration of hydrogen and oxygen and a constant
k, called the rate constant , which depends on temperature, properties of the reactants, and the bar-
rier energy.

In a more rigorous analysis we would have to take into consideration atoms and molecules not being
spherically symmetric and that, as a result, some orientations of the molecules are more likely to re-
sult in reaction than others.  In addition, a head-on collision is more likely to result in reaction than a
glancing blow, so the collision cross section will be less than π(rN + rO2)2. These factors can, however,
be accounted for by multiplying by a constant, called a stearic factor, so the form of our equation, and
the temperature dependence, would not be affected.  Values of stearic factors for various reactions
range over many orders of magnitude and can be quite small.  In rare circumstances, they can be greater
than 1 (implying an effective collision cross section greater than the combined atomic radii).

Temperature occurs in 2 places in equation 5.22; however, the square-root dependence is slight com-
pared to the exponential one.  For example, consider a temperature change of 300 K to 325 K.  For a re-
action with an activation energy of 25 kJ, the exponential temperature dependence results an increase

                                                
* So called because Maxwell proposed it and Boltzmann proved it rigorously.
  To distinguish the rate constant, k, from BoltzmannÕs constant, k, we will always write the former in
in lower case italics and the latter in roman typeface.
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in reaction rate of more than a factor of 2,
whereas the square root dependence in-
creases the reaction rate by only 4%.
Hence the temperature dependence can be
essentially expressed as:

   k ∝ e–EB/kT ‡

The temperature dependence of the rate
constant is most often written as:

   
k = Ae–EB/kT 5.24

which is the important Arrhenius r e l a -
tion¦.   It expresses the rate constant in
terms of the barrier, or activation, energy
(also often written as E* or EA), and A, a
proportionality constant sometimes called
the frequency factor (because it depends on
the frequency of collisions), and tempera-
ture.  (We can replace k, BoltzmannÕs con-
stant with R, the gas constant, if we deal
in moles rather than atoms.)  

The temperature dependence of the
rate constant is illustrated in Figure 5.3.
We see that the reaction rate falls off by
a factor of 104 as temperature is decreased
from 500 to 200 K.  This confirms our eve-
ryday experience that reaction rates are
extremely temperature dependent.  Table 5.1 lists some examples of activation energies for geochemi-
cal reactions.

The pre-exponential factor, A, is often assumed to be independent of temperature.  Comparison of
5.24 with 5.23 shows, however, that it need not be.  In the gas of an elementary gas phase reaction, we
would predict a dependence on the square root of temperature.  Other kinds of reactions show other
kinds temperature dependencies of the frequency factor, however.  A more accurate expression of tem-
perature dependence of the reaction rate is:

   k = ATne–EB/kT 5.25

                                                
à This form of the temperature dependence of reaction rate was first proposed by Jacobus H. VanÕt Hoff
(1852-1911), who deduced it by analogy to equation 3.108, the VanÕt Hoff equation.  VanÕt Hoff was born
in Rotterdam and in 1878 was appointed professor of geology, mineralogy, and chemistry at the
University of Amsterdam.  In 1896 he moved to the University of Berlin, where he remained for the rest
of his life.  He won the Nobel Prize for Chemistry in 1901.
¦ Named for Svante August Arrhenius (1859-1827) because Arrhenius provided the theoretical justifica-
tion for VanÕt HoffÕs proposal.  ArrheniusÕs PhD dissertation, completed in 1884 at the University of
Uppsala in Sweden, was rated fourth class by the committee of examiners, implying great things were
not expected of him.  The old boys must have been a little surprised nineteen years later when
Arrhenius won the Nobel Prize for chemistry.  Among ArrheniusÕs other contributions were the ionic
theory of electrolyte solutions and the greenhouse theory of climate: that the CO2 concentration in the
atmosphere could be an important control on global temperature, and that anthropogenic burning of
fossil fuel could lead to global warming.

300 400 500

2

4

6

T, K

b

log
 k

10 15 20 25

6

8

EB, kJ

2

4

a

log
 k

Fig. 5.3.  a. Relative change in the reaction rate as a
function of activation energy at 300 K.  b. Change in
the reaction rate for the same as a function of
temperature with an activation energy of 15 kJ.
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where the exponent n can be any number.  Nevertheless, the temperature dependence of the frequency
factor is usually small and it can often be safely neglected, as in our example above.

5.3.2.3 A General Form of the Rate Equation

In general, the rate of a reaction such as:
aA + bB → cC + dD

can be expressed as:
    

ℜ = k aA
nA aB

nB aC
nC aD

nD 5.26£

where k is the rate constant and aA, etc. are activities (we will often use the simplifying assumption
of ideality and replace these by concentrations).    The exponents nA, nB, etc. can be any number, includ-
ing zero.  The sum of the exponents nA, nB, ... is the order of the reaction.  In general, the value of the
exponents must be determined experimentally, though their values can be predicted if the reaction
mechanism is known, as we saw in the above example.

Just as the mole fraction was the unit of choice for thermodynamics, moles per volume, or moles per
area in the case of reactions taking place on surfaces, is the unit of choice for kinetics.  Thus wherever
more than one phase is involved, one concentration should be expressed in moles per unit area or vol-
ume.
 There are several simplifications of equation 5.26 for elementary reactions.  First, the rate of reac-
tion is independent of the concentration of the products so the exponents of the products will be 0.  In-
deed, one of the criteria for an elementary reaction is that the product not influence the reaction rate .
Second, the value of the exponents are the stoichiometric coefficients of the species.  Thus if the reac-
tion can be written in terms of a series of elementary reactions, then the exponents for the rate equa-
tion can be deduced from those of the component elementary reactions.

A further simplification may be made where one of the reactants is in sufficient abundance that its
concentration is not affected by
the progress of the reaction of in-
terest.   For instance, the hydra-
tion of CO2 through:

CO2 + H2O → H2CO3

The rate of this reaction will be:
  d[CO2]
dt

= k [CO2][H2O]

which is a second order reaction.
However, in aqueous solution,
H2O will always be present in
great excess over CO2 and its
abundance will not be signifi-
cantly changed by this reaction.
This allows us to treat the reac-
tion as if it were first order and to
define a pseudo-first order rate
constant, k*, as:

k* = k [H2O]
Since [H2O] is constant, it follows
that k*  is as well.  The reaction
rate can then be written as:

                                                
£ DonÕt confuse this equation, which expresses the way in which reaction rates depend on
concentrations, with equation 5.9, which is the definition of the reaction rate.

Table 5.1. Activation Energies of Some
Geochemical Reactions

Reaction EA

kJ/mol

Mg3Si4O10(OH)2 → 3MgSiO3 + SiO2 + H2O 371.8
CaCO3 + SiO2 → CaCO3 + CO2 225.0
2CaCO3 + Mg2+ → (CaMg)CO3 + Ca2+ 117.1
NaAlSi2O6

.H2O + SiO2 → NaAlSi3O8 + H2O 106.3
C2H4 + H2 → C2H6 102.8
CaF2 → Ca2+ + 2F+ 73.0
MgSiO3 + 2H+ + H2O → Mg2+ + H4SiO4 49.0
SiO2 (qz) + 2 H2O → H2SiO4 40.6
SiO2(am) + 2 H2O → H2SiO4 35.8
H2SiO4 → SiO2(qz) + 2 H2O 28.4
Mg2SiO4 + 4H+ → 2Mg2+ + H2SiO4 21.7
CaCO3 → Ca2+ + CO3

2+ 20.1
O + O3 → 2O2 13.4
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  d[CO2]
dt

= k*[CO2]

In Examples 5.1 and 5.2 we have used just such a pseudo-first order  rate constant.

5.2.4 Rates of Complex Reactions

Deciding whether a reaction is elementary is not always straightforward.  Consider the reaction:
2NO2 → 2NO + O2 5.29

On a microscopic basis, we might describe this reaction as the collision of two NO2 molecules to form
two NO molecules and an O2 molecule.  Since no intermediate steps occur, this would appear to be an
elementary reaction.  The rate equation for this reaction has been experimentally determined to be:

  
–

d[NO2]

dt
= 2k [NO2]2

This has the predicted form for an elementary reaction of second order; thus experiment confirms tha t
reaction 5.29 is elementary.

Now consider the reaction: 2O3 ® 3O2

We might reason that this reaction requires only the collision of two ozone molecules with no inter-
mediate products and that the reaction is therefore primary.  However, the experimentally deter-
mined rate law is:

  1
3

d[O2]
dt

= –
1
2

d[O3]
dt

= k
[O3]2

[O2]
5.30

Since the rate depends on the concentration of the product, the reaction is not elementary and must in-
volve intermediate steps.

Example 5.1. Rate of hydration of CO2(aq)

The rate for the hydration of CO2 (i.e., CO2 + H2O ® H2CO3) has been found to follow the first
order rate law:

  
–

d[CO2 (aq)]
dt

= k [CO2 (aq)] 5.27

At 25¡ C, k has been determined to be 0.014
sec-1.  Make a graph showing how the con-
centration of CO2 will change with time
when the concentration of CO2(aq) is changed.

Answer:  Since we are not given the ab-
solute concentrations, we cannot determine
the absolute change.  We can, however, de-
termine relative change.  To do so, we just
integrate 5.27:

   
–

d[CO2 (aq)]
[CO2 (aq)]

= k dt
o

τ

With some rearragning, we obtain:
  [CO2 (aq)]

[CO2 (aq)]0
= e–k t 5.28

Figure 5.4 shows our result.  It is apparent
that this is a fast reaction. We can assume
that equilibrium will prevail on most time
scales of interest to us.

0
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Figure 5.4.  Progress in the reaction CO2(aq) + H2O →
H2CO3 with time, as measured by decrease in [CO2].
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5.2.4.1 Chain Reactions and Branching

Many overall reactions involve a series of sequential elementary reactions, or steps, each of which
must be completed before a subsequent reaction can occur.  Such reactions are termed chain reactions.  I t
is also possible that the path of an overall reaction may include two or more alternative elementary
reactions, or sequences of elementary reactions, that occur simultaneously.  These alternatives paths
are called branches.  The combustion of hydrogen is a good example because it is a chain reaction in-
volving several branches.

Experiments have shown that the reaction rate for the combustion of water is not simply:
  d [H2O]
dt = k [H2]

2[O2] 5.33

and therefore H2 + O2 → H2O + O is not an elementary reaction.  If it were an elementary reaction,
equation 5.33 predicts that its rate should continuously decrease through the course of the reaction
(provided temperature is held constant!) since the reactants will be consumed and their concentra-
tions will decrease.  In actuality the rate of this reaction can increase rapidly, sometimes catastroph-
ically (even at constant temperature), as it proceeds.  Evidently, the reaction mechanism is more com-
plex.  Indeed it appears to involve several steps.  The final step of this reaction is:

Example 5.2:  Oxidation of Ferrous Iron
Given the adjacent equi l ibrium and pseudo-first

order rate constants for the oxidation of three species
of ferrous i ron (Fe2+, Fe(OH)+, and Fe(OH)2) to ferric
iron in the adjacent table, calculate the overal l  rate of
oxidation of ferrous i ron at pH 2, 6, and 8 assuming a
total  Fe2+ concentration of 1 × 10-6 M.
Answer:  The overal l  oxidation rate can be wri tten as:

   dΣFe2+

dt
= k 1[Fe2+] + k 2[FeOH–] +k 3[Fe(OH)2 5.31

Thus to calculate the rate, we wil l  have to calculate the concentra-
tions of the various species.  These are given by:

 
[FeOH–] = K1

[Fe2+]
[H+]

and
 

[Fe(OH)2] = K2
[Fe2+]
[H+]2

We can substi tute these expressions into 5.31 we have:
   dΣFe2+

dt
= [Fe2+](k 1 +

k 2K1

[H+]
+

k 3K2

[H+]2) 5.32

Since the total  Fe2+ i s the same at al l  three pHÕs the concentration of the Fe2+ ion must vary.  So we
need to calculate the concentration of ionic Fe2+ at these pHÕs.  The total  Fe2+ i s:

  ΣFe2+ = [Fe2+] + [FeOH–] + [Fe(OH)2]

or:
  

ΣFe2+ = [Fe2+] (1 +
K1

[H+]
+

K2

[H+]2)

so that:   
[Fe2+] = ΣFe2+

1 +
K1

[H+]
+

K2

[H+]2

We can now calculate the rates.  Substi tuting in appropriate values into equ. 5.32, we find the rate is
0.0031 M/sec, 0.9371 M/sec, and 7.89 M/sec at a  pH of 2, 4, and 8 respectively.  Thus the combination of
the di fferent rate constants and the pH dependency of the Fe speciation results in a very strong pH
d d  f h  id i  

Equi l ibrium Constants
Reaction pK
Fe2+ + H2O ® FeOH+ + H+ 4.5
FeOH+ + 2H2O ® Fe(OH)2 + 2H+ 7.4

Oxidation Rate Constants
Fe2+ Species k  (s-1)
Fe2+ 7.9 × 10-6

FeOH+ 25
Fe(OH)2 7.9 × 106
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OH + H2 → H2O + H 5.34
This is an elementary reaction, depending only on the concentration of the two reactants.  However,
one of the reactants, OH, and one of the products, H, are not among the original constituents of the
gas.  Rather, they are created by intermediate steps.  Species that do not appear in the overall reac-
tion are termed reactive intermediates.

The first step in the combustion of hydrogen is breakup of the hydrogen molecule, forming highly
reactive atomic H:

H2 → 2H 5.34a
The next step is reaction of the atomic hydrogen with an oxygen molecule:

H + O2 → OH + O 5.34b
 Reactions 5.34a and 5.34b are an example of a chain reaction.  

Since 5.34 is an elementary reaction, the reaction rate can be written as:
  d[H2O]
d t = k[OH][H2]

This is also the rate of the overall reaction.  Thus the overall reaction will depend on the availabil-
ity of OH.  What makes the combustion of hydrogen particularly interesting is that there are several
ways in which OH may be created.  Reaction 5.34b is one way.  The monatomic oxygen created in this
reaction, however, provides two alternate mechanisms for the creation of the OH complex:

H2 + O → OH + H 5.34c

and H + O → OH 5.34d
Reactions 5.34b through 5.34d represent alternative reaction paths or branches.  Notice that the final
step also provides an alternative mechanism, or branch, for the production of monatomic hydrogen.  

The branching that occurs provides the potential for a ÒrunawayÓ or explosive reaction.  This is
apparent if we simply sum reactions 5.34 and 5.34b through 5.34d:

4 × [OH + H2 → H2O + H]

+ 2 × [H + O2 → OH + O]

+ H2 + O → OH + H

+ H + O → OH 

 5H2 + 2O2 → 4Η2O + 2H 5.34e
Each cycle of these reactions produces four water molecules plus two hydrogens.  Since the rate of the
overall reaction, i.e., the production of water, depends on [OH], which in turn depends on [H], the re-
action will accelerate with time.  (Actually, the combustion of hydrogen is a very complex reaction.
When all the elementary reactions are written down, including the reverse reactions and reactions
with the container wall, they fill an entire page.  Interestingly, it displays this runaway behavior
only under certain combinations of T, P, and container size and shape. The latter dependence results
from reactions with, or catalyzed by, the container wall.  Under certain conditions, it will become
steady state; i.e., the creation and consumption of water balance to produce a constant concentration of
water.)

5.2.4.2 Rate-Determining Step

It often happens that the reaction rate of a chain, or sequential, reaction, is controlled by a single
step that is very much slower than the other steps.  For example, how quickly you can buy a pencil a t
the campus bookstore on the first day of class will probably be controlled entirely by how quickly you
can get through the checkout line.  Such a step is called the rate-determining step.  Once the rate of
this step is determined, the rates of all other steps are essentially irrelevant.
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Now consider a reaction that can occur through two branches.  For example,

A →1   B and A →2   B

The reaction rate is then:   dA
dt

= –(k 1 + k 2) [A] 5.35

If one path is very much faster than the other, then the fastest of the two will always be taken.  Thus
for branched reactions, the fastest branch determines the reaction mechanism.  Mathematically, we
may say that if k1 >> k2 then (k1 + k2) ≈ k1 and therefore:

   dA
dt ≈ –k 1 [A]

In our analogy above, if an express checkout is available, you would certainly take it.  In this case,
the slowness of the regular checkout line becomes irrelevant for determining how quickly you can buy
your pencil.  To sum up, we may say that when reactions occur in series, then the slowest reaction i s
the rate determining step.  When parallel, or branched, reaction paths are available, then the fast -
est path is rate-determining.

5.2.5 Steady-State and Equilibrium

Many geochemical systems are steady state ones, that is, time-invariant systems, or approxi-
mately so.  The equilibrium state is also a steady state, but not all steady state systems are necessar-
ily equilibrium ones.  We may say then that steady state is a necessary, but not sufficient, condition
for equilibrium.  LetÕs consider how a system will approach the steady-state and equilibrium.

Consider the elementary reaction: A → B
Suppose that this reaction does not entirely consume A, but reaches a steady state where the con-

centration of A is [A]s, the subscript s denoting the steady state.  In this case, we can express the reac-
tion rate as:

  d [A]
dt

= k ([A]s – [A]) 5.36

where [A]s is the steady state concentration of A.  The reaction rate is 0 when [A] = [A]s.
To see how the concentration will vary before steady state is achieved, we integrate 5.36:

  
ln

[A]s – [A]
[A]s – [A]° = –k t

where again [A]¡ is the initial concentration of A.  This may be written as:
  [A]s – [A]

[A]s – [A]° = e–k t 5.37

The denominator is a constant (for a given set of initial conditions), so we can rewrite 5.37 as:
  [A]s – [A] = C e–k t

The excess concentration of A, i.e., [A]Ð[A]s declines as eÐt, so that steady state is approached asymp-
totically.  An effective steady state will be achieved when t >> 1/k.  As in Example 5.1, the reaction
rate decreases exponentially with time, i.e.:

  d[A]
dt

= –kC e–k t

Now suppose that in addition to the reaction: A → B, the reaction B → A also occurs and that both
are first order elementary reactions.  The rates of reaction will be:

  d[A]
dt

= –k+ [A] + k– [B] 5.38

Here we are using k+ for the rate constant of the forward reaction and kÐ for the rate constant of the
reverse reaction.  Assuming the system is closed and that no other processes affect the concentrations
of A and B, then:

  A + B = ΣAB
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where ΣAB is the total of A and B and is a constant.  Equ. 5.38 can therefore be written as:
   d[A]
dt = –k+ [A] + k – [ΣAB – A] = –(k + + k –)[A] + k –ΣAB 5.39

The concentration of Aτ at some time τ is obtained by integrating 5.39:
   d[A]

–(k+ + k–)[A] + k –ΣABAo

Aτ

= dt
0

τ

which yields: 
   –(k+ + k–)[A]τ + k –ΣAB

–(k + k )[Ao] + k ΣAB
= e–(k+ + k–)τ

Since A¡ + B¡ = ΣAB, we can also express this as:
   –k+[A]τ + k–[B]τ

–k+[A]o + k [B]o = e–(k+ + k–)τ 5.40

Thus in the general case, the concentrations of A and B will depend on their initial concentrations.
However, for τ = ∞, or as a practical matter when τ >> (k+ + kÐ), then a steady-state will be
achieved where 5.40 reduces to:

   k +[A]∞ = k –[B]∞ 5.41

Example 5.3: Racemization of Amino Acids
Amino-acids are nitrogen-containing organic molecules that are essential to life (see Chapter 14).

The chemical properties of amino acids depend not only on their composition, but also on their
structure.  Twenty different amino acids are used in building
proteins.  Amino acid comes in two forms, which can be distin-
guished by the direction in which they rotate polarized light.
Interestingly enough, organisms synthesize only the form that
rotates polarized light in a counterclockwise manner, labelled
the L-form (Fig. 5.5a).  After death of the organism, however,
the amino acid can spontaneously convert to its mirror image,
the D-form (Fig. 5.5b), corresponding to clockwise rotation of
light.  This process is termed racemization.  Racemization is a
first order reaction and rate constants for this process have
been determined for a number of amino acids in various sub-
stances.  This provides a means of dating sediment.  Given that
the rate constant k+ for the l-isoleucine → d-alloisoleucine re-
action is 1.2 ×  10-7 y-1 and for the d-alloisoleucine →  l-
isoleucine is 9.6 × 10-8 y-1, what is the age of a sediment whose
d-alloisoleucine/l-isoleucine ratio is 0.1?  Assume that the to-
tal isoleucine is conserved and an initialÊd-isoleucine concen-
tration of 0.

Answer:  This is a special case of equation 5.40 where [B]¡ is
0 and [A] + [B] = [A]¡.  Letting γ be the ratio [B]/[A] (d-al-
loisoleucine/l-isoleucine) and substituting into to 5.40, we ob-
tain:

   –k+ + γk–
–k+(1 + γ)

= e–(k+ + k–)t

Substituting values and solving for t, we find the age is 8.27 ×
103 yr.

C
C

H

H H C

H H
C

COOH

H3C H

H

NH2

a.   L-isoleucine

C

C
H H

H

C

HH

C

HOOC

H3CH

H
H2N

b.   D-alloisoleucine

Figure 5.5.  Structure of L-isoleucine
and D-alloisoleucine.  Solid wedge
shapes indicate bonds coming out of
the plane of the paper, hashed
wedge shapes indicate bonds
behind the paper.
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5.3 Relationships between Kinetics and Thermodynamics

5.3.1 Principle of Detailed Balancing

Equation 5.41 describes the relation between the concentration of reactant and product of a reversi-
ble reaction after infinite time, i.e., in the steady state.  This then is just the state the reaction will
obtain in the absence of constraints and external disturbance.  This is precisely the definition of equi-
librium we decided on in Chapter 2.  It follows that [A]∞ and [B]∞ are then also the equilibrium con-
centrations.  Thus we see, as we stated in Chapter 2, that equilibrium is not necessarily a static state
on the microscopic scale.  Rather, it is a steady state where the forward rate of reaction is equal to
the reverse rate.  Formally, we may say that for an elementary reaction such as:

A ® B
at equilibrium the following relation must hold:

k+[A] eq = k–[B]eq 5.42
where k+ and kÐ are the rate constants for the forward and reverse reactions respectively.  This is
known as the principle of detailed balancing, and it establishes an essential link between thermody-
namics and kinetics.  This link is apparent when we combine equation 5.42 with equation 3.85 to ob-
tain:

  k+

k –
=

[B]eq

[A]eq
= Kapp 5.43

It is apparent from equation 5.43 that if the equilibrium constant and one of the rate constants for a
reaction are known, the rate constant for the reverse reaction may be deduced.  Furthermore, if the
form of the rate law for either the forward or reverse reaction is known, the other can be deduced.
This is a trivial point for elementary reactions since rate laws for such reactions are readily obtained
in any case.  The importance of this point is that it holds for overall reactions as well as elementary
ones.  For example, consider the serpentinization of olivine:

2MgSiO4 + H2O + 2H+ ® Mg3Si2O5(OH)4 + Mg2+

This is not an elementary reaction as several intermediate steps are involved, as in the example of
the weathering of anorthite discussed earlier.  Nevertheless, if olivine, serpentine and water can be
assumed to be pure phases and have unit activity, the equilibrium constant for this reaction is:

 
Kapp =

[Mg+]

[H+]2
5.44

The relation between the forward and reverse reaction rate constants must be:
  k–[Mg+] = k+[H+]2

Suppose that experiments show that the rate law for the forward reaction is:
  d[Mg2+]

dt
= k [Ol] [H+]

where [Ol] is the specific area (area per solution volume) of olivine in the experiment.  From equation
5.9, we can express the rate for the reverse reaction as:

  d[Mg2SiO4]

dt
= 2

d[Mg2+]

dt
= 2k [Ol] [H+]

Using equation 5.60 to obtain a substitution for k, we find that the rate law for the reverse reaction,
i.e., for the formation of olivine from serpentine must be:

  d[Mg 2SiO4]

dt
= 2k’

[Mg +]

[H+]2
[ol] [H+] = 2k’

[Mg +]

[H+]
[ol] 5.45
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where kÕ is the rate constant for the reverse reaction.

5.3.2 Enthalpy and Activation Energy

The principle of detailed balancing allows us to relate the activation energy in the Arrhenius re-
lation (equation 5.24) to the heat (enthalpy) of reaction.  Recall that the temperature dependence of
the equilibrium constant was:

 
ln K = –

∆Hr
o

RT +
∆Sr

o

R (3.95)

If pressure is held at the reference pressure, then the vanÕt Hoff equation states:
  ∂ln K
∂T

= –
∆Hr

o

RT2 (3.97)

Integrating, we get:
  

lnK =
–∆Hr

o

RT
+ K° 5.46

where Kû is the integration constant.  Thus the temperature dependence of the equilibrium constant
may be expressed as:

 K = K˚ e – ∆H r
o /RT 5.47

A similarity to the Arrhenius relation is immediately apparent.  If we write the Arrhenius relations
for the forward and reverse reactions and combine them with equations 5.43 and 5.47, we obtain:

  k+

k–
=

A+e–E+/RT

A –e–E–/RT
= K = K˚e – ∆Hr

o/RT 5.48

 (For simplicity and clarity, here, and in the subsequent discussion of Transition State Theory, we as-
sume ideal behavior, and therefore that activities equal concentrations and that Kapp = K.)  From
this we can see that:

 A+
A–

= K° 5.49

and E+ – E– = ∆H˚ 5.50
This relationship is illustrated in Figure 5.6.

Comparing equation 5.47 with 3.95, we find that the factor Kû must be related to the entropy
change of reaction, and further that the coefficients of the Arrhenius relation must be related to en-
tropy by:

  A+

A–
= K° = e∆S°/R 5.51

Indeed, it can be shown that Arrhenius coeffi-
cient, or frequency factor, is related to entropy as:

  A+ =
kT
h

e∆S+
*/R 5.52

where ∆S +
* is the entropy difference between the

initial state and the activated state and h  is
PlanckÕs constant.  The ratio kT/h has units of
time-1 and is called the fundamental frequency.

5.3.3 Aspects of Transition State Theory

In the above discussion, we have already
made implicit use of Transition State Theory .

EB+
E

EB �
∆H

+
�

Products

Reactants

Activated
State

Figure 5.6.  The relationship between en-
thalpy of reaction and the barrier energy for
the forward and reverse reactions.
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TransitionÊ State Theory postulates that an elementary reaction such as:

A + BC → AC + B 5.53
proceeds through the formation of an activated complex ABC*, also called a reactive intermediate.
Thus reaction 5.70 can be described by the mechanism:

A + BC → ABC* 5.53a and ABC* → AC + B 5.53b
The activated complex ABC* is assumed to be in thermodynamic equilibrium with both reactants and
products.  Hence it is possible to define an equilibrium constant for 5.53a (assuming ideal behavior):

K
ABC
A BC

*
[ *]
[ ][ ]

=

as well as a free energy change:   ∆G* = –RTlnK*

and enthalpy and entropy changes:   ∆G* = ∆H*– T∆S*
Though do so here would take us too far afield, it can be shown from a statistical mechanical ap-

proach that the rate constant for 5.53 is:

   k = κ kT
h K* 5.54

where kT/h is the fundamental frequency as we defined it above, and κ is a constant, called the
transmission coefficient, whose value is often close to 1.  Equation 5.54 is known as the Eyring Equa-
tion£.  It is then easily shown that the rate constant is:

   k =
kT
h

e∆S* /Re–∆H* /RT =
kT
h

e–∆G* /RT 5.55

Thus if the nature of the activated complex is understood, the rate constant can be calculated.   For ex-
ample, we saw that the partition function is related to entropy and energy (it is also easily shown
that is related to Gibbs Free Energy and enthalpy as well).  The rate constant can be calculated from
partition functions of the activated complex and reactants.

Now consider that reaction 5.53 is reversible so that:
A + BC ® AC + B

and that the reverse reaction proceeds through the same activate complex ABC*.
The net rate of reaction is: ℜ net = ℜ + – ℜ – 5.56
If ∆G is the free energy difference between product and reactant, then the free energy difference be-
tween the product and the activate complex must be ∆G-∆G*.  From this it is readily shown (Problem
5.3) that the ratio of the forward and reverse reaction rates is:

  ℜ+

ℜ–
= e–∆G/RT 5.57

where ∆G is the actual free energy difference between products and reactants.  The negative of ∆G in
this context is often called the affinity of reaction, reaction affinity , or simply affinity  and is desig-
nated Ar (for clarity, however, we shall continue to designate this quantity as ∆G).  Substituting
5.57into 5.56 and rearranging, we have:

  ℜnet =ℜ+(1 – e∆G/RT) 5.58

If the forward reaction is an elementary one, then ℜ + will be:
                                                
£ Named for Henry Eyring (1901-1981) who formulated transition state theory in 1935.  It was evidently
an idea whose time had come, because M. G. Evans and M. Polanyi independently developed the same
theory in a paper published the same year.  Eyring, who was born in Juarez, Mexico, received his PhD
from the University of California at Berkeley in 1929.  He worked in the University of Wisconsin, the
Kaiser Wilhelm Institut in Berlin (working with Polanyi) and Princeton University before becoming
professor of chemistry at the University of Utah in 1946, where he remained for the rest of his life.
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ℜ + = k [A][BC]
where k will be as defined in 5.24.

It must be emphasized that equations 5.74 and 5.75 apply to elementary reactions only.  However,
a similar equation may be written for overall reactions:

   ℜ = k (1 – en∆G/RT)[A]nA[B]nB... 5.59
where the nÕs can be any real number, and [A], [B], ... are the concentrations (surface areas for solids) of
the reactants (Lasaga, 1981b).  Using the Arrhenius expression for k (equ. 5.24), equation 5.59 becomes:

  
ℜ = Ae–

EA

RT (1 – en∆G/RT) 5.60
Equation 5.60 links kinetics and thermodynamics and forms the basis of irreversible thermodynamics.

If the system is not far from equilibrium, then ∆G<<RT and we may approximate ex  by 1 + x, so
that for an elementary reaction:

  
ℜnet = –

ℜ+∆G

RT
5.61

Thus close to equilibrium, the reaction rate will vary linearly with ∆G, slowing as equilibrium is ap-
proached.   Substituting Ar for Ð∆G, 5.61 can also be written as:

  
ℜnet =

ℜ+Ar

RT
5.62

At this point, you might think, Òthis is all fine and good, but how do I calculate ∆G?Ó  There are
several approaches to estimating the value of ∆G under non-equilibrium conditions.  For the first
method, letÕs return to the relationship between activities, ∆G¡, and K.  In Chapter 3, we found we
could express the relationship between chemical potential and activities at equilibrium as:

   νi
µi

o∑
i

+ RT ln ai
ν

i∏
i

= 0 (3.84)

At equilibrium, the first term on the left is ∆G¡ and the second term is RT ln K.   Under non-equilib-
rium conditions, however, the product of activities will not be equal to K and equation 3.84 will not be
equal to 0.  Rather, it will have some finite value, which is ∆G.  We define a quantity Q as:

   Q = ai
νi∏

i

5.63

Q is called the reaction quotient (Chapter 3).  Though equation 5.63 has the same form as our defini-
tion of the equilibrium constant (equ. 3.85), there is an important difference.  K defines the relation-
ship between activities at equilibrium.  In defining Q, we impose no such condition, so that Q is sim-
ply the product of activities.  At equilibrium Q = K, but not otherwise.  Under non-equilibrium condi-
tions, we can express equation 3.86 as:

  ∆G° + RT lnQ = ∆G 5.64

Since ∆G¡ is equal to ÐRT ln K, equ. 5.64 can be written as:

  RT lnQ – RT lnK = ∆G or:   Q
K = e∆G/RT 5.65

Substituting 5.65 into 5.60, we have for an elementary reaction:

ℜ = ℜ −+net

Q
K

( )1 5.66

Thus we expect reaction rates to decrease as Q → K.
To arrive at the second method of estimating ∆G, we recall that ∆G may be written as ∆H Ð T∆S.

At equilibrium:
∆Geq = ∆Heq –Teq∆Seq = 0

where the subscript eq denotes the quantity when products and reactants are at equilibrium.  Under
non-equilibrium conditions, ∆H ÐT∆S will have some finite value.  We can make use of this and write:
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∆G = ∆H – T∆S – (∆Heq –Teq∆Seq) = ∆H – ∆Heq –(T∆S –Teq∆Seq) 5.67
For temperatures close to the equilibrium temperature, ∆H and ∆S may be considered constant, i.e.,
independent of temperature, so that 5.67 simplifies to:

 Ar = –∆G = ∆T∆S 5.68
where ∆T = (T - Teq) and is sometimes called the temperature overstep.  This may be substituted into
5.61, so that close to equilibrium we have

  
ℜnet =

–ℜ+∆S(T – Teq)

RTeq
5.69

Wood and Walther (1983) used this equation to analyze experimental reaction rate studies of a va-
riety of silicate-aqueous fluid reactions.   They found that essentially all the experimental data could
be fit to this equation if ℜ + is given by:

ℜ + = –k A
where A is the surface area of the solid phase and k is the rate constant.  Furthermore, the temperature
dependence of the rate constant could be expressed as:

log k = -2900/T - 6.85 5.70
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Figure 5.7.  Log of the rate constant vs. inverse of temperature for a variety of silicate and alumi-
nate dissolution reactions.  Wood and Walther (1983) extracted reaction rate data from both studies
of the rates of mineral dissolutions (labeled ÒDissolutionÓ and phase equilibria studies (labeled
ÒPhase Equilibria StudiesÓ).  Notice that the rate constant has units of mole of oxygen per cc per
second.  From Wood and Walther (1983).
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This is illustrated in Figure 5.7.  The data show a scatter of >±1 order of magnitude about the line, so

Example 5.4: Estimating ∆G* for the Aragonite-Calcite Transition
Aragonite is the high-pressure form of CaCO3.  Upon heating at 1

atm, it will spontaneously revert to calcite.  Carlson (1980) heated
aragonite crystals containing calcite nuclei to a series of tempera-
tures for fixed times on the heating stage of a microscope, then meas-
ured the growth of the calcite nuclei and from that calculated
growth rates shown in the adjacent table.  Using these data, deter-
mine the value of ∆G* for this reaction.

Answer: This is a reversible reaction, so we have to consider that
both the forward and reverse of the aragonite →  calcite reaction
will occur.  According to transition state
theory, the rate constant for the forward
reaction is

  k + =
kT
h

e–∆G* /RT (5.55)

From equ. 5.75 rate of the net reaction is:
   Rnet =

kT
h

e–∆G*/RT(1 – e∆G/RT)

This rate expression has units of time-1, but
CarlsonÕs results are given in units of dis-
tance/time.  How do we reconcile these?  We
might guess in this case that fundamental
frequency, the pre-exponential term, ought
to be multiplied by some sort of fundamental
distance.  A fundamental distance is this
case would be lattice spacing, which for
aragonite is about 5 � (or 5 × 10-10 m).  Thus if
λ  is the lattice spacing, we have

    
Rnet =

λkT
h

e–∆G*/RT(1 – e∆G/RT) m/s

Solving for ∆G*:
    

∆G* = –RT [ln Rnet – ln
λkT
h

– ln (1 – e∆G/RT)]

To determine ∆G*, we have to calculate ∆G, which we can do using the thermodynamic data in Ta-
ble 2.2 and equation 2.172.  Our spreadsheet is shown below.  Calculating the average ∆G* for the 4
measurements, we find ∆G* = 161 kJ.  We can then use ∆G* to predict the reaction rates.  A compari-
son between the measured and predicted reaction rates is shown in Figure 5.8.

R 8.314 J / m o l - K h 6.63E-34 J-sec
k 1.38E-23 J / K λ 5.00E-10 m
l k / h 1.04E+01 m/K-sec

ln (1 -exp
T °C R m/sec ln R T, K ∆G, J (∆G/RT)) l n ( l k T / h ) ∆G* kJ -ln Rcalc

4 5 5 7.45E-09 18.715 7 2 8 - 2 8 2 9 - 0 . 9 8 5 8.933 161.38 18.648
4 3 5 3.63E-09 19.435 7 0 8 - 2 7 0 9 - 0 . 9 9 7 8.906 160.95 19.44
4 1 5 1.61E-09 20.245 6 8 8 - 2 5 9 2 - 1 . 0 1 0 8.877 160.80 20.276
3 9 5 6.24E-10 21.195 6 6 8 - 2 4 7 7 - 1 . 0 2 2 8.847 161.17 21.16
3 7 5 2.72E-10 22.025 6 4 8 - 2 3 6 3 - 1 . 0 3 5 8.817 160.58 22.099

∆G* 1 6 0 9 8 ave

Aragonite to Calcite
Transition Rates

T ¡C R ( m/sec)
455 7.45 × 10-09

435 3.63 × 10-09

415 1.61 × 10-09

395 6.24 × 10-10

375 2.72 × 10-10

J
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Figure 5.8.  Comparison of observed and predicted
rates of the aragonite →  calcite reaction.  Data
(circles) from Carlson (1980).
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clearly the equation cannot be used for exact prediction of reaction rates.  As Kerrick et al. (1991)
point out, this approach has limits and cannot be applied to reactions involving carbonates.  Never-
theless, Wood and WaltherÕs work provides a useful way to estimate the order of magnitude of sil i-
cate dissolution rates.

5.4 Diffusion
We canÕt stir geochemical reactions.  However, nature often provides advection to transport com-

ponents.  In nature, the driving force of advection is gravity: fluids (including the mantle, which be-
haves as a fluid on geological time scales) move upward or downward because they are lighter or
heavier than their surroundings.  Just as it does when we stir the tea, advection serves to transport re-

Example 5.5: Predicting Rates of Reversible Metamorphic Reactions
Consider the reaction:

Ca2Mg5Si8O22(OH) + 11CaMg(CO3)2 ® 8Mg2SiO4 + 13 CaCO3 +9CO2 + H2O
Tremolite  +  11 Dolomite   ® 8 Forsterite + 13 Calcite + 9 CO2 + H2O

Assume T = 625 ¡ C, ∆Sr = 1.140 kJ/K, EA = 579 kJ, A = 1.54 × 1027 sec-1 (Heinrich, et al. 1989), an overstep
of the equilibrium temperature of 5¡C, and that the dolomite crystals are perfect cubes, i.e., VDo =
S  Do
3/2where VDo and SDo are the volume and surface area respectively of dolomite.  Assume further

that the initial assemblage contains only tremolite plus dolomite and that the reaction rate can be
expressed as in equation 5.76, i.e.:

  –dVDo/VDo0

dt
= k (1 – e∆G/RT)SDo/SDo0

5.71

whereVDo0
 and SDo0

 are the initial dolomite volume and surface areas respectively and k is the rate
constant with the usual Arrhenius temperature dependence (the minus sign occurs because dolomite is
a reactant). Calculate the extent of conversion of dolomite (i.e., volume relative to initial volume V0)
as a function of time.

Answer: To solve this problem, we need to integrate equation 5.71.  First, we make the substitution
SDo/SDo0

 = (V/VDo0
)2/3 and rearrange.  Upon integration, we obtain:

  VDo

VDo0
= 1 –

A
3

e–EA/RT (1 – e∆G/RT) t
3

Making use of Ð∆T∆S ≈ ∆G ( where ∆T is the temperature overstep; equ. 5.68), we have:
   VDo

VDo0
= 1 –

A
3

e–EA/RT (1 – e–∆T∆S/RT) t
3

5.72

The result is shown in Figure 5.9.  On geological
time scales, this reaction is clearly quite fast,
going to completion within half a year (1.5 × 107

sec), even with a relatively small temperature
overstep of 5¡ C.  We also see in Figure 5.9 that
the rate of reaction decreases as time progresses.
This occurs because of the decreasing dolomite
surface area.

The temperature conditions we chose for this
example, a constant 5¡ overstep, are not geologi-
cally realistic.  A more realistic assumption
would be that of steady temperature increase,
such as would occur around an igneous intrusion or
as a result of burial or underthrusting.  That situ-
ation is addressed in Problem 5.8 at the end of
this chapter.
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Figure 5.9.  Relative volume of dolomite as a
function of time predicted by equ. 5.72 at 625¡ C.
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actants and therefore speed reactions.  However, advec-
tion is rarely effective on very small scales.  On these
scales, diffusion is usually the process responsible for
transport of chemical components.  Except in gases, diffu-
sion is too slow to transport components more than a few
meters (and generally less).  Consequently, chemical
transport generally involves both diffusion and advec-
tion: advection for large-scale transport and diffusion for
small-scale transport.  In this section, we discuss the na-
ture of diffusion and develop the tools necessary to treat
it.  Because advection depends on the physical properties
of materials (density, viscosity), we will not treat i t
here.  

5.4.1 Diffusion Flux and Fick's Laws

Fick's Law, or Fick's First Law, states that at steady
state, the flux, J, of some species through a plane is pro-
portional to the concentration gradient normal to tha t
plane:

  
J = –D

∂∂c
∂∂x

5.73

The minus sign indicates diffusion is toward the region of
lower concentration.  The proportionality coefficient, D,
is the diffusion coefficient.  J has units of mass/area-time,
e.g., moles/cm2-sec.  If concentration is expressed per unit
volume, as is often preferred in kinetics, the diffusion co-
efficient has units of cm-1sec-1.  The diffusion coefficient
must be empirically determined and will depend on the
nature of the diffusing species, the material properties of
the system in which diffusion is taking place and, as
usual, temperature.

Strictly speaking, equation 5.73 is applicable to diffu-
sion in only one dimension.  A more general expression of
Fick's First Law, applicable in 3 dimensional space is:

  J = –D∇c 5.73a

where ∇ C is:   
∇c =

∂c
∂x +

∂c
∂y +

∂c
∂z

Provided the concentration gradient is uni-directional
(this will be the case, for example, in an accumulating se-
quence of sediments), equation 5.73a can be reduced to
equation 5.73 simply by choosing the x-direction to be the direction of the concentration gradient.

The change in concentration at any given point and time is given by Fick's Second Law¤:

                                                
¤Named for Adolf Fick (1829-1901).  Fick was born in Kassel, Germany and earned an MD from the
University of Marburg in 1851.  FiskÕs interest in diffusion through cell membranes led him to formulate
the laws that bear his name.  It was actually the second law that was published first, in an 1855 paper
titled �ber Diffusion.  Fick deduced it by analogy to FourierÕs equation for thermal diffusion.

< 0
c

a

∂2c
∂x2

C

x

b
x

C

x

C

∂2c
∂x2

= 0

> 0

∂2c
∂x2

Figure 5.10.  Three possible concentration
gradients.  In a, ∂2c/∂x2 = 0 and therefore
∂c/∂t = 0.  Thus for a gradient that is
straight, the concentration at any point
remains constant (even though there is
diffusion along the gradient).  This is
therefore the steady state case.  In case
b, ∂2c/∂x2 > 0 and hence the concentra-
tion at any point increases with time.  In
case c, ∂2c/∂x2 < 0 and therefore the con-
centration at any point decreases with
time.   Both cases b and c will tend, with
time, toward the steady state case, a.
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Equation 5.91 tells us that rate of change with time of the concentration at any point is proportional
to the second differential of the diffusion profile.  Fick's second law is illustrated in Figure 5.10.

5.4.1.1 Solutions to Fick’s Second Law

There is no single solution (i.e., function expressing c(t,x)) for equation 5.74; rather there are a num-
ber of possible solutions, and the solution appropriate to a particular problem will depend on the
boundary conditions.  LetÕs consider a few of the simpler ones.  In all cases, we assume that the system
is uniform in composition in the y and z directions so diffusion occurs only in the x direction.

As a first case, consider a thin film of some
diffusing species sandwiched between layers
of infinite length having concentration c=0.
This might represent a ÔdopedÕ layer in a dif-
fusion experiment in the laboratory.  In nature,
it might represent a thin sedimentary horizon
enriched in some species such as iridium (such
as the iridium-enriched layer in many sedi-
ments at the Creteaceous-Tertiary Boundary).
Diffusion will cause the species to migrate
away from x = 0 as time passes.  Mathemati-
cally, this situation imposes certain boundary
conditions on the solution of 5.74.  We take the
position of enriched horizon to be 0, and we
seek a solution to 5.74 such that at t = 0 c = 0
everywhere except x = 0.  At some time t > 0,
our function should have the property that c
approaches 0 as x approaches infinity.  We
further require that the total amount of the
species remain constant, i.e.:

  M = cdx
-∞

+∞

where M is the total amount of substance in a cylinder of unit cross section and length x.
The solution is given by Crank (1975) as:

  c (x,t) = M
2(π Dt)1/2e–x2/4Dt 5.75

Figure 5.11 shows how the concentration profile changes with time under these circumstances.
Suppose a boundary condition is imposed that diffusion can occur only in the positive direction.

We can treat this case as if the diffusion in the negative direction is reflected at the plane x = 0.  The
solution is obtained by superimposing the solution for the negative case on the positive one:

  c (x,t) = M
(π Dt)1/2e–x2/4Dt 5.76

Now consider a situation where the diffusing species has an initial uniform concentration Co be-
tween x = 0 and x = Ð ∞, and 0 concentration between x = 0 and x = ∞.  In the laboratory, this circum-
stance might arise if we place 2 experimental charges adjacent one and other: one having been ÔdopedÕ
with the species of interest.  In nature, a somewhat analogous situation might be a layer of fresh wa-
ter overlying a formation brine in an aquifer, or river water overlying seawater in an estuary, or two
adjacent crystals.

The solution to this case may be found by imagining the volume between x = 0 and x = Ð ∞ as being
composed of an infinite number of thin films of thickness δξ (Fig, 5.12).  The concentration of the dif-
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Figure 5.11.  Concentration profiles at 3 different
times resulting from outward diffusion from an thin
film of the diffusing species.  Note that the area
under the curve remains constant through time.
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fusing species at some point xp at time t is then the sum of
the contributions of each imaginary thin film (Crank,
1975).  The mathematical solution is obtained by inte-
grating the contribution of all such films:

  
c (x,t) = Co

2(πDt)1/2 e–ξ2/4Dtdξ
x

∞

5.77

or defining η = ξ/2 Dt :
  

c (x,t) = Co

π1/2 e–η2dη
x/2 Dt

∞

5.78

   The integral in 5.78 may be written as:
  

e –η2 dη
x/2 Dt

∞

= e –η2 dη
0

∞

– e –η2 dη
0

x/2 Dt

5.79

This integral has the form of a standard mathematical
function called the error function, which is defined as:

  erf(x) ≡ 2
π1/2 e-η2dη

0

x

5.80

Substituting 5.80 into 5.78 and since erf(∞) = 1, equation 5.78
becomes:

 c(x,t) =
Co
2 (1 – erf x

2 D t ) 5.81

Values for the error function may be found in mathematical
tables.  The error function is also a standard function in some
spreadsheets such as Microsoft Excelª*.  Alternatively, i t
may be approximated as:

  erf (x) ≅ 1 – exp (–4x2/π 5.82
Figure 5.13 shows how the concentration profile will ap-
pear at different times.  Since erf (0) = 0, the profiles have
the interesting property that c = Co/2 at x = 0 at all times.

A similar approach can be used for a diffusing species
initially confined to a distinct region, for example: Ðh < x <
+h.  Examples might be sedimentary or metamorphic layers
of finite thickness or a compositionally zoned crystal
(Example 5.6).  Again, the layer is treated as a series of
thin films, but the integration in equation 5.95 is carried out
from Ðh to +h.  The result is:

  
c(x,t)=

Co
2 erf h – x

2 D t
+ erf h + x

2 D t
5.83

5.4.2 Diffusion in Multicomponent Systems and The Diffusion Coefficient

There are 2 important constraints on diffusion that we have thus far ignored.  First, diffusion dif-
fers from other kinds of transport in that we specify that there is no net transport of material across
the boundary of interest.  If there is net transport, we are, by definition, dealing with flow or advec-

                                                
* The error function in Excel, ERF(), is an add-in function found among the Òanalysis toolsÓ.  ERF() does
not properly treat the case where x < 0.  The error function has the property that erf(-x) = -erf (x).  In
working with Excel, test for a negative value of x and where x is <0 replace ERF (-X) with ÐERF(X).
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Fig. 5.13.  Distribution of a diffusing
species initially confined to Ð∞ < x < 0 a t
three times after diffusion begins.
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Figure 5.12.  An extended initial distri-
bution can be thought of as consisting of
an infinite number of this films of
thickness δξ.  The concentration of a
diffusing species at some point xp is the
contribution from each film from dis-
tances x to infinity (after Crank, 1975).
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tion rather than diffusion.  If this constraint is to be satisfied, movement of one species through a
plane must be accompanied by movement of one or more other species in the opposite direction.

The second constraint is electrical neutrality.  Diffusion of even small quantities of an ion will

Example 5.6. Diffusion in a Crystal
Igneous crystals are often zoned as a result of changes in the composition of the magma.  Suppose

an olivine crystal of 2 mm diameter with a concentration of 2000 ppm Ni suddenly comes in contact
with a magma in which its equilibrium concentration should be 500 ppm Ni.  How long would it take
for diffusion to homogenize the crystal at a temperature of 1250¡ C, assuming instantaneous
equilibration at the crystal-liquid boundary?

Answer: We can treat the olivine crystal as a sphere.  Radial symmetry then allows us to consider
the problem as a function of radius.  We need only consider the variation of concentration along 1
radial direction with 0 < x < r.  Our boundary condition is that at x = r (the edge of the crystal)
concentration is held constant by reaction with the liquid.  WeÕll call this concentration Cr.  The ini-
tial distribution  is c = Ci for 0 < x < r.  According to Crank (1975), the solution is:

  c – Ci
Cr – Ci

= 1 2 r
π x

(–1)n

n sin (n π x
r ) exp (–D n2 π2 t

r2 )Σ
n = 1

∞
5.84

and the concentration at x = 0,  C0, is:
  

C0 = (Cr – Ci ) 1 + 2 –1n exp (–D n2 π2 t
r2 )Σ

n = 1

∞
+ Ci 5.85

From equation 5.74, we see that as the
concentration gradient disappears, the
rate of diffusion goes to 0.  So the crystal
approaches homogeneity only asymptoti-
cally, becoming homogeneous only at t = ∞,
but it will become essentially homoge-
neous more quickly.  A good way to define
Òessentially homogeneousÓ would be to
base it on our ability to detect a gradient.
If our analytical precision is only 5%, we
would have a great deal of difficulty de-
tecting a gradient of less than 5%.  So letÕs
rephrase the question to ask, how much
time is required before the difference in
concentration between center and rim is
less than 5%?  We set C0/Cr = 1.05 and
substituting into 5.84 and rearranging, we
obtain:

  0.05 ≤ (1 –
Ci
Cr

) 2 –1n exp (–D n2 π2 t
r2 )Σ

n = 1

∞
5.86

As it turns out, for relatively large values of t (Dt/r2 > 0.1), the summation converges within 0.05%
after the first term, so that 5.100 may be approximated by:

  t ≅ –r2

D π2ln ( 0.05
2 (Ci/Cr – 1)

)
For the value of D = 10-12 cm2/sec given by Morioka and Nagasawa (1991), we find that about 154
years is required before the olivine homogenizes.  If the olivine spent less than this time in contact
with the magma, we would expect it to be zoned in Ni concentration.  Figure 5.14 shows how the
concentration profile of Ni would vary with time.
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Fig. 5.14.  Distribution of Ni at various times in a
spherical olivine grain with an initial concentration
of 2000 ppm and a rim concentration fixed at 500 ppm.
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quickly lead to the development of a large electric potential.  The force associated with the poten-
tial would prevent any further diffusion of that ion in that direction.  Thus diffusion of an ionic spe-
cies must be coupled with diffusion of an equal quantity of charge in the opposite direction.  In addi-
tion to these constraints, we must recognize that diffusion in some cases will lead to non-ideal mixing
and the finite enthalpy and volume changes that accompany such situations.

With this in mind, we can recognize three classes of situations and three kinds of diffusion coeffi-
cients:

1.) A tracer diffusion  (or self diffusion) coefficient in which the net mass and charge fluxes associ-
ated with the diffusing species is sufficiently small that they can be safely ignored.  There maybe no
significant concentration gradient.  This situation occurs when, for example, an experimental charge is
doped with a radioactive isotope in sufficiently small amounts such that the concentration of the
element, and hence its chemical potential, does not vary significantly.  This is the simplest situation,
and the one we have dealt with thus far.

Example 5.7. Equilibration between a Mineral Grain and Pore Water
Imagine a grain of calcite in an accumulating sediment surrounded by pore water.  Assume that

the distribution coefficient of Sr between calcite and water is 100, that the calcite has an initial Sr
concentration of 2000 ppm and that a constant Sr concentration of 10ppm is maintained in the water,
and that the grain is spherical.  If the diffusion coefficient for Sr in calcite is 10-15 cm2/sec and radius
of the calcite grain is 1 mm, how will the average concentration of Sr in the grain change with time?

Answer: This problem is similar to the
previous example (Example 5.6).  This time,
however, we want to know the average
concentration of the grain.  The mass of Sr at
time t in a spherical shell of thickness dr is:

  M(t) = c(r,t)4πr2dr
The average concentration of Sr in the grain at
time t is then obtained by integrating and
dividing by the volume:

  C(t) = 1
4
3πa3

c(r,t)4πr2dr
0

a

5.87

where c(r,t) is given by equation 5.86 in
Example 5.6.  The solution is (Albar�de, 1995):

  
C(t) =

6 Ci
π2

1
n exp(–n2π2Dt

a2 )Σ
n = 1

∞
+C0 5.88*

where Ci is the initial concentration in the
calcite and C0 is the concentration at the edge
of the crystal, which will be in equilibrium
with the pore water.

The solution is shown Figure 5.15.  The
grain reaches equilibrium with the pore water
within 100,000 to 200,000 years.

* The summation in equation 5.88 is slow if Dt/a2 is small.  An alternative solution to equ. 5.88 is:
  

C(t) = 1 – 6 Dt
a

1
π exp( –na

Dt
) – na

Dt
1–erf ( na

Dt
)Σ

1

∞
+ 3Dt

a2 5.89

The two solutions give identical results.  They differ only in the ease of computation.  For large
values of Dt/a2 the summation in 5.88 is preferred.  For small values of Dt/a2 5.89 is preferred.
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Figure 5.15.  Change in the bulk concentration of Sr
in a 2 mm diameter calcite grain assuming and ini-
tial concentration of 2000 ppm, a constant concen-
tration in the porewater of 10 ppm and a cal-
cite/water distribution coefficient of 100.
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2.) A chemical diffusion coefficient applies
in non-ideal situations where chemical poten-
tial rather than concentration must be consid-
ered.  In this circumstance, FickÕs Laws can be
rewritten as:

 J = – D
∂µ
∂x

5.90

and
  ∂µ

∂ t = D
∂2µ
∂x2

5.90a

3.) An interdiffusion coefficient applies in
situations where the concentration gradient is
sufficiently large that diffusion must be cou-
pled with diffusion of other species in the op-
posite direction to maintain electrical neu-
trality and/or constant volume.  In such a cir-
cumstance, the diffusion of any one species is
related to the diffusion of all other species.
For example, had we considered the diffusion
of Mg in olivine in Example 5.6, it would have
been necessary to consider the diffusion of Fe
in the opposite direction.   Under such circumstances, the flux of species i  is computed as:

  
Ji = Di,k

∂ck

∂x
Σ

k = 1

n
5.91

where Dik is the interdiffusion coefficient describing the interaction of species i and k.  The interdiffu-
sion coefficient is related to the tracer diffusion coefficient as:

 Di,k =
niDi + nkDk

ni + nk
5.92

where ni is the mole fraction of i and Di is the tracer diffusion coefficient for i.  The experiment of
Watson (1982) provides a good example of where interdiffusion coefficients need to be applied.    In
this experiment, a quartz sphere was dissolved in molten basalt.  All elements except SiO2 were dif-
fusing out of the basalt into quartz liquid.  Figure 5.16 shows concentration profiles in which Na and K
are actually diffusing in the direction of higher concentration.

The complete solution for diffusion flux in the system is:
 J = DC

 where J is the flux vector, D is the diffusion coefficient matrix, and C is the concentration gradient
vector:

J1
J2

Jn - 1

=

D11 D12 D1n- 1
D21 D22 D2n- 1

Dn - 1 1 Dn- 12 Dn - 1n- 1

C1

C2

Cn– 1

…
…

…

where   
r
Ci  is ∂ci/∂x (this is the same as equation 5.92, but in matrix notation).  Interdiffusion can result

in diffusion up a concentration gradient, because as we can see from equation 5.92, the flux of species i
depends on the concentration gradients of all species, not just its own.

Although diffusion is treated differently in different circumstances, it is important to bear in mind
that the mechanism on a microscopic scale is always the same: it results from the random motion of
atoms or molecules.  Reference is sometimes made to the Ôdriving forceÕ of diffusion, taken either as

Example 5.8. Interdiffusion Coefficients
Calculate the diffusion flux for Mn in a garnet

given the interdiffusion coefficient matrix below
if the concentration gradients are  .023 mol/cm,
-0.009 mol/cm and -.015 mol/cm for Mn2+, Mg2+,
and Fe2+ respectively.

 Diffusion Coefficient Matrix for Garnet

Mn Mg Fe

Mn 8.38 ×10-20 -9.91×10-20 -4.68×10-21

Mg -2.78×10-20 7.26×10-21 -8.81×10-23

Fe -7.16×10-20 -4.81×10-23 1.19×10-20

from Demspter (1975).

Answer: we calculate the diffusion flux for
Mn using equation 5.107.  We find that JMn is 3 ×
10-21 mole/cm2-sec.



W .  M .  W h i t e G e o c h e m i s t r y 

Chapter 5: Kinetics

© 1999 W. M. White 180 October 18, 1999

the concentration or chemical potential gradient.  While it may sometimes be convenient to think in
terms of Ôdriving forcesÕ, these forces are not real.  

To demonstrate this point, we can derive FickÕs first law just from a consideration of random atomic
motion.  Consider two adjacent lattice planes in a crystal spaced a distance dx apart.  Let the number
of atoms of the element of interest at the first plane be n1 and the number of atoms at the second be n2.
We assume that atoms can change position randomly by jumping to an adjacent plane and that this oc-
curs with an average frequency ν (i.e., 1 jump of distance dx every 1/ν sec).  We further assume that
there are no external forces, so that a jump in any direction has equal probability.  At the first plane
there will be νn1/6 atoms that jump to the second plane (we divide by 6 because there are 6 possible
jump directions: up, down, back, front, right, left).  At the second plane there will be νn2/6 atoms tha t
jump to first plane.  The net flux from the first plane to the second is then:

J=
ν νn n

dx
1 2

2

6 6/ /−
=

ν
6

1 2
2

( )n n
dx

−
5.93

The concentration, c, is the number of atoms
of interest per unit volume, i.e., n/dx3, so we
may substitute cdx3 for the number of atoms
in 5.93:

J = 
ν
6 

(c1–c2)dx3

dx2   = 
ν
6(c1–c2) dx

The concentration gradient is just (c2-c1)/dx,
so letting dc = Ð(c1 Ð c2), we have:

J = – 
νdx2

6  
dc
dx 

If we let D = νdx2/6 then we have FickÕs
first law:

J = – D 
dc
dx 

Hence D is related to the jump frequency, ν ,
and square of the jump distance (dx).

We see that there is a net diffusion, not
because of the presence of a force, but only
because there are more atoms at one point
than at an adjacent one.  In the absence of a
concentration gradient (i.e., n1 and n2 the
same, there would be nν/6 atoms moving
from the first to the second plane and nν/6
atoms moving from second to the first plane.
But if we cannot distinguish atoms origi-
nally at the first plane from those origi-
nally at the second, these fluxes balance
and go unnoticed.  If we could distinguish
the atoms, we could detect a flux even in
the absence of a concentration gradient.
Other factors, such a pressure, electrostatic,
or concentration gradients of other species
may make a jump in one direction more
probable than another, as can differences in
chemical potential between the two planes.
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Figure 5.16.  Electron microprobe traverses across
boundary layers of melt in contact with dissolving
quartz spheres.  Quartz is to the left at zero microns.
Note that K2O and Na2O are diffusing ÔuphillÕ, that is,
toward higher K2O and Na2O concentrations in the
SiO2-rich liquid.  From Watson (1982).
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5.4.3 Diffusion in Solids and the Temperature
Dependence of the Diffusion Coefficient

We can imagine four ways in which diffusion might
take place in solids (Figure 5.17):

1.) Exchange: the interchange of position of two atoms
in adjacent sites.

2.) Interstitial: in which an atom moves from one inter-
stitial site to another.
3.) Interstitialcy: in which an atom is displaced from a

lattice site into an interstitial site.
4.) Vacancy: in which an atom moves from a lattice

site to a vacancy, creating a vacancy behind it.
Mechanisms 1 and 3 involve displacement of two atoms
and therefore have high activation energies. Since inter-
stitial sites are likely to be small, mechanism 2 will ap-
ply mainly to small atoms (H and He, for example).  Thus
we are left with mechanism four as a principal mecha-
nism of diffusion in solids.  

Hence, diffusion in solids is a bit like a game of check-
ers: an atom can generally only travel by moving from la t -
tice site to lattice site.  Furthermore, it can only move to a
vacant lattice site (and one of the correct type).  In gen-

eral, lattice vacancies are of two types: permanent and temporary.  Permanent vacancies can arise
from defects or through the presence of impurities, for example through substitution of a doubly
charged ion for a singly charged one with a vacancy providing charge balance.  Temporary sites arise
from thermal agitation causing the volume of the solid to be slightly greater than the ideal volume
by forcing atoms onto the surface.  The number of the former is temperature independent, the latter are
temperature dependent.  

LetÕs attempt to calculate a diffusion coefficient ab initio for the simple one-dimensional case of
tracer diffusion in a solid occurring through the vacancy mechanism.  Since a certain minimum energy
is required to get an ion out of the lattice site Ôenergy wellÕ we would expect the number of the tempo-
rary vacancies to have a temperature dependence of the form of equation 5.16, the Boltzmann distri-
bution law.  Thus the number of lattice vacancies can be written as:

  Nvac = Nperm + k e
–EH/RT

where k is some constant and EH is an activation energy needed to create a vacancy or 'hole'.  
The probability, P, of an atom making a successful jump to a vacant site is found by multiplying the

number of attempts, ℵ , by the fractions of atoms having sufficient energy to get out of the well:
   P = ℵ e–EB/RT 5.94

The number of attempts is simply the vibration rate, ν, times the number of holes:
   

ℵ = ν Nvac = ν Nperm + k e–EH / RT
5.95

Combining 5.94 and 5.95 we have:
    P = νNperm e–EB / RT + νk e–(EB+ EH) /RT

The diffusion rate should be the number of jumps times the distance per jump, d:

    P = dνNperm e–EB / RT + dνk e–(EB+ EH) /RT 5.96

or    P = mNperm e–EB / RT + nk e–(EB+ EH) /RT 5.97

Exchange Interstitial

Vacancy Interstitialcy

Figure 5.17.  Four types of diffusion
mechanisms in solids.  After Broecker
and Oversby (1971).
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where n and m are simply two constants
replacing the corresponding terms in equation
5.96.  Thus diffusion rates generally will have a
temperature dependence similar to equation
5.24.  At low temperature, the permanent
vacancies will dominate and diffusion rate
equation will look like:

  ℜ ≅ mNperm e–EB/ RT 5.98
 At higher temperature where thermally gener-
ated vacancies come into play, the latter term in
5.97 dominates and the diffusion rate equation
will look like:

  ℜ ≅ n e–(EB+ EH)/RT 5.99
Diffusion that depends on thermally created

vacancies is sometimes called intrinsic diffusion,
that depending on permanent vacancies is called
extrinsic diffusion.  The boundary between these
regions will vary, depending on the nature of the
material and the impurities present.  For NaCl,
the transition occurs around 500¡ C, for silicates i t
generally occurs above 1000¡ C.    Where the diffu-
sion mechanism changes, a break in slope can be
observed on a plot of ln D vs. 1/T.  For example,
Figure 5.18 shows how the diffusion coefficient
might change based on equations 5.98 and 5.99.

Combining EB and EH into a single activation
energy term, EA, which is the energy necessary to
create the vacancy and move another atom into i t ,
a typical expression for temperature dependence
of the diffusion coefficient in solids is:

 
D = Do e

–EA / RT
5.100

where Do is again called the frequency factor.  As
we have seen, it will depend on vibrational fre-
quency and the distance of the interatomic jump.

Experimental observation supports our theoret-
ical expectation of an exponential temperature dependence of  diffusion, for example, in a series of
measurements of the diffusion coefficient, D, at various temperatures (Figure 5.19).  Taking the log of
both sides of equation 5.98, we obtain:

 
ln D =

EA

RT
+ ln Do

Thus on a plot of ln D versus reciprocal temperature, data for diffusion of a given element in a given
substance should plot alone a line with slope EA/R and intercept Do (Figure 5.19).  Values for the acti-
vation energy are generally similar for most elements (typically 50 to 200 kJ), but the frequency factor
varies widely.  Table 5.2 list frequency factors and activation energies for several elements in various
geological materials.

The pressure dependence of the diffusion coefficient is:

E
E

E

E E

D

D

D

DD

1/T

ln
 D

intercept = ln D0

slope =
R

- EA

Sr

Cs

Figure 5.19.  Schematic plot of log diffusion rate
against inverse of temperature (Arrhenius plot)
for two elements: Cs and Sr.

1/T

ln n

ln (m + Nperm)

slope =– ( EB+ EH)
R

ln
 D

slope =–  EB
R

Fig. 5.18.  Arrhenius plot illustrating how the
change in diffusion mechanism from intrinsic to
extrinsic can result in a break in slope.
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 D = Do e
–(EA +

where ∆V is the Òactivation vol-
umeÓ.

5.4.4 Diffusion in Liquids

In both liquids and solids, diffu-
sion coefficients depend on both the
nature of the diffusing species and
the nature of the media.  As you
might expect, small atoms generally
diffuse more rapidly than large ions.
The value of the diffusion coefficient
in liquids can be estimated in a num-
ber of ways.  Based on a model of mo-
lecular motion and assuming a kinetic
energy per atom of 3kT/2, the diffu-
sion coefficient may be estimated as
(Krikaldy and Young, 1985):

  
D ≅ αd 8k

π m T3/2 5.102

where α is the coefficient of thermal
expansion, d is the molecular diame-
ter, m is molecular mass and k, as
usual, is BoltzmannÕs constant.  This
predicts a diffusion coefficient near
the melting point of 10-4 cm/sec.

Diffusion coefficients in liquids
are also commonly expressed in terms

of viscosity.     For uncharged species, the dependence of the diffusion coefficient on ionic radius and
viscosity is expressed by the Stokes-Einstein Equation:

  D = kT
6πηr

5.103

where r is ionic radius, η is viscosity, and, as usual, k is BoltzmannÕs constant and T is temperature.
From this equation, we see that diffusion becomes more difficult as the liquid becomes more structured
(polymerized) because the viscosity increases with increasing polymerization.

Because of the electrical neutrality effect, ion charge is important in diffusion of ions.  In aqueous
electrolytes, tracer diffusion coefficients depend on ion charge as:

   
D° = RTλ°

z F 2 5.104

where λ¡ is the limiting ionic conductance (conductance extrapolated to infinite dilution). F is Fara-
dayÕs constant, and z is the charge of the ion.  The naught (¡) denotes the standard state of infinite di-
lution.  In more concentrated solutions, diffusion coefficients show a complex dependence on ionic
strength, the treatment of which is beyond the scope of this book.  Discussions of this problem may be
found in Anderson (1981) and Tyrell and Harris (1984).

5.5 Surfaces, Interfaces, and Interface Processes
The properties of a phase at its surface are different from the bulk properties of the phase.  This

difference arises from the difference between the local environment of atoms on a surface or interface
and those in the interior of a phase.  An atom at the surface of a crystal is not surrounded by the same

Table 5.2: Frequency factors & Activation Energies
Species Phase Temp. Do EA

Range ¡ C cm2/sec kJ/mol

Fe Olivine 1125-1200 5.59 × 10-02 264
Fe Olivine 1000-1125 5.90 × 10-07 133
Mg Olivine 1000-1150 1.82 × 10-08 143
Mn garnet 750-1475 5.15 × 10-04 145
Fe garnet 750-1475 6.39 × 10-04 157
O b-Qz 1010-1220 3.70 × 10-13 230
O Anorthite 800-1300 9.00 × 10-10 234
Cr Spinel 1200-1600 2.40 × 10-06 337
Sr Basaltic melt 1250-1450 0.278 104
Ca Basaltic melt 1250-1450 0.535 105
B a Basaltic melt 1250-1450 0.059 94
Cs Basaltic melt 1300-1400 110 272
Co Basaltic melt 1250-1450 0.053 86
B a Andesitic melt 1300-1400 0.44 209
Sr Andesitic melt 1300-1400 3.5 213
Co Andesitic melt 1300-1400 160 280
Pb Plagioclase 700-1050 1.86 × 10-03 266
Pb K-feldspar 700-1050 1.82 × 10-01 309
Sr Plagioclase 700-1050 1.78 × 10-03 265
N a albite 600-800 0.125 100
Sr orthoclase 800-870 6.00 × 10-06 98

H2O obsidian 500-980 1.50 × 10-08 27
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bonds and distribution of charges as it would be in the
interior of the crystal lattice.  Its potential energy must
therefore be different.  Here we define surface as the
exterior boundary of a condensed phase (a solid or
liquid) in a vacuum or gas.  An interface is the boundary
between two condensed phases, for example, between 2
crystals or between a mineral and water (the term
ÔsurfaceÕ is, however, often used for what we have just
defined as an interface).  Surfaces, surface energies, and
interfaces play an important role in many geochemical
processes.  All heterogeneous reactions, i.e., those
involving more than 1 phase, must always involve
interfaces or surfaces.  Dissolution, melting, exsolution,
and precipitation are examples of processes that, on an
atomic scale, occur entirely at or near the interface
between two phases.  Surfaces can also play important
roles as catalysts in many geochemical reactions.

On a microscopic scale, the reactivity of mineral sur-
faces will vary locally for several reasons.  The first is
the microtopography of the surface (Figure 5.20).  For
example, a single growth unit (which might be a single atom, an ion, or molecule and called an
adatom), located on an otherwise flat surface will be particularly unstable because it is bonded to
other units on only one side.  A step (which might be formed through growth, dissolution, or screw
dislocation) provides a more favorable growth site because the new unit is bound to other units on 2
sides.  An even better site for growth is at a kink, where bonds may be formed on 3 sides.  Conversely, a
unit at a kink (with 3 exposed sides) is less stable, and hence more susceptible to dissolution, than one
at a step (with 2 exposed sides), which in turn is less stable than a unit on a flat surface, with only 1
exposed side.  The point is, kinks and steps will be more reactive than other features, so surface
reactions rates will depend in part on the density of these features.

Properties of mineral surfaces will also vary depending on the orientation of the surface relative
to crystallographic axes.  Most minerals grow or dissolve faster in one direction than in another.  Most
surface reactions involve the formation of new bonds between atoms of a mineral and atoms of the ad-
jacent phase; the nature of the bonds that are possible will depend on the orientation of the surface
relative to crystallographic axes.  Reaction rates measured for one crystal face may not be representa-
tive of other faces.

Finally, almost all minerals have a variety of atoms and crystallographic sites, hence there will
be a variety of bonds that are possible on any surface.  We will discuss this aspect of surfaces in
slightly more detail below.

5.5.1 The Surface Free Energy

In Chapters 2 and 3, we introduced the concept of molar quantities and partial molar quantities.
For example, the molar volume of a substance was:

V
–

  = 
V
n 

and we defined the partial molar volume as:
  

vi
φ =

∂V

∂ni T,P,nj

φ

(3.11)

We now define 2 new quantities, the molar surface area:

Step

Terrace

Addatom

Kink

Screw Dislocation

Pit

Figure 5.20.  On a microscopic scale, the
surface of a mineral exhibits a number of
features.  As a result, the local reactivity of
the surface will be quite variable.
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A
–

  = 
A
n 5.105 and the partial molar surface area:

  
ai

φ =
∂A

∂ni T,P,nj

φ

5.106

where A is the surface area of the phase.  The molar volume or the molar Gibbs Free Energy of pure
quartz depends only on temperature and pressure.  Thus the molar volume or each (pure) quartz crystal
is the same as that of every other (pure) quartz crystal at that temperature and pressure.  Unlike
other molar quantities, the molar surface area and partial molar surface area depend on shape and
size, and are therefore not intrinsic properties of the substance.  For a sphere, for example, the partial
molar surface area is related to molar volume as:

  
a =

∂A

∂V

∂V

∂n
= 2v

r
5.107

For other shapes, the relationship between sÐ  and vÐ  will be different.
Finally, we define the surface free energy  of phase φ as:

  
σφ ≡

∂G

∂A
T,P,n

φ

5.108

The surface free energy represents those energetic effects that arise because of the difference in atomic
environment on the surface of a phase.  Surface free energy is closely related to surface tension.  The
total surface free energy of a phase is minimized by minimizing the phaseÕs surface area.  Thus a wa-
ter drop in the absence of other forces will tend to form a sphere, the shape that minimizes surface
area.  When surface effects must be considered we can revise the Gibbs Free Energy equation (equ. 3.14)
to be:

  dG = VdP – SdT + µidniΣ
i

+ σkdAkΣ
k

5.109

where the last sum is taken over all the interfaces of a system.  In this sense different crystallo-
graphic faces have different surface free energies.  The last term in 5.109 increases in importance as
size decreases.  This is because the surface area for a given volume or mass of a phase will be greatest
when particle size is small.

5.5.2 The Kelvin Effect

When the size of phases involved is sufficiently small, surface free energy can have the effect of
displacing equilibrium.  For an equilibrium system at constant temperature and pressure, equation
5.109 becomes:

  0 = ν i µi
oΣ

i
+ RT ν i ln aiΣ

i
+ σkdAkΣ

k
The first term on the right is ∆Gû, which according to 3.86 is equal to ÐRT ln K.  This is the ÔnormalÕ
equilibrium constant, uninfluenced by surface free energy, so weÕll call it Kû.  The summation in the
second term is also an equilibrium constant, which we will call Ks, the equilibrium influenced by sur-
face free energy.  Making these substitutions and rearranging, we have:

  
ln Ks = ln K° –

σkdAkΣ
RT 5.110

Thus we predict that equilibrium can be shifted due to surface free energy, and the shift will depend
on the surface or interfacial area.  This is known as the Kelvin Effect.

There are a number of examples of this effect.  For example, fine, and therefore high surface area,
particles are more soluble than coarser particles of the same composition.  Water has a surface free
energy of about 70 mJ/m2.  Consequently, humidity in clouds and fogs can reach 110% when droplet size
is small.
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5.5.3 Nucleation and Crystal Growth

5.5.3.1 Nucleation

Liquids often become significantly oversaturated with respect to some species before crystalliza-
tion begins.  This applies to silicate liquids as well as aqueous solutions (surface seawater is several
times oversaturated with respect to calcite).  However, crystallization of such supersaturated solu-
tions will often begin as soon as seed crystals are added.  This suggests that nucleation is an important
barrier to crystallization.  This barrier arises because the formation of a crystal requires a local in-
crease in free energy due to the surface free energy at the solid-liquid interface. For a crystal growing
in a liquid, we can express the complete free energy change as:

  dG tot = σdA + dGr 5.111
where dGr refers to the free energy change of the crystallization reaction that apply throughout the
volume of the crystal (i.e., free energy in the usual sense, neglecting surface effects).

LetÕs consider a more specific example, that of a spherical crystal of phase φ growing from a liquid
solution of component φ.   The free energy change over some finite growth interval is:

  
∆Gtot = 4πr2σ + 4

3πr3 ∆Gr
V

5.112

where r is the radius (we divide by V
Ð

  to convert joules per mole to joules per unit volume).  The first
term is on the right is the surface free energy, and, though small, is always positive .  At the point
where the solution is exactly saturated ∆Gr will be 0.  The net free energy, ∆Gtot, is thus positive, so
the crystal will tend to dissolve.  In order for spontaneous nucleation to occur, the second term on the
right must be negative and its absolute value must exceed that of the first term on the right of 5.112,
i.e., the liquid must be supersaturated for nucleation to occur.  Solving 5.112 for r, we find that ∆Gtot is
≤ 0  when r  ≥ Ð3σ/∆Gr.

How will ∆G vary with r up to this point?  To answer this, we differentiate 5.112 with respect to r:
  ∂∆Gtot

∂r
= 8π rσ + 4πr2∆Gr

V
5.113

Since the volume free energy term contains r2, the surface free energy term necessarily dominates a t
very small values of r .  For small values of r, ∆Gtot will increase with increasing r because σ is always
positive.  In other words, near the saturation point where ∆Grl is small, very small crystals will be-
come increasingly unstable as they grow.
The critical value of r, that is the value a t
which ∆G will decrease upon further
growth, occurs where ∂G/∂r = 0.  Solving
equation 5.113, we find that

  rcrit = – 2σ
∆Gr/ V

5.114

(Here we can see that in order for the units
to work out correctly in this equation, we
will have to have the free energy per unit
volume, rather than per mole.)

For a solution that undergoes cooling and
becomes increasingly saturated as a result
(e.g., a magma or a cooling hydrothermal
solution), we can use equation 5.68 to ap-
proximate the ∆Gr term (i.e., ∆Gr ≅  Ð ∆T∆S,
where ∆T is the difference between actu-
ally temperature and the temperature a t
which saturation occurs and ∆S is the en-
tropy change of crystallization).  Figure

r

∆T = 0

∆T = 10
∆T = 30

rcrit
∆Gtot

Figure 5.21.  Free energy as a function of crystal radius
for small crystals forming near the saturation point.
∆T is the amount of undercooling (difference between
temperature and saturation temperature).



W .  M .  W h i t e G e o c h e m i s t r y 

Chapter 5: Kinetics

© 1999 W. M. White 187 October 18, 1999

5.21 shows the total free energy calculated in this way as a function of r for various amounts of
undercooling.

The surface free energy term correlates with viscosity.  Thus nucleation should require less super-
saturation for aqueous solutions than silicate melts.  Among silicate melts, nucleation should occur
more readily in basaltic ones, which have low viscosities, than in rhyolitic ones, which have high
viscosities.  This is what one observes.  Also, we might expect rapid cooling  to lead to greater
supersaturation than slow cooling.  This is because there is an element of chance involved in formation
of a crystal nucleus (the chance of bringing enough of the necessary components together in the liquid
so that r exceeds rcrit).  Slow cooling provides time for this statistically unlikely event to occur, and
prevents high degrees of supersaturation from arising.  With rapid cooling, crystallization is
postponed until ∆Gr is large, when many nuclei will be produced.  LetÕs briefly consider nucleation
rations in more detail.

5.5.3.2 Nucleation Rate

The first step in crystallization from a liquid is the formation of small clusters of atoms having
the composition of the crystallizing phase.  These so-called heterophase fluctuations arise purely be-
cause of statistical fluctuations in the distribution of atoms and molecules in the liquid.  These fluctu-
ations cause local variations in the free energy of the liquid, and therefore their distribution can be
described by the Boltzmann distribution law:

 N i = N v e–∆Gi/kT

where Ni is the number of clusters per unit volume containing i atoms, Nv is the number of atoms per
unit volume of the cluster, and ∆Gi is the difference between the free energy of the cluster and that of
the liquid as a whole.  The number of clusters having the critical size (rcrit) is:

 N crit = N v e–∆Gcrit /kT

where ∆Gcrit is the total free energy (∆Gtot) of clusters with critical radius obtained by solving equa-
tion 5.113.  For spherical clusters, this is:

  
∆Gcrit = 16 π

3
σ3V2

∆Gr
2 5.115

where ∆Gr is in units of energy per volume, and σ is in units of energy per area.  Substituting equation
5.85 for ∆Gr, we have:

  
∆Gcrit = 16 π

3
σ3V2

(∆T∆Sm)2 5.116

If EA is the activation energy associated with attachment of an additional atom to a cluster, then the
probability of an atom having this energy is again given by the Boltzmann distribution law:

  P = e–EA/kT

Now according to transition state theory, the frequency of attempts, ν, to overcome this energy is sim-
ply the fundamental frequency ν = kT/h.  The attachment frequency is then the number of atoms adja-
cent to the cluster, N*, times the number of attempts times the probability of success:

    N*νP = N* kT
h e–EA/kT 5.117

The nucleation rate, I, is then the attachment frequency times the number of clusters of critical radius:
    I = Ncrit N*νP = N* kT

h e–EA/kTe–∆Gcrit/kT 5.118

Combining the frequency of attachment terms into a pre-exponential frequency factor A, and substitut-
ing 5.116 into 5.118 we have:

  I = Ae–16πσ3V2 /3∆Gr
2kT 5.119
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which is the usual expression for nucleation rate (e.g., McLean,
1965).  If we substitute 5.116 into 5.119, we see that:

  I ∝ e∆T2

5.120
 This implies nucleation rate will be a very strong function of
"temperature overstepping", the difference between actual
temperature and equilibrium temperature.  At low degrees of
overstepping, nucleation rate will be nil, but will increase
rapidly once a critical temperature is achieved, as is demon-
strated in Example 5.9.  A more detailed treatment of nuclea-
tion and growth of crystals in cooling magmas can be found in
Toramaru (1991).

Example 5.9.  Nucleation of Diopside
The enthalphy of fusion of diopside is 138 kJ/mol and its melting temperature is 1665 K.

Assuming an activation energy of 1 × 10-18 J, how will the nucleation rate of diopside crystals in a
diopside melt vary with temperature for surface free energies of 0.02, 0.06, and 0.12 J/m2?

Answer: The one additional piece of information
we need here is the molar volume, which we find to
be 66 cc/mol from Table 2.2.  We can calculate ∆Sm

from the relation:

∆Sm = 
∆Hm
Tm

 

Assuming ∆Sm, σ, and EA are independent of temper-
ature, we can use equations 5.118 and 5.116 to calcu-
late the nucleation rate.  The calculation for the 3
surface free energies is shown in Figure 5.22a.
Nucleation will be experimentally observable when
the nucleation rate reaches ≈10-10 m-2, which corre-
sponds roughly to 1 nuclei/cm2/hr.  For a surface free
energy of 0.02 J/m2, the rate is reached only a few
kelvins below the melting point.  Further undercool-
ing results in very high nucleation rates.    For a sur-
face energy of 0.06 J/m2, an undercooling of 35 K is
required, and an undercooling of 130 K is required at
the highest value of surface energy.  In the latter
case, the rise in nucleation rate with undercooling is
not nearly as steep.

In Figure 5.22b, we see that the nucleation rate
passes through a maximum and as undercooling pro-
ceeds further, the rate decreases.  This decrease re-
flects the 1/T dependence of both exponential terms
in equation 5.118.  Observed nucleation rates show
this maximum, but the "bell" is generally more
symmetric and considerably narrower.  This reflects
the increasing viscosity of the melt, and therefore
the increasing immobility of atoms to order themselves in lattices.   
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Figure 5.22.  Calculated nucleation rate of
diopside in diopside melt as a function of
temperature.

θ β-phase

surface

σαβ
αSσ

σβS

α-phase

Figure 5.23.  Illustration of the
balance of forces as a spherical
crystal or droplet of phase β
crystallizes or condenses from
phase α on a surface.
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5.5.3.3 Heterogeneous Nucleation

The nucleation of diopside crystals from diopside melt is an example of homogenous nucleation,
i.e., nucleation in a system where initially only one phase is present.  Heterogeneous nucleation refers
to the nucleation of a phase on a pre-existing one.  Often the surface free energy between the nucleat-
ing phase and the pre-existing surface is lower than between the nucleating phase and the phase
from which it is growing.  Hence heterogeneous nucleation is often favored over homogeneous nucle-
ation.  Perhaps the most familiar example is dew.  Dew droplets appears on surfaces, such as those of
grass, at significant lower relative humidity than necessary for fog or mist to form.  The reason is tha t
the surface free energy between grass and water is lower than between water and air.  Another
example is the clusters crystals seen in igneous rocks.  These result from one crystal nucleating on the
other, again because the free energy of the crystal-crystal interface is lower than that of the crystal-
magma interface.

Let's examine this in a more quantitative fashion.  Consider a spherical cap of phase β nucleating
from phase α on a flat surface (s) (Figure 5.24).  The balance of surface forces at the three-phase con-
tact is:

  σαs = σβs + σαβcos θ
If the interfacial energy between the nucleating phase, β, and the surface (σβs) is lower than that be-
tween phase α and the surface, then the angle of intersection, θ, will be small so as to maximize the
interfacial surface between β and s for a given volume of β.  In the limit where σβs << σαβ then θ wil l
approach 0 and β will form a film coating the surface.  If σβs ≥ σαβ then θ will be 90¡ or greater, and
heterogeneous nucleation will not occur.  To take account of the reduced interfacial energy between β
and s, equation 3.133 becomes:

  
∆Gcrit = 16 π

3
σαβ

3 V2

∆Gr
2 (2 – 3cosθ + cos3θ) 5.121

In metamorphic reactions, nucleation will necessarily always be heterogeneous.  Provided the nec-
essary components of the nucleating phase are available and delivered rapidly enough by fluid
transport and diffusion, interfacial energy will dictate where new phases will nucleate, nucleation
being favored on phases where the interfacial energy is lowest.  Where transport of components limit
growth, however, this may not be the case, as phases will nucleate where the components necessary
for growth are available.  For example, experimental investigation of the reaction calcite + quartz ®
wollastonite + CO2 revealed that in the absence of water, wollastonite nucleated on quartz.  In exper-
iments where water was present, it nucleated on calcite.  SiO2 is not significantly soluble in CO2, so i t
could not be transported in the H2O free experiments, hence nucleation could only occur where SiO2

was available, i.e., at the surface of quartz, despite a probable higher interfacial energy.
Unfortunately, agreement between observed and predicted nucleation rates is often poor (Kirkpa-

trick, 1981; Kerrick et al., 1991).  Equation 5.123a and Figure 5.19 show that the nucleation rate is a
very strong function of the surface free energy (I ∝  exp(σ3)), and the poor agreement between theory
and observation may reflect the lack of accurate data on surface free energy as well as the activation
energy, EA.  However, it may also indicate that further work on the nucleation theory is required.

5.5.3.4 Diffusion-Limited and Heat-Flow Limited Growth

Two other kinetic factors affecting crystallization.  These are the local availability of energy and
local availability of components necessary for crystal growth.  The latter can be important where the
crystal is of different composition than the liquid (almost always the case in nature except freezing of
fresh water).  Crystals can grow only as fast as the necessary chemical components are delivered to
their surfaces.  Where diffusion is not rapid enough to supply these components, diffusion will limit
growth.

A second effect of slow diffusion is to change the apparent distribution coefficient, because the
crystal 'sees' the concentrations in the adjacent boundary layer rather than the average concentra-
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tions in the liquid.  Thus the crystal may be-
come less depleted in elements excluded from
the crystal, and less enriched in elements
preferentially incorporated in it, than
equilibrium thermodynamics would predict.
For example, suppose a crystal of plagioclase
is crystallizing from a silicate melt.
Plagioclase preferentially incorporates Sr and
excludes Rb.  If diffusion of Sr and Rb to the
crystal is slow compared with the crystal
growth rate, the liquid in the boundary layer
immediately adjacent the crystal will become
impoverished in Sr and enriched in Rb.  The
crystal will grow in equilibrium with this
boundary layer liquid, not the average magma
composition, thus will be poorer in Sr and
richer in Rb than if it grew in equilibrium with
the average magma.  Figure 5.24 illustrates
this point.  If however, growth rate of the
crystal is very much slower than the transport
of components to the crystal-liquid interface,
this circumstance will not arise.

When crystals grow from a magma there
will be a local increase in temperature at the
crystal-liquid boundary, due to release of latent heat of fusion, ∆Hm, which will retard crystal grow.
In most cases, however, advection and conduction of heat is probably sufficiently rapid that this is a t
best a minor effect.  The effect is probably more important in prograde metamorphic reactions (e.g.,
dehydration reactions), which are usually endothermic and hence require a continuous supply of
energy to maintain crystal growth.  Where crystal growth and transport of components is sufficiently
rapid, heat flow may limit rates of crystal growth. This is more likely to occur at high temperatures
and in late stages of metamorphism when structures are already large (Fisher, 1978).  We will
explore the effects of crystal growth rates, diffusion rates, and heat flow on metamorphic processes in
a subsequent chapter.    

5.5.4 Adsorption

Many geochemically important reactions take place at the interface between solid and fluid
phases, and inevitably involve adsorption and desorption of species onto or from the surface of the
solid.  Two types of adsorption are possible: physical and chemical.  Physical adsorption involves
the attachment of an ion or molecule to a surface through intermolecular or van der Waals forces.
Such forces are relatively weak and heat of adsorption (∆Had) relatively low (typically 4-12
kJ/mol).  Chemical adsorption involves the formation of a new chemical bond between the adsorbed
species and atoms on the surface of the solid.  Heats of adsorption are relatively large (>40 kJ/mol).

Adsorption of ions and molecules on a solid surface or interface affects the surface free energy.  The
relationship between surface free energy and adsorbed ions can be expressed as:

  dσ = –
ni, s
A

dµiΣ
i

= – Γi dµiΣ
i

5.122

where ni,s is the number of mole of species i adsorbed at the surface, and we define Γi as the Gibbs a d -
sorption density.  Because silicates and oxides generally have positive surface free energies, we can
see that adsorption will decrease this energy and is therefore strongly favored.  

X

C

Sr∞

Rb∞
Rbplag-theory

Srplag-theory

0Plag Liquid

Srplag-obs

Rbplag-obs

Figure 5.24.  Variation of Sr and Rb concentra-
tions from a plagioclase liquid interface.  Solid
curves show the variation of concentration.  The
crystal-liquid interface is at 0.  Dashed lines
show the concentrations at infinite distance from
the interface (Sr∞, Rb∞).  Srplag and Rbplag are the
concentrations in the crystal.
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5.5.4.1 The Relation between Concentration and Adsorption: Langmuir and Freundlich
Isotherms

Consider the adsorption of aqueous species M at a surface site which we will denote as S.  The reac-
tion may be written as:

M + S ® M.S
We will denote the fraction of surface sites occupied by M as ΘM, the rate constant for adsorption as
k+, and that for desorption as k-.  The fraction of free sites is then (1 Ð ΘM), and we explicitly assume
that M is the only species adsorbed from solution.  The rate of adsorption is then:

dM
dt

[M](1 )M= −+k Θ 5.123

The rate of desorption is:
d

dt
M

M

Θ Θ= −k 5.124

At equilibrium, the rate of adsorption and desorption will be equal, so
k k− += −Θ ΘM M[M](1 ) 5.125

Solving 5.125 for ΘM, we obtain: ΘM =
+

+ −

+ −

k /k

k /k

[M]
[M]1

5.126

which expresses the fraction of site occupied by M as a function of the concentration of M.  Since a t
equilibrium:

Kad = 
[M]
[M]

ads

aq
= 

k+
k–

 (5.43)

where Kad is the equilibrium constant for adsorption, equation 5.126 becomes:

ΘM
ad

ad

K [M]
K [M]= +1 5.127

Equation 5.127 is known as the Langmuir Isotherm*.  From the definition of ΘM, we may also write the
Langmuir isotherm as:

Γ ΓM M
ad

ad

K [M]
K [M]= +

max

1 5.128

where Γ M
max  is the maximum observed adsorption.  Thus the Langmuir Isotherm predicts a maximum

adsorption when all available sites are occupied by M.   At large concentrations of A, then:

ΓM = Γ M
max 5.129

Where the concentration of A is small such that Kad[M] << 1, equation 5.127 reduces to:
ΘΜ ≅  Kad[M] 5.130

This equation simply says that the fraction of sites occupied by M is proportional to the concentration
of M in solution.  

The Freundlich Isotherm, which is purely empirical, is:  
ΘM =Kad[M] n 5.131

where n is any number.  At low concentrations of A, the Langmuir isotherm reduces to the Freundlich
isotherm with n = 1, i.e., the amount adsorbed is a linear function of the concentration in solution.

                                                
* An admittedly odd name for this equation.  It is named for Irving Langmuir (1881-1957).  Langmuir
obtained a PhD from the University of G�ttingen and spent most of his career working for General
Electric Company .  While trying extending the life of light bulbs, Langmuir carried out experiments on
the adsorption of gases by metals.  He developed this equation to describe his results.  He won the
Nobel Prize for Chemistry in 1932.  The term ÒIsothermÓ arises because such descriptions of adsorption
are valid only for 1 temperature (i.e., Kads is temperature dependent, as we would expect).
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5.5.5 Catalysis

The International Union of Pure and Applied Chemistry (IUPAC) defines catalyst as follows:
A catalyst is a substance that increases the rate without modifying the overall standard
Gibbs energy change in the reaction; the process is called catalysis, and a reaction in
which a catalyst in involved is known as a catalyzed reaction.

Another definition of a catalyst is a chemical species that appears in the rate law with a reaction
order greater than its stoichiometric coefficient.  This latter definition makes is clear that a catalyst
may be involved in the reaction as a reactant, a product, or neither.  If it is a reactant or product, its
presence affects the reaction rate to a greater extent than would be predicted from the stoichiometry
of the reaction.

We can distinguish two kinds of catalysis.  Homogeneous catalysis refers to a situation in which
the catalyst is present in the same phase in which the reaction is occurring (necessarily a solution).
Examples of homogeneous catalysts of geochemical reactions include acids and a collection of organic
molecules called enzymes.  Catalysis that occurs at the interface between two phases is referred to as
heterogeneous catalysis.  We will focus primarily on heterogeneous catalysis here.  Heterogeneous
catalysts are commonly simply surfaces of some substance. A familiar, but non-geochemical, example
is the platinum in the catalytic converter of an automobile, which catalyzes the further oxidation of
gasoline combustion products.

Catalysts work by providing an alternative reaction path with lower activation energy.  In many
cases, the lowering of the activation energy arises when reacting species are adsorbed.  The heat lib-
erated by the adsorption (∆Hads) is available to contribute toward the activation energy.  For exam-
ple, consider the reaction:

A + B → C
having an activation energy EA.  A solid catalyst of this reaction would provide the following alter-
nate reaction mechanism:

Example 5.10. The Langmuir Isotherm
Consider a suspension of 1 mol/l of FeOH.  Assuming an adsorption site density of 0.1 mol/mol and

K for adsorption of Sr on
FeOH of 105, how will the Sr
adsorption density vary with
the concentration of Sr in the
solution?  Assume that no
other ions are present in the
solution.

Answer:  We can use equa-
tion 5.128 to solve this prob-
lem.  Γ   M

maxin this case is 0.1
mol/mol.  Using this value
and Kads of 105 in this equa-
tion, we obtain the result
shown in Figure 5.25.  The in-
set shows that at concentra-
tions less than about 4 µM, the
adsorption density rises line-
arly with concentration.  At
higher concentrations, the
adsorption density asymptot-
ically approaches the max-
imum value of 0.1 mol.
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Figure 5.25.  Variation of adsorption density of Sr on FeOH as a
function of Sr concentration of the solution.
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A + S → A·S

B + S → B·S

B·S + A·S → C·S

C·S → C + S
The net heat of adsorption for this process is:

∆Had = ∆H ad
A + ∆H ad

B — ∆H ad
C

Recalling that enthalpy is related to activation energy, we
can write the activation energy for the catalyzed reaction as:

EA
cat= EA + ∆Had 5.132

If ∆Had is negative (i.e., heat liberated by adsorption), the
activation energy is lowered and the reaction proceeds at a
faster rate than it otherwise would.

As we noted earlier, a surface will have a variety of sites
for adsorption/desorption and surface reactions on a
microscopic scale.  Each site will have particular activation
energy for each of these reactions.  The activation energies
for these processes will, however, be related.  Sites with large negative adsorption energies also will
be sites with low activation energies for surface reactions.  On the other hand, if a site has a large
negative adsorption energy, the desorption energy will be large and positive and desorption
inhibited.  If either the activation energy or the desorption energy is too large, catalysis of the
overall reaction will be inhibited.  What is required for fast overall reaction rates is a site where
some compromise is achieved.  In general, reaction and desorption energies will be related as:

∆Gr = –n∆Gd 5.133
where n is some constant.  The presence of several sites on a solid surface results in several possible re-
action paths.  The fastest reaction path, that is the path that optimizes n, will dominate the reac-
tion.

Surfaces of semiconductors (metal oxides and sulfides) can catalyze oxidation-reduction reactions
(e.g., Wehrli, et al., 1989).  For example, both TiO2 and Al2O3 can catalyze the oxidation of vanadyl,
V(IV),  to vanadate, V(V).  Figure 5.26 compares the rate of reaction in the presence of TiO2 solid to
the homogeneous reaction, demonstrating the reaction is substantially faster in the presence of TiO2.
The reaction mechanism for the surface catalyzed reaction may be described as follows (Figure 5.27):

2>TiOH + VO2+ ® >(TiO)2VO + 2H+

>(TiO)2VO + TiOH ® >(Ti)3VO 4
2−+ H+

(Ti)3VO 4
2−+ H2O + 2OH– ® 3>TiOH + HVO4

2−

where >Ti indicates the Ti atom is part of a surface.   The rate law for this reaction as determined by
Wehrli and Stumm (1988) is:

   –
d{V(IV)}

dt
= k{VO(OTi<) 2} [O 2]

where the {} brackets denote surface concentrations.  The reaction is thus second order, depending on
the concentration of surface bound V(IV) and dissolved O2.  Wehrli and Stumm (1988) determined the
rate constant for this reaction to be 0.051 M-1s-1 and the activation energy to be 56.5 kJ/mol at pH 7.

The surface catalyzed reaction is essentially independent of pH, whereas the reaction in homoge-
neous solution is strongly pH dependent.  The rate law for the latter can be written as:

   –d{V(IV)}
dt = k[VO+] [O2] [H

+]

hours

J

J

J

J

J

J

J

J
B B B BB

B
BB
B

0 1 2 3 4 5 6-1.0

-0.8

-0.6

-.04

-0.2

0.0

log
 [V

(I
V

)/
V(

IV
) 0] homogeneous

solution

adsorbed to
Anatase

Figure 5.26.  Oxygenation of vanadyl
at pH 4 and PO2 = 1 atm in experiments
of Wehrli and Stumm (1988).  After
Wehrli et al. (1989).
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The apparent rate constant for this reaction is 1.87 × 10-6 s-1 and the apparent activation energy is 140
kJ/mol.  Part of the difference in the activiation energies can be accounted for as the energy of the hy-
drolysis reaction:

VO2+ + H2O ® VO(OH)+ + H+

which is the first step in the homogeneous reaction.  This energy is 54.4 kJ/mol.  Wehrli and Stumm
(1988) speculated that the remainder of the difference in activation energy is the energy required for
the transition from the octahedral structure of the dissolved VO(OH)+ ion to the tetrahedral struc-
ture of the dissolved vanadate ion.

5.6 Kinetics of Dissolution and Leaching

5.6.1 Simple Oxides

The rate of dissolution of non-ionic solids are generally controlled by surface reactions at the solid-
water interface.  Absorption of ions to the surface of the solid play a critical role in the dissolution
process.  Adsorption of H+ and OHÐ ions at the surface appears to dominate dissolution reactions;
however, adsorption of other species, particularly organic ones such as carboxylic acids, can be impor-
tant as well.

Consider the example of a simple oxide (e.g., Al2O3) illustrated in Figure 5.28.  As we noted ear-
lier, ÒdanglingÓ oxygens on surfaces in contact with aqueous solution will be protonated under most cir-
cumstances, i.e., an H+ ion will react with one of the surface O ligands to form a surface hydroxyl.
Bonding of a single proton to a surface oxygen merely replaces the bond that the oxygen would have
formed with a metal ion had it been located in the crystal interior.  Addition of a second proton, i.e.,
protonation of the surface hydroxyl, however, has the consequence of weakening metal-oxides bonds.
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Figure 5.27.  Mechanism of oxygenation of surface-bound vanadyl.  In step (1) vanadyl  is adsorbed at a
TiO2 surface (a → b).  Note that the vanadium is bound to two surface TiO groups.  In step (2), the vana-
dium binds to a third surface oxygen, releasing an H+ ion (b → c).  In step (3), the vandate ion  is re-
placed at the surface by 3 H+ ions (c → d) (at intermediate pH, most vanadate will remain bound to the
surface).
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In the case of a trivalent ion such as Al2O3, protonation of three such bonds effectively frees the ion
from the lattice structure.  We can expect, therefore, that the dissolution rate will be proportional to
finding 3 protonated ligands surround a single surface metal ion.

The concentration of surface-bound protons, [H+]s can be related to the concentration of H+ in solu-
tion through an absorption equilibrium constant Kad, so that:
 [H+]s/S = Kad[H

+]aq

where S is the density of surface sites.   The probability of finding a metal surrounded with three pro-
tonated ligands is then proportional ([H+]s/S)3.  Thus we expect the dissolution rate to be proportional
to the third power of the surface protonation:

ℜ ∝  {[H +]s/S}3 = {K ad[H
+]aq}

3

Figure 5.29 shows that this is indeed the case for Al2O3.
Deprotonation of surface OH groups will occur at high pH through the following reaction:

S—OH + OH– ® S—O– + H2O 5.134
where SÑO denotes a surface bound oxygen.  This deprotonation disrupts metal-oxygen bonds through
polarization of electron orbitals.  As a result, dissolution rates will also increasing with increasing
pH in alkaline solutions.  Adsorption of protons at the surface is thought to be fast, hence equiliib-
rium between adsorbed and aqueous protons is quickly attained.  Thus detachment of the metal species
becomes the rate-determining step.  Other ligands, particularly organic ones such as oxalates, wil l
have a similar effect.  The overall dissolution rate is given by (Stumm and Wollast, 1990) as:

ℜ = kH{[H +]s/S}i + kOH{[OH –]s/S}i + kL [L] s/S}i + kH2O

H+
+

+

n H2O

H+
+

OH2OH

O

OO

OO O

OO

OHOH

OH2

OO

OO

O

OHOH

O

OH2

H+
+

OH

OH2OH2

O

OO

OO O

OO

OHOH

OH2

OH

O

H2O

+

H2OH2O

O H2O

O

O

O

OH2OH2

O

OO

OO O

OO

OHOH

OH2

OH OH2

OH

O

OO

OO O

OO

OHOH

O

OO

OO O

OO OH2

OH2OHOHOH

O

OO

OO O

OO OH2

OH2OH2OHOH

OH2

OH2OH2

O

OO

OO O

OO

OHOH

OH
Figure 5.28.  Cartoon of proton-promoted dissolution of an oxide such as Al2O3 at a surface step.  After
Stumm and Wollast (1990).
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where i is the charge on the metal ion.

6.5.2 Silicates

Surface protonation and deprotonation also play a dominant
role in silicate dissolution (e.g., Blum and Lasaga, 1988).
However, the dissolution of silicates is somewhat more complex
than that of simple oxides because they typically contain
several metals bound in different ways.  This can result in
incongruent dissolution, i.e., some metal ions may be released to
solution more rapidly than others (though experiments suggest
dissolution is most often congruent).  A related, and particularly
important, factor is lattice structure, in particular the degree to
which the individual silica tetrahedra share oxygens.  There is
a complete range among silicates in this respect, from orthosili-
cates, such as olivine, in which no oxygens are shared, to the
tecto-, or framework-, silicates, such as quartz and the feldspars,
in which all oxygens are shared.  As we discussed in Chapter 4,
shared oxygens are termed bridging, and non-shared ones non-
bridging oxygens.  Sharing of oxygens increases the degree of po-
lymerization of the structure.

The degree of
polymerization is important
in the context of dissolution
because the non-bridging
bonds are much more reactive
than the bridging ones.
Minerals with highly poly-

merized structures, such as feldspars, dissolve slowly and are
subject to leaching, as components (particularly the network-
modifiers) may be dissolved out leaving the silicate framework
still partially intact.  Silicates with a low fraction of shared
oxygens dissolve more rapidly and more uniformly.  An example is
olivine, whose structure is illustrated in Figure 5.30a.  Once the
Mg ions surrounding it are removed, the individual silica tetrahe-
dra are no longer bound to the mineral, and are free to form H4SiO4

complexes in the solution (a more likely mode of dissolution is
replacement of Mg2+ by 2H+; in essence, this produces a free H4SiO4

molecule).  In contrast, removal of Na+ by H+ in albite (Figure
5.30b) leaves the framework of tetrahedra largely intact.  The
rate of weathering can also be affected by the Al/Si ratio, as the
silicate groups are less reactive than the aluminate ones.  Thus
the dissolution rate of plagioclase depends on the ratio of the
anorthite (CaAl2Si2O8) to albite (NaAlSi3O8) components, with
calcic plagioclase weathering more rapidly (e.g., Oxburgh, et al . ,
1994).

Some idea of the role these factors play can be obtained from
Table 5.3, which lists the mean lifetimes of a 1 mm crystal for a
variety of minerals in contact with a solution of pH 5 based on ex-
perimentally  determined dissolution rates.

There are four important classes of reactions involved in sil i-
cate dissolution and leaching: hydration, ion exchange, leaching,
and hydrolysis.  
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b. Albite Structure
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Figure 5.302.  Comparison of
olivine (forsterite)  and feldspar
(albite) structures.  In feldspar,
all oxygens are shared by adja-
cent tetrahedra, in olivine none
are; instead the excess charge of
the SiO 4

4−units is compensated
by 2 Mg2+.
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Hydration simply implies the addition of wa-
ter to the structure.  The effect of hydration may
range from simply relaxation of the polymeric
structure (e.g., swelling of vermiculite) to disrup-
tion of bridging bonds, to dissolution of polymeric
fragments.  

Ion exchange  involves replacement of a net-
work-modifying cation by hydrogen ions.  For ex-
ample, Wollast and Chou (1992) showed that
when freshly ground albite is mixed with water,
there is an increase in Na aq

+ and an increase in pH,
corresponding to the consumption of H aq

+ .  This re-
action may be represented as:

NaAlSi3O8 + H+ ® HAlSi3O8 + Na+

This reaction, as well as the replacement of Mg2+

by H+ in fosterite, has been shown to be largely
reversible.  Wollast and Chou (1992) found that
ion exchange occurs to a depth of about 20 � in
albite, corresponding to a depth of  2 or 3 unit
cells.

Leaching involves the removal of an ion without replacement by an ion from solution.  The con-
sumption of H+ observed by Wollast and Chou (1992) was less than the production of Na+, so tha t
much of the Na+ loss from the albite appears to result from leaching rather than ion exchange, i.e.:

NaAlSi3O8  ® AlSi3O8
–+ Na+

This reaction, of course, results in the production of negative charge on the surface.  Wollast and Chou
(1992) found that the extent of leaching could be related to both pH and Na aq

+ concentration:
XX- ≈ 10-5.01aH +

−0 35. aNa +
−0 65. 5.135

where XXÐ is the mole fraction of negatively charged surface species.  Thus according to equ. 5.135,
leaching increases with increasing pH and decreases with increasing aqueous Na concentration.

 As we noted, structure affect the rate and degree of leaching.  Sheet silicates (micas, clays, talc,
serpentine) have relatively open structures though which water and solutes can be transported
deeply into the structure, resulting in leaching of cations, including octahedrally coordinated Al and
Mg.  While the feldspar structure is not open, preferential removal of aluminate groups and charge-
balance cations produces a porous structure, allowing penetration of water.  Thus deep (400 �) Na-,
Ca-, and Al-poor, and Si-, H-rich layers have been observed on experimentally reacted plagioclase
(Casey and Bunker, 1990).

Hydrolysis refers to the surface protonation and deprotonation reactions we have already dis-
cussed in the context of oxide dissolution.   Hydrolysis has the effect of breaking of covalent metal-ox-
ide bonds in the polymer structure by replacing them with an OÐH bonds.  The effect is the same as
replacing one of the oxygens in the tetrahedron by an OH group.  Where a bridging oxygen is in-
volved, hydrolysis decreases the degree of polymerization of the structure and eventually leads to its
destruction.  Complete hydrolysis of a silica tetrahedron results in the formation of a free H4SiO4

molecule.
This process appears to be of critical importance in the dissolution of silicates, as was the case for

oxides.  Many silicate dissolution experiments have shown a dependence of dissolution rate on pH of
the form:

ℜ  = k aH
n

+ 5.136

with the value of n less than one.  Blum and Lasaga (1988,1991) showed that the dissolution rate of
albite can be directly related to the surface concentration of positive species (SÑOH 2

+ ) under acidic

Table 5.3. Dissolution Rates and Mean
Lifetimes of Crystals at 25°C and pH 5
Mineral  Log Rate Mean Lifetime

(mol/m2/s) years
Quartz -13.39 34,000,000
Kaolinite -13.28 6,000,000
Muscovite -13.07 2,600,000
Epidote -12.61 923,000
Microcline -12.50 579,000
Albite -12.26 -575,000
Sanidine -12.00 291,000
Gibbsite -11.45 276,000
Enstatite -10.00 10,100
Diopside -10.15 6,800
Forsterite -9.50 2,300
Nepheline -8.55 211
Anorthite -8.55 112
Wollastonite -8.00 79
From Lasaga et al. (1994).
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conditions and to the concentration of negative surface species (SÑOÐ) under basic regions. In other
words:

under acidic conditions: ℜ  = k1[S—OH2
+ ] 5.137a

and under basic conditions: ℜ  = k2[S—O–] 5.137b
This dependence explains the fractional dependence of dissolution rate on pH.  The reason is that the
concentrations of SÑOH 2

+ and SÑOÐ species can be related to pH through Freundlich isotherms
(equation 5.149).  In the case of albite dissolution, Blum and Lasaga (1991) found:

 [S—OH2
+] = K1aH+

0.52 5.138a

 [S–O–]= K2a0H
0.37=K3aH+

–0.37 5.138b

for acidic and basic conditions respec-
tively.  This relationship is shown in
Figure 5.31a.  Substituting 5.138a and b
into 5.137a and b, we expect:

   ℜ = k3aH+
0.52 5.139a

   ℜ = k4aH+
–0.37 5.139b

This matches well the pH dependencies
determined experimentally by Chou and
Wollast (1985), who found the exponents
in equations 5.136 were 0.49 and -0.30 for
the acidic and basic conditions re-
spectively, as is shown in Figure 5.31b.
Although the experimental data have
been questioned, a similar relationship
between abundance of surface species and
dissolution rate has been claimed for
olivine.

Ganor et al. (1995) demonstrated tha t
the dissolution rate of kaolinite
(Al2Si2O5[OH]4) also shows a fractional
exponential dependence on pH (equation
5.136) with the value of the exponent, n,
being 0.4±0.2 for the pH range 3 to 4.
Consistent with earlier studies, they
concluded the form of the rate equation
reflected the equilibrium adsorption of
protons on the mineral surface.  Their
interpretation of the details of the
reaction mechanism, however, was
somewhat different than the
interpretation of the mechanism of
Al2O3 dissolution of Stumm and Wollast
(1990) discussed above.  Ganor et a l .
(1995) argued that simultaneous
protonation of all metal-oxide bonds
was unlikely and furthermore unneces-
sary, since stepwise breaking of metal
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Figure 5.31. (a) Relationship between pH and the absolute
value of net surface charge on dissolving albite particles.  A
Freundlich isotherm (dashed red lines) can be fit to the
data. (b) Relationship between log of the albite dissolution
rate and pH determined by Chou and Wollast (1985).  The
slope passing through the step parts of the curve (dashed
red lines) is similar to slopes in (a), indicating adsorption
and desorption of protons controls the dissolution rate.
From Blum and Lasaga (1991).
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oxide bonds would do the job.  They argued tha t
hydrogen ionÐmediated breaking of AlÐOÐSi
bonds was the critical and rate-determining
step in kaolinite dissolution.  In support of this
hypothesis, they point out that ab initio (i.e.,
from first principles) calculations show that
the activation energy for hydrolysis of this
bond is lower than that of SiÐOÐSi bonds. The
kaolinite structure (Figure 5.34) consists of
alternating sheets of Si-tetrahedra and Al-
octahedra, with each Si-tetrahedron sharing
an oxygen with an Al in the octahedral layer.
Breaking these AlÐOÐSi bonds effectively
"unzips" the octahedral and tetrahedral

sheets.  Subsequent hydrolysis of the individual metal-oxygen bonds is then fast.
In focussing on the effects of pH in our discussion of dissolution thus far, we have implicitly as-

sumed that dissolution reactions take place far from equilibrium.  We have also ignored the effects of
temperature.  Clearly, temperature and the approach to equilibrium must be taken into account in a
full treatment of dissolution.  Furthermore, other dissolved species might either catalyze or inhibit
dissolution reactions.  Lasaga et al. (1994) have proposed the following rate equation to take account
of these additional factors:

   ℜ = k0e–Ea/RTƒ(∆G)AminaH+
n ai

miΠ
i

5.140

The k0eEa/RT term is the usual Arrhenius expression for temperature dependence.  Amin is the surface
area of the dissolving mineral, the term a H

n
+ takes account of the pH dependence, and the a i

m i terms
take account of the inhibitory or catalytic effects of other ions; n and mi may take any value.  The
Ä(∆G) term is some function of ∆G that expresses the dependence of the rate on the deviation from
equilibrium.  For instance, we saw that transition state theory predicts that Ä(∆G) for an elementary
reaction takes the form of equation 5.59, i.e.:

ƒ(∆G) = k (1 – e∆G/RT)
For an overall reaction, Ä(∆G) might have the form (equation 5.60):

ƒ(∆G) = k (1 – en∆G/RT)
Even if the exact form of the rate equation is not known, an apparent activation energy can be cal-

culated to express the temperature dependence of reaction rate.  In that case, however, the activation
energy is valid only under a specific set of conditions.  Values of such apparent activation energies for

a few minerals are listed in Table 5.4.
  Equation 5.140 predicts that the dissolution rate

will slow as equilibrium between mineral and solution
is approached, i.e., as the concentration of dissolved
components increases.  This will occur when the rate of
dissolution exceeds the rate of transport because the
concentrations of dissolution products will build up a t
the mineral-water interface.  In the steady-state,
mass balance requires that the rate of dissolution
(i.e., the rate at which aqueous species are produced
at the surface) and transport (the rate at which
components are removed from the solution adjacent
the dissolving surface) must be equal.  Thus overall
weathering rates are controlled by a combination of
surface kinetics and transport kinetics.  In each
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Figure 5.34.  The structure of kaolinite.  Kaolinite
consist of  a layer of Si-tetrahedra linked to a
layer of Al-Octahedra through a shared oxygen.  

Table 5.4.  Apparent Activation
Energies for Dissolution Reactions
Mineral Ea pH

kJ//mol
Albite 54.4 neutral
Albite 32.2 Basic
Albite 117.2 <3
Epidote 82.9 1.4
Kaolinite 29.3 3Ð4
Microcline 52.3 3
Quartz 71.2 7
Sanadine 54.0 3
Wollastonite 79.1 3-8
modified from Lasaga et al. (1994).
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individual situation, one or the other can be the rate-limiting step.
Surface reactions are most often rate-limiting in dissolution and

weathering of silicate minerals at low temperature (25¡C).
Dissolution of readily soluble minerals (e.g., halite) and even
moderately soluble minerals (e.g., gypsum) are, by contrast, usually
limited by the rate at which the dissolving components can be
transported away from the mineral-water interface. by advection
and diffusion.  As temperature increases, transport is increasingly
likely to become rate-limiting.  This is because the activation en-
ergy of diffusion in aqueous solution, typically 5-10 kJ/mol, is gen-
erally less than the activation energy of surface reactions
(typically >30 kJ/mol; Table 5.4).  Thus the diffusion rates increase
more slowly with temperature than surface reaction rates.  This
point is illustrated for the case of calcite in Figure 5.33.  At tem-
peratures less than 75¡ C, growth and dissolution  of calcite, a
moderately soluble mineral, is effectively controlled by the surface
reaction rate, while at temperatures greater than 125¡ C, diffusion
is the rate-controlling step.  Dissolution under hydrothermal and
metamorphic conditions is most likely to be diffusion-controlled for
most minerals (Guy and Schott, 1989).

5.7 Diagenesis
An introductory geology text might define diagenesis as the pro-

cess through which a sediment is converted to a sedimentary rock.
We will use diagenesis to refer to a number of physical and chemi-
cal processes that occur subsequent to deposition of  a sediment, in-
cluding compaction and expulsion of pore water, consumption of or-
ganic matter, and resulting changes in pε.  Some of the originally
deposited phases dissolve in the pore water during diagenesis,
other phases crystallize from the pore water.  Some of these
changes begin immediately after deposition, some only as a result
of later deformation.  Some occur as a result of moderately elevated
temperature and pressure, though processes occurring at much
higher temperature and pressure would be called metamorphism.
Diagenesis and metamorphism form a continuum; though a geolo-
gist might volunteer a definite opinion on whether a particular
specimen had been diagenetically or metamorphically altered, h e
would be hard pressed to come up with criteria to distinguish dia-
genesis from metamorphism that was not arbitrary.  Here, we will
briefly consider a few of these processes.

5.7.1 Compostional Gradients in Accumulating Sediment

LetÕs turn out attention to the early stages of diagenesis in a
slowly accumulating sediment.  Our first task is to decide upon a
reference frame.  There are two choices: (1) we can choose a refer-
ence frame that is fixed relative to the sediment-water interface,
thus depth always refers to distance downward from that inter-
face.  As sediment accumulates, a given layer of sediment will appear to move downward in this
reference frame.  Alternatively, we might choose a reference frame fixed to a specific layer.  In this
case, the sediment-water interface will appear to move upward with time.  We can express the
change in concentration at some fixed depth below the water-sediment interface as the sum of changes
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Figure 5.33.  Log of steady state
growth (a) and dissolution (b) of
calcite as a function of tempera-
ture, comparing diffusion-con-
trolled and surface reaction-con-
trolled kinetics.  The model as-
sumes a 1 µ hydrodynamic
boundary layer and saturation
in the case of growth.  From
Murphy et al. (1989).
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in the composition due to diagenesis plus the
change in the composition of sediment flowing
downward past our fixed reference point:

  ∂Ci
∂ t

=
dCi
dt – ω ∂Ci

∂x
5.141

where Ci is concentration some species i, ω is the
burial rate, the partial derivative on the left
hand side refers to changes at some fixed d e p t h ,
and the total derivative refers to diagenetic
changes occurring in some fixed layer undergoing
burial.  (∂Ci/∂x)t is the concentration gradient of i
at some fixed time t.  This equation allows us to
convert a reference frame that is fixed relative to
the sediment-water interface to one that is fixed
relative to some sedimentary layer.

Since the process is continual on geologic time
scales, it might in some instances be reasonable to
assume that it eventually reaches a steady state
such that:

∂
∂
C
t

x







= 0 5.142

In other words, the concentration of i at some fixed
depth below the water-sediment interface is
constant.  Under these circumstances then,

dC
dt

C
x

i i

t

= 





ϖ ∂
∂ 5.143

This case is illustrated in Figure 5.34.
If there is no diagenesis, then the composition

of a given layer is determined only by what is
initially deposited and:

 dC i
dt

= 0 5.144

The  concentration change with time at some fixed
depth is then due to change in the composition of
the sediment moving downward past that point.
Thus:

∂
∂ ϖ ∂

∂
C
t

C
x

i

x

i

t







= 





5.145

This case is illustrated in Figure 5.35.
The sediment consists both of solid particles

and the water buried with the particles, the pore
water.  Assuming no other fluid is present (e.g.,
gas, petroleum) then the volume fraction of water
in the sediment is equal to the porosity φ.  The
volume fraction of solids is then simply 1 Ð φ.  Most sediments will undergo compaction as they are
buried.  This is due to the weight of overlying sediment (gravitational compaction).  Gravitational
compaction results in expulsion of pore water and in decrease in porosity with depth.  In addition,

x1 x1

T1 T2
ConcentrationConcentration

Layer ‘A’

Layer ‘A’

Figure 5.34.  Steady-state diagenesis.  Concentra-
tion at a fixed depth x1 below the surface remains
constant, but layer A, whose depth increases with
time due to burial, experiences a decreasing
concentration with time.  After Berner (1980).
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Figure 5.35.  Concentration profiles in a sediment in
which the composition of the material changes
with time, but there is no diagenesis.  The compo-
sition of any given layer is fixed, but the composi-
tion at some fixed depth relative to the water-
sediment interface, such as x1, changes with time.
After Berner (1980).
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dissolution and cementation will also
affect porosity.  Since the molar
volume of a phase precipitating or
dissolving (the most important such
phase is CaCO3) will be different
from its partial molar volume in so-
lution, these processes will also result
in motion of the pore water.  When
compaction occurs, the rate of burial
of a sediment will not be equal to the
sedimentation rate.

Now consider a box of sediment of
thickness dx  and unit length and
width embedded within some
sedimentary layer (Figure 5.36).  We
assume that the layer is of uniform
composition in the lateral dimension,
and therefore that there is no lateral
diffusion, and that there is also no

lateral advection of fluid.  Within the box there are some number of moles C of species i.  If we chose
our concentration units to be moles per volume, then the concentration is simply C.

LetÕs consider the processes that can affect the concentration of species i within the box.  First of
all, reactions occurring within the box might affect i.  For example, oxidation and reduction will
affect species such as Fe3+, SO 4

2− , and Mn2+, etc.  If we are interested in the concentration of a dissolved
species, then dissolution, crystallization, leaching, etc. will all change this concentration.

In addition to reactions occurring within the box, diffusion, advection, and bioturbation will also
affect the concentration of i if there is a difference between the fluxes into and out of the box.
Bioturbation is the stirring effect produced by the activity of animals that live in the sediment (the
infauna).  From a geochemical perspective, bioturbation is much like diffusion in that it results from
the random motion of particles (even if these particles are of very different size from atoms and ions)
and acts to reduce compositional gradients.  Mathematically, we can treat the effect of bioturbation
in a way similar to diffusion, i.e., we can define a bioturbation flux as:

  
JB = –DB

∂Ci

∂x
5.146

where DB is the biodiffusion coefficient.  Values of DB for solid phases range from 10-6 cm2/sec in near
shore clays to 10-11 in deep sea pelagic sediments.  The bioturbation coefficient will generally be dif-
ferent for solid species than for liquid ones.  Since most animals live only in the upper few cmÕs or 10Õs
of cmÕs,  DB will be a function of depth.  The time dependence of concentration is given by:

  ∂Ci

∂t x

=
∂ DB ∂Ci/∂x

∂x
5.147

Since molecular diffusion through solids is much lower than through liquids, one can generally ne-
glect diffusion in the solid and deal only with diffusion through the pore water.  Because pore water
only occupies a fraction, φ, of the total volume of sediment, the flux will be reduced accordingly.  Thus
the diffusion of a dissolved species will be:

  
JM = – φ DM

∂Ci

∂x
5.148

where we have adopted the subscript M to denote molecular diffusion.  FickÕs second law becomes:

BinDin

Ain

Dout
Aout Bout

{dx

Figure 5.36.  Fluxes through a box in a sedimentary layer
of unit lateral dimensions and thickness dx.  Arrows l a -
beled A, B, and D indicate advective, biodiffusive, and
molecular diffusive fluxes.  Loss or gain by the box due to
these processes depends on the difference in the flux into
and out of the box: dF/dx.
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  ∂Ci

∂t x

= 1
φ

∂ φ DM ∂Ci/∂x

∂x
5.149

The advective flux is the product of the fluid (i.e., pore water) velocity times the concentration:
 JA = vCi 5.150

To describe the rate of change in concentration in the box, we want to know the rate of reactions
within it and the change in flux across it, as it is the change in flux that dictates what is lost or
gained by the box.  Combining all the fluxes into a single term, Fi, the rate of change of species i in the
box is:

   dCi
d t

= –
∂Fi

∂x
+ RiΣ  5.151

where the second term is the sum of the rates of all reactions affecting i.  The flux term is negative be-
cause any decrease in flux over dx results in an increase in concentration within the box.

We can then use equation 5.141 to transform to a reference frame fixed relative to the sediment sur-
face:

  ∂Ci

∂t x

= –
∂Fi

∂x t
– ω

∂Ci

∂x
+ RiΣ 5.152

The downward burial of sediment past point x can also be considered a flux.  Combining this with the
other flux terms, we have:

  ∂∂C i

∂∂ t x

= –
∂∂Fi

∂∂x t

+ R iΣΣ 5.153

 where F is the net flux of i in and out of the box and the last term is the rate of all internal changes,
including chemical, biochemical, and radioactive, occurring within the box.  Equation 5.153 is called
the Diagenetic Equation (Berner, 1980).  LetÕs now consider an example that demonstrates how this
equation can be applied.

5.7.2 Reduction of Sulfate in Accumulating Sediment

Organic matter buried with the sediment will be attacked by aerobic bacteria until all dissolved
O2 is consumed.  When O2 is exhausted, often within tens of centimeters of the surface, consumption
will continue anaerobically with sulfur in sulfate acting as the electron acceptor:

  2 αCH2O + SO4
2- → H2S + 2HCO3

– 5.154

where CH2O represents organic matter generally and α is the number of organic matter carbon atoms
reduced per sulfur atom.  LetÕs assume that the rate of sulfate reduction depends only on the supply of
organic matter and not on the abundance of sulfate.  In this case:

  [CH2O]

dt
= –k[CH2O] 5.155

We are greatly simplifying matters since there are a great variety of organic compounds in sediments
each of which will have a different rate constant.  To further simplify matters, we will assume (1)
that conditions become anaerobic at the sediment-water interface, (2) that all consumption of organic
matter occurs anaerobically, (3) that steady-state is achieved (i.e., (∂C/∂x)t = 0), and (4) there is no
compaction (and therefore no pore water advection) or bioturbation.  Substituting 5.155 into 5.145, we
have:

   
–k[CH2O] = ω

∂[CH2O]

∂x t

5.156
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Integrating, we obtain the concentration of organic matter as a
function of depth:

   
[CH2O] = [CH2O]˚e–kx/ω 5.157

where [CH2O]û is the organic matter concentration at the
sediment-water interface (x = 0).

We can now also solve for the variation in concentration
sulfate in the pore water.  According to equation 5.9, the rate of
sulfate reduction is related to the organic matter consumption
rate as:

   
d[SO4

2–]
dt

=
1

2α
d[CH2O]

dt
= –

k

2α
[CH2O]˚e–kx/ω 5.158

Whereas the organic matter can be considered fixed in sedi-
ment, the sulfate is a dissolved species, so we must also con-
sider diffusion.  Making appropriate substitutions into 5.153,
we have:

φ
∂

∂
ω

∂
∂ α

ωD
SO

x

SO

x
CH O

e
t

x
2

4
2

2

4
2

2 0
− −[ ]





− [ ]





− ° =k

2
-k[ ] / 5.159

This is a second order differential equation and its solution
will depend on the boundary conditions.  Our boundary condi-
tion is that at x = 0, C = C¡.  The solution under these conditions
is:

   
SO4

2– =
ω2[CH2O]°

2α ω2 + kD φ
ekx/ω – 1 + SO4

2– ° 5.160

where [SO 4
2 ]û is the sulfate concentration at  the surface.

Murray et al. (1978) applied this model to data from sediment cores taken from Saanich Inlet of
British Columbia (Figure 5.37).  Sedimentation rate, ω, was determined using 210Pb (see Chapter 8) to
be about 1 cm/yr, the factor α was independently estimated to be 0.5, and average porosity of 0.927.
The value of D was taken to be 2.6 × 10-6 cm2/sec.  They fit an exponential curve of the form c = a eÐbx

to the data and found a = 26.6 and b = 0.184.  From this they determined the rate constant to be 6.1 ×
10-9 sec-1, and the initial concentration of metabolizable organic matter to be 380 mM/cm3 total sedi-
ment.  The latter was somewhat larger than the value determined from the profile of total organic
carbon in the core.  To explain the discrepancy, the authors suggested methane is produced below the
depth where sulfate is depleted.  Methane then diffuses upward and is oxidized by sulfate-reducing
bacteria.
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Problems

1.  (a) Assuming that the precipitation of calcite from aqueous solution occurs only through the reac-
tion:

Ca2+ + CO3
2−→ CaCO3(s)

and that this reaction is elementary, write an equation for the rate of calcite precipitation.
(b)  Assuming that the reaction above is reversible, i.e.:

Ca2+ + CO3
2−® CaCO3(s)

and still assuming that it is elementary, write an equation for the dependence of net rate of calcite
precipitation on concentration and free energy change of reaction.

2. Zhong and Mucci (1993) found that at constant concentration of dissolved Ca2+ ([Ca2+] ≈ 10.5
mmol/kg), the rate of calcite precipitation in seawater obeyed the following rate law:

ℜ  = Kf [ CO3
2− ]3 – k-

where Kf = k+(aCa2+)n γ CO3

3 = 103.5 and kÐ = 0.29 (ℜ  is in units of µmol m-2 h-1).

(a) Is this rate law consistent with the mechanism of calcite precipitation in seawater being the
elementary one described in problem 5.1 or with a more complex reaction mechanism?  Justify your an-
swer.

(b) Using this rate law, predict the rate of calcite precipitation for concentrations of CO 3
2−  of 0.04,

0.066, and 0.3 mmol/kg.
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3.  Oxidation of methane in the atmosphere occurs through a number of
mechanisms, including reaction with the hydroxyl radical:

OH + CH4 ® H2O + CH3

The rate of this reaction for a series of temperatures is shown in the adja-
cent table.  Based on these data, estimate the activation energy and fre-
quency factor for this reaction.  (HINT: Try using linear regression).

4.  Schrott et al. (1981) found that dependence on pH of the rate of dissolu-
tion of enstatite could be expressed as:

ℜ  = k aH
n

+

where k shows a typical Arrhenius temperature dependence.  
a.)  Reaction rates were measured at a series of pH values at constant tem-
perature (22¡ C).  These data are shown in the adjacent table.  Using these
data, estimate values of k and n for this temperature (HINT: try using lin-
ear regression).

b.)  Reaction rates were also determined at various temperatures at con-
stant pH (6).  Using these data, estimate the activation energy and fre-
quency factor for the rate constant.
c.)  Using your results from (a) and (b), estimate the rate of reaction (in
moles Si released per sec per gram enstatite) at pH 4 and 30¡ C.

5.   Marcasite and pyrite are polymorphs of FeS2.  Though pyrite has a
lower ∆Gf than marcasite, the latter often forms metastably.  Lennie and Vaughan (1992) found that
the kinetics of the marcasite to pyrite transformation follows a simple first order rate law:

   –dα
dt = k α

where α is the volume fraction of marcasite and k has the usual Arrhenius temperature dependence
with A = 2.76 × 1017 sec-1 and EA = 253 kJ/mol.  Assuming  a system consisting initially of pure mar-
casite, calculate the time required for one half of the marcasite to convert to pyrite (i.e., α = 0.5) a t
300¡ C and 350¡ C.

6.  If ∆G is the free energy of reaction for the reaction:

A + BC → AC + B (1)
and assuming (1) this is an elementary reaction, (2) ideal behavior, and (3) it is a reversible reaction,
show that the ratio of the forward and reverse rates of (1) is:

  R+

R–

= e – ∆G/RT (5.57)

(HINT, start with equation 5.57).

7.  On a temperature-pressure diagram, draw a line such that the time required for complete conver-
sion of a 1 mm aragonite crystal to calcite will be complete within 105 years.  Assume spherically
symmetric growth of calcite from a single nucleus in the center.  Use the thermodynamic data in Table
2.2 and ∆G* = 184 kJ (see Example 5.4).

8. Using the data given in Example 5.5 for the reaction:
Ca2Mg5Si8O22(OH) + 11CaMg(CO3)2 ® 8Mg2SiO4 + 13 CaCO3 +9CO2 + H2O

Tremolite  +  11 Dolomite   ® 8 Forsterite + 13 Calcite + 9 CO2 + H2O

RATES OF METHANE-
HYDROXYL REACTION

T, ¡C k
25 6.60×-15

10 4.76×-15

0 3.76×-15

-10 2.93×-15

-25 1.93×-15

RATE OF ENSTATITE
DISSOLUTION

pH
Rate

moles Si/g-sec
1 2.75× 10-10

2 7.08× 10-11

6 2.82× 10-13

T
¡ C

Rate
moles Si/g-sec

20 3.72 × 10-13

50 2.34 × 10-12

60 4.07 × 10-12

75 8.13 × 10-12
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make a plot of the relative volume of dolomite (VDo/VDo0) as a function of time assuming an initial
temperature of 620¡ C (the equilibrium temperature) and a heating rate of 0.1¡ per year.
(HINT:  Because the reaction is fast, the overall temperature change will be small, so you may as-
sume that T (i.e. absolute temperature) is constant.  However, because the temperature is close to the
equilibrium temperature, the change in the temperature overstep, ∆T, will be significant. Approxi-
mate ∆G in equation 5.72 as ∆S∆T and express ∆T as a function of time, ∆T = RHt where RH is the
heating rate, then integrate.)

9. The transformation of kaolinite to illite (muscovite) may be written as:

K+ + 1.5Al2Si2O5(OH)4 ® H+ + KAl3Si3O10(OH)2 + 1.5H2O
Chermack and Rimstidt (1990) determined that the forward rate of  reaction was:

  
–

d mK+

dt = k+ mK+

Forward and reverse rate constants for the reaction were determined to be:

ln k+ = 12.90 – 1.87 × 104/T and ln k– = 6.03 – 1.21 × 104/T
a.) What are the activation energies for the forward and reverse reactions?
b.) What is the equilibrium constant for this reaction at 275 ¡ C ?  
c.) Make a plot of log ℜ net vs. log (mH+/maK+) at 250¡ C assuming a K+ concentration of 2.0 m, ideal

solution, that muscovite and kaolinite are pure phases, and that the forward and reverse reactions
are elementary.

10.  Using the data in Table 5.2, determine the diffusion coefficient for diffusion of Ba in an andesitic
melt for T = 1200¡, 1100¡, 1000¡, and 900¡C (assume the parameters are valid over this temperature
range; remember to use thermodynamic temperature).

11.  Using the data in Example 5.8, calculate the diffusion flux for Mg and Fe in garnet.

12. A remarkable feature of sediments recording the Creataceous-Tertiary Boundary is an enrichment
in iridium (Ir) at the boundary, which is often marked by a boundary clay.  Imagine a boundary clay 5
cm thick that initially has a uniform Ir concentration of 20 ppb.  Assume and that sediments above
and below the boundary clay contain negligible Ir.   If the detection limit for Ir is 2 ppb, how thick
would the Ir-enriched layer be after 60 million years if the diffusion coefficient for Ir is 10-15 cm2/sec?

13.  Assuming a surface free energy of 10-4 J/cm2, V
Ð

  = 101 cc/mol, ∆Hm = 54.84 kJ/mol, and Tm =  1118¡ C,
what is the critical radius for a spherical albite crystal growing in a pure albite melt that has been
undercooled by 10¡, 20¡, and 30¡?

Make a plot of ∆Gtot as a function of crystal radius for each of these temperatures. (HINT: your
scale should span only 10 or 20 use microns.)

14.  Crystal growth and dissolution are reactions that involve both diffusion and surface reactions oc-
curring in series (i.e., a component of a growing crystal must first be delivered to the surface, then in-
corporated in the growing crystal).  Either of these processes can be the rate-limiting step at 25¡ C.
Diffusion in aqueous solutions typically has an activation energy of 20 kJ/mol whereas surface reac-
tions in aqueous solution typically have activation energies of 60-80 kJ/mol.  Assuming the rates of
diffusion and surface reaction for growth of a certain mineral from aqueous solution are approxi-
mately equal at 25¡ C, will diffusion or surface reaction be rate-limiting at 200¡C?

15.   Some anaerobic bacteria can utilize Mn4+ to oxidize organic matter.  The reaction may be repre-
sented as:
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2MnO2(s) + CH2O + H2O ® 2Mn2+ + CO2 + 4OH–

In its oxidized form, Mn is highly insoluble and effectively immobile in sediment.  However, in its
reduced form, Mn is soluble and mobile.  Imagine that at a depth of 50 cm in actively depositing ma-
rine sediments conditions become sufficiently reducing so that the reaction above occurs.  Furthermore,
assume that reaction is such that a constant concentration of 0.02 mM of Mn2+ is maintained at this
depth and below.  Above this depth, Mn2+  is oxidized and precipitated through reactions such as:

Mn2+ + 2OH– + 
1
2 O2

 ® MnO2(s) + H2O

Assuming (1) that the rate of the above reaction may be written as:
  dmMn2+

dt = k mMn2+

 (2) k for this reaction is 1 × 10-8 secÐ1, (3) the concentration of Mn2+ at the sediment-water interface is 0
and that diffusion from below is the sole source of Mn2+ between 0 and 50 cm, (4) D is 5 × 10-6 cm/yr, (5)
a sedimentation rate of 1 cm/yr, (6) there is no advection, compaction, or bioturbation, and (7) a poros-
ity of 0.85, make a plot of the concentration of dissolved Mn2+  vs. depth at steady state.


